高一数学下学期重点知识和公式总结
高一数学公式及知识点总结
![高一数学公式及知识点总结](https://img.taocdn.com/s3/m/5a095262bfd5b9f3f90f76c66137ee06eff94e24.png)
高一数学公式及知识点总结对于高一学生来说, 想要学好中学数学就要先驾驭好数学公式。
下面是我给大家带来的高一数学公式, 盼望能协助到大家!高一数学公式1【两角和公式】sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB)tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA)ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA)【倍角公式】tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a【半角公式】sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA)) ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cosA)/((1-cosA))高一数学公式2等差数列1、等差数列的通项公式为:an=a1+(n-1)d(1)2、前n项和公式为:Sn=na1+n(n-1)d/2或Sn=n(a1+an)/2(2)从(1)式可以看出,an是n的一次数函(d≠0)或常数函数(d=0),(n,an)排在一条直线上,由(2)式知,Sn是n的二次函数(d≠0)或一次函数(d=0,a1≠0),且常数项为0.在等差数列中,等差中项:一般设为Ar,Am+An=2Ar,所以Ar为Am,An的等差中项,且随意两项am,an的关系为:an=am+(n-m)d它可以看作等差数列广义的通项公式.3、从等差数列的定义、通项公式,前n项和公式还可推出:a1+an=a2+an-1=a3+an-2=…=ak+an-k+1,k∈{1,2,…,n}假设m,n,p,q∈N_,且m+n=p+q,那么有am+an=ap+aqSm-1=(2n-1)an,S2n+1=(2n+1)an+1Sk,S2k-Sk,S3k-S2k,…,Snk-S(n-1)k…或等差数列,等等.和=(首项+末项)_项数÷2项数=(末项-首项)÷公差+1首项=2和÷项数-末项末项=2和÷项数-首项项数=(末项-首项)/公差+1等比数列1、等比数列的通项公式是:An=A1_q^(n-1)2、前n项和公式是:Sn=[A1(1-q^n)]/(1-q)且随意两项am,an的关系为an=am·q^(n-m)3、从等比数列的定义、通项公式、前n项和公式可以推出:a1·an=a2·an-1=a3·an-2=…=ak·an-k+1,k∈{1,2,…,n}4、假设m,n,p,q∈N_,那么有:ap·aq=am·an,等比中项:aq·ap=2arar那么为ap,aq等比中项.记πn=a1·a2…an,那么有π2n-1=(an)2n-1,π2n+1=(an+1)2n+1另外,一个各项均为正数的等比数列各项取同底数数后构成一个等差数列;反之,以任一个正数C为底,用一个等差数列的各项做指数构造幂Can,那么是等比数列.在这个意义下,我们说:一个正项等比数列与等差数列是“同构”的.性质:①假设m、n、p、q∈N,且m+n=p+q,那么am·an=ap_aq;②在等比数列中,依次每k项之和仍成等比数列.“G是a、b的等比中项”“G^2=ab(G≠0)”.在等比数列中,首项A1与公比q都不为零.高一数学公式3三角函数公式两角和公式sin(a+b)=sinacosb+cosasinbsin(a-b)=sinacosb-sinbcosacos(a+b)=cosacosb-sinasinbcos(a-b)=cosacosb+sinasinbtan(a+b)=(tana+tanb)/(1-tanatanb)tan(a-b)=(tana-tanb)/(1+tanatanb) ctg(a+b)=(ctgactgb-1)/(ctgb+ctga)ctg(a-b)=(ctgactgb+1)/(ctgb-ctga)倍角公式tan2a=2tana/(1-tan2a)ctg2a=(ctg2a-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a半角公式sin(a/2)=((1-cosa)/2)sin(a/2)=-((1-cosa)/2)cos(a/2)=((1+cosa)/2)cos(a/2)=-((1+cosa)/2)tan(a/2)=((1-cosa)/((1+cosa))tan(a/2)=-((1-cosa)/((1+cosa))ctg(a/2)=((1+cosa)/((1-cosa))ctg(a/2)=-((1+cosa)/((1-cosa))和差化积2sinacosb=sin(a+b)+sin(a-b)2cosasinb=sin(a+b)-sin(a-b)2cosacosb=cos(a+b)-sin(a-b)-2sinasinb=cos(a+b)-cos(a-b)sina+sinb=2sin((a+b)/2)cos((a-b)/2cosa+cosb=2cos((a+b)/2)sin((a-b)/2) tana+tanb=sin(a+b)/cosacosbtana-tanb=sin(a-b)/cosacosbctga+ctgbsin(a+b)/sinasinb-ctga+ctgbsin(a+b)/sinasinb高一数学公式及学问点总结。
高一知识点归纳数学公式总结大全
![高一知识点归纳数学公式总结大全](https://img.taocdn.com/s3/m/aa1161964128915f804d2b160b4e767f5acf80d1.png)
高一知识点归纳数学公式总结大全一、代数与函数1. 二次方程的解法:- 一元二次方程 ax²+bx+c=0 的解法为:x = (-b±√(b²-4ac))/(2a)。
- 当 b²-4ac = 0 时,方程有一个重根;当 b²-4ac > 0 时,方程有两个不等实根;当 b²-4ac < 0 时,方程有两个共轭复根。
2. 一次函数的斜率与截距:- 一次函数的标准方程为 y = kx + b,其中 k 为直线的斜率,b 为直线与 y 轴的截距。
- 两点 (x₁, y₁) 和 (x₂, y₂) 间的斜率 k = (y₂-y₁)/(x₂-x₁)。
3. 二次函数的顶点和轴对称:- 二次函数的标准方程为 y = ax²+bx+c,其中 (h, k) 表示顶点的坐标。
- 顶点的 x 坐标为 h = -b/(2a),y 坐标为 k = ah²+bh+c。
- 二次函数的图像关于直线 x = -b/(2a) 对称。
4. 绝对值函数的性质:- 绝对值函数 f(x) = |x| 分两段定义,当 x>=0 时,f(x) = x;当 x<0 时,f(x) = -x。
- 绝对值函数的图像为以原点为对称中心的 V 字形曲线。
- 绝对值函数是奇函数,即 f(x) = -f(-x)。
5. 指数函数的运算性质:- 指数函数aⁿ⁽⁻ᵐ⁾= aⁿ/aᵐ,aⁿ⋅aᵐ= aⁿ⁺ᵐ。
- 指数函数aⁿ/aⁿ⁽⁻ᵐ⁾ = aᵐ。
- 指数函数(aⁿ)ᵐ= aⁿ⁻ᵐ。
二、数列与数学归纳法1. 等差数列的通项公式:- 等差数列的通项公式为 an = a₁+(n-1)d,其中 a₁为首项,d 为公差,an 表示第 n 项。
2. 等差数列的前 n 项和公式:- 等差数列的前 n 项和公式为 Sn = (a₁+an)n/2,其中 Sₙ 表示前 n 项和。
3. 等比数列的通项公式:- 等比数列的通项公式为 an = a₁⋅r⁽ⁿ⁻¹⁾,其中 a₁为首项,r 为公比,an 表示第 n 项。
高一数学知识点总结及公式大全
![高一数学知识点总结及公式大全](https://img.taocdn.com/s3/m/2aafabc103d276a20029bd64783e0912a2167c8c.png)
高一数学知识点总结及公式大全数学是一门让很多学生头痛的学科,不过只要我们掌握了一些基础知识和常用的公式,就能在数学学习上更加游刃有余。
以下是高一数学中一些重要的知识点总结及公式大全,希望对大家的学习有所帮助。
一、代数基础知识1. 整式的加减乘除运算- 括号法则:先算括号里的,再算指数,再算乘除,最后算加减。
- 合并同类项:将同类项合并,即将相同字母的幂相同的项合并。
2. 因式分解- 公因式提取法:将多项式中各项的公因式提取出来。
- 完全平方公式:将二次三项式进行因式分解,可用公式(a+b)²=a²+2ab+b²,以及(a-b)²=a²-2ab+b²。
- 公式法:根据特定公式进行因式分解,如二次三项式的平方差公式以及二次三项式的和差公式。
3. 分式的加减乘除运算- 通分:将分数的分母化为相同的最简形式,通分后再进行运算。
- 约分:将分数的分子与分母同时除以一个相同的数。
二、平面几何1. 直线和角度- 直线的倾斜度:一般表示为y=kx+b的形式,k即为直线的倾斜度,b为截距。
- 同位角、同旁内角、同旁外角等角度关系。
- 垂直、平行线的性质。
2. 三角形- 三角形的内角和定理:三角形内角的和为180°。
- 外角和定理:三角形的外角等于不相邻的两个内角的和。
- 直角三角形的勾股定理:直角三角形的两条直角边的平方和等于斜边的平方。
3. 同心圆和相似- 同心圆的性质:同心圆的圆心相同,但半径不同。
- 相似三角形:两个三角形对应角相等,对应边成比例。
三、函数与方程1. 一次函数- 函数的概念:函数是一种具有特定输入与输出关系的数学对象。
- 一次函数的一般式:y=ax+b,其中a为斜率,b为截距。
2. 二次函数- 二次函数的一般式:y=ax²+bx+c,其中a、b、c为常数,a≠0。
- 二次函数的顶、凹性:若a>0,则函数开口向上,为正列抛物线;若a<0,则函数开口向下,为负列抛物线。
高一数学全册公式和知识点
![高一数学全册公式和知识点](https://img.taocdn.com/s3/m/8f8bd9bb82d049649b6648d7c1c708a1284a0a89.png)
高一数学全册公式和知识点一、代数基础知识1.1 二次方程及求根公式对于二次方程ax^2 + bx + c = 0,其中a≠0,其求根公式为:x = (-b ± √(b^2 - 4ac)) / 2a1.2 因式分解因式分解是将一个多项式表示为几个因子相乘的形式。
常见的因式分解公式有:1.2.1 平方法公式:(a + b)^2 = a^2 + 2ab + b^2,(a - b)^2 = a^2 - 2ab + b^21.2.2 差平方公式:a^2 - b^2 = (a + b)(a - b)1.2.3 三项平方差公式:a^3 + b^3 = (a + b)(a^2 - ab + b^2),a^3 - b^3 = (a - b)(a^2 + ab + b^2)1.2.4 公因式提取法:将多项式中的公因子提取出来。
1.3 二次函数的图像和性质二次函数的一般形式为y = ax^2 + bx + c,其中a≠0。
其图像为抛物线,开口方向由a的正负决定。
二次函数的顶点坐标为(h, k),其中h = -b / (2a),k = f(h) = f(-b / (2a))。
二次函数的对称轴为x = h。
二、平面几何知识与坐标系2.1 相交线及其性质2.1.1 垂直线性质:相交的两条线段垂直,则它们的斜率互为倒数,即k1 * k2 = -1。
2.1.2 平行线性质:平行线的斜率相等。
2.1.3 直线方程求解:可利用两点坐标、点斜式、斜截式等方法求解直线方程。
2.2 向量的加法与数量积2.2.1 向量的加法:两个向量的加法满足平行四边形法则,即向量A + 向量B = 向量C。
2.2.2 向量的数量积:向量A与向量B的数量积为A·B =|A||B|cosθ,其中θ为两向量夹角。
2.3 坐标系中的几何问题在直角坐标系中,可通过坐标计算点、线、多边形等的性质和关系。
三、函数与导数3.1 函数的概念及性质3.1.1 定义域与值域:函数f的定义域为其自变量的取值范围,值域为其因变量的取值范围。
高一数学知识点公式大全总结
![高一数学知识点公式大全总结](https://img.taocdn.com/s3/m/ad0d13cbbb0d4a7302768e9951e79b896902684f.png)
高一数学知识点公式大全总结一、代数部分1. 二次根式求解法设$\sqrt{a}=b$,则$a=b^2$2. 平方差公式$(a+b)(a-b)=a^2-b^2$3. 平方和公式$(a+b)^2=a^2+2ab+b^2$4. 方程组解法联立两个方程,可以使用消元法或代入法等方式求解。
5. 一次函数的斜率$y=kx+b$中,斜率$k$的计算公式为$k=\frac{y_2-y_1}{x_2-x_1}$6. 一次函数的截距$y=kx+b$中,截距$b$的计算公式为$b=y-kx$7. 一元一次方程求解方法对于形如$ax+b=0$的方程,解为$x=-\frac{b}{a}$8. 一元二次方程求解方法对于形如$ax^2+bx+c=0$的方程,求解公式为$x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}$9. 分式的运算法则加减法:通分后相加或相减,分母相同。
乘法:相乘后约分。
除法:转换为乘法,分子乘以倒数。
10. 根式的运算法则加减法:合并同类项,并进行化简。
乘法:相乘后合并同类项,并进行化简。
除法:转换为乘法,除数的倒数乘以被除数。
二、几何部分1. 三角形内角和定理三角形的内角之和等于180度,即$\angle A+\angle B+\angle C=180^\circ$2. 直线与平行线的夹角当两条直线平行时,与这两条直线相交的直线与其中任一条直线的夹角相等,即$\angle A=\angle B$3. 三角形的面积公式设三角形的底为$b$,高为$h$,则三角形的面积$S=\frac{1}{2}bh$4. 直角三角形的勾股定理设直角三角形的两个直角边分别为$a$和$b$,斜边为$c$,则$a^2+b^2=c^2$5. 等腰三角形的性质等腰三角形的两边边长相等,底角也相等。
6. 正方形的性质正方形的四条边相等,四个内角都为90度。
7. 平行四边形的性质平行四边形的对边相等且平行,相邻两个内角互补。
高一数学知识点总结及公式大全
![高一数学知识点总结及公式大全](https://img.taocdn.com/s3/m/b9f2055253ea551810a6f524ccbff121dc36c519.png)
高一数学知识点总结及公式大全1. 集合与函数- 集合的概念:集合是由一些确定的、互不相同的元素所组成的整体。
- 集合的表示方法:列举法和描述法。
- 集合间的关系:子集、并集、交集、补集。
- 函数的概念:函数是定义在非空数集上的对应关系。
- 函数的表示方法:解析式、图象、列表。
- 函数的基本性质:定义域、值域、单调性、奇偶性。
2. 指数与对数- 指数的概念:指数是幂运算的逆运算。
- 指数的运算法则:指数的乘法、指数的除法、指数的幂次。
- 对数的概念:对数是指数运算的逆运算。
- 对数的运算法则:对数的乘法、对数的除法、对数的幂次。
- 指数函数与对数函数的性质:定义域、值域、单调性。
3. 三角函数- 三角函数的定义:正弦、余弦、正切、余切、正割、余割。
- 三角函数的图像和性质:周期性、奇偶性、单调性。
- 三角恒等式:和差公式、倍角公式、半角公式、和差化积、积化和差。
4. 平面向量- 向量的概念:具有大小和方向的量。
- 向量的表示方法:坐标表示、几何表示。
- 向量的基本运算:加减法、数乘、点积、叉积。
- 向量的应用:向量在几何中的应用、向量在物理中的应用。
5. 解析几何- 直线的方程:点斜式、斜截式、一般式。
- 圆的方程:标准式、一般式。
- 直线与圆的位置关系:相交、相切、相离。
- 圆锥曲线:椭圆、双曲线、抛物线的定义和性质。
6. 概率与统计- 随机事件:必然事件、不可能事件、随机事件。
- 概率的计算:古典概型、几何概型、条件概率。
- 统计的基本概念:总体、样本、样本容量、样本均值、样本方差。
7. 数列- 数列的概念:按照一定规律排列的一列数。
- 数列的表示方法:递推式、通项公式。
- 数列的分类:等差数列、等比数列、递推数列。
- 数列的求和:等差数列求和公式、等比数列求和公式、分组求和法。
8. 不等式- 不等式的概念:表示不等关系的式子。
- 不等式的解法:比较法、作差法、配方法、因式分解法。
- 不等式的性质:传递性、对称性、可加性、可乘性。
高一必修二数学知识点总结及公式
![高一必修二数学知识点总结及公式](https://img.taocdn.com/s3/m/96249a5315791711cc7931b765ce05087632752a.png)
高一必修二数学知识点总结及公式高中数学的学习,对于每个学生来说都是一次全新的挑战。
特别是高一阶段,作为高中新生的学习起点,需要理解和掌握许多基础数学知识点和公式。
本文将对高一必修二数学知识点进行总结,并给出相应的公式。
一、二次函数二次函数是高中数学中非常重要的一个概念,掌握二次函数的性质和相关的公式对于解题至关重要。
1. 二次函数的标准方程:y = ax² + bx + c,其中 a、b、c 为常数,a ≠ 0。
2. 二次函数的顶点坐标公式:对于二次函数 y = ax² + bx + c,其顶点的横坐标为 x = -b/2a,纵坐标为 y = -(b²-4ac)/4a。
3. 二次函数的对称轴公式:对于二次函数 y = ax² + bx + c,其对称轴的方程为 x = -b/2a。
4. 二次函数图像的开口方向:若 a > 0,则二次函数图像开口向上;若 a < 0,则二次函数图像开口向下。
5. 二次函数的判别式:判别式 D = b²-4ac,D > 0 时,二次函数有两个不同的实根;D = 0 时,二次函数有一个重根;D < 0 时,二次函数没有实根。
二、三角函数三角函数是数学中的重要分支,掌握三角函数的基本概念和公式,对高中数学的学习和后续数学知识的理解都起到至关重要的作用。
1. 正弦函数与余弦函数的定义:对于任意角θ,其正弦函数的值为sinθ,余弦函数的值为cosθ。
2. 正切函数的定义:对于任意角θ,其正切函数的值为tanθ。
3. 三角函数的基本关系式:sin²θ + cos²θ = 1,1 + tan²θ = sec²θ,1 + cot²θ = csc²θ。
4. 常用三角函数的周期性:sin(θ + 2πk) = sinθ,cos(θ + 2πk) = cosθ,tan(θ + πk) = tanθ(其中 k 为整数)。
高一年级下数学公式
![高一年级下数学公式](https://img.taocdn.com/s3/m/f21403a0336c1eb91b375d4f.png)
高一年级下数学公式(总4页) --本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--高一下学期数学公式总结一、三角恒等变换sin()sin cos cos sin (2)sin()sin cos cos sin (3)cos()cos cos sin sin (4)cos()cos cos sin sin tan tan tan ta (5)tan() (6)tan()1ta (n tan 1)αβαβαβαβαβαβαβαβαβαβαβαβαβααβαβαβ+=+-=-+=--=++-+=-=-2222222n 1tan tan 1(7)sin 22sin cos sin cos sin 22(8)cos2cos sin 2cos 112sin 2tan (9)tan 21tan 1cos21cos2(10)cos sin 22(11)1sin 2(sin c βαβαααααααααααααααααααα+===-=-=-=-+-==+=+2222os ) 1sin2=(sin -cos )(12) tan45 = 1=sin cos (13) sin +cos )(cos a x b x x ααααααθθθ-︒++==其中二、解三角形(先画图,标已知未知)222222===2R ()sin sin sin ()111S sin sin sin 222()=2coscos 2AASa b c ASA A B C SSA ab C ac B bc ASAS a b c bc A SSS b c a A SSAbc ∆⎧⎪⎨⎪⎩===⎧+-⎪⎨+-=⎪⎩解三角形解三角形(唯一解)正弦定理:正弦唯一解两个,一个,无解三角形面积公式:唯一解余弦定理:余弦(唯一解)(两个,一个,无解)1.2.⎧⎪⎨⎪⎩⎧⎨⎩边角互化定理作用判断三角形形状三、数列 (一)等差数列通项公式: ①1(1)n a a n d =+- ②()n m a a n m d =+-公差d 的计算:① 1=n n d a a +- ②=n ma a d n m -- 前n 项和公式:① 1()2n n a a n S += ②1(1)2n n n S na d -=+ ③21()22n d dS n a n =+-其他:①等差中项: 2A=x y + ②性质:若m+n=p+q,则+m n p q a a a a =+③ 若n a kn b =+,则{}n a 是等差数列,d=k ④前n 项和S n 最值110,010,011.:002.:00n n a d n n n a d n S a a a a a <>+><+⎧⎪⎧≤⎧⎪⎨⎪⎪≥⎨⎪⎩⎨⎪≥⎧⎪⎪⎨⎪⎪≤⎩⎩⎩知二次函数最值问题负变正知正变负(二)等比数列 通项公式: ①11n n a a q -= ②n m n m a a q -=公比q 的计算:① +1=n n a q a ②=n m n maq a - 前n 项和公式: 11 1(1) 11n n na q S a q q q=⎧⎪=-⎨≠⎪-⎩其他:①等差中项: 2(0)G xy xy =>,同号 ②性质:若m+n=p+q,则m n p q a a a a ⋅=⋅(三)数列求和: 1. =n a 等差±等比 (分组求和) 2. =n a 等差×等比 (错位相减)3. 裂项相消 (1111111= =() (1)1(21)(21)22121n n a a n n n n n n n n =-=-++-+-+) 4. 公式法(四)求通项问题: 1.观察法 2.公式法(定义:11,n n n na a a d q a ++-==) 3. 累加法:1=()n n a a f n +- 4.累乘法:1()n na f n a += 5. 知S n 求通项a n :111= 2n n n S n a S S n -=⎧⎨-≥⎩6 .构造法:若1n n a pa q +=+,则可设1()n n a m p a m ++=+,{}1, n a m a m q p ++=数列是等比数列,首项公比四、平面向量11221212121211112221212 1. (,), (,)(,+) (,) (,)2(,),(,),( ,),(3. =a x y b x y a b x x y y a b x x y y a x y A x y B x y AB x x y y AB x a b λλλ==+=+-=--==--=-⋅已知.若则向量数量积的坐标运算:1212122112*********. 0 ( =5. 06. =(,) ,7. cos<,>=x x y y a b x yx y x y x y a b x x y y a x y a x y a b a b a bx +⇔-=⊥⇔+==+⋅=两向量平行的坐标关系: ∥或 )两向量垂直的坐标关系:向量的模:两向量的夹角:五、不等式1. 均值定理:(一正二定三相等) 如果+∈R b a ,,那么+2a b≥=a b 时,等号成立。
高一数学公式跟知识点总结
![高一数学公式跟知识点总结](https://img.taocdn.com/s3/m/dc84445ecbaedd3383c4bb4cf7ec4afe04a1b16e.png)
高一数学公式跟知识点总结数学作为一门理科学科,是高一学生必修的课程之一。
它涵盖了许多重要的公式和知识点,对于学生的学习和应用至关重要。
本文将对高一数学中一些常见的公式和知识点进行总结和归纳,并以清晰的格式呈现给读者。
一、代数知识点1.因式分解公式:- 平方差公式:$a^2 - b^2 = (a+b)(a-b)$- 完全平方公式:$a^2 + 2ab + b^2 = (a+b)^2$- 三角形前两项和公式:$a^2 + b^2 =\left(\dfrac{a+b}{2}\right)^2 + \left(\dfrac{a-b}{2}\right)^2$ - 差平方公式:$a^2 - b^2 = (a+b)(a-b)$2.二次函数相关公式:- 顶点坐标公式:对于一般式二次函数$y = ax^2 + bx + c$,顶点坐标为$(-\dfrac{b}{2a}, f(-\dfrac{b}{2a}))$- 相关系数判别法公式:对于一般式二次函数$y = ax^2 + bx + c$,判别式$D = b^2 - 4ac$,若$D > 0$,则有两个不相等的实根;若$D = 0$,则有两个相等的实根;若$D < 0$,则无实根。
二、几何知识点1.三角形相关公式:- 角平分线定理:三角形内一条角的平分线上的两个线段的比等于这两个角的对边的比。
- 正弦定理:对于三角形ABC,边长分别为a, b, c,与其对应的角分别为A, B, C,则成立$\dfrac{a}{\sin{A}} =\dfrac{b}{\sin{B}} = \dfrac{c}{\sin{C}} = 2R$,其中R为三角形外接圆半径。
- 余弦定理:对于三角形ABC,边长分别为a, b, c,与其对应的角分别为A, B, C,则成立$a^2 = b^2 + c^2 - 2bc\cos{A}$。
2.立体几何公式:- 直线与平面的位置关系公式:设过点P的平面方程为Ax+By+Cz+D=0,直线l的方程为$\frac{x-x_0}{m} = \frac{y-y_0}{n} = \frac{z-z_0}{p}$,则代入方程得到$Am+Bn+Cp+D=0$。
高一必修二数学公式总结
![高一必修二数学公式总结](https://img.taocdn.com/s3/m/07ba433a03768e9951e79b89680203d8cf2f6a51.png)
高一必修二数学公式总结在高一数学学习中,数学公式是非常重要的内容之一。
掌握数学公式不仅可以帮助我们解决数学问题,还可以提高我们的数学思维能力。
下面,我将对高一必修二数学中的一些重要公式进行总结,希望能够帮助大家更好地掌握这些知识。
一、函数与导数。
1. 函数的导数:若函数y=f(x)在点x0处可导,则导数f'(x0)存在。
常见函数导数公式:常数函数,(k)'=0。
幂函数,(x^n)'=nx^(n-1)。
指数函数,(a^x)'=a^xlna。
对数函数,(loga(x))'=(1/x)loga(e)。
2. 导数的运算法则:和差法则,(u±v)'=u'±v'。
常数倍法则,(ku)'=ku'。
积法则,(uv)'=u'v+uv'。
商法则,(u/v)'=(u'v-uv')/v^2。
二、三角函数。
1. 基本公式:正弦函数,sin(-x)=-sinx,sin(π-x)=sinx。
余弦函数,cos(-x)=cosx,cos(π-x)=-cosx。
正切函数,tan(-x)=-tanx,tan(π-x)=-tanx。
2. 三角函数的性质:周期性,f(x)=f(x±2kπ)。
奇偶性,sin(-x)=-sinx,cos(-x)=cosx。
三、数列与数学归纳法。
1. 等差数列:通项公式,an=a1+(n-1)d。
前n项和,Sn=n(a1+an)/2。
2. 等比数列:通项公式,an=a1q^(n-1)。
前n项和,Sn=a1(q^n-1)/(q-1)。
四、平面向量。
1. 向量的基本运算:向量加法,a+b=(a1+b1, a2+b2)。
向量数乘,ka=(ka1, ka2)。
2. 向量的数量积:向量a与b的数量积,a·b=|a||b|cosθ。
五、概率与统计。
1. 事件的概率:事件的概率,P(A)=n(A)/n(S)。
高一数学必修二公式总结大全
![高一数学必修二公式总结大全](https://img.taocdn.com/s3/m/cc4e8ef8ba4cf7ec4afe04a1b0717fd5360cb2e8.png)
高一数学必修二公式总结大全1500字高一数学必修二公式总结大全1. 二次函数相关公式:- 顶点坐标:顶点的横坐标为:x = -b/(2a),纵坐标为:y = f(x) = -Δ/(4a)- 判别式:Δ = b^2 - 4ac- 判别式与根的关系:若Δ > 0,则方程有两个不相等的实根;若Δ = 0,则方程有两个相等的实根;若Δ < 0,则方程无实根- 对称轴:过顶点的直线- 单调性:当a > 0时,开口向上,函数递增;当a < 0时,开口向下,函数递减2. 三角函数相关公式:- 正弦函数的周期:T = 2π- 余弦函数的周期:T = 2π- 正切函数的周期:T = π- 正弦函数的图像特点:在[0, 2π]的区间内,函数的取值范围为[-1, 1],在[0, π]和[π, 2π]上分别是上升和下降的,对称轴为y = 0- 余弦函数的图像特点:在[0, 2π]的区间内,函数的取值范围为[-1, 1],在[0, π/2]和[3π/2, 2π]上分别是上升和下降的,对称轴为y = 1/2- 正切函数的图像特点:在[0, π/2]的区间内,函数的取值范围为(-∞, +∞)- 三角函数的基本关系:- cos^2θ + sin^2θ = 1- 1 + tan^2θ = sec^2θ- 1 + cot^2θ = cosec^2θ3. 平面向量相关公式:- 向量的模:|AB| = √((x2 - x1)^2 + (y2 - y1)^2)- 向量的加法:A + B = (x1 + x2, y1 + y2)- 向量的减法:A - B = (x1 - x2, y1 - y2)- 数乘:kA = (kx, ky)- 内积:A · B = |A|*|B|*cosθ- 夹角公式:cosθ = (A · B)/(|A|*|B|)- 向量的投影公式:A在B上的投影为:P = (A · B/|B|)*(B/|B|)4. 解析几何相关公式:- 点到直线的距离公式:d = |Ax + By + C|/√(A^2 + B^2)- 直线的一般方程:Ax + By + C = 0- 直线斜截式方程:y = kx + b- 直线截距式方程:x/a + y/b = 1- 圆的标准方程:(x-a)^2 + (y-b)^2 = r^2,中心坐标为(a,b),半径为r - 直线与圆的位置关系:- 相切:直线与圆有且仅有一个相切点,此时直线的斜率与半径的弧度相等 - 相离:直线与圆没有交点- 相交:直线与圆有两个交点,此时直线的斜率在半径的弧度之间5. 概率统计相关公式:- 排列:A(n, m) = n!/(n-m)!- 组合:C(n, m) = n!/(m!(n-m)!)- 乘法原理:如果某个实验由m个步骤完成,第一步有k1种可能结果,第二步有k2种可能结果,依此类推,第m步有km种可能结果,那么实验的总结果数为k1 * k2 * ... * km- 加法原理:如果某个实验由两个步骤执行,第一个步骤有k1种可能结果,第二个步骤有k2种可能结果,那么实验的总结果数为k1 + k2- 条件概率:P(A|B) = P(A∩B)/P(B)- 乘法公式:P(A∩B) = P(B|A) * P(A) = P(A|B) * P(B)- 全概率公式:P(A) = P(A∩B1) + P(A∩B2) + ... + P(A∩Bn) = P(A|B1) * P(B1) +P(A|B2) * P(B2) + ... + P(A|Bn) * P(Bn)- 贝叶斯公式:P(Bi|A) = P(A|Bi) * P(Bi)/P(A),其中P(Bi)称为先验概率,P(Bi|A)称为后验概率这些公式涵盖了高一数学必修二的重要内容,可以帮助学生更好地理解和掌握相关知识。
高一数学下学期知识点总结
![高一数学下学期知识点总结](https://img.taocdn.com/s3/m/59a273ab112de2bd960590c69ec3d5bbfd0ada8f.png)
高一数学下学期知识点总结一、函数与方程1. 一次函数1.1 定义与特征1.2 斜率与截距1.3 函数图像与性质2. 二次函数2.1 定义与特征2.2 平移与伸缩2.3 顶点与轴2.4 零点与方程3. 三角函数3.1 弧度与角度的换算3.2 正弦、余弦和正切函数的定义与性质3.3 周期性与对称性4. 指数与对数函数4.1 指数函数的定义与性质4.2 对数函数的定义与性质4.3 指数方程与对数方程的解法5. 方程与不等式5.1 一元一次方程与一元一次不等式 5.2 二次方程与二次不等式5.3 方程与不等式的实际应用二、几何1. 三角形1.1 定义与性质1.2 三角形的分类与判定1.3 三角形的面积与周长计算2. 二次曲线2.1 抛物线2.2 双曲线2.3 椭圆2.4 圆3. 空间几何3.1 点、线、面及其相互关系 3.2 平面与直线的交点与距离3.3 空间几何问题解决方法4. 三角函数与平面向量4.1 角度的度量与扇形面积4.2 平面向量的定义与运算4.3 三角函数与平面向量的关系三、概率与统计1. 随机事件与概率1.1 随机事件的定义与性质1.2 概率的计算方法与性质1.3 条件概率与事件独立性2. 排列与组合2.1 排列与组合的基本概念2.2 排列与组合的计算公式2.3 组合问题与应用3. 统计学3.1 数据的收集与整理3.2 数据的图表表示与分析3.3 常见统计量的计算与比较四、数列与数学归纳法1. 数列的概念与性质1.1 等差数列与等差数列的通项公式1.2 等比数列与等比数列的通项公式1.3 递归数列与递推关系2. 数学归纳法2.1 数学归纳法的基本思想与应用2.2 递归数列与数学归纳法的关系2.3 数学归纳法解决问题的步骤与技巧以上是高一数学下学期的知识点总结,希望对你复习与巩固所学内容有所帮助。
祝你学业进步!。
高一数学公式及知识点总结【精彩10篇】
![高一数学公式及知识点总结【精彩10篇】](https://img.taocdn.com/s3/m/03dd45bd82d049649b6648d7c1c708a1294a0a54.png)
高一数学公式及知识点总结【精彩10篇】(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如工作总结、计划大全、策划方案、报告大全、心得体会、演讲致辞、条据文书、作文大全、教案资料、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, this store provides various types of classic sample essays for everyone, such as work summaries, plan summaries, planning plans, report summaries, insights, speeches, written documents, essay summaries, lesson plan materials, and other sample essays. If you want to learn about different formats and writing methods of sample essays, please stay tuned!高一数学公式及知识点总结【精彩10篇】总结是在某一时期、某一项目或某些工作告一段落或者全部完成后进行回顾检查、分析评价,从而得出教训和一些规律性认识的一种书面材料,它能使我们及时找出错误并改正,我想我们需要写一份总结了吧。
高一数学下学期知识点总结
![高一数学下学期知识点总结](https://img.taocdn.com/s3/m/f559f571e3bd960590c69ec3d5bbfd0a7856d543.png)
高一数学下学期知识点总结一、三角函数1、任意角和弧度制角可以分为正角、负角和零角。
弧度制是另一种度量角的方式,弧长等于半径的弧所对的圆心角为 1 弧度。
我们要掌握角度与弧度的换算公式,例如 180°=π 弧度。
2、任意角的三角函数设角α的终边上任意一点 P 的坐标为(x, y),它与原点的距离为 r,则正弦函数sinα = y / r,余弦函数cosα = x / r,正切函数tanα = y / x (x ≠ 0)。
要牢记三角函数在各个象限的符号规律。
3、同角三角函数的基本关系平方关系:sin²α +cos²α = 1;商数关系:tanα =sinα /cosα。
利用这些关系可以进行三角函数的化简和求值。
4、诱导公式诱导公式可以将任意角的三角函数转化为锐角的三角函数。
例如,sin(π +α) =sinα,cos(π α) =cosα 等。
5、三角函数的图象和性质正弦函数 y = sin x 的图象是一条波浪线,其定义域为 R,值域为-1, 1,周期为2π,对称轴为 x =kπ +π/2 (k∈Z),对称中心为(kπ, 0)(k∈Z)。
余弦函数 y = cos x 的图象与正弦函数类似,只是相位不同。
正切函数 y = tan x 的定义域为{x |x ≠ kπ +π/2, k∈Z},值域为 R,周期为π,其图象是不连续的,在每个区间(kπ π/2, kπ +π/2) (k∈Z)上单调递增。
二、平面向量1、平面向量的实际背景及基本概念向量既有大小又有方向,与起点的位置无关。
零向量的长度为 0,方向任意。
单位向量是长度为 1 的向量。
平行向量(共线向量)方向相同或相反。
2、平面向量的线性运算向量的加法满足三角形法则和平行四边形法则。
向量的减法可以转化为加法。
数乘向量λa ,当λ > 0 时,λa 与 a 同向;当λ < 0 时,λa与 a 反向;当λ = 0 时,λa = 0 。
高一必修二数学公式知识归纳.doc
![高一必修二数学公式知识归纳.doc](https://img.taocdn.com/s3/m/761ad1c4866fb84ae55c8d47.png)
高一必修二数学公式知识总结高一必修二数学公式知识总结篇一公式一:设为任意角,终边相同的角的同一三角函数的值相等:sin(2k + )=sincos(2k + )=costan(2k + )=tancot(2k + )=cot公式二:设为任意角,+ 的三角函数值与的三角函数值之间的关系:sin( + )=-sincos( + )=-costan( + )=tancot( + )=cot公式三:任意角与- 的三角函数值之间的关系:sin(- )=-sincos(- )=costan(- )=-tancot(- )=-cot公式四:利用公式二和公式三可以得到- 与的三角函数值之间的关系:sin( - )=sincos( - )=-costan( - )=-tancot( - )=-cot公式五:利用公式一和公式三可以得到2 - 与的三角函数值之间的关系:sin(2 - )=-sincos(2 - )=costan(2 - )=-tancot(2 - )=-cot公式六:/2 及3 /2 与的三角函数值之间的关系:sin( /2+ )=coscos( /2+ )=-sintan( /2+ )=-cotcot( /2+ )=-tansin( /2- )=coscos( /2- )=sintan( /2- )=cotcot( /2- )=tansin(3 /2+ )=-coscos(3 /2+ )=sintan(3 /2+ )=-cotcot(3 /2+ )=-tansin(3 /2- )=-coscos(3 /2- )=-sintan(3 /2- )=cotcot(3 /2- )=tan规律总结上面这些诱导公式可以概括为:对于k /2 (k Z)的个三角函数值,①当k是偶数时,得到的同名函数值,即函数名不改变;②当k是奇数时,得到相应的余函数值,即sin cos;cos sin;tan cot,cot tan.(奇变偶不变)然后在前面加上把看成锐角时原函数值的符号。
高一数学知识点总结及公式大全
![高一数学知识点总结及公式大全](https://img.taocdn.com/s3/m/10721e29a88271fe910ef12d2af90242a895abeb.png)
高一数学知识点总结及公式大全高一数学知识点总结及公式大全高一是数学学科的重要阶段,学生们将接触到许多基础的数学知识点和公式。
以下是高一数学的知识点总结及公式大全。
一、代数与函数1. 一次函数一次函数的标准方程为:y = kx + b,其中k为斜率,b为截距。
2. 二次函数二次函数的标准方程为:y = ax^2 + bx + c,其中a不为0。
它的顶点坐标为:(-b/2a, -(Δ/4a))。
3. 幂函数幂函数的标准方程为:y = ax^b,其中a为正实数,b为实数。
4. 指数函数指数函数的标准方程为:y = a^x,其中a为正实数,且a不等于1。
5. 对数函数对数函数的标准方程为:y = loga x,其中a为正实数,a不等于1。
6. 复合函数复合函数指的是由两个或多个函数组合而成的函数。
7. 绝对值函数绝对值函数的标准方程为:y = |x|,其图像是一条折线段。
8. 分式函数分式函数的标准方程为:y = f(x)/g(x),其中f(x)和g(x)都是多项式函数。
9. 反函数两个函数互为反函数,当且仅当它们的定义域和值域互相对应。
10. 等差数列等差数列的通项公式为:an = a1 + (n-1)d,其中an是第n项,a1是首项,d是公差。
11. 等比数列等比数列的通项公式为:an = a1 * r^(n-1),其中an是第n项,a1是首项,r是公比。
12. 数列求和等差数列的和公式为:Sn = (a1 + an)n/2,其中Sn是前n项和,a1是首项,an是第n项。
13. 二项式定理二项式定理表示为:(a + b)^n = C(n,0)a^n b^0 + C(n,1)a^(n-1)b^1 + ... + C(n,n)a^0 b^n,其中C(n,r)表示从n个元素中取r个元素的组合数。
14. 概率与统计概率表示某事件发生的可能性,有几何概型和统计概型两种计算方法。
二、几何与三角函数1. 正弦定理正弦定理表示为:a/sinA = b/sinB = c/sinC,其中a、b、c为三角形的边长,A、B、C为对应的角度。
高一下册数学知识点总结大全
![高一下册数学知识点总结大全](https://img.taocdn.com/s3/m/a8aeb84fe3bd960590c69ec3d5bbfd0a7956d5f4.png)
高一下册数学知识点总结大全高一下册数学知识点总结(人教版)一、三角函数。
1. 任意角和弧度制。
- 任意角:角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形。
按旋转方向分为正角、负角和零角。
- 象限角:使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么角的终边在第几象限,就说这个角是第几象限角。
- 弧度制:长度等于半径长的弧所对的圆心角叫做1弧度的角,用符号rad表示。
|α|=(l)/(r)(α是圆心角弧度数,l是弧长,r是半径)。
- 角度与弧度的换算:180^∘=π rad,1^∘=(π)/(180)rad,1rad = ((180)/(π))^∘。
2. 三角函数的定义。
- 设α是一个任意角,它的终边与单位圆交于点P(x,y),那么sinα = y,cosα=x,tanα=(y)/(x)(x≠0)。
- 三角函数在各象限的符号:sinα在一、二象限为正;cosα在一、四象限为正;tanα在一、三象限为正。
3. 同角三角函数的基本关系。
- 平方关系:sin^2α+cos^2α = 1。
- 商数关系:tanα=(sinα)/(cosα)(cosα≠0)。
4. 诱导公式。
- 公式一:sin(α + 2kπ)=sinα,cos(α+2kπ)=cosα,tan(α + 2kπ)=tanα(k∈ Z)。
- 公式二:sin(π+α)=-sinα,cos(π+α)=-cosα,tan(π+α)=tanα。
- 公式三:sin(-α)=-sinα,cos(-α)=cosα,tan(-α)=-tanα。
- 公式四:sin(π-α)=sinα,cos(π - α)=-cosα,tan(π-α)=-tanα。
- 公式五:sin((π)/(2)-α)=cosα,cos((π)/(2)-α)=sinα。
- 公式六:sin((π)/(2)+α)=cosα,cos((π)/(2)+α)=-sinα。
5. 三角函数的图象与性质。
高一数学知识要点与公式总结
![高一数学知识要点与公式总结](https://img.taocdn.com/s3/m/25b269680166f5335a8102d276a20029bd6463e0.png)
余弦函数
$y = cos x$,周期为 $2pi$,在区间$[0, pi]$上
单调递减,在区间$[pi, 2pi]$上单调递增。
正切函数
$y = tan x$,周期为$pi$ ,在区间$(-frac{pi}{2},
frac{pi}{2})$上单调递增。
04
不等式部分
不等式的性质与解法
01
02
03
性质1
如果a>b,b>c,那么 a>c(传递性)
性质2
如果a>b,那么a+c>b+c (加法性质)
性质3
如果a>b,c>0,那么 ac>bc;如果a>b,c<0 ,那么ac<bc(乘法性质 )
不等式的性质与解法
性质4
如果a>b,那么a-c>b-c(减法性质)
性质5
如果a>b,且它们的差是正数,那么a、 b是正数
性质6
如果a>b,且它们的差是负数,那么a、 b是负数
不等式的性质与解法
解法1:比较法
解法2:放缩法
性质7:如果a>b,且它 们的差是0,那么a、b相 等
解法3:数学归纳法
不等式的证明方法
证明方法1:综合法 证明方法2:分析法 证明方法3:反证法 证明方法4:放缩法
01
极限定义
如果当 $n rightarrow infty$ 时,$a_n rightarrow L$,则称 $L$ 是
数列 $a_n$ 的极限。
02
无穷等比数列的定义
当 $|q|<1$ 时,等比数列是无穷的。此时,数列的和 $S_n$ 存在且有
高一数学下册知识点归纳笔记
![高一数学下册知识点归纳笔记](https://img.taocdn.com/s3/m/a0aa7dccd5d8d15abe23482fb4daa58da0111ca5.png)
高一数学下册知识点归纳笔记(实用版)编制人:______审核人:______审批人:______编制单位:______编制时间:__年__月__日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如教案大全、书信范文、述职报告、合同范本、工作总结、演讲稿、心得体会、作文大全、工作计划、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as lesson plans, letter templates, job reports, contract templates, work summaries, speeches, reflections, essay summaries, work plans, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!高一数学下册知识点归纳笔记本店铺整理的《高一数学下册知识点归纳笔记》希望能够帮助到大家。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、三角·平方关系:sin^2α+cos^2α=11+tan^2α=sec^2α1+cot^2α=csc^2α·积的关系:sinα=tanα×cosαcosα=cotα×sinαtanα=sinα×secαcotα=cosα×cscαsecα=tanα×cscαcscα=secα×cotα·倒数关系:tanα ·cotα=1sinα ·cscα=1cosα ·secα=1商的关系:sinα/cosα=tanα=secα/cscαcosα/sinα=cotα=cscα/secα直角三角形ABC中,角A的正弦值就等于角A的对边比斜边,余弦等于角A的邻边比斜边正切等于对边比邻边,·[1]三角函数恒等变形公式·两角和与差的三角函数:cos(α+β)=cosα·cosβ-sinα·sinβcos(α-β)=cosα·cosβ+sinα·sinβsin(α±β)=sinα·cosβ±cosα·sinβtan(α+β)=(tanα+tanβ)/(1-tanα·tanβ)tan(α-β)=(tanα-tanβ)/(1+tanα·tanβ)·辅助角公式:Asinα+Bcosα=(A²+B²)^(1/2)sin(α+t),其中sint=B/(A²+B²)^(1/2)cost=A/(A²+B²)^(1/2)tant=B/AAsinα-Bcosα=(A²+B²)^(1/2)cos(α-t),tant=A/B ·倍角公式:sin(2α)=2sinα·cosα=2/(tanα+cotα)cos(2α)=cos²(α)-sin²(α)=2cos²(α)-1=1-2sin²(α)tan(2α)=2tanα/[1-tan²(α)]·半角公式:sin(α/2)=±√((1-cosα)/2)cos(α/2)=±√((1+cosα)/2)tan(α/2)=±√((1-cosα)/(1+cosα))=sinα/(1+cosα)=(1-cosα)/sinα ·降幂公式sin²(α)=(1-cos(2α))/2=versin(2α)/2cos²(α)=(1+cos(2α))/2=covers(2α)/2tan²(α)=(1-cos(2α))/(1+cos(2α))·万能公式:sinα=2tan(α/2)/[1+tan²(α/2)]cosα=[1-tan²(α/2)]/[1+tan²(α/2)]tanα=2tan(α/2)/[1-tan²(α/2)]·推导公式tanα+cotα=2/sin2αtanα-cotα=-2cot2α1+cos2α=2cos²α1-cos2α=2sin²α1+sinα=(sinα/2+cosα/2)²诱导公式公式一:设α为任意角,终边相同的角的同一三角函数的值相等:sin(2kπ+α)=sinαcos(2kπ+α)=cosαtan(2kπ+α)=tanαcot(2kπ+α)=cotα公式二:设α为任意角,π+α的三角函数值与α的三角函数值之间的关系:sin(π+α)=-sinαcos(π+α)=-cosαtan(π+α)=tanαcot(π+α)=cotα公式三:任意角α与-α的三角函数值之间的关系:sin(-α)=-sinαcos(-α)=cosαtan(-α)=-tanαcot(-α)=-cotα公式四:利用公式二和公式三可以得到π-α与α的三角函数值之间的关系:sin(π-α)=sinαcos(π-α)=-cosαtan(π-α)=-tanαcot(π-α)=-cotα公式五:利用公式一和公式三可以得到2π-α与α的三角函数值之间的关系:sin(2π-α)=-sinαcos(2π-α)=cosαtan(2π-α)=-tanαcot(2π-α)=-cotα公式六:π/2±α及3π/2±α与α的三角函数值之间的关系:sin(π/2+α)=cosαcos(π/2+α)=-sinαtan(π/2+α)=-cotαcot(π/2+α)=-tanαsin(π/2-α)=cosαcos(π/2-α)=sinαtan(π/2-α)=cotαcot(π/2-α)=tanαsin(3π/2+α)=-cosαcos(3π/2+α)=sinαtan(3π/2+α)=-cotαcot(3π/2+α)=-tanαsin(3π/2-α)=-cosαcos(3π/2-α)=-sinαtan(3π/2-α)=cotαcot(3π/2-α)=tanα(以上k∈Z)正弦定理是指在三角形中,各边和它所对的角的正弦的比相等,即a/sinA=b/sinB=c/sinC=2R .(其中R为外接圆的半径)余弦定理是指三角形中任何一边的平方等于其它两边的平方和减去这两边与它们夹角的余弦的积的2倍,即a^2=b^2+c^2-2bc cosA角A的对边于斜边的比叫做角A的正弦,记作sinA,即sinA=角A的对边/斜边斜边与邻边夹角asin=y/r无论y>x或y≤x无论a多大多小可以任意大小正弦的最大值为1 最小值为-1三角恒等式对于任意非直角三角形中,如三角形ABC,总有tanA+tanB+tanC=tanAtanBtanC证明:已知(A+B)=(π-C)所以tan(A+B)=tan(π-C)则(tanA+tanB)/(1-tanAtanB)=(tanπ-tanC)/(1+tanπtanC)整理可得tanA+tanB+tanC=tanAtanBtanC类似地,我们同样也可以求证:当α+β+γ=nπ(n∈Z)时,总有tanα+tanβ+tanγ=tanαtanβtanγ向量计算设a=(x,y),b=(x',y')。
1、向量的加法向量的加法满足平行四边形法则和三角形法则。
AB+BC=AC。
a+b=(x+x',y+y')。
a+0=0+a=a。
向量加法的运算律:交换律:a+b=b+a;结合律:(a+b)+c=a+(b+c)。
2、向量的减法如果a、b是互为相反的向量,那么a=-b,b=-a,a+b=0. 0的反向量为0AB-AC=CB. 即“共同起点,指向被减”a=(x,y) b=(x',y') 则a-b=(x-x',y-y').4、数乘向量实数λ和向量a的乘积是一个向量,记作λa,且∣λa∣=∣λ∣·∣a∣。
当λ>0时,λa与a同方向;当λ<0时,λa与a反方向;当λ=0时,λa=0,方向任意。
当a=0时,对于任意实数λ,都有λa=0。
注:按定义知,如果λa=0,那么λ=0或a=0。
实数λ叫做向量a的系数,乘数向量λa的几何意义就是将表示向量a的有向线段伸长或压缩。
当∣λ∣>1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上伸长为原来的∣λ∣倍;当∣λ∣<1时,表示向量a的有向线段在原方向(λ>0)或反方向(λ<0)上缩短为原来的∣λ∣倍。
数与向量的乘法满足下面的运算律结合律:(λa)·b=λ(a·b)=(a·λb)。
向量对于数的分配律(第一分配律):(λ+μ)a=λa+μa.数对于向量的分配律(第二分配律):λ(a+b)=λa+λb.数乘向量的消去律:①如果实数λ≠0且λa=λb,那么a=b。
②如果a≠0且λa=μa,那么λ=μ。
3、向量的的数量积定义:两个非零向量的夹角记为〈a,b〉,且〈a,b〉∈[0,π]。
定义:两个向量的数量积(内积、点积)是一个数量,记作a·b。
若a、b不共线,则a·b=|a|·|b|·cos〈a,b〉;若a、b共线,则a·b=+-∣a∣∣b∣。
向量的数量积的坐标表示:a·b=x·x'+y·y'。
向量的数量积的运算率a·b=b·a(交换率);(a+b)·c=a·c+b·c(分配率);向量的数量积的性质a·a=|a|的平方。
a⊥b 〈=〉a·b=0。
|a·b|≤|a|·|b|。
向量的数量积与实数运算的主要不同点1、向量的数量积不满足结合律,即:(a·b)·c≠a·(b·c);例如:(a·b)^2≠a^2·b^2。
2、向量的数量积不满足消去律,即:由a·b=a·c (a≠0),推不出b=c。
3、|a·b|≠|a|·|b|4、由|a|=|b| ,推不出a=b或a=-b。