反比例函数经典讲义,绝对经典!!

合集下载

反比例函数经典讲义,绝对经典!!

反比例函数经典讲义,绝对经典!!

初三反比例函数讲义第1节 反比例函数本节容:反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义电流I 、电阻R 、电压U 之间满足关系式:U=IR当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。

当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。

一般地,如果两个变量x 、y 之间的关系可以表示成xky =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为零。

小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式; (2)xky =若是反比例函数,则x 、y 、k 均不为零;(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。

下列函数中是反比例关系的有___________________(填序号)。

①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k2、 反比例函数定义的应用(重点)确定解析式的方法仍是____________,由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值,即可求出k 的值,从而确定其解析式。

由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。

(1) 求I 与R 的函数关系式; (2) 当R=5欧姆时,求电流强度。

本节作业:1、小明家离学校1.5km ,小明步行上学需x min ,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=。

反比例函数讲义

反比例函数讲义

反比例函数一、反比例函数的概念1、概念:反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成k y x =(k为常数,k ≠0)的形式,那么称y 是x 的反比例函数.2、注意:(1)k 为常数,k ≠0;(2)kx中分母x 的指数为1; (3)自变量x 的取值范围是x ≠0的一切实数; (4)因变量y 的取值范围是y ≠0的一切实数.3、xk y =(k ≠0)还可以写成1-=kx y (k ≠0)或xy =k (k ≠0)的形式 4、有表格数据判断是否为反比例函数关系时主要判断x 与y 的乘积是否相等。

例题:例1.下列等式中,哪些是反比例函数 (1)3x y =(2)x y 2-= (3)xy =21 (4)25+=x y(5)x y 23-=(6)31+=xy (7)y =x -4 例2、若函数y =(m 2-1)x235m m +-为反比例函数,则m =________.课上练习:1.下列函数中哪些是y 是x 的正比例函数?哪些是y 是x 的反比例函数?①1-x 3=y ②22x y = ③xy 1= ④32x y =⑤x y 3= ⑥x y 1-= ⑦xy 31= ⑧x y 23=2.弹簧挂上物体后会伸长,测得一弹簧的长度(cm )与所挂物体的质量(kg )有下面的关系:那么弹簧总长(cm )与所挂物体质量(kg )之间的函数关系式为_____________.3.苹果每千克x 元,花10元钱可买y 千克的苹果,则y 与x 之间的函数关系式为 4.若函数28)3(m xm y -+=是反比例函数,则m 的取值是5.矩形的面积为4,一条边的长为x ,另一条边的长为y ,则y 与x 的函数解析式为 6.已知y 与x 成反比例,且当x =-2时,y =3,则y 与x 之间的函数关系式是 , 当x =-3时,y =7.函数21+-=x y 中自变量x 的取值范围是二、反比例函数解析式的确定1、在反比例函数关系式 y= kx 中,只有一个待定系数k ,确定了k 的值,也就确定了反比例函数.因此,只需给出一组x 、y 的对应值或图象上点的坐标,代入y= kx 中即可求出k 的值,从而确定反比例函数的关系式.2、定系数法求反比例函数关系式的一般步骤是: ①设所求的反比例函数为:y= kx (k ≠0);②根据已知条件(自变量与函数的对应值)列出含k 的方程; ③由代入解待定系数k 的值; ④把k 值代人函数关系式y= kx 中.例题:例1.已知:y 与 x 2成反比例,并且当x =3时,y =4, 求: 当x =1.5时,y 的值。

反比例函数讲义

反比例函数讲义

反比例函数一、反比例函数的概念1、如果两个变量的每一组对应值的乘积是一个不等于零的常数,你们就说这两个变量成反比例.用数学式子表示两个变量x 、y 成反比例,就是xy k =,或表示为ky x=,其中k 是不等于0的常数. 2、解析式形如ky x=(k 是常数,0k ≠)的函数叫做反比例函数,其中k 称也叫做比例系数.3、反比例函数ky x=的定义域是不等于零的一切实数.例1、下列变化过程中的两个变量是否成反比例?为什么? (1)被除数为100,变量分别是除数r 和商q ;(2)三角形面积S 一定时,三角形一边上的长a 和这条边上的高h ;(3)一位男同学练习1000米长跑,变量分别是男生跑步的平均速度v (米/秒)和跑完全程所用时间t (秒);(4)完成工作量Q 一定时,完成工作量所需的时间t 与工人人数n (假设每个工人的 工作效率相同)例2、一个长方体的体积是20cm 3,它的长是ycm ,宽是5cm ,高是xcm .写出长y 与高x 之间的函数关系式.例3、下列函数(其中x 是自变量)中,哪些是反比例函数?哪些不是,为什么?(1)23y x = (2)1y x -= (3)3xy =(4)3y x=(5)27y x =+(6)y =8x+7例4、已知y 是x 的反比例函数,且3x =-时,2y =,那么y 关于x 的函数解析式是________.例5、已知y 4x =时,2y =-,求y 与x 的函数解析式.例6、若函数231(2)m m y m x -+=-是反比例函数,则m 的值为________.例7、如果2212n n n n y x+++=是反比例函数,那么n 的值是________.例8、已知y 是x 的反比例函数,且当2x =时,2y ,那么当1y =时,x 的值是________.例9、如果变量1x 和变量y 成正比例,变量1y 和变量z 成反比例,那么变量x 和z 成________比例关系.例10、已知反比例函数22++=k xk y ,求k 的值,并求当x =2时的函数值例11、已知12y y y =+,若1y 与x 正比例,2y 与x 成反比例函数,且当2x =时,14y =,当3x =时,1293y =,求y 与x 间的函数关系式.例12、已知12y y y =+,若1y 与1x -正比例,2y 与1x +成反比例,且当0x =时5y =-,当2x =时1y =;(1)求y 与x 间的函数关系式; (2)求当3y =-时,x 的值.例13、已知:正比例函数与反比例函数的比例系数互为相反数,且正比例函数的图像过点-,求反比例函数的解析式.一、 反比例函数的图像1、反比例函数ky x=(k 是常数,0k ≠)的图像叫做双曲线,它有两支. 二、 反比例函数的性质 1、当0k >时,函数图像的两支分别在第一、三象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐减小.2、当0k <时,函数图像的两支分别在第二、四象限;在每个象限内,当自变量x 的值逐渐增大时,y 的值随着逐渐增大.3、图像的两支都无限接近于x 轴和y 轴,但不会与x 轴和y 轴相交.例1、已知反比例函数3y x=-,那么当x <0时,y 的值随着x 的增大而________. 例2、反比例函数25(2)my m x -=+在它的图像所在的每个象限内,y 随x 的增大而________.例3、若反比例函数的图像经过点(25)-,,那么函数图像在________象限. 例4、已知反比例函数2k y x-=,其图象在第一、第三象限内,则k 的取值范围是________. 例5、函数135k y x --=的图像在一、三象限,那么k 的取值范围是________ 例6、已知函数ky x=的图象不经过第一、三象限,则y kx =-的图象经过第________象限.例7、如果反比例函数ky x=(k 是常数,0k ≠)的图像在第二、四象限,那么正比例函数y kx =(k 是常数,0k ≠)的图像经过哪几个象限?例8、若正比例函数(0)y kx k =≠,与反比例函数(0)my m x=≠的图像没有交点,那么k 与m 满足关系式可以是________.例9、已知反比例函数1y x=-的图像上有两点11()A x y ,、22()B x y ,,且12x x <,那么下列结论正确的是( )A .12y y <B .12y y >C .12y y =D .1y 与2y 的大小关系无法确定例10、反比例函数4y x=-的图像上一点的横坐标是3,那么这点到x 轴的距离是________. 例11、已知反比例函数21k y x+=(1)若该函数图像经过点(21)-,,求k 的值;(2)若该函数图像在每一象限内y 随x 的增大而减小,求k 的取值范围.例12、直线y kx =(k >0)与双曲线xy 4=交于11()A x y ,、22()B x y ,两点,求122127x y x y -的值.例13、反比例函数2y x=的图像上一点A ,过A 点分别作x 轴、y 轴垂线,垂足为B 、C ; (1) 求矩形ABOC 的面积;(2) 当点A 沿双曲线移动时(1)中矩形面积有变化吗?为什么?例14、若P (a ,b )是反比例函数图像上的一点,且a 是b 是的小数部分,求反比例函数的解析式.例15、已知:点A 、B 是函数3y x=-图像上关于原点对称的任意两点,AC ∥y 轴,BC ∥x 轴,求△ABC 的面积.例16、反比例函数xky =(0)k <的图像经过点()A m ,过点A 作AB ⊥x 轴于点B ,△AOB 的面积为3,求k 和m 的值.例17、已知:反比例函数的图像与正比例函数的图像相交于A ,B 两点,若点A 在第二象限,且点A 的横坐标为-3,且AD ⊥x 轴,垂足为D ,△AOD 的面积是4. (1)写出反比例函数的解析式; (2)求出点B 的坐标;(3)若点C 的坐标为(6,0),求△ABC 的面积. 练习11、下列问题中的两个变量是否成反比例?如果是,可以用怎样的数学式来表示? (1)平行四边形的面积为20平方厘米,变量分别是平行四边形的一条边长a (厘米)和这条边上的高h (厘米);(2)一位男同学练习一千米长跑,变量分别是男生跑步的的平均速度v (米)和跑完全程所用时间t (秒).2、下列函数是不是反比例函数?为什么? (1)13y x =-; (2)4xy =;(3)15y x =-; (4)2(0)ay a a x =≠为常数,; (5)1y x π= ; (6)21y x= .3、若函数223()kk y k k x --=+是反比例函数,则k 的值是________.4、在同一平面直角坐标系内,分别画出下列函数的图像.(1)4y x=; (2)4y x=-. 求:(1)这两个函数的图像分别位于哪几个象限内?(2)在每一象限内,随着图像上的点的横坐标x 逐渐增大,纵坐标y 是怎样变化的? (3)图像的每支都向两方无限延伸,它们可能与x 轴、y 轴相交吗?为什么?5、已知正比例函数y kx =与反比例函数xky -=6图像的一个交点坐标是(1,3),则反比例函数的解析式是________.6、已知反比例函数xk y 1+=,11()x y ,、22()x y ,为其图像上的两点,若当120x x <<时,12y y >,则k 的取值范围是________.7、若点(34),是反比例函数221m m y x ++=图像上一点,则此函数图像必经过点 ( )A.(34)-,B.(26)-,C.(43)-,D. (26),8、已知M 是反比例函数ky x=(0)k ≠ (k ≠0)图像上一点,MA x ⊥轴于点A ,若4AOMS =,则这个反比例函数的解析式是( ) A .8y x =; B .8y x =-; C .8y x =或8y x =-; D .4y x =或4y x=-. 9、已知122y y y =+,若1y 与(1)x +正比例,2y 与x 成反比例函数,且当1x =时,1y =-;当3x =-时,3y =,求y 与x 间的函数关系式.10、已知第三象限内的点B (3m ,m )在反比例函数的图像上,且10OB =A (1,y )也在双曲线上,求反比例函数的解析式,并求出△AOB 的面积.11、11POA ∆、212P A A ∆都是等腰直角三角形,点P 1、P 2在4y x=(x >0)的图像上,斜边OA 1、A 1A 2都在x 轴上,求点A 2的坐标.12、两个反比例函数k y x =和1y x =在第一象限内的图像如图所示,点P 在ky x =的图像上,PC ⊥x 轴于点C ,交1y x =的图像于点A ,PD ⊥y 轴于点D ,交1y x=的图像于点B ,当点P 在ky x=的图像上运动时,以下结论:①△ODB 与△OCA 的面积相等; ②四边形PAOB 的面积不会发生变化; ③PA 与PB 始终相等;④当点A 是PC 的中点时,点B 一定是PD 的中点.其中一定正确的是 (把你认为正确结论的序号都填上,少填或错填不给分).练习21、反比例函数ay x=的图像在第二、四象限,则a ________. 2、当n =________时,函数224(3)n n y n x --=-是反比例函数.3、函数21(1)my m x -=-是反比例函数,且图像经过第二、四象限,则m =________.4、已知反比例函数13ky x-=,当k ________时,它的图像在第二、四象限,此时,在每个象限内,y 随x 的增大而________.5、已知长方形的面积为20平方厘米,它的一边长为x 厘米,求这个边的邻边长y (厘米)关于x (厘米)的函数解析式,并写出这个函数的定义域.6、反比例函数ky x=的图像上有两点111()p x y ,,222(,)p x y ,若120x x <<,12y y >,则k ________0,图像经过第________象限.7、在平面直角坐标系内,从反比例函数ky x=(0)k ≠上一点作x 轴、y 轴的垂线段,与x 轴、y 轴围成面积为3的矩形,求函数解析式.8、(1)已知y 与2x -成反比例,当4x =时,3y =,求5x =时,y 的值; (2)已知y 与2x 成反比例,并当3x =时,2y =,求 1.5x =时,y 的值.9、已知12y y y =+,1y 与x 成正比例,2y 与2x 成反比例,当2x =与3x =时,19y =,求y 关于x 的函数解析式.10、点A 是反比例函数6y x=的图像上的一点,AB ⊥y 轴于点B ,求△AOB 的面积.11、已知n 是正整数,111()P x y ,,222()P x y ,,…()n n n P x y ,,…是反比例函数图像上的一列点,其中11x =, 22x =,…,n x n =,….记112A x y =,223A x y =,…,1n n n A x y +=,…,若1A a =(a 是非零常数),求12n A A A ⋅⋅⋅的值(用含a 和n 的代数式表示).。

反比例函数讲义-经典推荐(一)

反比例函数讲义-经典推荐(一)

第六章 反比例函数讲义6.1反比例函数教材精华知识点1 反比例函数的概念定义:一般地,如果两个变量x ,y 之间的关系可以表示成y =xk(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.拓展 (1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且x 的指数是1,若写成y =kx -1.则x 的指数是-1. (2)比例系数k ≠0是反比例函数定义的一个重要组成部分. (3)自变量x 的取值范围是x ≠0的一切实数. (4)函数y 的取值范围也是一切非零实数.知识点2 用待定系数法求反比例函数的表达式 由于在反比例函数y =xk中,只有一个待定系数.因此只需要一组对应值,即可求出k 的值,从而确定其表达式.知识点3 反比例关系与反比例函数的区别和联系我们学过反比例关系.如果xy =k (k 是常数,k ≠0).那么x 与y 这两个量成反比例关系,这里x ,y 既可以代表单独的一个字母,也可以代表多项式或单项式,例如若y +3与x -1成反比例,则y +3=1x k,若y 与x 2成反比例,则y =2x k.成反比例关系不一定是反比例函数,但反比例函数y =x k 中的两个变量必成反比例关系.拓展 反比例关系不一定是反比例函数,但反比例函数一定是反比例关系.规律方法小结 类比思想:在学习反比例函数的概念时,注意与成反比例的量进行类比,与正比例函数的概念对比,这样便于我们对反比例函数的概念的理解与掌握. 课堂检测基本概念题1、下列各式中,y 是x 的反比例函数吗?为什么? (1)xy =2; (2)y =10-x ; (3)y =x 31; (4)y =xb3 (b 为常数,b ≠0). 基础知识应用题2、判断下列各题中的两个变量是否成比例关系,若成比例关系,指出是正比例关系,还是反比例关系. (1)三角形底边长为定值,它的面积S 与这条边上的高h ; (2)三角形面积为定值,它的底边长a 与这条边上的高h ; (3)正方形的面积S 与它的一边长a ; (4)周长为定值的长方形的长和宽; (5)面积为定值的长方形的长和宽; (6)儿童的身高与年龄; (7)圆的周长与它的半径.3、若函数y =(m +1)132++m m x 是反比例函数,求m 的值.综合应用题4、一定质量的二氧化碳,它的体积V 与它的密度ρ成反比例,当V =5m 3时,ρ=1.98kg /m 3,求ρ与V 的函数关系式.5、一水池内蓄水40 m 3.设放完满池水的时间为T 小时,每小时的放水量为W m 3,规定放水时间不得超过20小时,求T 与W 之间的函数关系式,指出函数T 和自变量W 的取值范围.探索创新题6、某工人计划利用一块不锈钢钢锭加工成一个面积为0.8m 2的矩形框工件,设工件的长与宽分别为y m 与x m .(不计厚度)(1)请写出y 与x 之间的函数表达式;(2)如果想使工件的长比宽多1.6 m ,已知加工费为每米6元,求加工这个工件所需的费用. 体验中考若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系式是 .(不考虑x 的取值范围)6.2反比例 函数的图像与性质新课导引【问题探究】如果用光滑曲线顺次连接图中各点,能得到怎样的图象?你能描述它的形状和性质吗? 【点拨】由xy =6可得xy 6=,是反比例函数.反比例函数的图象叫做双曲线. 教材精华知识点1 反比例函数的图象反比例函数的图象是双曲线,也称双曲线xky =(k ≠0),其图象如图5-1所示. 拓展 反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点对称,由于反比例函数中自变量x ≠0,函数y ≠0,所以它们的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不能到达坐标轴.知识点2 反比例函数图象的画法(1)列表:自变量的取值应以0为中心,在0的两边取三对(或三对以上)相反数,如1和-1,2和-2,3和-3等等,填y 值时,只需计算原点一侧的函数值,如分别计算出当x =1,2,3时的函数值,那么当x =-1,-2,-3时的函数值应是与之对应的相反数.(2)描点:先画出反比例函数的图象的一侧,另一侧可根据图象关于原点对称的性质来画. (3)连线:按照从左到右的顺序连接各点并延伸.拓展 画反比例函数的图象时,应注意以下几点:(1)两条曲线是平滑的,不要只画一个分支,而忘了画另一个分支. (2)两条曲线无限靠近坐标轴,但与坐标轴无交点. 探究交流 反比例函数xky = (k ≠0)的图象是轴对称图形吗? 点拨 反比例函数xky =(k ≠0)的图象是轴对称图形,它的对称轴有两条,分别是直线y =x 和直线y =-x . 知识点3 反比例函数的性质 反比例函数xky =(k ≠0)的性质如下: 当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是说,在每个象限内,y 随x 的增大而增大.拓展 (1)描述函数值的增减情况时,必须指出“在每个象限内”.若说成“当k >0(或k <0)时,y 随x 的增大而减小(或增大)”,就会出现与事实不符的矛盾.(2)反比例函数的图象的位置、函数的增减性都是由比例系数k 的符号决定的.反过来,由双曲线的位置、反比例函数的增减性也可以推断出k 的符号,即双曲线在第一、三象限时,k >0;双曲线在第二、四象限时,k <0.探究交流 反比例函数的表达式中k 的几何意义. 点拨 反比例函数xky =的本质特征是两个变量y 与x 的乘积是一个常数k ,由此可以推得反比例函数的一个重要性质.若A 是反比例函数xky =图象上任意一点,且A B 垂直x 轴,垂足为B ,AC 垂直y 轴,垂足为C ,则S 矩形ABOC =k ,如图5-2所示.由反比例函数图象与矩形面积的关系可以得出反比例函数图象与三角形面积的关系:S △AOB =S △AOC =S 矩形ABOC =k 21. 规律方法小结 数形结合思想:学习反比例函数与学习其他函数一样,要善于数形结合,由表达式联想图象的位置及性质,由图象和性质联想比例系数k 的符号. 课堂检测基础知识应用题1、在同一直角坐标系内画出反比例函数x y 4=与xy 4-=的图象. 2、已知反比例函数的表达式为xky -=4,分别根据下列条件求出字母k 的取值范围. (1)函数图象位于第一、三象限;(2)在每一个象限内,y 随x 的增大而增大.综合应用题3、如图5-5所示,A ,B 是函数xy 1=的图象上关于原点O 的对称点,AD 平行于y 轴,BC 平行于x 轴,△ABC 的面积为S ,则下列各式正确的是 ( )A .S =1B .S =2C .S >2D .1<S <24、已知反比例函数x k y =的图象经过点(4,21),若一次函数y =x +1的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标.探索创新题5、如图5-7所示,已知双曲线xky = (k >0)与直线y =k ′x 交于A ,B 两点,点A 在第一象限,试解答下列问题.(1)若点A 的坐标为(4,2),则点B 的坐标为 ,若点A 的横坐标为m ,则点B 的坐标可表示为 .(2)如图5-8所示,过原点O 作另一条直线l ,交双曲线xky = (k >0)于P ,Q 两点,点P 在第一象限. ①试说明四边形APBQ 一定是平行四边形;②设点A ,P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出m ,n 应满足的条件;若不可能,请说明理由.体验中考1、已知图5-10(1)中的曲线是反比例函数xm y 5-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(2)若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.2、如图5-11所示,已知A(-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数xm y =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式xmb kx -+<0的解集(请直接写出答案).6.3反比例函数的应用【生活链接】一段时期市场上使用杆称,一些不法商贩在卖货时将秤砣挖空,或更换较小的秤砣,使砣较轻,从而欺骗客户.【问题探究】(1)如右图所示,对于同一物体,哪个图用的是标准秤砣,哪个图用的是较轻的秤砣?(2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足什么关系?(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?【点拨】(1)设物体重为W ,阻力臂为L 1,秤砣重F ,动力臂为L 2,则由于W ·L 1=F ·L 2,且W ·L 1一定,∴F 越小,L 2越大,显示物体质量越多,故(2)用的是标准秤砣,(1)用的是较轻的秤砣. (2)由(1)的分析可知,y 与x 之间满足反比例关系.(3)设这个反比例函数为xky = (k >0),则当x 变小时,y 增大,所以当砣较轻时,称得的物体变重,这正好符合反比例函数xky =中,当k >0,x >0时,函数的图象在第一象限内,y 随x 的减小而增大的性质(即y 随x 的增大而减小).教材精华知识点 利用反比例函数解决实际问题反比例函数是反映现实世界中两个变量之间关系的一种重要的数学模型.它在现实生活中有着广泛的应用.利用反比例函数的图象与性质,能比较清晰、直观、简捷地解决一些实际问题.在生活中有许许多多成反比例关系的实例.如:当路程s 一定时,时间t 与速度v 成反比例关系,写成vst =(s 是常数);当矩形面积S 一定时,长a 与宽b 成反比例关系,写成bSa = (S 是常数);当面积是常数S 时,三角形的底边长y 与高x 成反比例关系,写成xSy 2= (S 是常数);当功是常数W 时,力F 与物体在力的方向上通过的位移s 成反比例关系,写成sWF =(W 是常数);当压力F 一定时,压强p 与受力面积S 之间成反比例关系,写成SF p = (F 是常数);在某一电路中,保持电压U 不变,电流I 与电阻R 成反比例关系,写成R UI = (U是常数)等等.在利用反比例函数解决实际问题时,一定要注意xky = (k 为常数,k ≠0)这一条件.结合图象说出性质,根据性质大致画出图象,求函数的表达式是必须掌握的.拓展 实际问题中的数量关系一般都具有实际意义,所以在建立数学模型解答问题时,需注意实际问题对数学答案的要求与限制.如一些数量非负(时间、速度、长度一定是正数,人数是正整数等),在解答过程中要时刻注意问题中的要求.规律方法小结 数学建模思想是解决实际问题的基本思想方法.在许多实际问题中,需抽象出数学模型(如建立坐标系,设出函数关系式,列出方程等),即用数学关系式或图形来表示实际问题中数量之间的关系,从而运用数学方法求出问题的答案,使问题得以解决. 课堂检测基础知识应用题1、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3)的反比例函数,其图象如图5-19所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应( )A .不小于45m 3 B .小于45m 3 C .不小于54 m 3 D .小于54m 32、一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地. (1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v 千米/时,那么从甲地到乙地所用时间t 小时将怎样变化? (3)写出t 与v 之间的函数关系式;(4)因某种原因,这辆汽车需要在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少? (5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时问?综合应用题33(1)猜想p 与V 之间的关系,并求出函数关系式; (2)当气体的体积是12 cm 3时,压强是多少?4、某地区去年电价为0.8元,年用电量为1亿度,今年计划将电价调至0.55~0.75元之间,经测算,若电价调至x 元,则今年新增加用电量y 亿度与(x -0.4)元成反比例,当x =0.65元时,y =0.8. (1)求y 与x 之间的函数表达式;(2)若每度电的成本价为0.3元,则电价调至多少元时,今年电力部门的收益将比去年的增加20%?(收益=用电量×实际电价-用电量×成本价)探索创新题5、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p (千帕)(千帕是一种压强单位)是气体体积V (米3)的反比例函数,其图象如图5-20所示. (1)写出这个函数的表达式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米? 体验中考1、一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I (A)与电阻R (Ω)之间的函数关系如图5-23所示,如果以此蓄电池为电源的用电器限制电流不得超过10 A ,那么此用电器的可变电阻应 ( )A .不小于4.8 ΩB .不大于4.8 ΩC .不小于14 ΩD .不大于14 Ω2、为了预防流感,某学校在休息日用药熏消毒对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比,药物释放完毕后,y 与t 的函数关系式为tay (a 为常数),如图5-24所示,根据图5-24中提供的信息,解答下列问题.(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?。

反比例函数(基础)知识讲解

反比例函数(基础)知识讲解

反比例函数(基础)【学习目标】1. 1. 理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.理解反比例函数的概念和意义,能根据问题的反比例关系确定函数解析式.2. 2. 能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.能根据解析式画出反比例函数的图象,初步掌握反比例函数的图象和性质.3. 3. 会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质.会用待定系数法确定反比例函数解析式,进一步理解反比例函数的图象和性质. 【要点梳理】要点一、反比例函数的定义如果两个变量的每一组对应值的乘积是一个不等于零的常数,那么就说这两个变量成反比例即xy k =,或表示为kyx =,其中k 是不等于零的常数是不等于零的常数.. 一般地,一般地,形如形如ky x=(k 为常数,0k ¹)的函数称为反比例函数,的函数称为反比例函数,其中其中x 是自变量,y 是函数,定义域是不等于零的一切实数是函数,定义域是不等于零的一切实数. .要点诠释:(1)在k y x =中,自变量x 是分式k x 的分母,当0x =时,分式k x无意义,所以自变量x 的取值范围是,函数y 的取值范围是0y ¹.故函数图象与x 轴、y 轴无交点;轴无交点;(2)k y x =()可以写成()的形式,自变量x 的指数是-1,在解决有关自变量指数问题时应特别注意系数这一条件这一条件. .(3)k y x=()也可以写成的形式,用它可以迅速地求出反比例函数的比例系数k ,从而得到反比例函数的解析式,从而得到反比例函数的解析式. .要点二、确定反比例函数的关系式 确定反比例函数关系式的方法仍是待定系数法,由于反比例函数ky x=中,只有一个待定系数k ,因此只需要知道一对x y 、的对应值或图象上的一个点的坐标,的对应值或图象上的一个点的坐标,即可求出即可求出k 的值,从而确定其解析式从而确定其解析式. .用待定系数法求反比例函数关系式的一般步骤是:用待定系数法求反比例函数关系式的一般步骤是: (1)设所求的反比例函数为:k y x=(0k ¹);(2)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程;)把已知条件(自变量与函数的对应值)代入关系式,得到关于待定系数的方程; (3)解方程求出待定系数k 的值;的值; (4)把求得的k 值代回所设的函数关系式ky x= 中. 要点三、反比例函数的图象和性质1、 反比例函数的图象特征:反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限;反比例函数的图象关于原点对称,永远不会与x 轴、y 轴相交,只是无限靠近两坐标轴标轴. .要点诠释:(1)若点)若点((a b ,)在反比例函数ky x=的图象上,则点的图象上,则点((a b --,)也在此图象上,所以反比例函数的图象关于原点对称;上,所以反比例函数的图象关于原点对称; (2)在反比例函数(k 为常数,0k ¹) ) 中,由于中,由于,所以两个分支都无限接近但永远不能达到x 轴和y 轴.轴.2、反比例函数的性质(1)如图1,当0k >时,双曲线的两个分支分别位于第一、双曲线的两个分支分别位于第一、三象限,三象限,在每个象限内,y 值随x 值的增大而减小;值的增大而减小;(2)如图2,当0k <时,时,双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、双曲线的两个分支分别位于第二、四象限,四象限,四象限,在每个象限内,在每个象限内,y 值随x 值的增大而增大;值的增大而增大;要点诠释:反比例函数的增减性不是连续的,它的增减性都是在各自的象限内的增减情况,反比例函数的增减性都是由反比例系数k 的符号决定的;的符号决定的;反过来,反过来,由双曲线所在的位置和函数的增减性,也可以推断出k 的符号的符号. . 要点四、反比例函数()中的比例系数k 的几何意义过双曲线x ky =(0k ¹) ) 上任意一点作上任意一点作x 轴、y 轴的垂线,所得矩形的面积为k . 过双曲线xk y =(0k ¹) ) 上任意一点作一坐标轴的垂线,上任意一点作一坐标轴的垂线,连接该点和原点,所得三角形的面积为2k .要点诠释:只要函数式已经确定,不论图象上点的位置如何变化,这一点与两坐标轴的垂线和两坐标轴围成的面积始终是不变的的垂线和两坐标轴围成的面积始终是不变的. . 【典型例题】类型一、反比例函数的定义1、在下列函数关系式中,哪些函数表示y 是x 的反比例函数?的反比例函数?(1)5xy =; ((2)3y x =; ((3)23y x =; ((4)12xy =; ((5)21y x =-; (6)2y x=-; ((7)12y x -=; ((8)5a y x -=(5a ¹,a 是常数)是常数)【答案与解析】 解:根据反比例函数(0)k y k x=¹的形式及其关系式xy k =,1y kx -=,可知反比例函数有:有:(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)(2)(3)(4)(6)(7)(8)..【总结升华】根据反比例函数的概念,必须是形如k y x=(k 为常数,0k ¹)的函数,才是反比例函数.如(2)(3)(6)(8)(2)(3)(6)(8)均符合这一概念的要求,均符合这一概念的要求,所以它们都是反比例函数.但还要注意ky x=(k 为常数,0k ¹)常见的变化形式,如xy k =,1y kx -=等,所以(4)(7)(4)(7)也是反比例函数.在也是反比例函数.在也是反比例函数.在(5)(5)(5)中,中,y 是()1x -的反比例函数,而不是x 的反比例函数.例函数.(1)(1)(1)中中y 是x 的正比例函数.的正比例函数.类型二、确定反比例函数的解析式2、已知正比例函数y kx =和反比例函数3y x=的图象都过点A(m ,1) 1) .求此正比.求此正比例函数的关系式及另一个交点的坐标.例函数的关系式及另一个交点的坐标. 【答案与解析】解:解: 因为3y x=的图象经过点A(m ,1)1),则,则31m =,所以m =3.把A(3A(3,,1)1)代入代入y kx =中,得13k =,所以13k =. 所以正比例函数关系式为13y x =. 由1,33,y x y x ì=ïíï=ïî得得3x =±. 当3x =时,1y =;当3x =-时,1y =-.所以另一个交点的坐标为.所以另一个交点的坐标为((-3,-,-1)1)1).. 【总结升华】确定解析式的方法是特定系数法,由于正比例函数y kx =中有一个待定系数,因此只需一对对应值即可.因此只需一对对应值即可.举一反三:【变式】已知y 与x 成反比,且当6x =-时,4y =,则当2x =时,y 值为多少?值为多少? 【答案】 解:设ky x =,当6x =-时,4y =, 所以46k=-,则k =-=-242424,,所以有24y x-=.当2x =时,24122y -==-. 类型三、反比例函数的图象和性质3、在函数21a y x--=(a 为常数)的图象上有三点为常数)的图象上有三点((11x y ,),(22x y ,),(33x y ,),且1230x x x <<<,则123y y ,y ,的大小关系是(的大小关系是( )). A .231y y y << B B..321y y y << C C..123y y y << D D..312y y y << 【答案】D ; 【解析】解:当0k <时,反比例函数的图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.此题中需要注意的是大.此题中需要注意的是((11x y ,),(22x y ,),(33x y ,)不在同一象限内.因为221(1)0k a a =--=-+<,所以函数图象在第二、四象限内,且在第二、四象限内,y 随x 的增大而增大.因为12x x <,所以12y y <.因为33(,)x y 在第四象限,而11(,)x y ,22(,)x y 在第二象限,所以31y y <.所以312y y y <<.【总结升华】已知反比例函数ky x=,当k >0,x >0时,y 随x 的增大而减小,需要强调的是x >0;当k >0,x <0时,y 随x 的增大而减小,需要强调的是x <0.这里不能说成当k >0,y 随x 的增大而减小.例如函数2y x =,当x =-=-11时,y =-=-22,当x =1时,y =2,自变量由-,自变量由-11到1,函数值y 由-由-22到2,增大了.所以,只能说:当k >0时,在第一象限内,y 随x 的增大而减小.的增大而减小.举一反三:【变式】已知2(3)m y m x-=-的图象在第二、四象限,的图象在第二、四象限,(1)(1)求求m 的值.的值.(2)(2)若点若点若点((-2,1y )、(-1,2y )、(1(1,,3y )都在双曲线上,试比较1y 、2y 、3y 的大小.【答案】解:解:(1)(1)(1)由已知条件可知:此函数为反比例函数,且由已知条件可知:此函数为反比例函数,且2130m m -=-ìí-¹î,∴,∴ 1m =.(2)(2)由由(1)(1)得此函数解析式为:得此函数解析式为:2y x=-. ∵ ( (--2,1y )、(-1,2y )在第二象限,-在第二象限,-22<-<-11,∴,∴ 120y y <<. 而(1(1,,3y )在第四象限,30y <. ∴ 312y y y << 类型四、反比例函数综合4、已知点A(0A(0,,2)2)和点和点B(0B(0,-,-,-2)2)2),点,点P 在函数1y x=-的图象上,如果△的图象上,如果△PAB PAB 的面积是6,求P 点的坐标.点的坐标. 【答案与解析】解:如图所示,不妨设点P 的坐标为00(,)x y ,过P 作PC PC⊥⊥y 轴于点C.∵ A(0 A(0,,2)2)、、B(0B(0,-,-,-2)2)2),, ∴ AB AB==4. 又∵又∵ 0||PC x =且6PABS=△,∴01||462x =,∴,∴ 0||3x =,∴,∴ 03x =±. 又∵又∵ 00(,)P x y 在曲线1y x =-上,∴ 当当03x =时,013y =-;当03x =-时,013y =.∴ P 的坐标为113,3P æö-ç÷èø或13,3æö-ç÷èø.【总结升华】通过三角形面积建立关于0x 的方程求解,同时在直角坐标系中,点到坐标轴的距离等于相应坐标的绝对值.的距离等于相应坐标的绝对值.举一反三:作AC AC⊥⊥y 轴于C ,连BC BC,则△】解:由双曲线与正比例函数y 1322AOCABCSS ==△△.A 点坐标为点坐标为((A x ,A y ),而于是1113||||2222AOCA A AASAC OC x y xy ===-=△,3A y =-,kx =得A A x y k =,所以所以反比例函数解析式为3y -=.。

反比例函数复习讲义

反比例函数复习讲义

反比例函数复习讲义知识点一:反比例函数的概念ﻫ 一般地,如果两个变量x 、y 之间的关系可以表示成k y x=(k为常数,)的形式,那么称y 是x 的反比例函数.注:(1)反比例函数k y x =中的k x 是一个分式,自变量x ≠0, k y x=也可写成1y kx -=或xy k =,其中k≠0;ﻫ (2)在反比例函数1y kx -=(k≠0)中,x 的指数是-1。

如,5y x=也写成:15y x -=;ﻫ (3)在反比例函数k y x=(k ≠0)中要注意分母x的指数为1,如21y x=就不是反比例函数。

ﻫ知识点二:反比例函数的图象反比例函数(0)ky k x=≠的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限.它们关于原点对称,反比例函数的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不与坐标轴相交.ﻫ 注: (1)观察反比例函数(0)ky k x=≠的图象可得:x和y 的值都不能为0,并且图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点. (2)用描点法画反比例函数y=kx的图象时,应注意自变量x 的取值不能为0,一般应从1或-1开始对称取点.ﻫ (3)在一个反比例函数图象上任取两点P ,Q ,过点P ,Q分别作x 轴,y 轴的平行线,与两坐标轴分别围成的矩形面积为S 1,S2 则S 1=S 2. 知识点三:反比例函数的性质 1.图象位置与函数性质当k>0时,x 、y 同号,图象在第一、三象限,且在每个象限内,y 随x 的增大而减小;当k<0时,x 、y 异号,图象在第二、四象限,且在每个象限内,y 随x 的增大而增大.2.若点(a ,b)在反比例函数(0)ky k x=≠的图象上,则点(-a,-b )也在此图象上,故反比例函数的图象关于原点对称;正比例函数反比例函数解析式图 像直线 有两个分支组成的曲线(双曲线)位 置k>0,一、三象限; k<0,二、四象限 k >0,一、三象限 k <0,二、四象限增减性k>0,y 随x 的增大而增大 k<0,y 随x 的增大而减小k>0,在每个象限,y 随x的增大而减小ﻫk<0,在每个象限,y随x的增大而增大4.反比例函数y =kx 中k 的意义 反比例函数y = k x (k ≠0)中比例系数k 的几何意义,即过双曲线y = kx(k≠0)上任意一点引x轴、y 轴垂线,所得矩形面积为│k│.ﻫ知识点四:反比例函数解析式的确定ﻫ 反比例函数解析式的确定方法是待定系数法.由于在反比例函数关系式(0)ky k x=≠中,只有一个待定系数k,确定了k的值,也就确定了反比例函数,因此只需给出一组x 、y 的对应值或图象上点的坐标,代入(0)ky k x =≠中即可求出k 的值,从而确定反比例函数的解析式.ﻫ知识点五:应用反比例函数解决实际问题须注意以下几点1.反比例函数在现实世界中普遍存在,在应用反比例函数知识解决实际问题时,要注意将实际问题转化为数学问题。

反比例函数经典讲义绝对经典--

反比例函数经典讲义绝对经典--

PART 01
反比例函数基本概念与性 质
定义及表达式
反比例函数定义
形如 $y = frac{k}{x}$($k$ 为常数,$k neq 0$)的函数称为反比例函数。
表达式解析
在反比例函数中,$x$ 是自变量,$y$ 是因变量,$k$ 是比例系数。当 $k > 0$ 时,函数图像位于第一、三象限;当 $k < 0$ 时,函数图像位于第二、四象 限。
在经济学中,价格和数量之间的关系往往呈现反比例关系。当价格上涨时,需求 量减少;反之,当价格下跌时,需求量增加。通过对这种数据的分析,可以揭示 市场供需平衡的规律。
社会学中的人口分布
在社会学中,人口分布与资源分配之间也存在反比例关系。当某个地区资源匮乏 时,人口会向其他地区迁移;反之,当某个地区资源丰富时,会吸引更多人口聚 集。通过对人口分布数据的解读,可以了解资源分配对社会结构的影响。
跨学科应用举例
环境科学中的污染物扩散
在环境科学中,污染物扩散与距离之间呈现反比例关系。随着距离的增加,污染物的浓度逐渐降低。 这种关系可以用反比例函数来描述,并为环境治理提供科学依据。
工程学中的结构设计
在工程学中,结构设计与材料强度之间也存在反比例关系。为了确保结构的安全性,需要在保证材料 强度的前提下进行结构设计。通过运用反比例函数,可以实现结构设计的优化和安全性评估。
在电路中,电阻、电流和电压之间满足反比例关系。当电阻 增大时,电流减小,电压保持不变。这种关系可以用反比例 函数来描述。
速度、时间和距离之间的关系
在物理学中,速度、时间和距离之间也有反比例关系。当速 度增大时,所需时间减少,而距离保持不变。这种关系同样 可以用反比例函数来表示。
数据分析与解读

反比例函数经典讲义,绝对经典!!

反比例函数经典讲义,绝对经典!!

--
本节作业:
1、小明家离学校 1.5km,小明步行上学需 x min,那么小明的步行速度 y(m / min) 可以
表示为 y 1500 ;水名地面上重 1500N 的物体,与地面的接触面积为 x m2 ,那么该物体
x
对地面的压强 y(N / m2 ) 可以表示为 y 1500 。函数表达式 y 1500 还可以表示许多不
位置
第一,三象限内
第二,四象限内
增减性
每一象限内,y 随 x 的增大而减小
每一象限内,y 随 x 的增大而增大
渐近性
反比例函数的图象无限接近于 x,y 轴,但永远达不到 x,y 轴,画图象时,要体现出这个特点.
对称性
反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形.
例 2 已知 y (m 1)xm2 是反比例函数,则函数的图象在 ( )
例 7 如图,一次函数 y kx b 的图象与反比例函数 y m 的图象交于 x
A(2,1),B,(1 n) 两点.
(1)试确定上述反比例函数和一次函数的表达式;
(2)求 △AOB 的面积.
y
A O x B
本节练习
--
一、选择题(每小题6分,共36分)
1. 已知 y (m 1)xm2 是反比例函数,则函数的图象在 ( )
x
A、-2
B、-1
C、0
D、1
4.反比例函数y k 1 的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( )
x
A、 1
B、0
C、1
D、2
5.如果两点P1 (1, y1 )和P2
(2, y2
)都在反比例函数y
1 x

初二优秀生讲义反比例函数

初二优秀生讲义反比例函数

初二优秀生讲义-----反比例函数知识点讲解1.反比例函数:一般地,如果两个变量x 、y 之间的关系可以表示成y=k x(k•为常数,k ≠0)的形式,那么称y 是x 的反比例函数. 2.反比例函数的图象和性质.利用画函数图象的方法,可以画出反比例函数的图象,它的图象是双曲线,反比例函数y=kx具有如下的性质①当k>0时,函数的图象在第一、三象限,•在每个象限内,曲线从左到右下降,也就是在每个象限内,y 随x 的增加是减小;②当k<0时,•函数的图象在第二、四象限,在每个象限内,曲线从左到右上升,也就是在每个象限内,y 随x 的增加而增大.3.反比例函数的确定方法:由于在反比例函数关系式y=kx中,•只有一个待定系数k ,确定了k 的值,也就确定了反比例函数.因此,只需给出一组x 、y 的对应值或图象上点的坐标,代入y=kx中即可求出k的值,从而确定反比例函数的关系式.4.用待定系数法求与反比例函数关系式的一般步骤是:①设所求的反比例函数为:y=kx(k ≠0);•②根据已知条件(自变量与函数的对应值)列出含k 的方程;③由代入法解待定系数k 的值;④把k 值代入函数关系式y=kx中.例题剖析例1 如果函数y=k 222k k x +-的图象是双曲线,且在第二、四象限,•那么k 的值是多少?例2 函数y=kx 和y=kx(k<0)•在同一坐标系中的图象是( )例3 如图,正比例函数y=3x 的图象与反比例函数y=k x(k>0)的图象交于点A ,若取k 为1,2,3,…,20,对应的Rt △AOB 的面积分别为S 1,S 2,…,S 20,则S 1+S 2+…+S 20=_________.例4 正比例函数y=-x 与反比例函数y=-1x的图象相交于A 、C 两点,AB ⊥x 轴于B ,CD ⊥x 轴于D (如图)•,•则四边形ABCD•的面积为________.例5 两个反比例函数y=3x ,y=6x在第一象限内的图象如图所示,点P 1,P 2,P 3,…,P 2005在反比例函数y=6x图象上,它们的横坐标分别是x 1,x 2,x 3,…,x 2005,纵坐标分别是1,3,•5,•…,•共2005个连续奇数,过点P 1,P 2,P 3,…,P 2005分别作y 轴的平行线,与y=3x的图象交点依次是Q 1(•x 1,y 1),Q 2(x 2,y 2),Q 3(x 3,y 3),…,Q 2005(x 2005,y 2005),则y 2005=________.例6 设函数f (x )对所有非零实数x ,有f (x )+2f (1x)=3x ,求方程f (x )=f (-x )的解.例7 反比例函数y=kx(k>0)在第一象限内的图像如图所示,P 为该图像上任意一点,PQ 垂直于x 轴,垂足为Q .设△POQ 的面积为S ,•那么S 的值与k 的值是否存在关系?若有关系,请写出S 与k 之间的关系式;若没有关系,请说明理由.例8 如图所示,已知反比例函数y=12x的图像与一次函数y=kx+4的图像相交于P 、•Q 两点,并且P 点的纵坐标是6.(1)求这个一次函数的解析式;(2)求△POQ 的面积.例9 为了预防流感,某学校对教室用药熏消毒法进行消毒,已知药物燃烧时,室内每立方米空气中的含药量y (毫克)与时间x (分钟)成正比例,药物燃烧后,y 与x 成反比例(如图).观测得药物8分钟燃毕,此时室内空气中每立方米的含药量为6毫克,•请根据题中提供的信息,解答下列问题: (1)•药物燃烧时,•y•关于x•的函数关系式为________,•自变量x•的取值范围是__________;药物燃烧后y 关于x 的函数关系式为________.(2)研究表明,当空气中的每立方米含药量低于1.6毫克时,学生方可进教室,•那么从消毒开始,至少需要经过多少分钟后,学生才能回到教室.(3)研究表示,当空气中每立方米的含药量不低于3毫克且持续时间不低于10•分钟时,才能有效杀灭空气中的病菌,那么此次消毒是否有效?为什么?例10 某厂从2001年起开始投入技术改进资金,经技术改进后,其产品的生产成本不断降低,具体数据如下表:(1)请你认真分析表中数据,从你所学习过的一次函数、二次函数和反比例函数中确定哪种函数能表示其变化规律,说明确定是这种函数而不是其他函数的理由,并求出它的解析式; (2)按照这种变化规律,若2005年已投入技改资金5万元. ①预计生产成本每件比2004年降低多少万元?②如果打算在2005年把每件产品成本降低到3.2万元,则还需投入技改资金多少万元?(结果精确到0.01万元)?例11 已知,如图所示,正方形OABC 的面积为9,点O 为坐标原点,点A 在x 轴上,•点C 在y 轴上,点B 在函数y=k x (k>0,x>0)的图像上,点P (m ,n )是函数y=kx上的任意一点,过P 作x 轴、y 轴的垂线,垂足分别为E 、F ,并设矩形OEPF 和正方形OABC 不重合的部分面积为S . (1)求B 点的坐标和k 的值;(2)当S=92时,求点P 的坐标; (3)写出S 关于m 的函数关系式.例12 三个反比例函数(1)y=1k x ;(2)y=2kx ;(3)y=3k x在x 轴上方的图象如图所示,•由此推出k 1,k 2,k 3的大小关系.例13 已知点(1,3)在函数y=kx(k>0)的图象上,矩形ABCD 的边BC 在x 轴上,E•是对角线BD 的中点,函数y=kx(k>0)的图象.经过A 、E 两点,点E 的横坐标为m .(1)求k 的值;(2)求点C 的横坐标(用m 表示);(3)当∠ABD=45°时,求m 的值.例14 有一个Rt △ABC ,∠A=90°,∠B=60°,AB=1,•将它放在直角坐标系中,使斜边BC 在x 轴上,直角顶点A 在反比例函数y=x的图象上,求点C 的坐标.巩 固 练 习一、填空题1.如图:函数y=-kx (k ≠0)与y=-4x的图象交于A 、B 两点,过点A 作AC ⊥y 轴,•垂足为点C ,则△BOC 的面积为________.2.已知,点P (n ,2n )是第一象限的点,下面四个命题: (1)点P 关于y 轴对称的点P 1的坐标是(n ,-2n );(2)点P 到原点O ; (3)直线y=-nx+2n 不经过第三象限;(4)对于函数y=nx,当x<0时,y 随x 的增大而减小;其中真命题是_______.(填上所有真命题的序号) 二、选择题1.已知反比例函数y=1mx的图像上两点A (x 1,y 1)、B (x 2,y 2),当x 1<0<x 2时,有y 1<y 2,则m 的取值范围是( )(A )m<0 (B )m>0 (C )m<12 (D )m>122.函数y=-ax+a 与y=ax(a ≠0)在同一坐标系中的图象可能是( )3.如图,A 、B 是函数y=1x的图象上的点,且A 、B 关于原点O 对称,AC ⊥x 轴于C ,BD•⊥x 轴于D ,如果四边形ACBD 的面积为S ,那么( )(A )S=1 (B )1<S<2 (C )S>2 (D )S=24.如图,在直角坐标系中,直线y=6-x 与函数y=4x(x>0)的图象相交于点A 、B ,•设点A 的坐标为(x 1,y 1),那么长为x 1,宽为y 1的矩形面积和周长分别为( ) (A )4,12 (B )8,12 (C )4,6 (D )8,6 三、解答题1.如图,已知一次函数y=kx+b (k≠0)的图像与x 轴、y 轴分别交于A 、B 两点,•且与反比例函数y=mx(m ≠0)的图像在第一象限交于C 点,CD 垂直于x 轴,垂足为D ,若OA=OB=OD=1.(1)求点A 、B 、D 的坐标;(2)求一次函数和反比例函数的解析式.2.如图,一次函数y=ax+b 的图象与反比例函数y=kx的图象交于M 、N 两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围. 3.已知反比例函数y=2kx和一次函数y=2x-1,其中一次函数图像经过(a ,b ),(a+•1,b+k )两点.(1)求反比例函数的解析式;(2)如图,已知点A 在第一象限,且同时在上述两个函数的图像上,求A 点坐标;(3)利用(2)的结果,请问:在x 轴上是否存在点P ,使△AOP 为等腰三角形?若存在,把符合条件的P 点坐标都求出来;若不存在,请说明理由.4.老师给出一个函数y=f (x ),甲、乙、丙、丁四位同学各指出这个函数的一个性质: 甲:函数图像不经过第三象限; 乙:函数图像经过第一象限; 丙:当x<2时,y 随x 的增大而减小; 丁:当x<2时,y>0已知这四位同学叙述都正确,请构造出满足上述所有性质的一个函数:_______. 5.已知反比例函数y=12x的图象和一次函数y=kx-7的图象都经过点P (m ,2). (1)求这个一次函数的解析式;(2)如果等腰梯形ABCD 的顶点A 、B 在这个一次函数的图象上,顶点C 、D 在这个反比例函数的图象上,两底AD 、BC 与y 轴平行,且A 、B 的横坐标分别为a 和a+2,求a 的值.6.通过市场调查,一段时间内某地区特种农产品的需求量y (千克)•与市场价格x (元/千克)存在下列函数关系式:y=100000x+6000(0<x<100);又已知该地区农民的这种农产品的生产数量z (千克)与市场价格x (元/千克)成正比例关系:z=400x (0<x<100),现不计其他因素影响,如果需求数量y 等于生产数量z 时,即供需平衡,•此时市场处于平衡状态.(1)根据以上市场调查,请你分析当市场处于平衡状态时,•该地区这种农产品的市场价格与这段时间内农民的总销售收入各是多少?(2)受国家“三农”政策支持,该地区农民运用高科技改造传统生产方式,减少产量,以大力提高产品质量.此时生产数量z 与市场价格x 的函数关系发生改变,•而需求函数关系未发生变化,当市场再次处于平衡状态时,市场价格已上涨了a (0<a<25)•元,问在此后的相同时间段内该地区农民的总销售收入是增加了还是减少了?变化多少?7.如图,直线经过A(1,0),B(0,1)两点,点P是双曲线y=12x(x>0)上任意一点,PM•⊥x轴,PN⊥y轴,垂足分别为M,N.PM与直线AB交于点E,PN的延长线与直线AB交于点F.(1)求证:AF×BE=1;(2)若平行于AB的直线与双曲线只有一个公共点,求公共点的坐标.8.已知矩形ABCD的面积为36,以此矩形的对称轴为坐标轴建立平面直角坐标系.....................,设点A的坐标为(x,y),其中x>0,y>0.(1)求出y与x之间的函数关系式,求出自变量x的取值范围;(2)用x、y表示矩形ABCD的外接圆的面积S,并用下列方法,解答后面的问题:方法:∵a2+22ka=(a-ka)+2k(k为常数且k>0,a≠0),且(a-ka)2≥0,∴a2+22ka≥2k,∴当a-ka=0,•即a=a2+22ka取得最小值2k.问题:当点A在何位置时,矩形ABCD的外接圆面积S最小?并求出S的最小值;(3)如果直线y=mx+2(m<0)与x轴交于点P,与y轴交于点Q,那么是否存在这样的实数m,使得点P、Q与(2)中求出的点A构成△PAQ的面积是矩形ABCD面积的16?若存在,请求出m的值;若不存在,请说明理由.9.已知直角坐标系内有一条直线和一条曲线,这条直线和x轴、y轴分别交于点A和点B,且OA=OB=1,这条曲线是函数y=12x的图象在第一象限内的一个分支,点P•是这条曲线上任意一点,它的坐标是(a,b),由点P向x轴、y轴所作的垂线PM、PN(点M、N•为垂足)分别与直线AB相交于点E和点F.(1)设交点E和F都在线段AB上(如图所示),分别求点E、点F的坐标(用a的代数式表示点E 的坐标,用b的代数式表示点F的坐标,只须写出答案,不要求写出计算过程).(2)求△OEF的面积(结果用a、b的代数式表示).(3)△AOF与△BOE是否一定相似,如果一定相似,请予以证明;如果不一定相似或者一定不相似,请简要说明理由.(4)当点P在曲线上移动时,△OEF随之变动,指出在△OEF的三个内角中,•大小始终保持不变的那个角和它的大小,并证明你的结论.。

(完整版)反比例函数讲义(一)

(完整版)反比例函数讲义(一)

反比例例函数(一)一、知识点:1. 定义:一般地,形如xk y =(k 为常数,o k ≠)的函数称为反比例函数。

x k y =还可以写成kx y =1-2. 反比例函数解析式的特征:⑴等号左边是函数y ,等号右边是一个分式。

分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且指数为1.⑵比例系数0≠k⑶自变量x 的取值为一切非零实数。

⑷函数y 的取值是一切非零实数。

3. 反比例函数的图像⑴图像的画法:描点法① 列表(应以O 为中心,沿O 的两边分别取三对或以上互为相反的数) ② 描点(有小到大的顺序)③ 连线(从左到右光滑的曲线) ⑵反比例函数的图像是双曲线,xk y =(k 为常数,0≠k )中自变量0≠x ,函数值0≠y ,所以双曲线是不经过原点,断开的两个分支,延伸部分逐渐靠近坐标轴,但是永远不与坐标轴相交。

⑶反比例函数的图像是是轴对称图形(对称轴是x y =或x y -=)。

⑷反比例函数x k y =(0≠k )中比例系数k 的几何意义是:过双曲线x k y = (0≠k )上任意引x 轴y 轴的垂线,所得矩形面积为k 。

4二、范例讲解: (一)考察概念例1 已知函数 y = (5m — 3)x n -2 + (n+m )(1)当m ,n 为何值时,是一次函数?(2)当m ,n 为何值时,为正比例函数?(3)当m ,n 为何值时,为反比例函数?例2 已知y=y 1+y 2 ,y 1与x +1成正比例,y2与x +1成反比例,当x =0时,y=-5;当x =2时,y=-7。

(1)求y与x 的函数关系式;(2)当y=5时,求x 的值(二)考察函数图象和性质例3 在反比例函数y = x k 3-的图象上,当x >0时,y 随x 的增大而增大,则k 的取值范围为 。

例4 反比例函数y = x6的图象上有三点(x 1,y 1)、(x 2,y 2)、(x 3,y 3),其中x 1<x 2<0<x 3,则y 1,y 2,y 3用“<”连接 。

初三数学 反比例函数讲义

初三数学 反比例函数讲义

一、反比例函数的定义函数kyx=(k为常数,0k≠)叫做反比例函数,其中k叫做比例系数,x是自变量,y是函数,自变量x的取值范围是不等于0的一切实数.二、反比例函数的图象反比例函数kyx=(k为常数,0k≠)的图象由两条曲线组成,每条曲线随着x的不断增大(或减小)越来越接近坐标轴,反比例函数的图象属于双曲线.反比例函数kyx=与kyx=-(0k≠)的图象关于x轴对称,也关于y轴对称.三、反比例函数的性质反比例函数kyx=(k为常数,0k≠)的图象是双曲线;当0k>时,函数图象的两个分支分别位于第一、三象限内,它们关于原点对称,在每一个象限内,y随x的增大而减小;当0k<时,函数图象的两个分支分别位于第二、四象限内,它们关于原点对称,在每一个象限内,y随x的增大而增大.注意:⑴反比例函数kyx=(0k≠)的取值范围是0x≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分支连接起来.②叙述反比例函数的性质时,一定要加上“在每一个象限内”,如当0k>时,双曲线kyx=的两支分别在一、三象限,在每一个象限内,y随x的增大而减小.这是由于0x≠,即0x>或0x<的缘故.如果笼统地叙述为0k<时,y随x的增大而增大就是错误的.⑵由于反比例函数中自变量x和函数y的值都不能为零,所以图象和x轴、y轴都没有交点,但画图时要体现出图象和坐标轴无限贴近的趋势.⑶在画出的图象上要注明函数的解析式.反比例函数的图象及性质四、反比例函数解析式的求法反比例函数的解析式(0)ky k x=≠中,只有一个系数k ,确定了k 的值,也就确定了反比例函数的解析式.因此,只需给出一组x 、y 的对应值或图象上一点的坐标,利用待定系数法,即可确定反比例函数的解析式.五、比例系数k 的几何意义过反比例函数()0ky k x=≠,图象上一点()P x y ,,做两坐标轴的垂线,两垂足、原点、P 点组成一个矩形,矩形的面积S x y xy k =⋅==.题型一 考察反比例函数的定义及解析式的确定【例1】 下列关于x 的函数中:①2y x =;②43y x -=;③ky x=;④22m y x +=中,一定是反比例函数的有( ) A .1个 B . 2个 C . 3个 D . 4个 【例2】 已知y 与2x 成反比例,当3x =时,4y =,则y 是x 的( )A . 正比例函数B .一次函数C .反比例函数D .以上都不是【例3】 若函数||1a y x-=是反比例函数,则a 的值为( ). A . a 为任意实数 B . 0a > C . 1a ≠ D . 1a ≠±【例4】 已知()2212m m y m m x +-=+是关于x 的反比例函数,求m 的值及函数的解析式.【例5】 已知反比例函数的图象经过点()3,2和(),2m -,则m 的值是 .【例6】 如图,点P 在反比例函数()10y x x=>的图象上,且横坐标为2. 若将点P 先向右平移两个单位,再向上平移一个单位后所得的像为点'P .则在第一象限内,经过点'P 的反比例函数图象的解析式是( )A .()50y x x=-> B .()50y x x=> C .()60y x x=->D .()60y x x=> 【例7】 已知212y y y =+,其中1y 与x 成正比例,2y 与x 成反比例,且当2x =和3x =时,y的值都为l9,求y 与变量x 的函数关系式.二、反比例函数的图象及性质1.反比例函数的图象分布及增减性【例8】 在下图中,反比例函数21k y x+=的图象大致是( )ABC【例9】 函数ky x=(0k >)的图象可能是( )A. B. C. D.【例10】 函数ky x=与y kx b =+在同一坐标系的图象大致是图中的( )ABCD【例11】 函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )AD【例12】 函数y x m =+与(0)my m x=≠在同一坐标系内的图象可以是()ABD【例13】 已知反比例函数12my x-=的图象上两点A (1x ,1y ),B (2x ,2y ),当120x x <<时,有12y y <,则m 的取值范围是__ ___.【例14】 已知反比例函数ky x=的图象在第二、第四象限内,函数图象上有两点()()12,5,A y B y ,则1y 与2y 的大小关系为( )A .12y y >B . 12y y =C . 12y y <D . 无法确定2.与反比例函数有关的面积不变性 【例15】 反比例函数xky =的图像如图所示,点M 是该函数图像上一点,MN 垂直于x 轴,垂足是点N ,如果2MON S ∆=,则k 的值为( )A. 2B. 2-C. 4D. 4-【例16】 如图,在Rt AOB ∆中,点A 是直线y x m =+与双曲线my x=在第一象限的交点,且2AOB S ∆=,则m 的值是_____.【例17】 如图,点P 在反比例函数的图像上,过P 点作PA x ⊥轴于A 点,作PB y ⊥轴于B点,矩形OAPB 的面积为9,则该反比例函数的解析式为 .【例18】 在平面直角坐标系中,函数ky x=(0x >,常数0k >)的图象经过点A (1,2),B (m ,n ),(1m >),过点B 作y 轴的垂线,垂足为C .若ABC ∆的面积为2,求点B 的坐标.【例19】 如图,点A 、B 在反比例函数ky x=(0k >)的图象上,且点A 、B 的横坐标分别为a 和2a (0a >)AC x ⊥轴,垂足为C ,AOC ∆的面积为2. ⑴求反比例函数的解析式;⑵若点(a -,1y ),(2a -,2y )也在反比例函数的图象上,试比较1y 与2y 的大小; ⑶求AOB ∆的面积.反比例函数与几何综合【例20】 已知点(1,3)在函数ky x=(0x >)的图像上,矩形ABCD 的边BC 在x 轴上,E 是对角线BD 的中点,函数ky x=(0x >)的图像经过A 、E 两点,若45ABD ∠=︒,求E 点的坐标.【例21】 如图,点A (m ,1m +),B (3m +,1m -)都在反比例函数ky x=的图象上. (1)求m ,k 的值;(2)如果M 为x 轴上一点,N 为y 轴上一点,以点A ,B ,M ,N 为顶点的四边形是平行四边形,试求直线MN的函数表达式.【例22】 如图,11POA ∆、212P A A ∆都是等腰直角三角形,点1P 、2P 在函数4y x=(0x >)的图像上,斜边1OA 、12A A 、都在x 轴上,求点2A 的坐标.【例23】 已知:在矩形AOBC 中,4OB =,3OA =.分别以OB OA ,所在直线为x 轴和y 轴,建立如图所示的平面直角坐标系.F 是边BC 上的一个动点(不与B C ,重合),过F 点的反比例函数(0)ky k x=>的图象与AC 边交于点E .(1)求证:AOE △与BOF △的面积相等;(2)记OEF ECF S S S =-△△,求当k 为何值时,S 有最大值,最大值为多少?(3)请探索:是否存在这样的点F ,使得将CEF △沿EF 对折后,C 点恰好落在OB 上?若存在,求出点F 的坐标;若不存在,请说明理由.【例24】 如图,如果函数y x =-与4y x=-的图像交于A ,B 两点,过点A 作AC 垂直于y 轴,垂足为点C ,求BOC ∆的面积.【例25】 如图,在直角坐标系xOy 中,一次函数1y k x b =+的图像与反比例函数2k y x=的图像交于()()143A B m ,,,两点. (1)求一次函数的解析式; (2)求AOB ∆的面积.。

《反比例函数》 讲义

《反比例函数》 讲义

《反比例函数》讲义一、反比例函数的定义一般地,如果两个变量 x、y 之间的关系可以表示成 y = k/x(k 为常数,k≠0)的形式,那么称 y 是 x 的反比例函数。

需要注意的是,反比例函数中自变量 x 不能为 0,因为分母不能为0。

同时,反比例函数的表达式还可以写成 xy = k 或 y = kx^(-1) 的形式。

例如,当速度 v 一定时,路程 s 与时间 t 之间的关系为 s = vt。

如果路程 s 一定,那么速度 v 与时间 t 之间的关系就可以表示为 v = s/t,此时 v 就是 t 的反比例函数。

二、反比例函数的图像反比例函数的图像是双曲线。

当 k > 0 时,双曲线的两支分别位于第一、三象限,在每一象限内y 随 x 的增大而减小;当 k < 0 时,双曲线的两支分别位于第二、四象限,在每一象限内 y 随 x 的增大而增大。

我们以反比例函数 y = 2/x 为例来绘制图像。

首先,列出一些 x 和y 的对应值:| x |-2 |-1 |-1/2 | 1/2 | 1 | 2 |||||||||| y |-1 |-2 |-4 | 4 | 2 | 1 |然后,在平面直角坐标系中描出这些点,并用平滑的曲线连接起来,就得到了反比例函数 y = 2/x 的图像。

再比如 y =-3/x,同样列出一些对应值:| x |-3 |-2 |-1 | 1 | 2 | 3 |||||||||| y | 1 | 3/2 | 3 |-3 |-3/2 |-1 |绘制出的图像位于第二、四象限。

三、反比例函数的性质1、对称性反比例函数的图像既是轴对称图形,又是中心对称图形。

对称轴为直线 y = x 和 y = x,对称中心为原点(0,0)。

2、增减性当 k > 0 时,在每个象限内,函数值 y 随自变量 x 的增大而减小;当 k < 0 时,在每个象限内,函数值 y 随自变量 x 的增大而增大。

需要强调的是,这里说的增减性是在每个象限内,不能笼统地说在整个定义域内。

初中数学反比例函数讲义

初中数学反比例函数讲义

初中数学反⽐例函数讲义反⽐例函数的解析式1、反⽐例函数的定义函数ky x=(k 为常数,0k ≠)叫做反⽐例函数,其中k 叫做⽐例系数,x 是⾃变量,y 是函数, 2、反⽐例函数解析式的特征⑴等号左边是函数y ,等号右边是⼀个分式。

分⼦是不为零的常数k (也叫做⽐例系数k ),分母中含有⾃变量x ,且指数为1.⑵⽐例系数0≠k⑶⾃变量x 的取值为⼀切⾮零实数。

⑷函数y 的取值是⼀切⾮零实数。

3、反⽐例函数解析式的求法反⽐例函数的解析式(0)k y k x=≠中,只有⼀个系数k ,确定了k 的值,也就确定了反⽐例函数的解析式;因此,只需给出⼀组x 、y 的对应值或图象上⼀点的坐标,利⽤待定系数法,即可确定反⽐例函数的解析式。

例1、下列关于x 的函数中:①2y x =;②43y x -=;③ky x=;④22m y x +=中,⼀定是反⽐例函数的有() A .1个 B . 2个 C . 3个 D . 4个例2、若函数||1a y x-=是反⽐例函数,则a 的值为(). A . a 为任意实数 B . 0a > C . 1a ≠ D . 1a ≠±例3、已知反⽐例函数的图象经过点()3,2和(),2m -,则m 的值是练习:1、已知y 与2x 成反⽐例,当3x =时,4y =,则y 是x 的()A .正⽐例函数B .⼀次函数C .反⽐例函数D .以上都不是2、已知()2212m m y m m x +-=+是关于x 的反⽐例函数,求m 的值及函数的解析式.3、在反⽐例函数y=x2的图象上的⼀个点的坐标是()A.(2,1)B.(-2,1)C.(2,21) D.(21,2) 4、已知212y y y =+,其中1y 与x 成正⽐例,2y 与x 成反⽐例,且当2x =和3x =时,y 的值都为19,求y 与变量x 的函数关系式.5、在平⾯直⾓坐标系中,函数ky x=(0x >,常数0k >)的图象经过点A (1,2),B (m ,n ),(1m >),过点B 作y 轴的垂线,垂⾜为C .若ABC ?的⾯积为2,求点B 的坐标.C B (m,n)A (1,2)Oyx6、点(1,3)在反⽐例函数y=xk的图象上,则k=__________,反⽐例函数的图象与性质反⽐例函数的图象与性质反⽐例函数ky x=(k 为常数,0k ≠)的图象是双曲线;当0k >时,函数图象的两个分⽀分别位于第⼀、三象限内,它们关于原点对称,在每⼀个象限内,y 随x 的增⼤⽽减⼩(图1);当0k <时,函数图象的两个分⽀分别位于第⼆、四象限内,它们关于原点对称,在每⼀个象限内,y 随x 的增⼤⽽增⼤(图2).O xy(图1)(图2)注意:⑴反⽐例函数k y x=(0k ≠)的取值范围是0x ≠.因此,①图象是断开的两条曲线,画图象时,不要把两个分⽀连接起来.②叙述反⽐例函数的性质时,⼀定要加上“在每⼀个象限内”,如当0k >时,双曲线k y x=的两⽀分别在⼀、三象限,在每⼀个象限内,y 随x 的增⼤⽽减⼩⑵由于反⽐例函数中⾃变量x 和函数y 的值都不能为零,所以图象和x 轴、y 轴都没有交点,但画图时要体现出图象和坐标轴⽆限贴近的趋势.例1、已知反⽐例函数y=x的图象经过点(a ,b ),(c ,d ),且b <d <0,则a 与c 的⼤⼩关系是() A.a >c >0 B.a <c <0 C.c >a >0 D.c <a <0例2、已知3b =,且反⽐例函数1by x+=的图象在每个象限内,y 随x 的增⼤⽽增⼤,如果点(a ,3)在双曲线上1by x+=,则_____a =.例3、函数ky x=与y kx b =+在同⼀坐标系的图象⼤致是图中的()例4、设反⽐例函数y=xm-3的图象上有两点A (x 1,y 1)和B (x 2,y 2),且当x 1<0则m 的取值范围是( ) 例5、三个反⽐例函数:(1)y=x k 1;(2)y=xk2;(3)y=x k 3在x 轴上⽅的图象如图17-1-7所⽰,由此推出k 1,k 2,k 3的⼤⼩关系是________.图17-1-7例6、已知0a ≠,0b ≠,0a b +≠则函数y ax b =+与a by x+=在同⼀坐标系中的图象不可能是( ) O yx xyO x yO x yO A. B. C. D.例7、若A (1a ,1b ),B (2a ,2b )是反⽐例函数2图象上的两个点,且 12a a <,则1b 与2b 的⼤⼩关系是()A .12b b <B .12b b = C .12b b > D .⼤⼩不确定练习:1、已知反⽐例函数k y x=的图象在第⼆、第四象限内,函数图象上有两点()()1227,,5,A y B y ,1y 与2y 的⼤⼩关系为() A .12y y > B . 12y y = C . 12y y < D .⽆法确定2、如图,反⽐例函数1k y x-=与⼀次函数(1)y k x =+只可能是() O yx xyO x yO x yO A. B. C. D.3、已知图中的曲线是反⽐例函数5m y x-=(m 为常数)图象的⼀⽀.⑴这反⽐例函数图象的另⼀⽀在第⼏象限?常数m 的取值范围是什么?⑵若该函数的图象与正⽐例函数2y x =的图象在第⼀象内限的交点为A ,过A 点作x 轴的垂线,垂⾜为B ,当OAB ?的⾯积为4时,求点A 的坐标及反⽐例函数的解析式.4、⽐例函数y=x 的图象与反⽐例函数y=xk的图象有⼀个交点的纵坐标是2,求:(1)x=-3时反⽐例函数y 的值;(2)当-3反⽐例函数的⾯积类问题例1、反⽐例函数xky =的图像如图所⽰,点M 是该函数图像上⼀点,MN 垂直于x 轴,垂⾜是点N ,如果2MON S ?=,则k 的值为()A.2C.4D.4-例2、如图,正⽐例函数y kx =和y ax =(0a >)的图像与反⽐例函数k y x=(0k >)的图像分别相交于A 点和C 点.若Rt AOB ?和Rt COD ?的⾯积分别为1S 和2S ,则1S 与2S 的关系是()ODCBAxy(图3)A .12S S >B .1S =2SC .1S <2SD .不能确定例3、如图3所⽰,已知直线y 1=x+m 与x 轴、y 轴分别交于点A 、B ,与双曲线y 2=xk(k<0)分别交于点C 、D ,且C 点坐标为(-1,2). (1)分别求直线AB 与双曲线的解析式;(2)求出点D 的坐标;(3)利⽤图象直接写出当x 在什么范围内时,y 1>y 2.例4、已知⼀次函数y=kx+b 的图象与反⽐例函数y=x8-的图象交于A 、B 两点,且点A 的横坐标和点B 的纵坐标都是-2,求:(1)⼀次函数的解析式;(2)△AOB 的⾯积.练习:1、在平⾯直⾓坐标系中,函数ky x=(0x >,常数0k >)的图象经过点A (1,2),B (m ,n ),(1m >),过点B 作y 轴的垂线,垂⾜为C .若ABC ?的⾯积为2,求点B 的坐标.2、过原点作直线交双曲线k y x=(0k >)于点A 、C ,过A 、C 分别作两坐标轴的平⾏线,围成矩形ABCD ,如图所⽰.⑴知矩形ABCD 的⾯积等于8,求双曲线的解析式;.3、如图,⼀次函数122y x =-的图象分别交x 轴、y 轴于A B P ,,为AB 上⼀点且PC 为AOB ?的中位线,PC 的延长线交反⽐例函数()0ky k x =>的图象于Q ,32OQC S ?=,则k 的值和Q 点的坐标?4、已知正⽐例函数1y k x =1(0)k ≠与反⽐例函数22(0)k y k x=≠的图象交于A B 、两点,点A 的坐标为(21),.(1)求正⽐例函数、反⽐例函数的表达式;(2)求点B 的坐标.5、如图,反⽐例函数ky x=的图像与⼀次函数y mx b =+的图像交于()13A ,,()1B n -,两点.(1)求反⽐例函数与⼀次函数的解析式;(2)根据图像回答:当x 取何值时,反⽐例函数的值⼤于⼀次函数的值.作业:1、如图,已知()()424A n B --,,,是⼀次函数y kx b =+的图象和反⽐例函数my x=的图象的两个交点.(1)求反⽐例函数和⼀次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及AOB ?的⾯积;(3)求⽅程0mkx b x+-=的解(请直接写出答案);(4)求不等式0mkx b x+-=的解集(请直接写出)2、某医药研究所开发⼀种新药,成年⼈按规定的剂量限⽤,服药后每毫升⾎液中的含药量y(毫克)与时间t(⼩时)之间的。

九年级培训讲义:第1讲 反比例函数

九年级培训讲义:第1讲 反比例函数

第一讲 反比例函数知识要点1、反比例函数的图象和性质:反比例函数(0)ky k x=≠ k 的符号 0k > 0k <图象性质①x 的取值范围是0x ≠, y 的取值范围是0y ≠.②当0k >时,函数图象的两个分支分别在第一、第三象限.在每个象限内,y 随x 的增大而减小. ①x 的取值范围是0x ≠, y 的取值范围是0y ≠.②当0k <时,函数图象的两个分支分别在第二、第四象限.在每个象限内,y 随x 的增大而增大.反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴,对称中心是坐标原点.2函数 正比例函数反比例函数解析式 (0)y kx k =≠(0)ky k x=≠ 图象 直线,经过原点 双曲线,与坐标轴没有交点自变量取值范围 全体实数0x ≠的一切实数图象的位置当0k >时,在一、三象限; 当0k <时,在二、四象限.当0k >时,在一、三象限; 当0k <时,在二、四象限.性质当0k >时,y 随x 的增大而增大; 当0k <时,y 随x 的增大而减小.当0k >时,y 随x 的增大而减小;当0k <时,y 随x 的增大而增大.xyOxyO一、定义1、下列函数中,y 是x 的反比例函数是( ) (A ) 1)1(=-y x (B ) 11+=x y (C ) 21xy = (D ) x y 31=2、已知22)1(--=a xa y 是反比例函数,则a=____ .3、若反比例函数y = (2m -1)22-m x 的图象在第二、四象限,则m = ,该反比例函数的解析式为 ;4. 已知y 与x -1成反比例,当x = 12 时,y = - 13,那么,当x = 2时,y 的值为 ;二、增减性1.如果点A (7,y 1),B (5,y 2)在反比例函数y = x1的图象上,那么,y 1与y 2的大小关系是 ; 2、若M(12-,1y )、N(14-,2y )、P(12,3y )三点都在函数xy 4=的图象上, 则1y 、2y 、3y 的大小关系是( )(A )132y y y >> (B )312y y y >> (C ) 213y y y >> (D )123y y y >>3.点A (a ,b ),B (a -1,c )均在反比例函数y = 1x 的图象上,若a < 0, 则b c (填“>”、“<”或“=”);4、在反比例函数xk y 1+=的图象上有两点11()x y ,和22()x y ,,若x x 120<<时,y y 12>, 则k 的取值范围是 .三、函数图像1、在同一直角坐标系中,函数y=kx-k 与(0)ky k x=≠的图像大致是( )2、如图,A 为反比例函数ky x=图象上一点,AB 垂直x 轴 于B 点,若AOB S ∆=5,则k 的值为( ) (A ) 10 (B ) 10- (C ) 5- (D )25-3、某村的粮食总产量为a (a 为常数)吨,设该村的人均粮食产量为y 吨,人口数为x , 则y 与x 之间的函数关系式的大致图像应为( )4、已知:甲、乙两地相距100千米,如果把汽车从甲地到乙地所用的时间y (小时)表示为汽车行驶的平均速度x (千米/小时)的函数,则此函数的图象大致是( );四、综合题:1.已知y 与12-x 成反比例,且当1=x 时,2-=y 。

《反比例函数讲义》word版

《反比例函数讲义》word版

反比例函数1、反比例函数的概念及三种表达形式.一般地如果两个变量x ,y 之间的关系可以表示为xky =(k 是常数,k ≠0)的形式,那么称y 是x 的反比例函数。

(反比例函数的解析式也可以写成1-=kx y 的形式。

自变量x 的取值范围是x ≠0的一切实数,函数的取值范围也是一切非零实数。

) 2、反比例函数的图象反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

4、反比例函数解析式的确定确定反比例函数解析式的方法仍是待定系数法。

由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值或图像上的一个点的坐标,即可求出k 的值,从而确定其解析式。

5、反比例函数中反比例系数的几何意义过反比例函数)0(≠=k xky 图像上任一点P (x,y )作x 轴、y 轴的垂线PM ,PN ,垂足分别是M 、N ,则所得的矩形PMON 的面积S=PM•PN=xy x y =•。

6、反比例函数中常用考点(1)反比例函数与一次函数的交点坐标是两个函数解析式联立组成方程组的解. (2) 反比例函数与正比例函数的交点坐标关于坐标原点对称. (3) 反比例函数与一次函数的交点所组成三角形面积的求法. 7. 经典题解【例1】如图所示,一次函数y=kx+b 的图象与反比例函数y= kx (k ≠0)的图象交于M 、N两点.⑴求反比例函数和一次函数的解析式;⑵根据图象写出使反比例函数的值大于一次函数的值的x 的取值范围.【例2】(2011山东聊城,24,10分)如图,已知一次函数y =kx +b 的图象交反比例函数42my x-=(x>0)图象于点A 、B ,交x 轴于点C . (1)求m 的取值范围;(2)若点A 的坐标是(2,-4),且13BC AB =,求m 的值和一次函数的解析式;【答案】(1)因反比例函数的图象在第四象限,所以4-2m <0,解得m >2;(2)因点A (2,-4)在反比例函数图象上,所以-4=224m-,解得m =6,过点A 、B 分别作A M ⊥OC 于点M ,B N ⊥OC 于点N ,所以∠B N C =∠A M C =90°,又因为∠BC N =∠A M C ,所以△BC N ∽△AC M ,所以AC BC AM BN =,因为31=AB BC ,所以41=AC BC ,即41=AM BN ,因为A M =4,所以B N =1,所以点B 的纵坐标为-1,因为点B 在反比例函数的图象上,所以当y =-1时,x =8,所以点B 的坐标为(8,-1),因为一次函数y =kx +b 的图象过点A (2,-4),B (8,-1),所以⎩⎨⎧-=+-=+1842b k b k ,解得⎪⎩⎪⎨⎧-==521b k ,所以一次函数的解析式为y =21x -5【例3】. (2011四川成都,19,10分) 如图,已知反比例函数)0(≠=k xky 的图象经过点(21,8),直线b x y +-=经过该反比例函数图象上的点Q(4,m ). (1)求上述反比例函数和直线的函数表达式;(2)设该直线与x 轴、y 轴分别相交于A 、B 两点,与反比例函数图象的另一个交点为P ,连结0P 、OQ ,求△OPQ 的面积.【例4】. (2011四川广安,24,8分)如图6所示,直线l 1的方程为y =-x +l ,直线l 2的方程为y =x +5,且两直线相交于点P ,过点P 的双曲线ky x=与直线l 1的另一交点为Q (3.M ).(1)求双曲线的解析式. (2)根据图象直接写出不等式kx>-x +l 的解集.【例5】. (2011四川内江,21,10分)如图,正比例函数11y k x =与反比例函数22k y x=相交于A 、B 点,已知点A 的坐标为(4,n ),BD ⊥x 轴于点D ,且S △BDO =4。

反比例函数经典讲义-绝对经典!!

反比例函数经典讲义-绝对经典!!

反比例函数经典讲义-绝对经典!!初三反比例函数讲义第1节 反比例函数本节内容: 反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义 电流I 、电阻R 、电压U 之间满足关系式:U=IR 当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。

当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。

一般地,如果两个变量x 、y 之间的关系可以表示成xk y =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为零。

小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式;■例1■例2由欧姆定律可知,电压不变时,电流强度I与电阻R成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。

(1)求I与R的函数关系式;(2)当R=5欧姆时,求电流强度。

1xy2、某工人打算利用一块不锈钢条加工一个面积为0.82m的矩形模具,假设模具的长与宽分别为y与x。

(1)你能写出y与x之间的函数表达式吗?变量y 与x之间是什么函数?(2)若想使模具的长比宽多1.6m,已知每米这34、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。

6、(2008·安徽)函数xk y =的图象经过点A (1,—2),则k 的值为( )。

A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m m xm y 是反比例函数,则m 的值为( )。

A .m = —2 B. m = 1C. m = 2或m = 1D. m = —2,或m = —18、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。

反比例函数经典讲义,绝对经典

反比例函数经典讲义,绝对经典

文案初三反比例函数讲义第1节 反比例函数本节容:反比例函数定义 反比例函数定义的应用(重点)1、 反比例函数的定义电流I 、电阻R 、电压U 之间满足关系式:U=IR当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。

当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。

一般地,如果两个变量x 、y 之间的关系可以表示成xky =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为零。

小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式; (2)xky =若是反比例函数,则x 、y 、k 均不为零;(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。

■例1下列函数中是反比例关系的有___________________(填序号)。

①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-=⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0k≠2、反比例函数定义的应用(重点)2文案2、某工人打算利用一块不锈钢条加工一个面积为0.82m 的矩形模具,假设模具的长与宽分别为y 与x 。

(1)你能写出y 与x 之间的函数表达式吗?变量y 与x 之间是什么函数?(2)若想使模具的长比宽多1.6m ,已知每米这种不锈钢条6元钱,求加工这个模具共花多少钱?3、若函数满足023=+xy,则y 与x 的函数关系式为______________,你认为y 是x 的______________函数。

4、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x= —1时,y=5,求出y与x的函数关系式。

反比例函数讲义经典推荐(一)

反比例函数讲义经典推荐(一)

第六章 反比例函数讲义6.1反比例函数教材精华知识点1 反比例函数的概念定义:一般地,如果两个变量x ,y 之间的关系可以表示成y =xk(k 为常数,k ≠0)的形式,那么称y 是x 的反比例函数.拓展 (1)等号左边是函数y ,等号右边是一个分式,分子是不为零的常数k (也叫做比例系数k ),分母中含有自变量x ,且x 的指数是1,若写成y =kx -1.则x 的指数是-1. (2)比例系数k ≠0是反比例函数定义的一个重要组成部分. (3)自变量x 的取值范围是x ≠0的一切实数. (4)函数y 的取值范围也是一切非零实数.知识点2 用待定系数法求反比例函数的表达式 由于在反比例函数y =xk中,只有一个待定系数.因此只需要一组对应值,即可求出k 的值,从而确定其表达式.知识点3 反比例关系与反比例函数的区别和联系我们学过反比例关系.如果xy =k (k 是常数,k ≠0).那么x 与y 这两个量成反比例关系,这里x ,y 既可以代表单独的一个字母,也可以代表多项式或单项式,例如若y +3与x -1成反比例,则y +3=1x k,若y 与x 2成反比例,则y =2x k .成反比例关系不一定是反比例函数,但反比例函数y =xk 中的两个变量必成反比例关系. 拓展 反比例关系不一定是反比例函数,但反比例函数一定是反比例关系.规律方法小结 类比思想:在学习反比例函数的概念时,注意与成反比例的量进行类比,与正比例函数的概念对比,这样便于我们对反比例函数的概念的理解与掌握. 课堂检测基本概念题1、下列各式中,y 是x 的反比例函数吗?为什么? (1)xy =2; (2)y =10-x ; (3)y =x 31; (4)y =xb 3 (b 为常数,b ≠0).基础知识应用题2、判断下列各题中的两个变量是否成比例关系,若成比例关系,指出是正比例关系,还是反比例关系. (1)三角形底边长为定值,它的面积S 与这条边上的高h ; (2)三角形面积为定值,它的底边长a 与这条边上的高h ; (3)正方形的面积S 与它的一边长a ; (4)周长为定值的长方形的长和宽; (5)面积为定值的长方形的长和宽; (6)儿童的身高与年龄;(7)圆的周长与它的半径.3、若函数y =(m +1)132++m m x 是反比例函数,求m 的值.综合应用题4、一定质量的二氧化碳,它的体积V 与它的密度ρ成反比例,当V =5m 3时,ρ=1.98kg /m 3,求ρ与V 的函数关系式.5、一水池内蓄水40 m 3.设放完满池水的时间为T 小时,每小时的放水量为W m 3,规定放水时间不得超过20小时,求T 与W 之间的函数关系式,指出函数T 和自变量W 的取值范围.探索创新题6、某工人计划利用一块不锈钢钢锭加工成一个面积为0.8m 2的矩形框工件,设工件的长与宽分别为y m 与x m .(不计厚度)(1)请写出y 与x 之间的函数表达式;(2)如果想使工件的长比宽多1.6 m ,已知加工费为每米6元,求加工这个工件所需的费用. 体验中考若梯形的下底长为x ,上底长为下底长的31,高为y ,面积为60,则y 与x 的函数关系式是 .(不考虑x 的取值范围)6.2反比例 函数的图像与性质新课导引【生活链接】爱思考的小明想在坐标系中描出横、纵坐标的积等于6的点,并列表如下:然后他将x ,y 的对应值分别作为点的横、纵坐标在直角坐标系中描了出来(如下图所示).【问题探究】如果用光滑曲线顺次连接图中各点,能得到怎样的图象?你能描述它的形状和性质吗? 【点拨】由xy =6可得xy 6=,是反比例函数.反比例函数的图象叫做双曲线. 教材精华知识点1 反比例函数的图象反比例函数的图象是双曲线,也称双曲线xky =(k ≠0),其图象如图5-1所示.拓展 反比例函数的图象是双曲线,它有两个分支,这两个分支分别位于第一、三象限或第二、四象限,它们关于原点对称,由于反比例函数中自变量x ≠0,函数y ≠0,所以它们的图象与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远不能到达坐标轴.知识点2 反比例函数图象的画法(1)列表:自变量的取值应以0为中心,在0的两边取三对(或三对以上)相反数,如1和-1,2和-2,3和-3等等,填y 值时,只需计算原点一侧的函数值,如分别计算出当x =1,2,3时的函数值,那么当x =-1,-2,-3时的函数值应是与之对应的相反数.(2)描点:先画出反比例函数的图象的一侧,另一侧可根据图象关于原点对称的性质来画.(3)连线:按照从左到右的顺序连接各点并延伸.拓展 画反比例函数的图象时,应注意以下几点:(1)两条曲线是平滑的,不要只画一个分支,而忘了画另一个分支. (2)两条曲线无限靠近坐标轴,但与坐标轴无交点. 探究交流 反比例函数xky = (k ≠0)的图象是轴对称图形吗? 点拨 反比例函数xky =(k ≠0)的图象是轴对称图形,它的对称轴有两条,分别是直线y =x 和直线y =-x . 知识点3 反比例函数的性质 反比例函数xky =(k ≠0)的性质如下: 当k >0时,函数的图象在第一、三象限,在每个象限内,曲线从左向右下降,也就是说,在每个象限内,y 随x 的增大而减小.当k <0时,函数的图象在第二、四象限,在每个象限内,曲线从左向右上升,也就是说,在每个象限内,y 随x 的增大而增大.拓展 (1)描述函数值的增减情况时,必须指出“在每个象限内”.若说成“当k >0(或k <0)时,y 随x 的增大而减小(或增大)”,就会出现与事实不符的矛盾.(2)反比例函数的图象的位置、函数的增减性都是由比例系数k 的符号决定的.反过来,由双曲线的位置、反比例函数的增减性也可以推断出k 的符号,即双曲线在第一、三象限时,k >0;双曲线在第二、四象限时,k <0. 探究交流 反比例函数的表达式中k 的几何意义. 点拨 反比例函数xky =的本质特征是两个变量y 与x 的乘积是一个常数k ,由此可以推得反比例函数的一个重要性质.若A 是反比例函数xky =图象上任意一点,且A B 垂直x 轴,垂足为B ,AC 垂直y 轴,垂足为C ,则S 矩形ABOC =k ,如图5-2所示.由反比例函数图象与矩形面积的关系可以得出反比例函数图象与三角形面积的关系:S △AOB=S △AOC =S 矩形ABOC =k 21. 规律方法小结 数形结合思想:学习反比例函数与学习其他函数一样,要善于数形结合,由表达式联想图象的位置及性质,由图象和性质联想比例系数k 的符号. 课堂检测基础知识应用题1、在同一直角坐标系内画出反比例函数x y 4=与xy 4-=的图象.2、已知反比例函数的表达式为xky -=4,分别根据下列条件求出字母k 的取值范围.(1)函数图象位于第一、三象限;(2)在每一个象限内,y 随x 的增大而增大.综合应用题3、如图5-5所示,A ,B 是函数xy 1=的图象上关于原点O 的对称点,AD 平行于y 轴,BC 平行于x 轴,△ABC 的面积为S ,则下列各式正确的是 ( )A .S =1B .S =2C .S >2D .1<S <24、已知反比例函数x k y =的图象经过点(4,21),若一次函数y =x +1的图象平移后经过该反比例函数图象上的点B (2,m ),求平移后的一次函数图象与x 轴的交点坐标.探索创新题5、如图5-7所示,已知双曲线xky = (k >0)与直线y =k ′x 交于A ,B 两点,点A 在第一象限,试解答下列问题.(1)若点A 的坐标为(4,2),则点B 的坐标为 ,若点A 的横坐标为m ,则点B 的坐标可表示为 .(2)如图5-8所示,过原点O 作另一条直线l ,交双曲线xky = (k >0)于P ,Q 两点,点P 在第一象限. ①试说明四边形APBQ 一定是平行四边形;②设点A ,P 的横坐标分别为m ,n ,四边形APBQ 可能是矩形吗?可能是正方形吗?若可能,直接写出m ,n 应满足的条件;若不可能,请说明理由. 体验中考1、已知图5-10(1)中的曲线是反比例函数xm y 5-=(m 为常数)图象的一支. (1)这个反比例函数图象的另一支在第几象限?常数m 的取值范围是什么?(2)若该函数的图象与正比例函数y =2x 的图象在第一象限内的交点为A ,过A 点作x 轴的垂线,垂足为B ,当△OAB 的面积为4时,求点A 的坐标及反比例函数的解析式.2、如图5-11所示,已知A(-4,n ),B (2,-4)是一次函数y =kx +b 的图象和反比例函数xmy =的图象的两个交点.(1)求反比例函数和一次函数的解析式;(2)求直线AB 与x 轴的交点C 的坐标及△AOB 的面积;(3)求方程0=-+x mb kx 的解(请直接写出答案); (4)求不等式xmb kx -+<0的解集(请直接写出答案).6.3反比例函数的应用【生活链接】一段时期市场上使用杆称,一些不法商贩在卖货时将秤砣挖空,或更换较小的秤砣,使砣较轻,从而欺骗客户.【问题探究】(1)如右图所示,对于同一物体,哪个图用的是标准秤砣,哪个图用的是较轻的秤砣?(2)在称同一物体时,所称得的物体质量y (千克)与所用秤砣质量x (千克)之间满足什么关系?(3)当砣较轻时,称得的物体变重,这正好符合哪个函数的哪些性质?【点拨】(1)设物体重为W ,阻力臂为L 1,秤砣重F ,动力臂为L 2,则由于W ·L 1=F ·L 2,且W ·L 1一定,∴F 越小,L 2越大,显示物体质量越多,故(2)用的是标准秤砣,(1)用的是较轻的秤砣. (2)由(1)的分析可知,y 与x 之间满足反比例关系. (3)设这个反比例函数为xky =(k >0),则当x 变小时,y 增大,所以当砣较轻时,称得的物体变重,这正好符合反比例函数xky =中,当k >0,x >0时,函数的图象在第一象限内,y 随x 的减小而增大的性质(即y 随x 的增大而减小). 教材精华知识点 利用反比例函数解决实际问题反比例函数是反映现实世界中两个变量之间关系的一种重要的数学模型.它在现实生活中有着广泛的应用.利用反比例函数的图象与性质,能比较清晰、直观、简捷地解决一些实际问题.在生活中有许许多多成反比例关系的实例.如:当路程s 一定时,时间t 与速度v 成反比例关系,写成vs t =(s 是常数);当矩形面积S 一定时,长a 与宽b 成反比例关系,写成bSa = (S 是常数);当面积是常数S 时,三角形的底边长y 与高x 成反比例关系,写成xSy 2=(S 是常数);当功是常数W 时,力F 与物体在力的方向上通过的位移s 成反比例关系,写成s WF = (W 是常数);当压力F 一定时,压强p 与受力面积S 之间成反比例关系,写成SF p =(F 是常数);在某一电路中,保持电压U 不变,电流I 与电阻R 成反比例关系,写成RUI = (U 是常数)等等.在利用反比例函数解决实际问题时,一定要注意xky = (k 为常数,k ≠0)这一条件.结合图象说出性质,根据性质大致画出图象,求函数的表达式是必须掌握的.拓展 实际问题中的数量关系一般都具有实际意义,所以在建立数学模型解答问题时,需注意实际问题对数学答案的要求与限制.如一些数量非负(时间、速度、长度一定是正数,人数是正整数等),在解答过程中要时刻注意问题中的要求.规律方法小结 数学建模思想是解决实际问题的基本思想方法.在许多实际问题中,需抽象出数学模型(如建立坐标系,设出函数关系式,列出方程等),即用数学关系式或图形来表示实际问题中数量之间的关系,从而运用数学方法求出问题的答案,使问题得以解决.课堂检测基础知识应用题1、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压P (kPa)是气体体积V (m 3)的反比例函数,其图象如图5-19所示.当气球内的气压大于120 kPa 时,气球将爆炸.为了安全起见,气球的体积应 ( )A .不小于45m 3 B .小于45m 3 C .不小于54 m 3 D .小于54m 32、一辆汽车往返于甲、乙两地之间,如果汽车以50千米/时的平均速度从甲地出发,则经过6小时可到达乙地. (1)甲、乙两地相距多少千米?(2)如果汽车把速度提高到v 千米/时,那么从甲地到乙地所用时间t 小时将怎样变化? (3)写出t 与v 之间的函数关系式;(4)因某种原因,这辆汽车需要在5小时内从甲地到达乙地,则此时汽车的平均速度至少应是多少?(5)已知汽车的平均速度最大可达80千米/时,那么它从甲地到乙地最快需要多长时问?综合应用题33(1)猜想p与V之间的关系,并求出函数关系式;(2)当气体的体积是12 cm3时,压强是多少?4、某地区去年电价为0.8元,年用电量为1亿度,今年计划将电价调至0.55~0.75元之间,经测算,若电价调至x元,则今年新增加用电量y亿度与(x-0.4)元成反比例,当x=0.65元时,y=0.8.(1)求y与x之间的函数表达式;(2)若每度电的成本价为0.3元,则电价调至多少元时,今年电力部门的收益将比去年的增加20%?(收益=用电量×实际电价-用电量×成本价)探索创新题5、某气球内充满了一定质量的气体,当温度不变时,气球内气体的气压p(千帕)(千帕是一种压强单位)是气体体积V(米3)的反比例函数,其图象如图5-20所示.(1)写出这个函数的表达式;(2)当气球的体积为0.8立方米时,气球内的气压是多少千帕?(3)当气球内的气压大于144千帕时,气球将爆炸,为了安全起见,气球的体积应不小于多少立方米?体验中考1、一块蓄电池的电压为定值,使用此蓄电池为电源时,电流I(A)与电阻R(Ω)之间的函数关系如图5-23所示,如果以此蓄电池为电源的用电器限制电流不得超过10 A,那么此用电器的可变电阻应 ( )A .不小于4.8 ΩB .不大于4.8 ΩC .不小于14 ΩD .不大于14 Ω2、为了预防流感,某学校在休息日用药熏消毒对教室进行消毒.已知药物释放过程中,室内每立方米空气中的含药量y (毫克)与时间t (小时)成正比,药物释放完毕后,y 与t 的函数关系式为tay (a 为常数),如图5-24所示,根据图5-24中提供的信息,解答下列问题.(1)写出从药物释放开始,y 与t 之间的两个函数关系式及相应的自变量的取值范围;(2)据测定,当空气中每立方米的含药量降低到0.25毫克以下时,学生方可进入教室,那么从药物释放开始,至少需要经过多少小时后,学生才能进入教室?。

反比例函数讲义(知识点+典型例题)

反比例函数讲义(知识点+典型例题)

变式1 如果y 是m 的反比例函数,m 是x 的反比例函数,那么y 是x 的( ) A .反比例函数 B .正比例函数 C .一次函数 D .反比例或正比例函数 变式2 若函数11-=m xy (m 是常数)是反比例函数,则m =________,解析式为________.题型二:反比例函数解析式例3 已知A (﹣1,m )与B (2,m ﹣3)是反比例函数图象上的两个点.则m 的值 .例4 已知y 与2x -3成反比例,且41=x 时,y =-2,求y 与x 的函数关系式.变式3已知y 与x 成反比例,当x =2时,y =3.(1)求y 与x 的函数关系式;(2)当y =-23时,求x 的值.变式4 已知函数12y y y =-,其中1y 与x 成正比例, 2y 与x 成反比例,且当x =1时,y =1;x =3时,y =5.求:(1)求y 关于x 的函数解析式; (2)当x =2时,y 的值.1、反比例函数的图像(1)形状与位置:反比例函数的图像是双曲线,它有两个分支,这两个分支分别位于第一、三象限,或第二、四象限,它们关于原点对称。

(2)变化趋势:由于反比例函数中自变量x ≠0,函数y ≠0,所以,它的图像与x 轴、y 轴都没有交点,即双曲线的两个分支无限接近坐标轴,但永远达不到坐标轴。

2、反比例函数的性质(1)对称性:反比例函数的图像是关于原点对称的中心对称图形,同时也是轴对称图形,有两条对称轴,分别是一、三象限和二、四象限的角平分线,即直线y x =±。

(注:过原点的直线与双曲线的两个交点关于原点对称)(2)双曲线的位置:当k>0时,双曲线位于一、三象限(x ,y 同号);当k<0时,双曲线位于二、四象限(x ,y 同号异号),反之也成立。

(3)增减性: 当k>0时,双曲线走下坡路,在同一象限内,y 随x 的增大而减小;当k<0时,双曲线走上坡路,在同一象限内,y 随x 的增大而增大。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三反比例函数讲义第1节 反比例函数本节内容:反比例函数定义 反比例函数定义的应用(重点)电流I 、电阻R 、电压U 之间满足关系式:U=IR当U=220V 时,可以用含有R 的代数式表示I :__________________舞台灯光的亮暗就是通过改变电阻来控制电流的变化实现的。

当电流I 较小时,灯光较暗;当电流I 较大时,灯光较亮。

一般地,如果两个变量x 、y 之间的关系可以表示成xky =k (为常数,)0≠k 的形式,那么称y 是x 的反比例函数。

反比例函数的自变量x 不能为零。

小注:(1)x k y =也可以写成1-=kx y 或k xy =的形式; (2)xky =若是反比例函数,则x 、y 、k 均不为零;(3)k xy =)0(>k 通常表示以原点及点()y x ,为对角线顶点的矩形的面积。

下列函数中是反比例关系的有___________________(填序号)。

①3x y -= ②131+=x y ③x y 2-= ④2211x y -= ⑤x y 23-= ⑥21=xy ⑦28xy = ⑧1-=x y ⑨2=x y ⑩x ky =k (为常数,)0≠k确定解析式的方法仍是____________,由于在反比例函数xky =中,只有一个待定系数,因此只需要一对对应值,即可求出k 的值,从而确定其解析式。

由欧姆定律可知,电压不变时,电流强度I 与电阻R 成反比例,已知电压不变,电阻R=12.5欧姆,电流强度I=0.2安培。

(1) 求I 与R 的函数关系式;(2) 当R=5欧姆时,求电流强度。

本节作业:1、小明家离学校1.5km ,小明步行上学需x min ,那么小明的步行速度min)/(m y 可以表示为xy 1500=;水名地面上重1500N 的物体,与地面的接触面积为x 2m ,那么该物体对地面的压强)/(2m N y 可以表示为x y 1500=。

函数表达式xy 1500=还可以表示许多不同情境中变量之间的函数关系,请你再列举一例。

2((34、已知y =21y y +,1y 与x 成正比例,2y 与x 成反比例,并且当x =2时,y = —4;当x = —1时,y =5,求出y 与x 的函数关系式。

5、已知y 是x 的函数,且其对应数据如下表所示,你认为y 是x 的正比例函数还是反比例6、(2008·安徽)函数xky =的图象经过点A (1,—2),则k 的值为( )。

A .21 B. 21- C. 2 D. —27、若函数132)1(+++=m mx m y 是反比例函数,则m 的值为( )。

A .m = —2 B. m = 1C. m = 2或m = 1D. m = —2,或m = —18、若甲、乙两城市间的路程为1000千米,车速为每小时x 千米,从甲市到乙市所需的时间为y 小时,那么y 与x 的函数表达式是_______________________(不必写出x 的取值范围),y 是x 的__________函数。

9、已知y 是x 的反比例函数,当x =5时,y = —1,那么,当y =3时,x =_________;当x =3时,y =________。

第2节 反比例函数的图象与性质本节内容:反比例函数的图象及其画法 反比例函数的性质(重点) 反比例函数xky =)0(≠k 中的比例系数k 的几何意义(难点) 反比例函数与正比例函数图象的交点1、 反比例函数的图象及其画法 反比例函数图象的画法——描点法:(1) 列表——自变量取值应以0(但)0(≠x 为中心,向两边取三对(或三对以上)互为相反数的数,再求出对应的y 的值;(2) 描点——先描出一侧,另一侧可根据中心对称点的性质去找;(3) 连线——按照从左到右的顺序连接各点并延伸,注意双曲线的两个分支是断开的,延伸部分有逐渐靠近坐标轴的趋势,但永远不与坐标轴相交。

反比例函数xky =的图象是由两支曲线组成的。

当0>k 时,两支曲线分别位于第一、三象限内,当0<k 时,两支曲线分别位于第二、四象限内。

小注:(1)这两支曲线通常称为双曲线。

(2)这两支曲线关于原点对称。

(3)反比例函数的图象与x 轴、y 轴没有公共点。

例1:画出反比例函数xy 6=与x y 6-=的图象。

解:(1)列表:(2)描点:(3)连线。

1 反比例函数的性质对称性 反比例函数的图象是关于原点成中心对称的图形.反比例函数的图象也是轴对称图形2 已知 2(1)m y m x-=+是反比例函数,则函数的图象在 ( )A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限 3 函数2y kx =-与ky x=(k ≠0)在同一坐标系内的图象可能是( ) 4 已知反比例函数xky =的图象经过点P(一l ,2),则这个函数的图象位于 A .第二、三象限 B .第一、三象限 C .第三、四象限 D .第二、四象限 反比例函数xky =)0(≠k 中的比例系数k 的几何意义(难点)k 的几何含义:反比例函数y =k x (k ≠0)中比例系数k 的几何意义,即过双曲线y =k x(k 0)上任意一点P 作x 轴、y 轴垂线,设垂足分别为A 、B ,则所得矩形OAPB 的面积为 .例5A 、B 是函数2y x=的图象上关于原点对称的任意两点,BC ∥x 轴,AC ∥y 轴,△ABC 的面积记为S ,则( )A . 2S =B . 4S =C .24S <<D .4S >例6如图A 在反比例函数(0)ky k x=≠的图象上,AM x ⊥轴于点M ,AMO △的面积为3,则k =4反比例函数与正比例函数图象的交点凡是交点问题就联立方程例7如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于(21)(1)A B n -,,,两点.(1)试确定上述反比例函数和一次函数的表达式; (2)求AOB △的面积.O BxyC A 图1OyxBAo yxo x y x yo yo x本节练习一、选择题(每小题6分,共36分) 1. 已知 2(1)m y m x-=+是反比例函数,则函数的图象在 ( )A 、一、三象限B 、二、四象限C 、一、四象限D 、三、四象限 2.若反比例函数ky x=的图象经过点(12)-,,则这个函数的图象一定经过点( ) A、(21)--, B、122⎛⎫- ⎪⎝⎭, C、(21)-, D、122⎛⎫ ⎪⎝⎭, 3.反比例函数5n y x+=的图象经过点(2,3),则n 的值是( )A 、-2B 、-1C 、0D 、14.反比例函数1k y x-=的图象在每个象限内,y 随x 的增大而减小,则k 的值可为( )A 、1-B 、0C 、1D 、25.如果两点1P (1,1y )和2P (2,2y )都在反比例函数1y x=的图象上,那么( ) A .2y <1y <0 B .1y <2y <0 C .2y >1y >0 D .1y >2y >06.函数(0)ky k x=≠的图象如图所示,那么函数y kx k =-的图象大致是( )A B C D二、填空题(每小题6分,共24分) 7.如果反比例函数ky x=(0k ≠)的图象经过点(1,-2),则这个函数的表达式是_________.当0x <时,y 随x 的增大而 ______ (填“增大”或“减小) 8.如图7,双曲线xky =与直线mx y =相交于A 、B 两点,B 点坐标为 (-2,-3),则A 点坐标为_________. 9. 如图8,点A 在反比例函数xky =的图象上,AB 垂直于x 轴,若4=∆AOB S ,那么这个反比例函数的解析式为__________.图8O xy10.老师给出一个函数,甲、乙各指出了这个函数的一个性质:甲:第一、三象限有它的图象; 乙:在每个象限内,y 随x 的增大而减小. 请你写一个满足上述性质的函数______________________ 三、解答题每小题,共40分11. (20分)如图,一次函数b kx y +=的图象与反比例函数xmy =图象交于A (-2,1)、B (1,n )两点.(1)求反比例函数和一次函数的解析式;(2)根据图象写出使一次函数的值大于反比例函数的值的x 的取值范围.12. (20分)如图,已知反比例函数1(0)my m x=≠的图象经过点(21)A -,,一次函数2(0)y kx b k =+≠的图象经过点(03)C ,与点A ,且与反比例函数的图象相交于另一点B .(1)分别求出反比例函数与一次函数的解析式;(2)求点B 的坐标.第3节 反比例函数的应用 本节内容:运用函数的图象和性质解答实际问题例题1 .面积一定的梯形,其上底长是下底长的21,设下底长x =10 cm 时,高y =6 cm (1)求y 与x 的函数关系式;(2)求当y =5 cm 时,下底长多少?16.一定质量的二氧化碳,当它的体积V=6 m 3时,它的密度ρ=1.65 kg/m 3. (1)求ρ与V 的函数关系式.(2)当气体体积是1 m 3时,密度是多少?(3)当密度为1.98 kg/m 3时,气体的体积是多少?例题2如图,Rt △AOB 的顶点A 是一次函数y =-x +m +3的图象与反比例函数y =xm的图象在第二象限的交点,且S △AOB =1,求点A 的坐标.例题3某厂要制造能装250mL(1mL=1 cm 3)饮料的铝制圆柱形易拉罐,易拉罐的侧壁厚度和底部厚度都是0.02 cm ,顶部厚度是底部厚度的3倍,这是为了防止“砰”的一声打开易拉罐时把整个顶盖撕下来,设一个底面半径是x cm 的易拉罐用铝量是y cm 3.用铝量=底面积×底部厚度+顶部面积×顶部厚度+侧面积×侧壁厚度,求y 与x 间的函数关系式.综合检测题一、填空题:1、u 与t 成反比,且当u =6时,81=t ,这个函数解析式为 ; 2、函数2x y -=和函数xy 2=的图像有 个交点; 3、反比例函数xk y =的图像经过(-23,5)点、(a ,-3)及(10,b )点,则k = ,a = ,b = ;4、若函数()()414-+-=m x m y 是正比例函数,那么=m ,图象经过 象限;5、若反比列函数1232)12(---=k kx k y 的图像经过二、四象限,则k = _______6、已知y -2与x 成反比例,当x =3时,y =1,则y 与x 间的函数关系式为 ;7、已知正比例函数kx y =与反比例函数3y x=的图象都过A (m ,1),则m = ,正比例函数与反比例函数的解析式分别是 、 ; 8、 设有反比例函数y k x=+1,(,)x y 11、(,)x y 22为其图象上的两点,若x x 120<<时,y y 12>,则k 的取值范围是___________9、右图3是反比例函数xk y =的图象,则k 与0的大小关系是k 0.10、函数xy 2-=的图像,在每一个象限内,y 随x 的增大而 ; 11、反比例函数()0>=k xky 在第一象限内的图象如图,点M 是图像上一点,MP 垂直x 轴于点P ,如果△MOP 的面积为1,那么k 的值是 ; 12、()7225---=m mx m y 是y 关于x 的反比例函数,且图象在第二、四象限,则m 的值为 ;二、选择题: (分数3分×14=42分,并把答案填在第12题后的方框内) 1、下列函数中,反比例函数是( ) A 、 1)1(=-y x B 、 11+=x y C 、 21xy = D 、 x y 31=2、已知反比例函数的图像经过点(a ,b ),则它的图像一定也经过( )A 、 (-a ,-b )B 、 (a ,-b )C 、 (-a ,b )D 、 (0,0)yO PM3、如果反比例函数xky =的图像经过点(-3,-4),那么函数的图像应在( ) A 、 第一、三象限B 、 第一、二象限C 、 第二、四象限D 、 第三、四象限 4、若y 与-3x 成反比例,x 与z4成正比例,则y 是z 的( ) A 、 正比例函数B 、 反比例函数C 、 一次函数 D 、 不能确定 5、若反比例函数22)12(--=m x m y 的图像在第二、四象限,则m 的值是( )1x212关系一定是( ) A 1k <0,2k >0B 1k >0,2k <0C 1k 、2k 同号D 1k 、2k 异号11、已知变量y 与x 成反比例,当x =3时,y =―6;那么当y =3时,x 的值是( ) A 6 B ―6 C 9 D ―912、当路程s 一定时,速度v 与时间t 之间的函数关系是( )A 正比例函数B 反比例函数C 一次函数D 二次函数 13、(2001北京西城)在同一坐标系中,函数x ky =和3+=kxy 的图像大致是 ( )14、已知反比例函数)0(<=k xky 的图像上有两点A(1x ,1y ),B(2x ,2y ),且21x x <,则21y y -的值是( )A 、 正数B 、 负数C 、 非正数D 、 不能确定 三、解答题:(第1、2小题各7分、第3小题8分,共22分)1、在某一电路中,保持电压不变,电流I(安培)与电阻R(欧姆)成反比例,当电阻R=5欧姆时,电流I=2安培。

相关文档
最新文档