反比例函数经典讲义,绝对经典!!
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三反比例函数讲义
第1节 反比例函数
本节内容:
反比例函数定义 反比例函数定义的应用(重点)
电流I 、电阻R 、电压U 之间满足关系式:U=IR
当U=220V 时,可以用含有R 的代数式表示I :__________________
舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。
一般地,如果两个变量x 、y 之间的关系可以表示成x
k
y =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。 反比例函数的自变量x 不能为零。 小注:
(1)x k y =
也可以写成1
-=kx y 或k xy =的形式; (2)x
k
y =若是反比例函数,则x 、y 、k 均不为零;
(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。 下列函数中是反比例关系的有___________________(填序号)。
①3x y -
= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23
-= ⑥21=xy ⑦28x
y = ⑧1-=x y ⑨2=x y ⑩x k
y =k (为常数,
)0≠k
确定解析式的方法仍是____________,由于在反比例函数x
k
y =
中,只有一个待定系数,因此只需要一对对应值,即可求出k 的值,从而确定其解析式。
由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。 (1) 求I 与R 的函数关系式;
(2) 当R=5欧姆时,求电流强度。
本节作业:
1、小明家离学校1.5km ,小明步行上学需x min ,那么小明的步行速度min)/(m y 可以表
示为x
y 1500=
;水名地面上重1500N 的物体,与地面的接触面积为x 2
m ,那么该物体对地面的压强)/(2
m N y 可以表示为x y 1500=。函数表达式x
y 1500=还可以表示许多不同情
境中变量之间的函数关系,请你再列举一例。
2((
3
4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。
5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例
6、(2008·安徽)函数x
k
y =的图象经过点A (1,—2),则k 的值为( )。 A .21 B. 2
1
- C. 2 D. —2
7、若函数1
32
)1(+++=m m
x m y 是反比例函数,则m 的值为( )。
A .m = —2 B. m = 1
C. m = 2或m = 1
D. m = —2,或m = —1
8、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。
9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________。
第2节 反比例函数的图象与性质
本节内容:
反比例函数的图象及其画法 反比例函数的性质(重点) 反比例函数x
k
y =
)0(≠k 中的比例系数k 的几何意义(难点) 反比例函数与正比例函数图象的交点
1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:
(1) 列表——自变量取值应以0(但)0(≠x 为中心,向两边取三对(或三对以上)互为
相反数的数,再求出对应的y 的值;
(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;
(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,
延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。
反比例函数x
k
y =
的图象是由两支曲线组成的。当0>k 时,两支曲线分别位于第一、三象限内,当0 (1)这两支曲线通常称为双曲线。 (2)这两支曲线关于原点对称。 (3)反比例函数的图象与x 轴、y 轴没有公共点。 例1:画出反比例函数x y 6=与x y 6 -=的图象。 解:(1)列表: (2)描点: (3)连线。 1 反比例函数的性质 对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形2 已知 2 (1)m y m x -=+是反比例函数,则函数的图象在 ( ) A 、一、三象限 B 、二、四象限 C 、一、四象限 D 、三、四象限 3 函数2y kx =-与k y x = (k ≠0)在同一坐标系内的图象可能是( ) 4 已知反比例函数x k y = 的图象经过点P(一l ,2),则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 反比例函数x k y =)0(≠k 中的比例系数k 的几何意义(难点)k 的几何含义:反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y =k x (k 0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .