遥感导论_章节重点

合集下载

遥感技术导论知识要点总结

遥感技术导论知识要点总结

遥感技术导论知识要点总结第一章绪论1.遥感定义:在远离被测物体或现象的位置上,使用一定的仪器设备,接收·记录物体或现象反射或发射的电磁波信息,经过对信息的传输·加工处理·以及分析与解译,对物体及现象的性质及其变化进行探测和识别的理论与技术。

(遥感是一个接收·传送·处理·分析遥感信息,并最后识别目标的复杂技术过程。

)2.现代遥感技术系统一般有四部分:遥感平台(搭载遥感仪器的工具,如飞机,火箭,卫星等)·传感器(收集记录传送遥感信息的装置如:摄影机,摄像仪,扫描仪等)·遥感数据接收处理系统(有接受和记录系统,图像数据处理系统)·分析解译系统。

3.遥感的分类:按遥感平台分类:地面,航天,航空;按电磁辐射能源分类:被动,主动;按电磁波谱的分类:可见光,红外,微波,多光谱,紫外。

第二章电磁辐射及物体的波谱特性一.电磁辐射1.遥感的本质:物体电磁辐射通过传感器成像得到遥感影像,然后遥感影像接受解译从而识别出该物体。

2.电磁辐射具有波粒二象性。

从波动性来看,电磁辐射在某时空的强度I和波振幅的平方成正比;从粒子性来看,电磁辐射在某时空的强度I与该时空粒子出现的几率成正比(粒子出现的几率即单位时间内通过单位截面的粒子数目的多少)。

波长较长,能量较小的波动性明显:波长较短,能量较大的粒子性明显。

3.电磁波谱:按照电磁辐射的波长或频率大小,依次排列画成图表,这个图表叫做电磁波谱。

遥感主要接收范围在可见光,红外线,微波。

4.紫外线波长在3纳米到0.38微米,可用感光胶片和光电仪器收进行探测,但是该波段散射严重。

5.可见光波长在0.38到0.76微米,具有光电效应和光化作用,在遥感中能用胶片和光电仪器收集记录。

6.红外线波长为0.76到1000微米,其中0.76到1.4微米的范围可用摄影方式探测,所以也称为摄影红外;7.电磁辐射的基本性质:A.电磁波传播的性质:电磁波的叠加,干涉,衍射,偏振。

(完整版)遥感导论知识点整理(梅安新版)

(完整版)遥感导论知识点整理(梅安新版)

遥感导论知识点整理【题型】一、选择题二、填空题三、名词解释四、简答题五、论述题注意:标注页码的地方比较难理解,希望大家多看看书,看看ppt。

【第一章】绪论1、【名】遥感(remote sensing)广义:泛指一切无接触的远距离探测;定义:是从远处探测感知物体,也就是不直接接触物体,从远处通过探测仪器接收来自目标地物的电磁波信息,经过对信息的处理,判别出目标地物的属性。

2、遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用。

(5个哦亲!详见书第2页图哈~)3、【名】信息源:任何目标具有发射、反射和吸收电磁波的性质,被称为遥感的信息源。

4、遥感的类型:a)按照遥感平台分地面遥感、航空遥感、航天(空间)遥感、航宇遥感b)按传感器的探测波段分紫外遥感(0.05μm-0.38μm)、可见光遥感(0.38-0.76μm)、红外遥感(0.76-1000μm)、微波遥感(1mm-10m)c)按工作方式分主动遥感、被动遥感;成像遥感、非成像遥感5、遥感的特点:大面积的同步观测、时效性、数据的综合性和可比性、经济性6、遥感发展简史Remote Sensing 的提出:美国学者布鲁伊特于1960年提出,61年正式通过。

遥感发展的三个阶段:(1)萌芽阶段1839年,达格雷发表第一张空中相片;1858年,法国人用气球携带照相机拍摄了巴黎的空中照片。

1882年,英国人用风筝拍摄地面照片;J N Niepce (1826, France)The world’s first photographic imageIntrepidballoon, 18621906, KitesPigeons, 1903.(2)航空遥感阶段1903年,莱特兄弟发明飞机,创造了条件。

1909年,意大利人首次利用飞机拍摄地面照片。

一战中,航空照相技术用于获取军事情报。

一战后,航空摄影用于地形测绘和森林调查与地质调查。

遥感导论重要知识点

遥感导论重要知识点

第一章绪论1遥感(侠义):运用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2遥感系统包括:被测目标的信息特征,信息的获取,信息的传输与记录,信息的处理,信息的应用3遥感的特点①大面积的同步观测②时效性③数据的综合性和可比性④经济性⑤局限性第二章电磁辐射与地物光谱特征1电磁波共性:①在真空中都以光速传播,传播速度都是相同的②遵守同一反射,折射,干涉,衍射及偏振定律③电磁波铺区段的界限是渐变的5电磁波性质:①是横波②在真空以光速传播③满足频率×波长=光速,能量=普朗克常数×频率④电磁波具有波粒二相性(16)2电磁波:由振源发出的电磁振荡在空中的传播,是电磁振荡在空间传播,3电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列就构成了~。

(P15)4可见光波段对遥感有重要意义5辐射通量:单位时间内通过某一面积的辐射能量。

辐射通量是波长的函数。

总辐射通量是各普段辐射通量之和或辐射辐射通量的积分值6辐射通量密度:单位时间内通过单位面积的辐射能量7辐照度:被辐射的物体表面单位面积上的辐射通量8辐射出射度:辐射源物体表面单位面积上的辐射通量9绝对黑体(朗伯源):如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

10绝对黑体不仅有最大的吸收率,也具有最大的发射率,却丝毫不存在反射11黑体辐射规律:①辐射通量密度随波长变化连续,每条曲线只有一个最大值②温度越高,辐射通量密度也越大,不同温度曲线不相交③随着温度增加,辐射最大值所对应的波长移向短波方向第二节太阳辐射及大气对太阳辐射的影响1太阳常数:指不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量。

太阳常数的变化不会超过1%2太阳光谱的特征①太阳辐射的光谱是连续光谱,但是有许多费吸收线②辐射特性与绝对黑体的辐射特性基本相同③太阳辐射从近紫外到中红外这一波段区间能量最集中而且相对来说最稳定,太阳强度变化最小3太阳光谱特征对遥感的启示:(1)被动遥感主要利用可见光,红外等稳定辐射,使太阳活动对遥感的影响降到最小(2)由于大气的影响,需要对遥感影像进行矫正4散射:辐射在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开,5散射使原来传播方向上的辐射强度减弱,而增加其他方向上的辐射,但通过二次影响增加了信号中的噪声成分,造成遥感图像的质量下降6散射现象的实质:电磁波在传输过程中遇到大气微粒而产生的一种衍射现象7常见的大气散射及其特点(1)瑞丽散射:大气中粒子的直径比波长小得多时发生的散射。

遥感导论复习重点

遥感导论复习重点

遥感导论复习重点第一章遥感概述§1-1遥感的基本概念及其特点一、遥感概念遥感(RemoteSening)是20世纪60年代发展起来对地观测综合性技术。

有广义和狭义之分。

1、广义遥感:泛指一切无接触的远距离探测(对电磁场、力场、机械波等)2、狭义遥感:即是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析揭示出物体的特征性质及其变化的综合测控技术。

遥测:对目标的某些运动参数和性质进行远距离册测量的技术。

分接触和非接触测量。

遥控:远距离控制目标的运动状态和过程的技术。

二、遥感的特点1.大面积同步观测:探测范围大,具有综合、宏观的特点,受地面条件限制少。

2.时效性:获取信息速度快,更新周期短,具有动态监测特点。

3.数据综合性先进性:信息量大,具有手段多,技术先进的特点。

4.经济性:用途广,效益高的特点。

5.局限性:利用的电磁波段有限。

§1-2遥感过程及系统一、遥感过程的实现光谱特性:一切物体固有的对电磁波反射、透射、吸收的能力。

由于环境不同,物体的反射、辐射电磁波是不同的。

数据获取→数据处理分析→数据应用遥感是一个接收、传送、处理和分析遥感信息,并最后识别目标的复杂技术过程。

二、遥感的技术系统依据遥感过程遥感系统分为:1.信息源2.信息的获取和接收传感器遥感平台地面站:是为了接收和记录遥感平台传送来得图像胶片或数字磁带数据而建立的。

由地面数据接收和记录系统(TRRS)和图像数据处理系统(IDPS)两部分组成。

3.信息的处理4.信息的应用-1-§1-3遥感的类型遥感的分类方法多种多样,主要有以下几种分类方法:1.按照遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感2.按照传感器的探测波段分:紫外遥感、可见光遥感、红外遥感、微波遥感、多波段遥感 3.按工作方式分:主动遥感、被动遥感;成像遥感、非成像遥感4.按信息获取方式分:5.按照波段宽度及波谱的连续性分:6.按应用领域分:较多§1-4遥感的发展简史一、遥感发展概况(一)遥感的萌芽及其初期发展时期(二)现代遥感发展时期从以下四个阶段了解遥感发展过程无记录的地面遥感阶段(1608-1838)有记录的地面遥感阶段(1839-1857)空中摄影遥感阶段(1858-1956)航天遥感阶段(1957-)二、我国遥感发展概况及其特点三、当前遥感发展主要特点与展望新一代传感器的研制,获得分辨率更高,质量更好的图象和数据;遥感应用不断深化;地理信息系统的发展与支持是遥感发展的又一新动向;复习题1.试述遥感的探测系统及其实现过程。

遥感导论重点知识梳理

遥感导论重点知识梳理

遥感导论重点知识梳理【7月7日3:00PM考前必背】第一章绪论1、遥感的基本概念:v广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

v 狭义:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

也是一门科学。

2、遥感系统的组成部分:1)被测目标的信息特征目标物电磁波特性,既是遥感的信息源,也是遥感探测的依据。

2)信息的获取信息获取主要由遥感平台、遥感器等协同完成。

3)信息的传输与接收空间数据传输与接收是空间信息获取和空间数据应用中必不可少的中间环节。

4)信息的处理首先地面站进行一系列的预处理,如信息的恢复、辐射校正、几何纠正、卫星姿态校正、投影变换等;地面站和用户再根据需要进行精校正处理和专题信息的处理和分类。

5)遥感信息的应用遥感获取信息的目的就是应用。

3、遥感的类型:按遥感平台分地面遥感、航空遥感、航天遥感航宇遥感按传感器的探测波段分紫外遥感:探测波段在0.05~0.38µm之间;可见光遥感:探测波段在0.38~0.76µm之间;红外遥感:探测波段在0.76~1000µm之间;微波遥感:探测波段在1mm~10m之间;多波段遥感:指探测波段在可见光波段和红外波段范围内,再分成若干窄波段来探测目标。

按工作方式分(1)主动遥感和被动遥感:主动遥感由探测器主动发射一定的电磁波能量并接收目标的后向散射信号;被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源的反射能量。

(2)成像遥感与非成像遥感:前者传感器接收的目标电磁辐射信号可转换成(数字或模拟)图像;后者传感器接收的目标电磁辐射信号不能形成图像。

按遥感的应用领域(1)从大的研究领域可分为外层空间遥感、大气层遥感、陆地遥感和海洋遥感等。

(2)从具体应用领域可分为资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感及灾害遥感、军事遥感等。

《遥感导论》考试重点【复习版】

《遥感导论》考试重点【复习版】

第一章绪论第一节遥感概述一、遥感的概念及特点1、概念2、特点①感测范围大②信息量大③获取信息快④其他特点:用途广、效益高、全天候、全方位、资料性二、遥感的分类1、根据遥感平台的高度和类型分类①地面遥感:1.5~300m,车、船、塔,主要用于究地物光谱特征②航空遥感:9~50km,飞机、气球,较微观地面资源调查③航天遥感:100~36000km,卫星、飞船、火箭、天飞机、空间站2、根据传感器的工作方式分类①主动遥感:雷达②被动遥感:被动接受地物反射、发射的电磁波:摄影机、扫描仪3、根据遥感信息的记录方式分类①成像遥感:以图象方式记录:航空性片、卫星图象②非成像遥感:图形、电子数据:数字磁带、光盘4、根据遥感使用的探测波段分类①紫外遥遥:0.3~0.4μm②可见光遥感:0.4~0.76μm③红外遥感:0.76~14μm④微波遥感:1000μm ~30cm⑤多波段遥感:0.5-0.6,0.6-0.7,0.7-0.8,0.8-0.95、根据遥感的应用领域分类:气象、海洋、地质、军事三、遥感过程及其技术系统1、遥感实验:前期工作,主要获得地物的光谱特性。

2、遥感信息的获取:中心工作。

传感器3、遥感信息的接受和处理:利用各种技术手段4、遥感信息的应用:最终目的。

遥感信息的认识(判读、解译)第二节遥感的发展与应用一、遥感的发展1、国外遥感的发展概况“遥感”:①无记录的地面遥感阶段(1608-1838)望远镜的产生:②有记录的地面遥感阶段(1839-1857)摄影技术的发明:③空中摄影的遥感阶段(1858-1956)系留气球、飞机、彩色摄影技术产生④航天遥感阶段(1957-)人造地球卫星产生、计算机技术的应用、GIS⑤遥感的发展趋势:platform:气球-飞机-卫星-飞船-航天飞机-空间站传感器:分辨率变高、稳定性变好、手段变多遥感信息的接收和处理:自动解译、自动分类遥感的应用:广、深入2、我国遥感的发展概况起步晚、发展快①20世纪60年代末设立遥感学科②20世纪70年代,航空测量应用③20世纪70年代末,引进美国卫星技术和卫星资料、设备仪器,促进我国遥感技术与国际领先水平接近。

遥感导论总复习 必备

遥感导论总复习 必备

《遥感导论》总复习第一章绪论1、遥感广义理解,泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

实际工作中,重力、磁力、声波、地震波等的探测被划为物探(物理探测)的范畴。

因而,只有电磁波探测属于遥感的范畴。

狭义的遥感:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的科学及综合性探测技术。

2、遥感技术系统遥感系统包括:被测目标的信息特征(信息源)、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分3、遥感平台转载传感器的平台4、主动遥感传感器从遥感平台主动发射出能源,然后接收目标反射或辐射回来的电磁波。

5、被动遥感传感器不向目标发射电磁波,仅接收目标地物反射及辐射外部能源的电磁波。

如对太阳辐射的反射和地球辐射。

·问答题6、作为对地观测系统,遥感与常规手段相比有什么特点?一、宏观观测,大范围获取数据资料,不受地形阻隔二、时效性(动态监测),快速更新监控范围数据三、技术手段多样,可获取海量数据,数据的综合性和可比性四、应用领域广泛,经济效益高五、局限性穿透性有限第二章电磁辐射与地物光谱特征7、电磁辐射电磁波是电磁振动的传播。

当电磁振荡进入空间时,变化的磁场激发了变化的电场,使电磁振荡在空间传播,形成电磁波,也称电磁辐射.8、电磁波的性质一、电磁波是横波,质点的震动方向与波的传播方向垂直.二、电磁波的性质与光波相同,在真空中传播速度c为3*108m/s满足:c=f*, f三、具有波粒二象性9、电磁波谱按照电磁波在真空中传播的波长或频率排列形成的一个连续谱带10、电磁波遇到介质(气体、液体、固体),发生一系列现象:反射:镜面反射、漫反射折射:射入介质,折射角一般不等于入射角吸收:部分被介质吸收透射:从入射延伸方向射出介质散射:辐射传播中,若遇到小粒子,会向四面八方散去,电磁波强度和方向发生各种变化,即散射。

遥感导论备考知识点资料

遥感导论备考知识点资料

第一章遥感的基本概念★1.遥感的基本概念:应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

★2.遥感探测系统包括:被侧目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用.★3.遥感(对于传统地面调查)的特点:①大面积同步观测:传统地面调查实施困难,工作量大,遥感观测可以不受地面阻隔等限制。

②时效性:可以短时间内对同一地区进行重复探测,发现地球上许多事物的动态变化,传统调查,需要大量人力物力,用几年甚至几十年时间才能获得地球上大范围地区动态变化的数据。

因此,遥感大大提高了观测的时效性。

③数据的综合性和可比性:遥感获得地物电磁波特性数据综合反映了地球上许多自然、人文信息。

由于遥感的探测波段、成像方式、成像时间、数据记录、等均可按照要求设计,使获得的数据具有同一性或相似性。

同时考虑道新的传感器和信息记录都可以向下兼容,所以数据具有可比性。

与传统地面调查和考察相比较,遥感数据可以较大程度地排除人为干扰。

④经济性:遥感的费用投入与所获得的效益,与传统的方法相比,可以大大的节省人力、物力、财力和时间、具有很高的经济效益和社会效益。

⑤局限性:遥感技术所利用的电磁波有限,有待进一步开发,需要更高分辨率以及遥感以外的其他手段相配合,雏别是地面调查和验证。

★4.我国第一颗人造卫星:1970年4月24日发射的“东方红1号”。

第二章电磁辐射与地物光谱特征★1.电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列,则构成了电磁波谱。

★2.电磁波特性:①是横波②在真空中以光速传播③满足f·λ=c、E=h·f④具有波粒二象性。

★3.绝对黑体:对于任何波长的电磁辐射都全部性吸收的物体。

(黑色的烟煤被认为是最接近绝对黑体的自然物质。

)黑体辐射规律:斯忒藩-玻耳兹曼定律:M=σ·T∧4绝对黑体的总辐射出射度与黑体的温度的四次方成正比。

福师《遥感导论》课堂笔记

福师《遥感导论》课堂笔记

F 岩石光谱反射率还受组成岩石的矿物颗粒大小和表 面粗糙度的影响。矿物颗粒较细、表面比较平滑的 岩石,具有较高的反射率;反之反射率较低。
F 另一个影响岩石光谱反射率的因素是岩石的含水量 。通常岩石表面潮湿时,颜色变深,反射率降低。
F 岩石自然露头被土壤和植被等覆盖的情况,根据覆 盖比例不同,岩石波谱特征中或多或少地包含有覆 盖物的波谱信息。
流水、三角洲地貌
F 流水、三角洲地貌主要研究在一定的水力与 边界条件下,河谷河床地貌与三角洲地貌的 形成与演变过程。
F 流水对地貌的改造作用主要表现在两个方面
–流水的侵蚀作用:坡面流水使坡面破碎;沟谷 和河谷流水,使沟谷和河谷加宽加深(例如:瀑 布、峡谷,黄土高原千沟万壑的地表形态)。
–流水的沉积作用:流水在搬运途中,由于流速 降低,所携带的物质便会(有规律地)沉积下来 (例如:山麓冲积扇、冲积平原和三角洲)。
F 在覆盖较少的情况下,可以根据各类岩矿在遥感影 像相应通道中的值阈进行自动分类。
F 岩石的性质还可以根据地形地貌的特点来辩别。 比如可以根据喀斯特地貌的分布判断石灰岩;根 据火山地貌的特点判断岩浆岩等。
地质构造识别
F 地球板块学说是研究地质构造的基础,遥感所提供 的空间宏观图像是观察和研究全球宏观地质结构的 理想信息源。
F 火山锥的类型 –熔岩锥:全部或基本是多层基性熔岩构成,形状扁 平、坡度缓(2°~10°),顶部有碗状火山口。其 中规模巨大的叫盾形火山。
–碎屑锥:全部由火山碎屑组成。其平面近似圆形, 坡度约30°,顶部有一个漏斗状火山口。
– 复合锥:由熔岩和碎屑互层构成,也叫层状火山锥 。其坡度大多超过30°,形状比较对称,上部多熔 岩,下部和边缘主要是火山碎屑。火山口呈碗状或 漏斗状。

遥感导论 复习

遥感导论 复习

遥感导论第一章一、 遥感系统的组成遥感系统包括被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用五大部分。

二、 遥感的类型(主动遥感与被动遥感)按传感器工作方式分为主动遥感与被动遥感1. 主动遥感:由探测器主动发射一定电磁波能量并接收目标的后向散射信号2. 被动遥感:被动遥感的传感器不向目标发射电磁波,仅被动接收目标物的自身发射和对自然辐射源反射能量第二章一、辐射测量1.辐照度(I ):被辐射的物体表面单位面积上的辐射通量,I=d Ø/dS,单位是 ,S 是面积。

2.辐射出射度(M):辐射源物体表面单位面积上的辐射通量,d Ø/dS,单位 ,S 为面积。

副照度辐射出射度都是辐射通量密度的概念,不过,I 为物体接收的辐射,M 为物体发出的辐射,它们都与波长λ有关。

二、黑体辐射规律 P201.斯蒂芬-波尔兹曼定律即黑体总辐射通量随温度的增加而迅速增加,它与温度的四次方成正比。

因此,温度的微小变化,就会引起辐射通量密度很大的变化。

是红外装置测定温度的理论基础。

Stefan-Boltzmann 常数2.维恩位移定律:随着温度的升高,辐射最大值对应的峰值波长向短波方向移动。

4001/1522T d kT ch e hc W σλλλπ=-⋅=⎰∞b T =∙max λ三、物体反射三类型1.镜面反射:是指物体的反射满足反射定律。

入射波和反射波在同一平面内,入射角与反射角相等。

2.漫反射:是指不论入射方向如何,虽然反射率ρ与镜面反射一样,但反射方向却是“四面八方”3.实际物体反射:多数都处于这两种理想模型之间,即介于镜面和漫反射面之间。

实际物体表面在有入射波时各个方向都有反射能量,但大小不同。

四、大气散射的类型及其特点(大气瑞利散射与散射波长的关系)P291.瑞利散射:当大气中粒子的直径比波长小得多时发生的散射。

特点:散射强度与波长的四次方成正比,即波长越长,散射越弱。

大二遥感导论知识点总结五六章

大二遥感导论知识点总结五六章

大二遥感导论知识点总结五六章大二遥感导论知识点总结五六章遥感技术是一种通过航天卫星、航空器或地面传感器获取地球表面信息的技术手段。

在大二遥感导论课程的学习中,我们学习了遥感的基本原理、遥感图像的解译和应用,以及遥感在各个领域中的应用案例。

本文将对第五章和第六章的知识点进行总结,希望能够帮助大家更好地理解和掌握这两章的内容。

第五章:遥感平台和传感器1. 遥感平台分类:根据不同的平台和载荷,遥感平台可以分为航天平台、航空平台和地面平台。

航天平台主要包括卫星和航天飞机,航空平台主要包括飞机和无人机,地面平台主要包括传感器和观测站。

2. 遥感传感器分类:遥感传感器主要分为光学传感器、辐射传感器和微波传感器。

光学传感器包括摄影机、相机和光谱仪等,辐射传感器包括辐射计和辐射计扫描仪,微波传感器主要包括合成孔径雷达和微波辐射计。

3. 遥感传感器选择原则:选择遥感传感器时,需考虑地表目标的性质、被测量物理量、地表覆盖范围和分辨率等因素,并综合考虑成本、时间和工作要求等。

4. 遥感图像的分辨率:分辨率是指遥感图像对地表细节的显示能力。

可见光和红外波段的分辨率一般为1-100米,雷达波段的分辨率一般为5-100米,微波波段的分辨率一般为100-1000米。

第六章:遥感图像和遥感信息提取1. 遥感图像的特点:遥感图像具有全方位、全天候、多光谱、多尺度和重复观测等特点。

这些特点使得遥感图像能够提供丰富的地表信息,并帮助我们了解地球表面的变化和演化。

2. 遥感信息提取方法:遥感图像的信息提取方法主要包括目视解译、数字图像处理和机器学习等。

目视解译是通过直接观察遥感图像提取地物信息,数字图像处理是利用计算机对遥感图像进行处理和分析,机器学习是通过训练数据集和算法来自动提取遥感图像中的地物信息。

3. 遥感信息提取的应用:遥感信息提取在土地利用/土地覆盖分类、植被监测、城市扩张分析和环境监测等方面具有广泛的应用。

通过遥感图像的解译和分析,可以了解和监测地表的变化情况,为资源管理和环境保护提供科学依据。

遥感导论主要内容

遥感导论主要内容

• 空间分辨率、波谱(光谱)分辨率、辐 射分辨率、时间分辨率
• 遥感图像的空间分辨率:指像素所代表的 空间分辨率大小。
Rg=Rs f / H Rs为系统分辨率 Rg为地面分辨率
常见遥感图像的空间分辨率
图像类型 TM
SPOT CBERS QuickBird OrbView IKNOS
分辨率 28.5(15) 10(5、2.5)
陆地卫星
• Landsat MSS,TM,ETM+ 重点 • SPOT • 中巴资源卫星CBERS
海洋卫星
• Seasat ,ERS等 • 需要高空和空间的遥感平台,以进行大
面积同步覆盖的观测 • 以微波为主 • 电磁波与激光、声波的结合是扩大海洋
遥感手段的一条新路 • 需要其它海面实测资料的校正
飞机 气球
遥感用汽车
地面运载工具 (地面遥感)
高架平台 遥感用舰船
按传感器的探测波段分
–紫外遥感 –可见光遥感 –红外遥感 –微波遥感 –多波段遥感
按工作方式分
–主动遥感和被动遥感 –成像遥感与非成像遥感
遥感的特点
• 大面积同步观测 • 时效性 • 数据的综合性和可比性 • 经济性 • 局限性
第二章 电磁辐射与地物光谱特征

(electromagnetic spectrum)
遥感中常用的电磁波
紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有 0.3~0.38μm波长的光到达地面,对油污染敏感,但探测 高度在2000 m以下。 可见光:波长范围:0.38~0.76μm,人眼对可见光有敏锐 的感觉,是遥感技术应用中的重要波段。 红外线:波长范围为0.76~1000μm,根据性质分为近红 外、中红外、远红外和超远红外。 微波:波长范围为1 mm~1 m,穿透性好,不受云雾的影 响。

遥感导论主要内容

遥感导论主要内容

遥感图像目视解译原理
• 间接判读标志—目标地物与其相关指示 特征
• 间接判读标志—地物及其与环境的关系
• 间接判读标志—目标地物与成像时间的关系
• TM影像(5号星)
波段序号 1 2 3 4 5 6 7
波长/um 0.45~0.52 0.52~0.60 0.63~0.69 0.76~0.90 1.55~1.75 10.4~12.5 2.08~2.35
• 遥感技术的应用,使得NDVI广泛的被用来定性和定量的评价 植被覆盖及其生长活力;
• 它是基于物理知识,将电磁波辐射、大气、土壤、植被覆盖等 相互作用集合在一起,对植物在红光和近红外波段的光谱进行 分析。
数字图像的增强
– K-L(Karhunen-Loeve)变换(PCT主成分变换) • 利用影像各波段亮度值间的协方差矩阵构造的 线性变换矩阵,从而使影像数据的信息依次向 前几个维度集中的影像处理方法。 • 目的: – 数据压缩-多个波段可以转化为几个主分量 波段 – 图像增强-主分量波段的信噪比比原图增大 简单的说就是降维、减噪
• 实际状态下,
– 还受其它因素的影响(辐射校正的目的就是 去除这些影像):
• 仪器本身的误差 • 大气对辐射的影响
数字图像的辐射校正
• 粗校正方法—直方图最小值去除法 • 原理:
– 假设程辐射在同一幅图像的同一个波段上的值是常数 (实际上与像元位置有关)
– 在一幅图像上,总可以找到某几处地物,其辐射亮度 理论上应接近于0。
计算机自动分类的优点在于判定准则给定后,计算能够 自己实现待分像元的类别归属,手工工作量相对较小。 其缺点在于主要仅用影像的光谱信息,对于一些地学与 物理意义等需要归纳的信息难以直接应用到分类当中。 而且计算机自动分类还是需要目视解译去核查分类精度。

遥感导论_章节重点

遥感导论_章节重点

第一章一、名词解释遥感:广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。

三、简述遥感(技术)的特点(1)大面积的同步观测(2)时效性(3)数据的综合性和可比性(4)经济性(5)局限性(信息的提取方法、数据挖掘技术、思维方式等有等改善)四、论述遥感应用的主要方面:(1)在资源调查方面的应用(2)在环境测评及对抗自然灾害方面的应用(3)在区域分析及建设规划方面的应用(4)在全球性宏观研究中的应用(5)在其他方面的应用:<1>在测绘制图方面的应用<2>在历史遗迹、考古调查方面的应用<3>在军事上的应用五、遥感的类型按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感根据传感器的工作方式不同,可分为主动式传感器:主动遥感被动式传感器:被动遥感成像方式:成像遥感非成像方式:非成像遥感按传感器的探测波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据等。

按应用领域分大的研究领域:外层空间遥感、大气层遥感、陆地遥感、海洋遥感。

具体应用领域:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感、灾害遥感、军事遥感等等。

第二章一、名词解释1、电磁波:光波、热辐射、微波、无限电波等由振源发出的电磁振荡在空间的传播,这些波叫电磁波。

2、电磁波谱:电磁波在真空中传播的波长或频率,递增或递减排列,构成了电磁波谱。

3、大气窗口:通常把透过大气而较少被吸收、散射的透射率较高的电磁辐射波称为大气窗口。

4、地物反射光谱:地物的反射率随波长变化的规律。

5、地物反射光谱曲线:按地物反射率与波长之间关系绘成的曲线(横轴为波长,纵轴为反射率)。

遥感导论重要知识点

遥感导论重要知识点

第一章绪论1遥感(侠义):运用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术2遥感系统包括:被测目标的信息特征,信息的获取,信息的传输与记录,信息的处理,信息的应用3遥感的特点①大面积的同步观测②时效性③数据的综合性和可比性④经济性⑤局限性第二章电磁辐射与地物光谱特征1电磁波共性:①在真空中都以光速传播,传播速度都是相同的②遵守同一反射,折射,干涉,衍射及偏振定律③电磁波铺区段的界限是渐变的5电磁波性质:①是横波②在真空以光速传播③满足频率×波长=光速,能量=普朗克常数×频率④电磁波具有波粒二相性(16)2电磁波:由振源发出的电磁振荡在空中的传播,是电磁振荡在空间传播,3电磁波谱:按电磁波在真空中传播的波长或频率,递增或递减排列就构成了~。

(P15)4可见光波段对遥感有重要意义5辐射通量:单位时间内通过某一面积的辐射能量。

辐射通量是波长的函数。

总辐射通量是各普段辐射通量之和或辐射辐射通量的积分值6辐射通量密度:单位时间内通过单位面积的辐射能量7辐照度:被辐射的物体表面单位面积上的辐射通量8辐射出射度:辐射源物体表面单位面积上的辐射通量9绝对黑体(朗伯源):如果一个物体对于任何波长的电磁辐射都全部吸收,则这个物体是绝对黑体。

10绝对黑体不仅有最大的吸收率,也具有最大的发射率,却丝毫不存在反射11黑体辐射规律:①辐射通量密度随波长变化连续,每条曲线只有一个最大值②温度越高,辐射通量密度也越大,不同温度曲线不相交③随着温度增加,辐射最大值所对应的波长移向短波方向第二节太阳辐射及大气对太阳辐射的影响1太阳常数:指不受大气影响,在距太阳一个天文单位内,垂直于太阳光辐射方向上,单位面积单位时间黑体所接收的太阳辐射能量。

太阳常数的变化不会超过1%2太阳光谱的特征①太阳辐射的光谱是连续光谱,但是有许多费吸收线②辐射特性与绝对黑体的辐射特性基本相同③太阳辐射从近紫外到中红外这一波段区间能量最集中而且相对来说最稳定,太阳强度变化最小3太阳光谱特征对遥感的启示:(1)被动遥感主要利用可见光,红外等稳定辐射,使太阳活动对遥感的影响降到最小(2)由于大气的影响,需要对遥感影像进行矫正4散射:辐射在传播过程中遇到小微粒而使传播方向发生改变,并向各个方向散开,5散射使原来传播方向上的辐射强度减弱,而增加其他方向上的辐射,但通过二次影响增加了信号中的噪声成分,造成遥感图像的质量下降6散射现象的实质:电磁波在传输过程中遇到大气微粒而产生的一种衍射现象7常见的大气散射及其特点(1)瑞丽散射:大气中粒子的直径比波长小得多时发生的散射。

遥感复习资料

遥感复习资料

遥感复习资料遥感导论第⼀章1.遥感:即遥远感知,是应⽤探测仪器,在不直接接触的情况下,从远处把⽬标的电磁波特性记录下来,通过分析,揭⽰物体的特征性质及其变化的综合性探测技术。

2.遥感系统:由遥感器、遥感平台、信息传输设备、接收装置以及图像处理设备等组成。

P1遥感平台是指装载传感器进⾏遥感探测的运载⼯具,如飞机、⼈造地球卫星、宇宙飞船等。

按其飞⾏⾼度的不同可分为近地(⾯)⼯作平台,航空平台和航天平台。

遥感器装在遥感平台上,它是遥感系统的重要设备,它可以是照相机、多光谱扫描仪、微波辐射计或合成孔径雷达等。

信息传输与接收设备是飞⾏器和地⾯间传递信息的⼯具。

图像处理设备对地⾯接收到的遥感图像信息进⾏处理(辐射校正、⼏何校正等)以获取反映地物性质和状态的信息。

3.遥感的分类按遥感平台分类:近地⾯遥感、航空遥感、航天遥感。

按传感器的探测波段分类:紫外、可见光、红外、微波。

按⼯作⽅式分类:主动遥感,由探测器主动发射⼀定电磁波能量并接受⽬标的后向散射信号;被动遥感,传感器不向⽬标发射电磁波,仅被动接收⽬标物的⾃⾝发射和对⾃然辐射源的反射能量。

按资料记录形式分类:成像⽅式、⾮成像⽅式。

按应⽤领域分类:陆地遥感、海洋遥感、农业遥感、城市遥感……4.遥感的特点感测范围⼤,具有综合、宏观的特点。

信息量⼤,具有⼿段多,技术先进的特点。

获取信息快,更新周期短,具有动态监测特点。

遥感还具有⽤途⼴,效益⾼的特点。

⼤⾯积的同步观测、时效性、数据的综合性和可⽐性、经济性、局限性P65.遥感技术发展趋势3 全(全天候、全天时、全球)3 ⾼(⾼空间、⾼光谱、⾼时间分辨率)3个结合(⼤-⼩卫星,航空-航天,技术-应⽤)第⼆章2.电磁波谱:将各种电磁波在真空中的波长(或频率)按其长短,依次排列制成的图表。

在电磁波谱中,波长最长的是⽆线电波,其按波长可分为长波、中波、短波和微波;波长最短的是γ射线。

3.绝对⿊体 (简称⿊体):对于任何波长的电磁辐射都全部吸收的物体。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章一、名词解释遥感:广义:泛指一切无接触的远距离探测,包括对电磁场、力场、机械波(声波、地震波)等的探测。

狭义:遥感是应用探测仪器,不与探测目标相接触,从远处把目标的电磁波特性记录下来,通过分析,揭示出物体的特征性质及其变化的综合性探测技术。

二、遥感系统包括:被测目标的信息特征、信息的获取、信息的传输与记录、信息的处理和信息的应用。

三、简述遥感(技术)的特点 (1) 大面积的同步观测 (2) 时效性 (3) 数据的综合性和可比性 (4) 经济性 (5) 局限性(信息的提取方法、数据挖掘技术、思维方式等有等改善)四、论述遥感应用的主要方面:(1) 在资源调查方面的应用(2)在环境测评及对抗自然灾害方面的应用(3) 在区域分析及建设规划方面的应用(4) 在全球性宏观研究中的应用(5) 在其他方面的应用:<1>在测绘制图方面的应用<2>在历史遗迹、考古调查方面的应用<3>在军事上的应用5、 遥感的类型按遥感平台分:地面遥感、航空遥感、航天遥感、航宇遥感根据传感器的工作方式不同,可分为主动式传感器:主动遥感被动式传感器:被动遥感成像方式:成像遥感非成像方式:非成像遥感按传感器的探测波段分可见光遥感、红外遥感、微波遥感、紫外遥感数据等。

按应用领域分大的研究领域:外层空间遥感、大气层遥感、陆地遥感、海洋遥感。

具体应用领域:资源遥感、环境遥感、农业遥感、林业遥感、渔业遥感、地质遥感、气象遥感、水文遥感、城市遥感、工程遥感、灾害遥感、军事遥感等等。

第二章一、名词解释1、电磁波:光波、热辐射、微波、无限电波等由振源发出的电磁振荡在空间的传播,这些波叫电磁波。

2、电磁波谱:电磁波在真空中传播的波长或频率,递增或递减排列,构成了电磁波谱。

3、大气窗口 :通常把透过大气而较少被吸收、散射的透射率较高的电磁辐射波称为大气窗口。

4、地物反射光谱:地物的反射率随波长变化的规律。

5、地物反射光谱曲线:按地物反射率与波长之间关系绘成的曲线(横轴为波长,纵轴为反射率) 。

6、反射率:物体反射的辐射能量占总入射能量的百分比。

7、发射率:表示实际物体辐射与黑体辐射之比。

8、瑞利散射:当微粒的直径比辐射波长小许多时发生的散射。

9、米氏散射:当微粒与辐射光波长接近时发生的散射。

10、非选择性散射:当微粒的直径比辐射波长长很多时发生的散射。

二、遥感技术常用的电磁波有哪些?各有什么特性?遥感中较多地使用紫外线、可见光、红外和微波波段。

紫外线:波长范围为0.01~0.38μm,太阳光谱中,只有0.3~0.38μm波长的光到达地面,对油污染敏感,但探测高度在2000m以下。

可见光:0.4—0.76um。

它由红、橙、黄、绿、青、蓝紫色光组成。

人眼对可见光可直接感觉,不仅对可见光的全色光,而且对不同波段的单色光,也具有这种能力。

所以可见光是作为鉴别物质的主要波段。

红外线:0.76—1000um,为了实际应用方便,又将其划分为:近红外(0.76—3.0 um),中红外(3.0—6.0um),远红外(6.0—15.0um)和超远红外(15-1000um)。

微波:1mm—1m。

来源于地物的热辐射由于其波长比可见光、红外线要长,受大气层中云、雾的散射干扰要小,因此能全天候进行遥感。

三、大气散射有何特点?它分为哪几种散射,各有什么特点?散射作用:是指辐射在传播过程中遇到小微粒而使传播方向改变,并向各个方向散开。

散射使原传播方向辐射减弱,而增加其他各方向的辐射。

大气的散射集中于太阳辐射能量较强的可见光区。

因此,大气对太阳辐射的散射是太阳辐射衰减的主要原因。

散射强度可用散射系数γ来表示:γ∞1/λw,γ散射系数、w为波长指数, 由大气微粒直径(d)决定。

<1>瑞利散射d<<λ当微粒的直径比辐射波长小许多时,也叫分子散射。

W(4),大气对可见光的影响很大。

<2>米氏散射d≈λ当微粒与辐射光波长接近时,是由于大气溶胶所引起的,其W(2) 。

云、雾对红外线的米氏散射是不可忽视的。

<3>非选择性散射d>>λ当微粒的直径比辐射波长长很多时的情况,W(0) 任何波长散射强度相同。

四、什么是大气窗口?试写出对地遥感的主要大气窗口. 遥感是怎样利用大气窗口的?(1) 通常把透过大气而较少被吸收、散射的透射率较高的电磁辐射波称为大气窗口。

(2) 大气窗口的光谱段主要有:<1> 0.3~1.3um,即紫外、可见光、近红外波段;<2> 1.5~1.8um和2.0~3.5um,即近、中红外波段;<3> 3.5~5.5um,即中红外波段;<4> 8~14um,即远红外波段;<5>0.8~2.5cm,即微波波段。

(3)被动遥感卫星的传感器波段几乎都落在大气窗口波段内。

太阳辐射经过大气传输后,主要是反射、吸收和散射的共同影响衰减了辐射强度,剩余部分即为透过的部分。

对遥感传感器而言,只能选择透过率高的波段,才对观测有意义。

五、地物反射波谱曲线(1)植被反射波谱曲线——规律性明显而独特<1>可见光波段(0.4—0.76μm)有一个小的反射峰,两侧有两个吸收带。

这是因为叶绿素对蓝光和红光吸收作用强,而对绿光反射作用强。

<2>在近红外波段(0.7—0.8 μm)有一反射的“陡坡”,至 1.1μm附近有一峰值,形成植被的独有特征。

这是由于植被叶细胞结构的影响,除了吸收和透射的部分,形成的高反射率。

<3>在中红外波段(1.3—2.5μm)受到绿色植物含水量的影响,吸收率大增,反射率大大下降,特别是在水的吸收带形成低谷。

六、以植被为例,叙述地物波谱特性的影响因素。

叶子的颜色、叶子的组织结构、叶子的含水量、植被的覆盖程度等七、环境对地物光谱的影响(1)地物的物理性状(地物表面的颜色、粗糙度、风化状况及含水情况等)有关。

(2)辐射源强度:由于太阳高度角(H)、日地距离(D)不同所造成的。

I1为斜入射到地面上的辐照度、I2为垂直于太阳入射方向的辐照度。

I1=I2*sinH/D2(3)季节性变化(四季所带来的植被变化)(4)气象条件:同一地区不同天气条件下,其反射光谱曲线不一样,阴天测得的反射率小于晴天的。

(5)探测时间有关第三章一、名词解释1、传感器的定义:传感器是收集、探测、记录地物电磁波辐射信息的工具。

2、传感器的功能:它的性能决定遥感的能力,即传感器对电磁波段的响应能力、传感器的空间分辨率及图像的几何特征、传感器获取地物信息量的大小和可靠程度。

3.遥感平台:是装载传感器的工具。

根据飞行高度不同,可分为地面平台、航空平台和航天平台。

4.空间分辨率:指像素所代表的地面范围的大小,即扫描仪的瞬时视场或地面物体能分辨的最小单元。

5.波谱分辨率:是指传感器在接受目标辐射的波谱时能分辨的最小波长间隔。

间隔越小,分辨率越高。

6.辐射分辨率:是指传感器在接收波谱信号时,能分辨的最小辐射差。

7.时间分辨率:是指对同一地点进行遥感采样的时间间隔,及采样的时间频率,也称重访周期。

二、传感器的分类按工作方式分为:主动遥感和被动遥感主动方式传感器:侧视雷达、激光雷达、微波辐射计。

被动方式传感器:航空摄影机、多光谱扫描仪(MSS、TM、ETM(1,2)、HRV)、红外扫描仪等成像遥感和非成像遥感成像遥感:如摄影机、扫描仪和成像雷达等非成像遥感:辐射计、红外辐射温度计、微波辐射计、雷达高度计、散射计以及激光高度计等。

三、微波遥感的特点(1)能全天候、全天时工作(2)对某些地物具有特殊的波谱特征(3)对冰、雪、森林、土壤等具有一定穿透能力(4)对海洋遥感具有特殊意义(5)分辨率较低,但特性明显四、气象卫星有何特点?(静止气象卫星、极轨卫星)(1)短周期重复观测气象卫星时间分辨率较高,有助于对地面快速变化的动态监测。

(2)成像面积大,有利于获得宏观同步信息,减少数据处理容量。

相对于其他卫星资料(如陆地卫星)更加容易获得完全同步、低云量或无云的影像。

(3)资料来源连续、实时性强、成本低五、陆地卫星系列(Landsat、SPOT、CBERS)陆地卫星的运行特点:(1)近极地、近圆形的轨道;(2)轨道高度为700~900 km;(3)运行周期为99~103 min/圈;(4)轨道与太阳同步。

TM(Thematic Mapper)即专题制图仪,是一种改进型的多光谱扫描仪,有7个较窄的、更适宜的光谱段 :TM1:0.45-0.52微米,蓝波段。

对水体穿透力强,对叶绿素与叶色素浓度反映敏感,有助于判别水深、水中叶绿素分布、沿岸水和进行近海水域制图等。

TM2:0.52-0.60微米,绿波段。

对健康茂盛植物绿反射敏感,对水的穿透力较强。

用于探测健康植物绿色反射率,按“绿峰”反射评价植物生活力,区分林型、树种和反映水下特征等。

TM3:0.63-0.69微米,红波段,为叶绿素的主要吸收波段。

反映不同植物的叶绿素吸收、植物健康状况,用于区分植物种类与植物覆盖度。

其信息量大,为可见光最佳波段。

广泛应用于地貌、岩性、土壤、植被、水中泥沙流等方面的观测。

TM4:0.76-0.90微米,近红外波段。

对绿色植物类别差异最敏感(受植物细胞结构控制),为植物通用波段。

用于生物量调查、作物长势测定、水域判别等。

TM5:1.55-1.75微米,中红外波段。

处于水的吸收带(1.4-1.9微米)内,反映含水量敏感,用于土壤湿度、植物含水量调查、水分状况的研究,作物长势分析等,从而提高了区分不同作物类型的能力。

易于区分云与雪。

TM6:10.4-12.5微米,热红外波段。

可以根据辐射响应的差别,区分农、林覆盖类型,辨别地面湿度、水体、岩石,以及监测与人类活动有关的热特征,进行热制图。

TM7:2.08-2.35微米,中红外波段。

此为地质学家增加的波段。

处于水的强吸收带,水体呈黑色。

可用于区分主要岩石类型、岩石的水热蚀变,探测与岩石有关的粘土矿物等。

TM信息的空间分辨率在可见光、近红外、中红外波段为30米,在热红外波段为120米。

一景覆盖地面范围185km*185km,总数据量230兆。

六、海洋卫星系列(Seasat 1-美国海洋卫星、“雨云”7号卫星(Nimus-7)、日本海洋观测卫星(MOS1)海洋遥感的特点(1)需要高空和空间的遥感平台,以进行大面积同步覆盖的观测(2)以微波为主(3)电磁波与激光、声波的结合是扩大海洋遥感探测手段的一条新路(4)海面实测资料的校正第四章一、名词解释1.图像校正:从具有畸变的图像中消除畸变的处理过程叫图像校正。

包括辐射校正、几何校正。

2、三原色(三基色):若三种颜色,其中任一种都不能由其余两种颜色混合相加产生,这三种颜色按一定比例混合,却可以形成各种色调的颜色,称为三原色或三基色。

相关文档
最新文档