2019-2020学年山东省枣庄市薛城区九年级上学期期末考试数学试卷及答案解析

合集下载

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)

山东省枣庄市薛城区上学期期末考试九年级数学试卷(含答案)山东省枣庄市薛城区2019-2019学年上学期期末考试九年级数学试卷一、选择题(每小题3分,共36分)1.(3分)一元二次方程x2﹣6x﹣6=0配方后化为()A.(x﹣3)2=15 B.(x﹣3)2=3 C.(x+3)2=15 D.(x+3)2=32.(3分)抛物线y=2(x﹣3)2+4顶点坐标是()A.(3,4)B.(﹣3,4)C.(3,﹣4)D.(2,4)3.(3分)如图,⊙O的直径AB=8,点C在⊙O 上,∠ABC=30°,则AC的长是()A.2 B.2 C.2 D.44.(3分)在Rt△ABC中,∠C=90°,AB=4,AC=1,则cosB的值为()A. B.C. D.5.(3分)下列命题为真命题的是()A.三点确定一个圆B.度数相等的弧是等弧C.直径是圆中最长的弦D.相等的圆心角所对的弧相等,所对的弦也相13.(4分)若抛物线y=x2﹣6x+m与x轴没有交点,则m的取值范围是.14.(4分)如图,一个小球由地面沿着坡度i=1:3的坡面向上前进了10m,此时小球距离地面的高度为m.15.(4分)如图,O是坐标原点,菱形OABC 的顶点A的坐标为(﹣3,4),顶点C在x轴的负半轴上,函数y=(x<0)的图象经过顶点B,则k的值为.16.(4分)将如图所示的抛物线先向右平移1个单位长度,再向上平移3个单位长度后,得到的抛物线解析式是.17.(4分)如图,点A、B、C是圆O上的三点,且四边形ABCO是平行四边形,OF⊥OC交圆O于点F,则∠BAF=.18.(4分)如图,沿AE折叠矩形纸片ABCD,使点D落在BC边上的点F处,已知AB=8,BC=10,则cos∠EFC的值为.三、解答题(共7道大题,满分60分)19.(6分)计算:|1﹣|﹣2sin45°+(π﹣3.14)0+2﹣2.20.(10分)如图,根据图中数据完成填空,再按要求答题:sin2A1+sin2B1=;sin2A2+sin2B2=;sin2A3+sin2B3=.(1)观察上述等式,猜想:在Rt△ABC中,∠C=90°,都有sin2A+sin2B=.(2)如图④,在Rt△ABC中,∠C=90°,∠A、∠B、∠C的对边分别是a、b、c,利用三角函数的定义和勾股定理,证明你的猜想.(3)已知:∠A+∠B=90°,且sinA=,求sinB.21.(8分)如图,∠BAC=60°,AD平分∠BAC 交⊙O于点D,连接OB、OC、BD、CD.(1)求证:四边形OBDC是菱形;(2)当∠BAC为多少度时,四边形OBDC是正方形?22.(8分)工人师傅用一块长为10dm,宽为6dm 的矩形铁皮制作一个无盖的长方体容器,需要将四角各裁掉一个正方形.(厚度不计)(1)在图中画出裁剪示意图,用实线表示裁剪线,虚线表示折痕;并求长方体底面面积为12dm2时,裁掉的正方形边长多大?(2)若要求制作的长方体的底面长不大于底面宽的五倍,并将容器进行防锈处理,侧面每平方分米的费用为0.5元,底面每平方分米的费用为2元,裁掉的正方形边长多大时,总费用最低,最低为多少?23.(8分)如图,四边形ABCD中,AB=AC=AD,AC平分∠BAD,点P是AC延长线上一点,且PD⊥AD.(1)证明:∠BDC=∠PDC;(2)若AC与BD相交于点E,AB=1,CE:CP=2:3,求AE的长.24.(10分)保护生态环境,建设绿色社会已经从理念变为人们的行动.某化工厂2009年1月的利润为200万元.设2009年1月为第1个月,第x个月的利润为y万元.由于排污超标,该从2009年1月底起适当限产,并投入资金进行治污改造,导致月利润明显下降,从1月到5月,y与x成反比例.到5月底,治污改造工程顺利完工,从这时起,该厂每月的利润比前一个月增加20万元(如图).(1)分别求该化工厂治污期间及改造工程顺利完工后y与x之间对应的函数关系式.(2)治污改造工程顺利完工后经过几个月,该厂利润才能达到200万元?(3)当月利润少于100万元时为该厂资金紧张期,问该厂资金紧张期共有几个月?25.(10分)如图,已知抛物线的顶点为A(1,4),抛物线与y轴交于点B(0,3),与x轴交于C、D两点.点P是x轴上的一个动点.(1)求此抛物线的解析式;(2)求C、D两点坐标及△BCD的面积;(3)若点P在x轴上方的抛物线上,满足S△PCD=S△BCD,求点P的坐标.参考答案1-10、AADAC BDCAA 11-12、AB13、m>914、15、-3216、y=2(x-1)2+117、15°18、19、20、21、证明:(1)连接OD,∵∠BAC=60°,∴∠BOC=120°,∵AD平分∠BAC交⊙O于点D,∴∠BAD=∠CAD,∴∠BOD=∠COD=60°,∵OB=OD=OC,∴△BOD和△COD都是等边三角形,∴OB=BD=DC=OC,∴四边形OBDC是菱形;(2)当∠BAC为45度时,四边形OBDC是正方形,理由是:∵∠BAC=45°,∴∠BOC=90°,∴四边形OBDC是正方形.22、解:(1)如图所示:设裁掉的正方形的边长为xdm,由题意可得(10-2x)(6-2x)=12,即x2-8x+12=0,解得x=2或x=6(舍去),答:裁掉的正方形的边长为2dm,底面积为12dm2;(2)∵长不大于宽的五倍,∴10-2x≤5(6-2x),解得0<x≤2.5,设总费用为w元,由题意可知w=[0.5×2x(16-4x)+2(10-2x)(6-2x)]=4x2-48x+120=4(x-6)2-24,∵对称轴为x=6,开口向上,∴当0<x≤2.5时,w随x的增大而减小,∴当x=2.5时,w有最小值,最小值为25元,答:当裁掉边长为2.5dm的正方形时,总费用最低,最低费用为25元.23、(1)证明:∵AB=AD,AC平分∠BAD,∴AC⊥BD,∴∠ACD+∠BDC=90°,∵AC=AD,∴∠ACD=∠ADC,∴∠ADC+∠BDC=90°,∵PD⊥AD,∴∠ADC+∠PDC=90°,∴∠BDC=∠PDC;(2)解:过点C作CM⊥PD于点M,∵∠BDC=∠PDC,∴CE=CM,∵∠CMP=∠ADP=90°,∠P=∠P,∴△CPM∽△APD,24、解:(1)根据图象,反比例函数图象经过(1,200),当x=5时,y=40,设改造工程完工后函数解析式为y=20x+b,则20×5+b=40,解得b=-60,∴改造工程完工后函数解析式为y=20x-60(x >5且x取整数);(2)当y=200时,20x-60=200,解得x=13.13-5=8.∴经过8个月,该厂利润才能达到200万元;20x-60=100,解得x=8,∴月利润少于100万元有:3,4,5,6,7月份.故该厂资金紧张期共有5个月.25、。

枣庄市九年级上学期数学期末考试试卷A卷

枣庄市九年级上学期数学期末考试试卷A卷

枣庄市九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019七下·遂宁期中) 已知方程组的解满足x﹣y=m﹣1,则m的值为()A . ﹣1B . ﹣2C . 1D . 22. (2分)(2017·昌乐模拟) α为锐角,且关于x的一元二次方程有两个相等的实数根,则α=()A . 30°B . 45°C . 30°或150°D . 60°3. (2分) (2011七下·广东竞赛) 将点B(5,-1)向上平移2个单位得到点A(a+b, a-b)。

则()A . a=2, b=3B . a=3, b=2C . a=-3, b=-2D . a=- 2, b=-34. (2分) (2019九上·宝安期末) 下列说法正确的是A . 两条对角线互相垂直且相等的四边形是正方形B . 任意两个等腰三角形相似C . 一元二次方程,无论a取何值,一定有两个不相等的实数根D . 关于反比例函数,y的值随x值的增大而减小5. (2分) (2016九上·端州期末) 下列事件中是必然事件的是()A . 实心铁球投入水中会沉入水底B . 抛出一枚硬币,落地后正面向上C . 明天太阳从西边升起D . NBA篮球队员在罚球线投篮2次,至少投中一次6. (2分) (2016九上·端州期末) 用配方法解方程x2-4x+2=0,下列配方正确的是:()A . (x-1)2=-2B . (x-2)2=2C . (x+2)2=2D . (x-2)2=67. (2分) (2016九上·端州期末) 下列说法正确的是()A . 三点确定一个圆B . 平分弦的直径垂直于弦,并且平分弦所对的两条弧C . 与直径垂直的直线是圆的切线D . 能够互相重合的弧是等弧8. (2分) (2016九上·端州期末) 如图,AB是⊙O的弦,半径OC⊥AB于点D,且AB=6cm,OD=4cm。

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019-2020学年度第一学期九年级数学期末试卷试题(含答案)

2019~2020学年度第一学期期末检测九年级数学评分标准(其他解法参照给分)一、选择题(本大题共8小题,每小题3分,共24分.)二、填空题(本大题共10小题,每小题3分,共30分)9.12; 10.1:4; 11.2; 12.>; 13.110;14.不具有; 15. 16.4; 17.16; 18.2+三、解答题(本大题共10小题,共86分.)19.(本题共2小题,每题5分,共10分)(1)(1)计算:1032sin302020-+︒-解:原式11=2132+⨯-…………………………………………………3分 1113=+-……………………………………………………4分 13=…………………………………………………………5分 (2)解方程:2340x x +-=(解法不唯一)解:()()410x x +-=,……………………………………………………7分40x +=,10x -=…………………………………………………9分 1241x x =-=,………………………………………………………10分20.(本小题7分)解:………………………………………………………………………………………5分 P (两次取球得分的总分不小于5分)=13…………………………………………7分21.(本小题7分)(1)816%=50÷,5010148612m =----=;…………………………2分(2)本次抽查的学生文章阅读篇数的中位数为5,众数为4;………………4分(3)14120033650⨯=,………………………………………………………6分 答:估计该校学生在这一周内文章阅读的篇数为4篇的人数为336人.………7分22.(本小题8分)(1)△ABC 的面积是 12 ;…2分(2)如图所示………6分(3)若P (a ,b )为线段BC 上的任一 点,则变换后点P 的对应点'P 的坐标为 (,)22a b .………8分23.(本小题8分)解:设市政府从2017年到2019年对校舍建设投入资金的年平均增长率为x .…1分 根据题意得,28(1)11.52x +=.…………………………………………………4分解这个方程,得 1220% 2.2x x ==-,(不合题意,舍去)……………………7分答:市政府从2017年到2019年对校舍建设投入资金的年平均增长率为20%…8分24.(本小题8分)解:(1)分别过点E 作EF ⊥AC ,EG ⊥AO,垂足为F 、G.∵至DE 处,测得顶点A 的仰角为75°, ∴∠AEG=75°……………1分∵在BC 处测得直立于地面的AO 顶点A 的仰角为30°,∴∠ACE=30°, ……2分 ∴∠CAE=∠AEG -∠ACE=45°……………………………………………3分(2)在Rt △CFE 中,CE=40,∴1sin 3040202EF CE =︒=⨯=………4分 在Rt △AFE 中,∠CAE =45°,AF=FE=20………5分∴sin 452EF AE ===︒…………………………………………6分(第24题)(3)20AC AF CF =+=在Rt △AFE 中,1sin 3020272AG AC =︒=⨯≈()……7分 ∴27 1.529AO AG OG =+=+≈……………………………8分25.(本小题9分)26.(本小题9分)m.…1分解:(1)设矩形生物园的长为xm,则宽为(8-x)m,小兔的活动范围的面积为y227.(本小题10分)(1)证明:如图1中,AE AD ⊥ ,90DAE ∴∠=︒,90E ADE ∠=︒-∠,…………1分AD 平分BAC ∠,12BAD BAC ∴∠=∠,同理12ABD ABC ∠=∠,…………………2分 ADE BAD DBA ∠=∠+∠ ,180BAC ABC C ∠+∠=︒-∠,11()9022ADE ABC BAC C ∴∠=∠+∠=︒-∠,(2)延长AD 交BC 于点F .AB AE = ,ABE E ∴∠=∠,BE 平分ABC ∠,ABE EBC ∴∠=∠,………………………4分E CBE ∴∠=∠,//AE BC ∴,……………………………………5分90AFB EAD ∴∠=∠=︒,BF BD AF DE=, :2:3BD DE = ,(3)ABC 与ADE 相似,90DAE ∠=︒,ABC ∴∠中必有一个内角为90︒ABC ∠ 是锐角,90ABC ∴∠≠︒.………………………………………………………7分 ①当90BAC DAE ∠=∠=︒时,12E C ∠=∠ , 12ABC E C ∴∠=∠=∠, 90ABC C ∠+∠=︒ ,30ABC ∴∠=︒,此时2ABC ADES S =V V .………………………………………8分 ②当90C DAE ∠=∠=︒时,1452E C ∠=∠=︒, 45EDA ∴∠=︒,ABC 与ADE 相似,45ABC ∴∠=︒,此时ABC ADE S S =V V .………………………………………9分28.(本小题10分) 解:(1)由抛物线2y ax bx c =++交x 轴于A 、B 两点,OA =1,OB =3,得点A 坐标为(1,0)-,点B 的坐标为(3,0);…………………………………2分 Q。

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷(含答案解析)

2020-2021学年枣庄市薛城区九年级上学期期末数学试卷一、选择题(本大题共12小题,共36.0分)1.关于x的一元二次方程x2−5x+p2−2p+1=0的一个根为0,则实数p的值是()A. 1B. −1C. 0或2D. 42.下列物体的主视图、俯视图和左视图不全是圆的是()A. 橄榄球B. 兵乓球C. 篮球D. 排球3.如图,已知△ABC的面积为12,点D在线段AC上,点F在线段BC的延长线上,且BF=4CF,四边形DCFE是平行四边形,则图中阴影部分的面积为()A. 2B. 3C. 4D. 54.不解方程,判别方程5x2−7x+5=0的根的情况是()A. 有两个相等的实数根B. 有两个不相等的实数根C. 只有一个实数根D. 没有实数根5.如图,在平面直角坐标系中,Rt△ABC的顶点A、C的坐标分别是(0,3)、(k>0,x>0)的图象经过点B,(3,0).∠ACB=90°,AC=2BC,则函数y=kx则k的值为()A. 92B. 9C. 278D. 2746.如图,A、D是⊙O的两点,BC是⊙O的直径,若∠D=35°,∠OAC=()A. 70°B. 65°C. 55°7.王老师有一个装文具用的盒子,它的三视图如图所示,这个盒子类似于()A. 圆锥B. 圆柱C. 长方体D. 三棱柱8.正方形ABCD在直角坐标系中的位置如下图表示,将正方形ABCD绕点A顺时针方向旋转180°后,C点的坐标是()A. (2,0)B. (3,0)C. (2,−1)D. (2,1)9.把二次函数y=5x2的图象先向左平移3个单位,再向下平移2个单位后,所得二次函数图象的解析式是()A. y=5(x+3)2−2B. y=5(x+3)2+2C. y=5(x−3)2−2D. y=5(x−3)2−210.如图所示,是反比例函数y=3x 与y=−7x在x轴上方的图象,点C是y轴正半轴上的一点,过点C作AB//x轴分别交这两个图象于A点和B点,P和Q在x轴上,且四边形ABPQ为平行四边形,则四边形ABPQ的面积等于()A. 20B. 15C. 10D. 511.若一个正方形的面积为8,则这个正方形的边长为()A. 4B. 2√2C. √2D. 812.已知二次函数的图象如图所示,有下列4个结论:①;②;③;④,其中正确的结论有B. 3个C. 2个D. 1个二、填空题(本大题共8小题,共32.0分)13.如图,某人在山坡坡脚A处测得电视塔尖点C的仰角为60°,沿山坡向上走到P处再测得点C的仰角为45°,已知OA=100米,山坡坡度为i=1:2,且O、A、B在同一条直线上.求电视塔OC的高度以及所在位置点P的铅直高度.14.如图:P是反比例函数y=k的图象上的点,过点P作x轴、y轴的垂线,x垂足分别为A、B,且四边形PAOB的面积为4,则y与x的函数关系式是______ .15.已知二次函数y=2x2−2(a+b)x+a2+b2,a,b为常数,当y达到最小值时,x的值为______16.斜边的边长为5cm,一条直角边长为4cm的直角三角形的面积是______cm2.17.等腰三角形的腰长为1cm,底边长为√3cm,则它的底角的正切值为______.18.若正方形的面积为16cm2,则正方形对角线长为______cm.19.12.已知点O(0,0),B(1,2),点A在y轴上,且的面积为2,则满足条件的点A的坐标为。

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word解析版)

九年级上册枣庄数学期末试卷测试与练习(word 解析版)一、选择题1.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A .4个B .3个C .2个D .1个2.若关于x 的一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根,则实数k 的取值范围是( ) A .k >﹣1B .k <1且k≠0C .k≥﹣1且k≠0D .k >﹣1且k≠03.在Rt ABC ∆中,90C ∠=︒,3AC =,=1BC ,则sin A 的值为( ) A .1010B .310C .13D .1034.小广,小娇分别统计了自己近5次数学测试成绩,下列统计量中能用来比较两人成绩稳定性的是( ) A .方差 B .平均数C .众数D .中位数5.如图,在△ABC 中,点D 、E 分别是AB 、AC 的中点,若△ADE 的面积为4,则△ABC 的面积为( )A .8B .12C .14D .166.点P 1(﹣1,1y ),P 2(3,2y ),P 3(5,3y )均在二次函数22y x x c =-++的图象上,则1y ,2y ,3y 的大小关系是( ) A .321y y y >>B .312y y y >=C .123y y y >>D .123y y y =>7.已知二次函数y =ax 2+bx +c 的图像如图所示,则下列结论正确的个数有( ) ①c >0;②b 2-4ac <0;③ a -b +c >0;④当x >-1时,y 随x 的增大而减小.A.4个B.3个C.2个D.1个8.如图,在矩形中,,,若以为圆心,4为半径作⊙.下列四个点中,在⊙外的是( )A.点B.点C.点D.点9.如图所示的网格是正方形网格,则sin A的值为()A.12B.22C.35D.4510.下表是二次函数y=ax2+bx+c的部分x,y的对应值:x…﹣1﹣12121322523…y…2m﹣1﹣74﹣2﹣74﹣1142…可以推断m的值为()A.﹣2 B.0 C.14D.211.如图1,一个扇形纸片的圆心角为90°,半径为4.如图2,将这张扇形纸片折叠,使点A与点O恰好重合,折痕为CD,图中阴影为重合部分,则阴影部分的面积为()A .4233π- B .8433π- C .8233π- D .843π- 12.已知⊙O 的半径是6,点O 到直线l 的距离为5,则直线l 与⊙O 的位置关系是 A .相离B .相切C .相交D .无法判断二、填空题13.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.14.如图,二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1,则方程ax 2+bx +c =0的根为____.15.将抛物线y=﹣2x 2+1向左平移三个单位,再向下平移两个单位得到抛物线________; 16.在Rt ABC ∆中,90C ∠=︒,12AC =,9BC =,圆P 在ABC ∆内自由移动.若P 的半径为1,则圆心P 在ABC ∆内所能到达的区域的面积为______.17.一个扇形的圆心角是120°.它的半径是3cm .则扇形的弧长为__________cm . 18.两个相似三角形的面积比为9:16,其中较大的三角形的周长为64cm ,则较小的三角形的周长为__________cm .19..甲、乙、丙、丁四位同学在五次数学测验中他们成绩的平均分相等,方差分别是2.3,3.8,5.2,6.2,则成绩最稳定的同学是______.20.已知⊙O 半径为4,点,A B 在⊙O 上,21390,sin BAC B ∠=∠=OC 的最大值为_____.21.圆锥的底面半径是4cm ,母线长是6cm ,则圆锥的侧面积是______cm 2(结果保留π).22.如图,在△ABC 和△APQ 中,∠PAB =∠QAC ,若再增加一个条件就能使△APQ ∽△ABC ,则这个条件可以是________.23.如图,点O 为正六边形ABCDEF 的中心,点M 为AF 中点,以点O 为圆心,以OM 的长为半径画弧得到扇形MON ,点N 在BC 上;以点E 为圆心,以DE 的长为半径画弧得到扇形DEF ,把扇形MON 的两条半径OM ,ON 重合,围成圆锥,将此圆锥的底面半径记为r 1;将扇形DEF 以同样方法围成的圆锥的底面半径记为r 2,则r 1:r 2=_____.24.如图,二次函数y =x (x ﹣3)(0≤x ≤3)的图象,记为C 1,它与x 轴交于点O ,A 1;将C 1点A 1旋转180°得C 2,交x 轴于点A 2;将C 2绕点A 2旋转180°得C 3,交x 轴于点A 3;……若P (2020,m )在这个图象连续旋转后的所得图象上,则m =_____.三、解答题25.如图,已知矩形ABCD 的边6AB =,4BC =,点P 、Q 分别是AB 、BC 边上的动点.(1)连接AQ 、PQ ,以PQ 为直径的O 交AQ 于点E .①若点E 恰好是AQ 的中点,则QPB ∠与AQP ∠的数量关系是______; ②若3BE BQ ==,求BP 的长; (2)已知3AP =,1BQ =,O 是以PQ 为弦的圆.①若圆心O 恰好在CB 边的延长线上,求O 的半径:②若O 与矩形ABCD 的一边相切,求O 的半径.26.如图,AB 是⊙O 的直径,弦CD ⊥AB 于点H ,点F 是AD 上一点,连接AF 交CD 的延长线于点E .(1)求证:△AFC ∽△ACE ;(2)若AC =5,DC =6,当点F 为AD 的中点时,求AF 的值. 27.用铁片制作的圆锥形容器盖如图所示.(1)我们知道:把平面内线段OP 绕着端点O 旋转1周,端点P 运动所形成的图形叫做圆.类比圆的定义,给圆锥下定义 ;(2)已知OB =2 cm ,SB =3 cm , ①计算容器盖铁皮的面积;②在一张矩形铁片上剪下一个扇形,用它围成该圆锥形容器盖.以下是可供选用的矩形铁片的长和宽,其中可以选择且面积最小的矩形铁片是 . A .6 cm×4 cm B .6 cm×4.5 cm C .7 cm×4 cm D .7 cm×4.5 cm28.(1)问题提出:苏科版《数学》九年级(上册)习题2.1有这样一道练习题:如图①,BD 、CE 是△ABC 的高,M 是BC 的中点,点B 、C 、D 、E 是否在以点M 为圆心的同一个圆上?为什么?在解决此题时,若想要说明“点B 、C 、D 、E 在以点M 为圆心的同一个圆上”,在连接MD 、ME 的基础上,只需证明 .(2)初步思考:如图②,BD 、CE 是锐角△ABC 的高,连接DE .求证:∠ADE =∠ABC ,小敏在解答此题时,利用了“圆的内接四边形的对角互补”进行证明.(请你根据小敏的思路完成证明过程.)(3)推广运用:如图③,BD 、CE 、AF 是锐角△ABC 的高,三条高的交点G 叫做△ABC 的垂心,连接DE 、EF 、FD ,求证:点G 是△DEF 的内心.29.4张相同的卡片分别写有数字﹣1、﹣3、4、6,将这些卡片的背面朝上,并洗匀. (1)从中任意抽取1张,抽到的数字大于0的概率是______;(2)从中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的a ,再从余下的卡片中任意抽取1张,并将卡片上的数字记作二次函数y =ax 2+bx 中的b ,利用树状图或表格的方法,求出这个二次函数图象的对称轴在y 轴右侧的概率.30.如图,已知抛物线2y x bx c =++经过(10)A -,、(30)B ,两点,与y 轴相交于点C . (1)求抛物线的解析式;(2)点P 是对称轴上的一个动点,当PAC 的周长最小时,直接写出点P 的坐标和周长最小值;S ,求出此时点Q的坐标.(3)点Q为抛物线上一点,若8QAB31.超市销售某种儿童玩具,如果每件利润为40元(市场管理部门规定,该种玩具每件利润不能超过60元),每天可售出50件.根据市场调查发现,销售单价每增加2元,每天销售量会减少1件.设销售单价增加x元,每天售出y件.(1)请写出y与x之间的函数表达式;(2)当x为多少时,超市每天销售这种玩具可获利润2250元?(3)设超市每天销售这种玩具可获利w元,当x为多少时w最大,最大值是多少?32.某商店销售一种商品,经市场调查发现:该商品的月销售量y(件)是售价x(元/件)的一次函数,其售价x、月销售量y、月销售利润w(元)的部分对应值如下表:售价x(元/件)4045月销售量y(件)300250月销售利润w(元)30003750注:月销售利润=月销售量×(售价-进价)(1)①求y关于x的函数表达式;②当该商品的售价是多少元时,月销售利润最大?并求出最大利润;(2)由于某种原因,该商品进价提高了m元/件(m>0),物价部门规定该商品售价不得超过40元/件,该商店在今后的销售中,月销售量与售价仍然满足(1)中的函数关系.若月销售最大利润是2400元,则m的值为.【参考答案】***试卷处理标记,请不要删除一、选择题1.C解析:C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x 轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断. 【详解】解:由图象可知,a <0,c >0,故①正确;抛物线与x 轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0, 故③正确;由图象可知,图象开口向下,对称轴x >-1,在对称轴右侧, y 随x 的增大而减小,而在对称轴左侧和-1之间,是y 随x 的增大而减小,故④错误. 故选:C . 【点睛】本题考查了二次函数图象与系数的关系:二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时,对称轴在y 轴左; 当a 与b 异号时,对称轴在y 轴右.常数项c 决定抛物线与y 轴交点:抛物线与y 轴交于(0,c ).抛物线与x 轴交点个数由判别式确定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.2.D解析:D 【解析】∵一元二次方程kx 2﹣2x ﹣1=0有两个不相等的实数根, ∴△=b 2﹣4ac=4+4k >0,且k≠0. 解得:k >﹣1且k≠0.故选D .考点:一元二次方程的定义,一元二次方程根的判别式,分类思想的应用.3.A解析:A 【解析】 【分析】先根据勾股定理求出斜边的长,再根据正弦的定义解答即可. 【详解】解:在Rt ABC ∆中,∵90C ∠=︒,3AC =,=1BC ,∴AB =∴sinBC A AB ===. 故选:A. 【点睛】本题考查了勾股定理和正弦的定义,属于基本题型,熟练掌握基本知识是解题关键.4.A解析:A 【解析】根据方差的意义:体现数据的稳定性,集中程度,波动性大小;方差越小,数据越稳定.要比较两位同学在五次数学测验中谁的成绩比较稳定,应选用的统计量是方差. 【详解】平均数,众数,中位数都是反映数字集中趋势的数量,方差是反映数据离散水平的数据,也就会说反映数据稳定程度的数据是方差 故选A 考点:方差5.D解析:D 【解析】 【分析】直接利用三角形中位线定理得出DE ∥BC ,DE=12BC ,再利用相似三角形的判定与性质得出答案. 【详解】解:∵在△ABC 中,点D 、E 分别是AB 、AC 的中点, ∴DE ∥BC ,DE=12BC , ∴△ADE ∽△ABC , ∵DE BC =12, ∴14ADE ABC S S ∆∆=, ∵△ADE 的面积为4, ∴△ABC 的面积为:16, 故选D . 【点睛】考查了三角形的中位线以及相似三角形的判定与性质,正确得出△ADE ∽△ABC 是解题关键.6.D解析:D 【解析】试题分析:∵22y x x c =-++,∴对称轴为x=1,P 2(3,2y ),P 3(5,3y )在对称轴的右侧,y 随x 的增大而减小,∵3<5,∴23y y >,根据二次函数图象的对称性可知,P 1(﹣1,1y )与(3,2y )关于对称轴对称,故123y y y =>,故选D . 考点:二次函数图象上点的坐标特征.7.C【解析】【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据抛物线与x轴交点及x=-1时二次函数的值的情况进行推理,进而对所得结论进行判断.【详解】解:由图象可知,a<0,c>0,故①正确;抛物线与x轴有两个交点,则b²-4ac>0,故②错误;∵当x=-1时,y>0,即a-b+c>0,故③正确;由图象可知,图象开口向下,对称轴x>-1,在对称轴右侧, y随x的增大而减小,而在对称轴左侧和-1之间,是y随x的增大而减小,故④错误.故选:C.【点睛】本题考查了二次函数图象与系数的关系:二次项系数a决定抛物线的开口方向和大小.当a>0时,抛物线向上开口;当a<0时,抛物线向下开口;一次项系数b和二次项系数a 共同决定对称轴的位置:当a与b同号时,对称轴在y轴左;当a与b异号时,对称轴在y轴右.常数项c决定抛物线与y轴交点:抛物线与y轴交于(0,c).抛物线与x轴交点个数由判别式确定:△=b2-4ac>0时,抛物线与x轴有2个交点;△=b2-4ac=0时,抛物线与x轴有1个交点;△=b2-4ac<0时,抛物线与x轴没有交点.8.C解析:C【解析】【分析】连接AC,利用勾股定理求出AC的长度,即可解题.【详解】解:如下图,连接AC,∵圆A的半径是4,AB=4,AD=3,∴由勾股定理可知对角线AC=5,∴D在圆A内,B在圆上,C在圆外,故选C.【点睛】本题考查了圆的简单性质,属于简单题,利用勾股定理求出AC的长是解题关键.9.C解析:C 【解析】【分析】设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,解直角三角形即可得到结论.【详解】解:设正方形网格中的小正方形的边长为1,连接格点BC,AD,过C作CE⊥AB于E,∵224225AC BC=+==,BC=22,AD=2232AC CD+=,∵S△ABC=12AB•CE=12BC•AD,∴CE=223265525BC ADAB⨯==,∴6535525CEAsin CABC∠===,故选:C.【点睛】本题考查了解直角三角形的问题,掌握解直角三角形的方法以及锐角三角函数的定义是解题的关键.10.C解析:C【解析】【分析】首先根据表中的x、y的值确定抛物线的对称轴,然后根据对称性确定m的值即可.【详解】解:观察表格发现该二次函数的图象经过点(12,﹣74)和(32,﹣74),所以对称轴为x=13222+=1,∵511122⎛⎫-=--⎪⎝⎭,∴点(﹣12,m)和(52,14)关于对称轴对称,∴m=14,故选:C.【点睛】本题考查了二次函数的图象与性质,解题的关键是通过表格信息确定抛物线的对称轴.11.C解析:C【解析】【分析】连接OD,根据勾股定理求出CD,根据直角三角形的性质求出∠AOD,根据扇形面积公式、三角形面积公式计算,得到答案.【详解】解:连接OD,在Rt△OCD中,OC=12OD=2,∴∠ODC=30°,CD=2223OD OC+=∴∠COD=60°,∴阴影部分的面积=260418223=23 36023π⨯-⨯⨯π-,故选:C.【点睛】本题考查的是扇形面积计算、勾股定理,掌握扇形面积公式是解题的关键.12.C解析:C【解析】试题分析:根据直线与圆的位置关系来判定:①直线l和⊙O相交,则d<r;②直线l和⊙O相切,则d=r;③直线l和⊙O相离,则d>r(d为直线与圆的距离,r为圆的半径).因此,∵⊙O的半径为6,圆心O到直线l的距离为5,∴6>5,即:d<r.∴直线l与⊙O的位置关系是相交.故选C.二、填空题13.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.14.【解析】【分析】根据点A的坐标及抛物线的对称轴可得抛物线与x轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得:解析:123;1x x ==-【解析】【分析】根据点A 的坐标及抛物线的对称轴可得抛物线与x 轴的两个交点坐标,从而求得方程的解.【详解】解:由二次函数y =ax 2+bx +c 的图像过点A (3,0),对称轴为直线x =1可得: 抛物线与x 轴交于(3,0)和(-1,0)即当y=0时,x=3或-1∴ax 2+bx +c =0的根为123;1x x ==-故答案为:123;1x x ==-【点睛】本题考查抛物线的对称性及二次函数与一元二次方程,利用对称性求出抛物线与x 轴的交点坐标是本题的解题关键.15.【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关解析:()2231y x =-+-【解析】【分析】根据抛物线平移的规律计算即可得到答案.【详解】根据题意:平移后的抛物线为()2231y x =-+-.【点睛】此题考查抛物线的平移规律:对称轴左加右减,函数值上加下减,掌握规律并熟练运用是解题的关键. 16.24【解析】【分析】根据题意做图,圆心在内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根解析:24【解析】【分析】根据题意做图,圆心P 在ABC ∆内所能到达的区域为△EFG ,先求出AB 的长,延长BE 交AC 于H 点,作HM ⊥AB 于M ,根据圆的性质可知BH 平分∠ABC ,故CH=HM,设CH=x=HM ,根据Rt △AMH 中利用勾股定理求出x 的值,作EK ⊥BC 于K 点,利用△BEK ∽△BHC ,求出BK 的长,即可求出EF 的长,再根据△EFG ∽△BCA 求出FG ,即可求出△EFG 的面积.【详解】如图,由题意点O 所能到达的区域是△EFG ,连接BE ,延长BE 交AC 于H 点,作HM ⊥AB 于M ,EK ⊥BC 于K ,作FJ ⊥BC 于J .∵90C ∠=︒,12AC =,9BC =,∴15=根据圆的性质可知BH 平分∠ABC∴故CH=HM,设CH=x=HM ,则AH=12-x ,BM=BC=9,∴AM=15-9=6在Rt △AMH 中,AH 2=HM 2+AM 2即AH 2=HM 2+AM 2(12-x )2=x 2+62解得x=4.5∵EK ∥AC ,∴△BEK ∽△BHC , ∴EK BK HC BC =,即14.59BK = ∴BK=2,∴EF=KJ=BC-BK-JC=9-2-1=6,∵EG ∥AB ,EF ∥AC ,FG ∥BC , ∴∠EGF =∠ABC ,∠FEG =∠CAB ,∴△EFG ∽△ACB , 故EF FG BC AC =,即6912FG = 解得FG=8 ∴圆心P 在ABC ∆内所能到达的区域的面积为12FG×EF=12×8×6=24, 故答案为24.【点睛】此题主要考查相似三角形的判定与性质综合,解题的关键是熟知勾股定理、相似三角形的判定与性质.17.2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.解析:2π【解析】分析:根据弧长公式可得结论.详解:根据题意,扇形的弧长为1203180π⨯=2π,故答案为:2π点睛:本题主要考查弧长的计算,熟练掌握弧长公式是解题的关键.18.48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为∴两个相似三角形的相似比为∴两个相似三角形的周长也比为∵较大的三解析:48【解析】【分析】根据面积之比得出相似比,然后利用周长之比等于相似比即可得出答案.【详解】∵两个相似三角形的面积比为9:16∴两个相似三角形的相似比为3:4∴两个相似三角形的周长也比为3:4∵较大的三角形的周长为64cm ∴较小的三角形的周长为643484cm ⨯= 故答案为:48.【点睛】本题主要考查相似三角形的性质,掌握相似三角形的性质是解题的关键. 19.甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差解析:甲【解析】【分析】方差反映了一组数据的波动情况,方差越小越稳定,据此可判断.【详解】∵2.3<3.8<5.2<6.2,∴2222甲乙丁丙<<<S S S S ,∴成绩最稳定的是甲.故答案为:甲.【点睛】本题考查了方差的概念,正确理解方差所表示的意义是解题的关键.20.【解析】【分析】过点A 作AE ⊥AO,并使∠AEO =∠ABC,先证明,由三角函数可得出,进而求得,再通过证明,可得出,根据三角形三边关系可得:,由勾股定理可得,求出BE 的最大值,则答案即可求出.解析:833+【解析】【分析】过点A作AE⊥AO,并使∠AEO=∠ABC,先证明ABC AEO∆∆,由三角函数可得出23AOAE=,进而求得6AE=,再通过证明AEB AOC∆∆,可得出23OC BE=,根据三角形三边关系可得:BE OE OB≤+,由勾股定理可得213OE=,求出BE的最大值,则答案即可求出.【详解】解:过点A作AE⊥AO,并使∠AEO=∠ABC,∵OAE BACAEO ABC∠=∠⎧⎨∠=∠⎩,∴ABC AEO∆∆,∴tanAC AOBAB AE∠==,∵213sin B∠=,∴2213313cos11313B⎛⎫∠=-=⎪⎪⎝⎭,∴213sin213tancos3313BBn B∠∠===∠,∴23AOAE=,又∵4AO=,∴6AE=,∵90,90EAB BAO OAC BAO∠+∠=︒∠+∠=︒,∴=EAB OAC∠∠,又∵AC AOAB AE=,∴AEB AOC∆∆,∴23OC AC BE AB ==, ∴23OC BE =, 在△OEB 中,根据三角形三边关系可得:BE OE OB ≤+,∵OE ===,∴4OE OB +=,∴BE 的最大值为:4,∴OC 的最大值为:()28433=. 【点睛】本题主要考查了三角形相似的判定和性质、三角函数、勾股定理及三角形三边关系,解题的关键是构造直角三角形. 21.24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,解析:24π【解析】【分析】根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式计算即可.【详解】解:∵圆锥的底面半径为4cm ,∴圆锥的底面圆的周长=2π•4=8π,∴圆锥的侧面积=12×8π×6=24π(cm 2). 故答案为:24π.【点睛】本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l •R ,(l 为弧长). 22.∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC ,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或.【详解】解:这个条件解析:∠P=∠B(答案不唯一)【解析】【分析】要使△APQ∽△ABC,在这两三角形中,由∠PAB=∠QAC可知∠PAQ=∠BAC,还需的条件可以是∠B=∠P或∠C=∠Q或AP AQ AB AC=.【详解】解:这个条件为:∠B=∠P ∵∠PAB=∠QAC,∴∠PAQ=∠BAC∵∠B=∠P,∴△APQ∽△ABC,故答案为:∠B=∠P或∠C=∠Q或AP AQ AB AC=.【点睛】本题考查了相似三角形的判定与性质的运用,掌握相似三角形的判定与性质是解题的关键.23.【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF∵六边形ABCDEF为正六边形∴2【解析】分析:根据题意正六边形中心角为120°且其内角为120°.求出两个扇形圆心角,表示出扇形半径即可.详解:连OA由已知,M为AF中点,则OM⊥AF ∵六边形ABCDEF为正六边形∴∠AOM=30°设AM=a∴AB=AO=2a,3a∵正六边形中心角为60°∴∠MON=120°∴扇形MON 120323aa π⋅⋅=则r13同理:扇形DEF的弧长为:120241803aaππ⋅⋅=则r2=2 3 ar1:r23:3:点睛:本题考查了正六边形的性质和扇形面积及圆锥计算.解答时注意表示出两个扇形的半径.24.【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然解析:【解析】【分析】x(x﹣3)=0得A1(3,0),再根据旋转的性质得OA1=A1A2=A2A3=…=A673A674=3,所以抛物线C764的解析式为y=﹣(x﹣2019)(x﹣2022),然后计算自变量为2020对应的函数值即可.【详解】当y=0时,x(x﹣3)=0,解得x1=0,x2=3,则A1(3,0),∵将C1点A1旋转180°得C2,交x轴于点A2;将C2绕点A2旋转180°得C3,交x轴于点A 3;……∴OA 1=A 1A 2=A 2A 3=…=A 673A 674=3,∴抛物线C 764的解析式为y =﹣(x ﹣2019)(x ﹣2022),把P (2020,m )代入得m =﹣(2020﹣2019)(2020﹣2022)=2.故答案为2.【点睛】本题考查图形类规律,解题的关键是掌握图形类规律的基本解题方法.三、解答题25.(1)①2QPB AQP ∠=∠;②1.5;(2)①5;②53、255,35630、5. 【解析】【分析】(1)①根据直径所对的圆周角是直角判断△APQ 为等腰三角形,结合等腰三角形的两底角相等和圆周角定理证明;②证明△PBQ ∽△QBA ,由对应边成比例求解;(2)①画出图形,由勾股定理列方程求解;②分O 与矩形ABCD 的四边分别相切,画出图形,利用切线性质,由勾股定理列方程求解.【详解】解:(1)①如图,PQ 是直径,E 在圆上,∴∠PEQ=90°,∴PE ⊥AQ,∵AE=EQ,∴PA=PQ,∴∠PAQ=∠PQA,∴∠QPB=∠PAQ+∠PQA=2∠AQP ,∵∠QPB=2∠AQP . \②解:如图,∵BE=BQ=3,∴∠BEQ=∠BQE,∵∠BEQ=∠BPQ,∵∠PBQ=∠QBA,∴△PBQ∽△QBA,∴BP BQ BQ BA,∴3 36 BP,∴BP=1.5;(2)①如图, BP=3,BQ=1,设半径OP=r,在Rt△OPB中,根据勾股定理得,PB2+OB2=OP2∴32+(r-1)2=r2,∴r=5,∴O的半径是5.②如图,O与矩形ABCD的一边相切有4种情况,如图1,当O与矩形ABCD边BC相切于点Q,过O作OK⊥AB于K,则四边形OKBQ为矩形,设OP=OQ=r,则PK=3x,由勾股定理得,r2=12+(3-r)2,解得,r=5 3 ,∴O半径为5 3 .如图2,当O与矩形ABCD边AD相切于点N,延长NO交BC于L,则OL⊥BC,过P作PS⊥NL于S,设OS=x,则ON=OP=OQ=3+x,设PS=BL=y,由勾股定理得,2222223331x x yx x y,解得125 23x (舍去),225 23x,∴ON=25 53,∴O半径为25 5.如图3,当O与矩形ABCD边CD相切于点M,延长MO交AB于R,则OR⊥AB,过O作OH⊥BC于H,设OH=BR=x,设HQ=y, 则OM=OP=OQ=4-1-y=3-y,由勾股定理得,2222223331y x yy x y,解得163032x(舍去),263032x,∴OM=35630,∴O半径为35630.如图4,当O与矩形ABCD边AB相切于点P,过O作OG⊥BC于G,则四边形AFCG为矩形,设OF=CG=x,,则OP=OQ=x+4,由勾股定理得(x+4)2=32+(x+3)2,解得,x=1,∴OP=5,∴O半径为5.综上所述,若O与矩形ABCD的一边相切,为O的半径53,255,35630,5.【点睛】本题考查圆的相关性质,涉及圆周角定理,垂径定理,切线的性质等,综合性较强,利用分类思想画出对应图形,化繁为简是解答此题的关键.26.(1)见解析;(2【解析】【分析】(1)根据条件得出AD=AC,推出∠AFC=∠ACD,结合公共角得出三角形相似;(2)根据已知条件证明△ACF≌△DEF,得出AC=DE,利用勾股定理计算出AE的长度,再根据(1)中△AFC∽△ACE,得出AFAC=ACAE,从而计算出AF的长度.【详解】(1)∵CD⊥AB,AB是⊙O的直径∴AD=AC∴∠AFC=∠ACD.∵在△ACF和△AEC中,∠AFC=∠ACD,∠CAF=∠EAC∴△AFC ∽△ACE(2)∵四边形ACDF内接于⊙O∴∠AFD+∠ACD=180°∵∠AFD+∠DFE=180°∴∠DFE=∠ACD∵∠AFC=∠ACD∴∠AFC=∠DFE.∵△AFC∽△ACE∴∠ACF=∠DEF.∵F为AC的中点∴AF=DF.∵在△ACF和△DEF中,∠ACF=∠DEF,∠AFC=∠DFE,AF=DF ∴△ACF≌△DEF.∴AC=DE=5.∵CD⊥AB,AB是⊙O的直径∴CH=DH=3.∴EH=8在Rt△AHC中,AH2=AC2-CH2=16,在Rt△AHE中,AE2=AH2+EH2=80,∴AE=∵△AFC∽△ACE∴AF AC =AC AE,即5AF =45, ∴AF =55. 【点睛】本题属于圆与相似三角形的综合,涉及了圆内接四边形的性质,勾股定理,等弧所对的圆周角相等,相似三角形的判定定理等,解题的关键是灵活运用所学知识,正确寻找全等三角形.27.(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①6π;②B.【解析】【分析】(1)根据平面内图形的旋转,给圆锥下定义;(2)①根据圆锥侧面积公式求容器盖铁皮的面积;②首先求得扇形的圆心角的度数,然后求得弓形的高就是矩形的宽,长就是圆的直径.【详解】解:(1)把平面内,以直角三角形的直角边所在直线为旋转轴,其余两边旋转而成的曲面所围成的几何体叫做圆锥;(2)①由题意,容器盖铁皮的面积即圆锥的侧面积∴==23=6S rl πππ⨯⨯母侧即容器盖铁皮的面积为6πcm²;②解:设圆锥展开扇形的圆心角为n 度,则2π×2=3180n π⨯ 解得:n=240°,如图:∠AOB=120°,则∠AOC=60°,∵OB=3,∴OC=1.5,∴矩形的长为6cm ,宽为4.5cm ,故选:B .【点睛】本题考查了圆锥的定义及其有关计算,根据题意作出图形是解答本题的关键.28.(1)ME =MD =MB =MC ;(2)证明见解析;(3)证明见解析.【解析】【分析】(1)要证四个点在同一圆上,即证明四个点到定点距离相等.(2)由“直角三角形斜边上的中线等于斜边的一半”,即能证ME=MD=MB=MC,得到四边形BCDE为圆内接四边形,故有对角互补.(3)根据内心定义,需证明DG、EG、FG分别平分∠EDF、∠DEF、∠DFE.由点B、C、D、E 四点共圆,可得同弧所对的圆周角∠CBD=∠CED.又因为∠BEG=∠BFG=90°,根据(2)易证点B、F、G、E也四点共圆,有同弧所对的圆周角∠FBG=∠FEG,等量代换有∠CED=∠FEG,同理可证其余两个内角的平分线.【详解】解:(1)根据圆的定义可知,当点B、C、D、E到点M距离相等时,即他们在圆M上故答案为:ME=MD=MB=MC(2)证明:连接MD、ME∵BD、CE是△ABC的高∴BD⊥AC,CE⊥AB∴∠BDC=∠CEB=90°∵M为BC的中点∴ME=MD=12BC=MB=MC∴点B、C、D、E在以点M为圆心的同一个圆上∴∠ABC+CDE=180°∵∠ADE+∠CDE=180°∴∠ADE=∠ABC(3)证明:取BG中点N,连接EN、FN∵CE、AF是△ABC的高∴∠BEG=∠BFG=90°∴EN=FN=12BG=BN=NG∴点B、F、G、E在以点N为圆心的同一个圆上∴∠FBG=∠FEG∵由(2)证得点B、C、D、E在同一个圆上∴∠FBG=∠CED∴∠FEG=∠CED同理可证:∠EFG=∠AFD,∠EDG=∠FDG∴点G是△DEF的内心【点睛】本题考查了直角三角形斜边中线定理、中点的性质、三角形内心的判定、圆周角定理、角平分线的定义,综合性较强,解决本题的关键是熟练掌握三角形斜边中线定理、圆周角定理,能够根据题意熟练掌握各个角之间的内在联系.29.(1)12;(2)23.【解析】【分析】(1)直接利用概率公式求解;(2)画树状图展示所有12种等可能的结果数,利用一次函数的性质,找出a、b异号的结果数,然后根据概率公式求解.【详解】(1)∵共由4种可能,抽到的数字大于0的有2种,∴从中任意抽取1张,抽到的数字大于0的概率是12,故答案为:1 2(2)画树状图为:共有12种等可能的结果数,其中a、b异号有8种结果,∴这个二次函数的图象的对称轴在y轴右侧的概率为812=23.【点睛】此题考查的是用列表法或树状图法求概率.注意树状图法与列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件;树状图法适合两步或两步以上完成的。

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级(上)期末数学试卷(解析版)

2020-2021学年山东省枣庄市薛城区九年级第一学期期末数学试卷一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.20282.如图,空心圆柱的左视图是()A.B.C.D.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y36.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.88.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.129.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3 10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣812.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了m.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353 16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=,n=,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为.27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.参考答案一、选择题(每题3分,共36分)1.若关于x的一元二次方程ax2+bx+6=0(a≠0)的其中一个解是x=1,则2021﹣a﹣b的值是()A.2022B.2025C.2027D.2028解:∵关于x的一元二次方程ax2+bx+6=0(a≠0)的一个解是x=1,∴a+b+6=0,∴a+b=﹣6,∴2021﹣a﹣b=2021﹣(a+b)=2021﹣(﹣6)=2021+6=2027,故选:C.2.如图,空心圆柱的左视图是()A.B.C.D.解:圆柱的左视图是矩形,里面有两条用虚线表示的看不到的棱,故选:C.3.平行四边形ABCD的对角线AC和BD交于点O,添加一个条件不能使平行四边形ABCD 变为矩形的是()A.OD=OC B.∠DAB=90°C.∠ODA=∠OAD D.AC⊥BD解:∵四边形ABCD是平行四边形,∴OA=OC=AC,OB=OD=BD,A、OD=OC时,AC=BD,∴平行四边形ABCD是矩形,故选项A不符合题意;B、四边形ABCD是平行四边形,∠DAB=90°,∴平行四边形ABCD是矩形,故选项B不符合题意;C、∵∠ODA=∠OAD,∴OA=OD,∴AC=BD,∴平行四边形ABCD是矩形,故选项C不符合题意;D、四边形ABCD是平行四边形,AC⊥BD,∴平行四边形ABCD是菱形,故选项D符合题意;故选:D.4.关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,则锐角α等于()A.15°B.30°C.45°D.60°解:∵关于x的一元二次方程x2﹣x+sinα=0有两个相等的实数根,∴△=﹣4sinα=2﹣4sinα=0,解得:sinα=,∵α为锐角,∴α=30°.故选:B.5.在函数y=(a为常数)的图象上有三点(﹣3,y1),(﹣1,y2),(2,y3),则函数值y1,y2,y3的大小关系为()A.y3<y1<y2B.y1<y2<y3C.y3<y2<y1D.y2<y1<y3解:∵﹣a2﹣1<0,∴函数y=(a为常数)的图象在二、四象限,且在每一象限内y随x的增大而增大,∵﹣3<﹣1<0,∴点(﹣3,y1),(﹣1,y2)在第二象限,∴y2>y1>0,∵2>0,∴点(2,y3)在第四象限,∴y3<0,∴y3<y1<y2.故选:A.6.如图,AB是⊙O的直径,CD是⊙O的弦,∠ACD=20°,则∠BAD为()A.40°B.50°C.60°D.70°解:连接BD,如图,∵AB是⊙O的直径,∴∠ADB=90°,∵∠B=∠ACD=20°,∴∠BAD=90°﹣∠B=70°.故选:D.7.由若干个完全相同的小正方体组成一个立体图形,它的左视图和俯视图如图所示,则小正方体的个数不可能是()A.5B.6C.7D.8解:由左视图可得,第2层上至少一个小立方体,第1层一共有5个小立方体,故小正方体的个数最少为:6个,故小正方体的个数不可能是5个.故选:A.8.如图所示,在正方形ABCD中,G为CD边中点,连接AG并延长交BC边的延长线于E 点,对角线BD交AG于F点.已知FG=2,则线段AE的长度为()A.6B.8C.10D.12解:∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故选:D.9.把函数y=(x﹣1)2+2图象向左平移1个单位长度,平移后图象的函数解析式为()A.y=x2+2B.y=(x﹣1)2+1C.y=(x﹣2)2+2D.y=(x﹣1)2+3解:∵原抛物线的顶点为(1,2),∴向左平移1个单位后,得到的顶点为(0,2),∴平移后图象的函数解析式为y=x2+2.故选:A.10.已知抛物线y=x2+2x+k+1与x轴有两个不同的交点,则一次函数y=kx﹣k与反比例函数y=在同一坐标系内的大致图象是()A.B.C.D.解:∵抛物线y=x2+2x+k+1与x轴有两个不同的交点,∴△=4﹣4(k+1)>0,解得k<0,∴一次函数y=kx﹣k的图象经过第一二四象限,反比例函数y=的图象在第二四象限,故选:D.11.如图,正方形ABCD的顶点A的坐标为(﹣1,0),点D在反比例函数y=的图象上,B点在反比例函数y=的图象上,AB的中点E在y轴上,则m的值为()A.﹣2B.﹣3C.﹣6D.﹣8解:作DM⊥x轴于M,BN⊥x轴于N,如图,∵点A的坐标为(﹣1,0),∴OA=1,∵AE=BE,BN∥y轴,∴OA=ON=1,∴AN=2,B的横坐标为1,把x=1代入y=,得y=2,∴B(1,2),∴BN=2,∵四边形ABCD为正方形,∴AD=AB,∠DAB=90°,∴∠MAD+∠BAN=90°,而∠MAD+∠ADM=90°,∴∠BAN=∠ADM,在△ADM和△BAN中,∴△ADM≌△BAN(AAS),∴DM=AN=2,AM=BN=2,∴OM=OA+AM=1+2=3,∴D(﹣3,2),∵点D在反比例函数y=的图象上,∴m=﹣3×2=﹣6,故选:C.12.二次函数y=ax2+bx+c(a≠0)的顶点坐标为(﹣1,n),其部分图象如图所示.以下结论错误的是()A.abc>0B.4ac﹣b2<0C.3a+c>0D.关于x的方程ax2+bx+c=n+1无实数根解:A.∵抛物线开口向下,∴a<0,∵对称轴为直线x=﹣=﹣1,∴b=2a<0,∵抛物线与y轴交于正半轴,∴c>0,∴abc>0,故A正确;B.∵抛物线与x轴有两个交点,∴b2﹣4ac>0,即4ac﹣b2<0,故B正确;C.∵抛物线的对称轴为直线x=﹣1,抛物线与x轴的一个交点在(﹣3,0)和(﹣2,0)之间,∴抛物线与x轴的另一个交点在(0,0)和(1,0)之间,∴x=1时,y<0,即a+b+c<0,∵b=2a,∴3a+c<0,故C错误;D.∵抛物线开口向下,顶点为(﹣1,n),∴函数有最大值n,∴抛物线y=ax2+bx+c与直线y=n+1无交点,∴一元二次方程ax2+bx+c=n+1无实数根,故D正确.故选:C.二、填空题(每题4分,共24分)13.小明沿着坡度i为1:的直路向上走了50m,则小明沿垂直方向升高了25m.解:如图,过点B作BE⊥AC于点E,∵坡度:i=1:,∴tan∠A=1:=,∴∠A=30°,∵AB=50m,∴BE=AB=25(m).∴他升高了25m.故答案为:25.14.如图,设点P在函数的图象上,PC⊥x轴于点C,交函数y=的图象于点A,PD ⊥y轴于点D,交函数y=的图象于点B,则四边形PAOB的面积为3.解:根据题意,S四边形PCOD=PC•PD=5,S△OBD=S△OAC=×2=1,所以,四边形PAOB的面积=S四边形PCOD﹣S△OBD﹣S△OAC=5﹣1﹣1=3.故答案为:3.15.若二次函数:y=ax2+bx+c的x与y的部分对应值如表,则当x=1时,y的值为﹣27.x﹣7﹣6﹣5﹣4﹣3﹣2y﹣27﹣13﹣3353解:由表中数据当x=﹣2,﹣4时对应的y值相等,故对称轴为直线x=﹣3,则x=1时与x=﹣7时对应的y的值相等,故当x=1时,y的值为﹣27.故答案为:﹣27.16.如图,弦CD垂直于⊙O的直径AB,垂足为H,且OB=13,CD=24,则OH的长是5.解:连接OC,如图所示:∵AB是⊙O的直径,CD⊥AB,∴CH=CD=12,在Rt△OCH中,OH===5,故答案为:5.17.在菱形ABCD中,DE⊥AB,,BE=2,则tan∠DBE的值是2.解:设菱形ABCD边长为t,∵BE=2,∴AE=t﹣2,∵cos A=,∴,∴=,∴t=5,∴AE=5﹣2=3,∴DE==4,∴tan∠DBE===2.故答案为:2.18.如图,在边长为6的正方形ABCD中,点M为对角线BD上一动点,ME⊥BC于E,MF⊥CD于F,则EF的最小值为3.解:连接MC,如图所示:∵四边形ABCD是正方形,∴∠C=90°,∠DBC=45°,∵ME⊥BC于E,MF⊥CD于F,∴四边形MECF为矩形,∴EF=MC,当MC⊥BD时,MC取得最小值,此时△BCM是等腰直角三角形,∴MC=BC=×6=3,∴EF的最小值为3;故答案为:3.三、解答题(本题共7道大题满分60分)19.计算:4sin60°﹣|﹣2|+20210﹣+()﹣1.解:原式=4×﹣(2﹣)+1﹣2+4=2﹣2++1﹣2+4=+3.20.如图,AB是公园的一圆形桌面的主视图,MN表示该桌面在路灯下的影子;CD则表示一个圆形的凳子.(1)请你在图中标出路灯O的位置,并画出CD的影子PQ(要求保留画图痕迹,光线用虚线表示);(2)若桌面直径和桌面与地面的距离均为1.2m,测得影子的最大跨度MN为2m,求路灯O与地面的距离.解:(1)如图,延长MA、NB,它们的交点为O的,再连接OC、OD,并延长交地面与P、Q点,则PQ为CD的影子,所以点O和PQ为所作;(2)作OF⊥MN交AB于E,如图,AB=1.2m,EF=1.2m,MN=2m,∵AB∥MN,∴△OAB∽△OMN,∴AB:MN=OE:OF,即1.2:2=(OF﹣1.2):OF,解得OF=3(m).答:路灯O与地面的距离为3m.21.如图,直线l:y=x﹣1与反比例函数y=相交于点A、B两点,过点A作AC⊥x轴,垂足为点C,且AC=1.(1)求反比例函数y=的解析式;(2)观察图象,直接写出不等式x﹣>1的解集.解:(1)∵AC=1,故点A的纵坐标为1,则x﹣1=1,解得x=3,故点A(3,1),将点A的坐标代入y=得,1=,解得k=3,故反比例函数表达式为y=;(2)观察函数图象知,不等式x﹣>1的解集为﹣<x<0或x>3.22.枣庄某学校为了解全校学生线上学习情况,随机选取该校部分学生,调查学生居家学习时每天学习时间(包括线上听课及完成作业时间).如图是根据调查结果绘制的统计图表.请你根据图表中的信息完成下列问题:频数分布表学习时间分组频数频率A组(0≤x<1)9mB组(1≤x<2)180.3C组(2≤x<3)180.3D组(3≤x<4)n0.2E组(4≤x<5)30.05(1)频数分布表中m=0.15,n=12,并将频数分布直方图补充完整;(2)若该校有学生1000名,现要对每天学习时间低于2小时的学生进行提醒,根据调查结果,估计全校需要提醒的学生有450名.(3)已知调查的E组学生中有2名男生1名女生,老师随机从中选取2名学生进一步了解学生居家学习情况,请用树状图或列表求所选2名学生恰为一男生一女生的概率.解:(1)根据频数分布表可知:m=1﹣0.3﹣0.3﹣0.2﹣0.05=0.15,∵18÷0.3=60(人),∴n=60﹣9﹣18﹣18﹣3=12(人),补充完整的频数分布直方图如下:故答案为:0.15,12;(2)根据题意可知:1000×(0.15+0.3)=450(名),答:估计全校需要提醒的学生有450名;(3)设2名男生用A,B表示,1名女生用C表示,根据题意,画出树状图如下:根据树状图可知:等可能的结果共有6种,符合条件的有4种,所以所选2名学生恰为一男生一女生的概率为=.23.如图所示,制作一种产品的同时,需将原材料加热,设该材料温度为y℃,从加热开始计算的时间为x分钟.据了解,该材料在加热过程中温度y与时间x成一次函数关系,已知该材料在加热前的温度为15℃,加热5分钟使材料温度达到60℃时停止加热,停止加热后,材料温度逐渐下降,这时温度y与时间x成反比例函数关系.(1)分别求出该材料加热和停止加热过程中y与x的函数关系(要写出x的取值范围);(2)根据工艺要求,在材料温度不低于30℃的这段时间内,需要对该材料进行特殊处理,那么对该材料进行特殊处理所用的时间为多少分钟?解:(1)设加热过程中一次函数表达式为y=kx+b(k≠0),该函数图象经过点(0,15),(5,60),即,∴一次函数的表达式为y=9x+15(0≤x≤5),设加热停止后反比例函数表达式为y=(a≠0),该函数图象经过点(5,60),即=60,解得:a=300,所以反比例函数表达式为y=(x≥5);(2)由题意得:,解得x1=,,解得x2=10,则x2﹣x1=10﹣=,所以对该材料进行特殊处理所用的时间为分钟.24.如图,已知四边形ABCD和四边形DEFG为正方形,点E在线段DC上,点A,D,G 在同一直线上,且AD=3,DE=1,连接AC,CG,AE,并延长AE交CG于点H.(1)求sin∠EAC的值.(2)求线段AH的长.解:(1)作EM⊥AC于M.∵四边形ABCD是正方形,∴∠ADC=90°,AD=DC=3,∠DCA=45°,∴在RT△ADE中,∵∠ADE=90°,AD=3,DE=1,∴AE==,在RT△EMC中,∵∠EMC=90°,∠ECM=45°,EC=2,∴EM=CM=,∴在RT△AEM中,sin∠EAM===.(2)在△GDC和△EDA中,,∴△GDC≌△EDA,∴∠GCD=∠EAD,GC=AE=,∵∠DAE+∠AED=90°,∠DEA=∠CEH,∴∠DCG+∠HEC=90°,∴∠EHC=90°,∴AH⊥GC,∵S△AGC=•AG•DC=•GC•AH,∴×4×3=××AH,∴AH=.25.如图,在平面直角坐标系中,正方形OABC的边长为4,顶点A、C分别在x轴、y轴的正半轴,抛物线y=﹣+bx+c经过B、C两点,点D为抛物线的顶点,连接AC、BD、CD.(1)求此抛物线的解析式;(2)根据图象直接写出﹣+bx+c>4时自变量x的取值范围;(3)求此抛物线顶点D的坐标和四边形ABDC的面积.解:(1)∵正方形OABC的边长为4,∴OC=BC=AB=OA=4,∴C(0,4),B(4,4),∵抛物线y=﹣x2+bx+c经过B,C两点,∴,解得,∴抛物线解析式为y=﹣x2+2x+4;(2)由图象可知,﹣+bx+c>4时自变量x的取值范围是0<x<4;(3)∵y=﹣x2+2x+4=﹣(x﹣2)2+6,∴D(2,6),∴D到BC的距离为6﹣4=2,∴S四边形ABDC=S△ABC+S△BCD=×4×4+×4×2=12.四、能力拓展题(满分20分)26.如图,在平面直角坐标系中,△ABC的顶点坐标分别为A(﹣1,1),B(0,﹣2),C(1,0),点P(0,2)绕点A旋转180°得到点P1,P1绕点B旋转180°得到点P2,P2绕点C旋转180°得到点P3,P3绕点A旋转180°得到点P4,…,按此作法进行下去,则点P2021的坐标为(2,﹣2).解:画图可知:P1(﹣2,0),P2(2,﹣4),P3(0,4),P4(﹣2,﹣2),P5(2,﹣2),P6(0,2),∵6次一个循环,2021÷6=336…5,∴P2021(2,﹣2).故答案为:(2,﹣2).27.如图,在正方形ABCD中,点M、N为边BC和CD上的动点(不含端点),∠MAN =45°,下列四个结论:①当MN=MC时,则∠BAM=22.5°;②2∠AMN﹣∠MNC =90°;③△MNC的周长不变;④∠AMN﹣∠AMB=60°.其中正确结论的序号是①②③.解:①:∵正方形ABCD中,AB=AD,∠B=∠ADC=∠C=90°∴MN2=MC2+NC2当MN=MC时,MN2=2MC2,∴MC2=NC2,∴MC=NC,∴BM=DN,∴△ABM≌△ADN(SAS)∴∠BAM=∠DAN,∵∠MAN=45°,∴∠BAM=22.5°,故①正确;②:如图,将△ABM绕点A顺时针旋转90°得△ADE,则∠EAN=∠EAM﹣∠MAN=90°﹣45°=45°,则在△EAN和△MAN中,,∴△EAN≌△MAN(SAS)∴∠AMN=∠AED,∴∠AED+∠EAM+∠ENM+∠AMN=360°,∴2∠AMN+90°+(180°﹣∠MNC)=360°,∴2∠AMN﹣∠MNC=90°,故②正确;③:∵△EAN≌△MAN,∴MN=EN=DE+DN=BM+DN,∴△MNC的周长为:MC+NC+MN=(MC+BM)+(NC+DN)=DC+BC,∵DC和BC均为正方形ABCD的边长,故△MNC的周长不变.故③正确;④如图,将△ADN绕点A逆时针旋转90°得△ABF,∴∠MAF=90°﹣∠MAN=45°,∴∠MAN=∠MAF,在△MAN和△MAF中,,∴△MAN≌△MAF(SAS),∴∠AMN=∠AMB,故④错误.综上①②③正确.故答案为:①②③.28.阅读以下材料:如果两个正数a,b,即a>0,b>0,则有下面的不等式:≥,当且仅当a=b 时取到等号,我们把叫做正数a,b的算术平均数,把叫做正数a,b的几何平均数,于是上述不等式可表述为:两个正数的算术平均数不小于(即大于或等于)它们的几何平均数.它在数学中有广泛的应用,是解决最大(小)值问题的有力工具,下面举一例子:例:已知x>0,求函数y=x+的最小值.解:令a=x,b=,则由a+b≥2,得y=x+≥2=4,当且仅当x=时,即x=2时,函数有最小值,最小值为4.根据上面回答下列问题:①已知x>0,则当x=时,函数y=2x+取到最小值,最小值为2;②已知x>0,则自变量x取何值时,函数y=有最大值,并求出最大值.解:①∵x>0,则2x>0,>0,故y=2x+≥2=2,当且仅当2x=,即x=时,函数有最小值为2,故答案为,2;②设y′===x+﹣2,∵x>0,则>0,故y′===x+﹣2≥2﹣2=4,当且仅当x=,即x=3时,y′的最小值为4,则y的最大值为,故自变量x=3时,函数y=最大值是.。

2019年枣庄市初三数学上期末模拟试题(附答案)

2019年枣庄市初三数学上期末模拟试题(附答案)

2019年枣庄市初三数学上期末模拟试题(附答案)一、选择题1.若一元二次方程x2﹣2x+m=0有两个不相同的实数根,则实数m的取值范围是()A.m≥1B.m≤1C.m>1D.m<12.如图,在5×5正方形网格中,一条圆弧经过A、B、C三点,那么这条圆弧所在的圆的圆心为图中的()A.M B.P C.Q D.R3.关于x的方程(m﹣3)x2﹣4x﹣2=0有两个不相等的实数根,则实数m的取值花围是()A.m≥1B.m>1C.m≥1且m≠3D.m>1且m≠3 4.把抛物线y=﹣2x2向上平移1个单位,再向右平移1个单位,得到的抛物线是()A.y=﹣2(x+1)2+1B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1D.y=﹣2(x+1)2﹣15.已知二次函数y=ax2+bx+c(a>0)的图象经过(0,1),(4,0),当该二次函数的自变量分别取x1,x2(0<x1<x2<4)时,对应的函数值是y1,y2,且y1=y2,设该函数图象的对称轴是x=m,则m的取值范围是()A.0<m<1B.1<m≤2C.2<m<4D.0<m<46.如图,AC是⊙O的内接正四边形的一边,点B在弧AC上,且BC是⊙O的内接正六边形的一边.若AB是⊙O的内接正n边形的一边,则n的值为()A.6B.8C.10D.127.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是()A.12B.14C.16D.1128.用配方法解方程x2+2x﹣5=0时,原方程应变形为()A.(x﹣1)2=6 B.(x+1)2=6 C.(x+2)2=9 D.(x﹣2)2=9 9.“射击运动员射击一次,命中靶心”这个事件是()A.确定事件 B.必然事件 C.不可能事件 D.不确定事件10.下列对二次函数y=x 2﹣x 的图象的描述,正确的是( )A .开口向下B .对称轴是y 轴C .经过原点D .在对称轴右侧部分是下降的 11.已知点P (﹣b ,2)与点Q (3,2a )关于原点对称点,则a 、b 的值分别是( )A .﹣1、3B .1、﹣3C .﹣1、﹣3D .1、3 12.如图,AOB V 中,30B ∠=︒.将AOB V 绕点O 顺时针旋转52︒得到A OB ''△,边A B ''与边OB 交于点C (A '不在OB 上),则A CO '∠的度数为( )A .22︒B .52︒C .60︒D .82︒二、填空题13.如图,将二次函数y =12 (x -2)2+1的图像沿y 轴向上平移得到一条新的二次函数图像,其中A (1,m ),B (4,n )平移后对应点分别是A′、B′,若曲线AB 所扫过的面积为12(图中阴影部分),则新的二次函数对应的函数表达是__________________.14.己知抛物线2114y x =+具有如下性质:该抛物线上任意一点到定点F(0,2)的距离与到x 轴的距离始终相等,如图,点M 的坐标为(3,3),P 是抛物线2114y x =+上一个动点,则△PMF 周长的最小值是__________.15.一个扇形的圆心角为135°,弧长为3πcm ,则此扇形的面积是_____cm 2.16.如图,Rt △ABC 中,∠C =90°,AC =30cm ,BC =40cm ,现利用该三角形裁剪一个最大的圆,则该圆半径是_____cm .17.一元二次方程22x 20-=的解是______.18.在平面直角坐标系中,抛物线y =x 2的图象如图所示.已知A 点坐标为(1,1),过点A 作AA 1∥x 轴交抛物线于点A 1,过点A 1作A 1A 2∥OA 交抛物线于点A 2,过点A 2作A 2A 3∥x 轴交抛物线于点A 3,过点A 3作A 3A 4∥OA 交抛物线于点A 4……,依次进行下去,则点A 2019的坐标为_______.19.如图,如果一只蚂蚁从圆锥底面上的点B 出发,沿表面爬到母线AC 的中点D 处,则最短路线长为_____.20.飞机着陆后滑行的距离s (单位:m )关于滑行的时间t (单位:s )的函数解析式是s =60t ﹣1.5t 2,飞机着陆后滑行_____米才能停下来.三、解答题21.用你喜欢的方法解方程(1)x 2﹣6x ﹣6=0(2)2x 2﹣x ﹣15=022.伴随经济发展和生活水平的日益提高,水果超市如雨后春笋般兴起.万松园一水果超市从外地购进一种水果,其进货成本是每吨0.4万元,根据市场调查,这种水果在市场上的销售量y (吨)与销售价x (万元)之间的函数关系为y =-x +2.6(1)当每吨销售价为多少万元时,销售利润为0.96万元?(2)当每吨销售价为多少万元时利润最大?并求出最大利润是多少?23.如图,某小区规划在一个长16m ,宽9m 的矩形场地ABCD 上,修建同样宽的小路,使其中两条与AB 平行,另一条与AD 平行,其余部分种草,若草坪部分总面积为112m 2,求小路的宽.24.某地区2013年投入教育经费2500万元,2015年投入教育经费3025万元. (1)求2013年至2015年该地区投入教育经费的年平均增长率;(2)根据(1)所得的年平均增长率,预计2016年该地区将投入教育经费多少万元.25.如图,在平面直角坐标系xOy 中,A (﹣2,0),B (0,3),C (﹣4,1).以原点O 为旋转中心,将△ABC 顺时针旋转90°得到△A 'B 'C ',其中点A ,B ,C 旋转后的对应点分别为点A ',B ',C '.(1)画出△A 'B 'C ',并写出点A ',B ',C '的坐标;(2)求经过点B ',B ,A 三点的抛物线对应的函数解析式.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】分析:根据方程的系数结合根的判别式△>0,即可得出关于m 的一元一次不等式,解之即可得出实数m 的取值范围.详解:∵方程2x 2x m 0-+=有两个不相同的实数根,∴()2240m =-->V ,解得:m <1.故选D .点睛:本题考查了根的判别式,牢记“当△>0时,方程有两个不相等的实数根”是解题的关键.2.C解析:C【解析】【分析】根据垂径定理的推论:弦的垂直平分线必过圆心,分别作AB ,BC 的垂直平分线即可得到答案.【详解】解:作AB 的垂直平分线,作BC 的垂直平分线,如图,它们都经过Q ,所以点Q 为这条圆弧所在圆的圆心.故选:C .【点睛】本题考查了垂径定理的推论:弦的垂直平分线必过圆心.这也常用来确定圆心的方法.3.D解析:D【解析】【分析】根据二次项系数非零及根的判别式列出关于m 的一元一次不等式组,然后方程组即可.【详解】解:∵(m-3)x 2-4x-2=0是关于x 的方程有两个不相等的实数根,∴230(4)4(3)(2)0m m -≠⎧⎨∆=---⨯->⎩解得:m>1且m ≠3.故答案为D.【点睛】本题考查了根的判别式以及一元二次方程的定义,正确运用一元二次方程的定义和根的判别式解题是解答本题的关键.4.B解析:B【解析】【详解】∵函数y=-2x 2的顶点为(0,0),∴向上平移1个单位,再向右平移1个单位的顶点为(1,1),∴将函数y=-2x 2的图象向上平移1个单位,再向右平移1个单位,得到抛物线的解析式为y=-2(x-1)2+1,故选B .【点睛】二次函数的平移不改变二次项的系数;关键是根据上下平移改变顶点的纵坐标,左右平移改变顶点的横坐标得到新抛物线的顶点.5.C解析:C【解析】【分析】根据二次函数图象上点的坐标特征即可求得.【详解】解:当a>0时,抛物线开口向上,则点(0,1)的对称点为(x0,1),∴x0>4,∴对称轴为x=m中2<m<4,故选C.【点睛】本题考查了二次函数的性质,二次函数图象上点的坐标特征,画出草图更直观.6.D解析:D【解析】【分析】连接AO、BO、CO,根据中心角度数=360°÷边数n,分别计算出∠AOC、∠BOC的度数,根据角的和差则有∠AOB=30°,根据边数n=360°÷中心角度数即可求解.【详解】连接AO、BO、CO,∵AC是⊙O内接正四边形的一边,∴∠AOC=360°÷4=90°,∵BC是⊙O内接正六边形的一边,∴∠BOC=360°÷6=60°,∴∠AOB=∠AOC﹣∠BOC=90°﹣60°=30°,∴n=360°÷30°=12;故选:D.【点睛】本题考查正多边形和圆,解题的关键是根据正方形的性质、正六边形的性质求出中心角的度数.7.C解析:C【解析】【分析】画树状图求出共有12种等可能结果,符合题意得有2种,从而求解.【详解】解:画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况,∴两次都摸到白球的概率是:21 126.故答案为C.【点睛】本题考查画树状图求概率,掌握树状图的画法准确求出所有的等可能结果及符合题意的结果是本题的解题关键.8.B解析:B【解析】x2+2x﹣5=0,x2+2x=5,x2+2x+1=5+1,(x+1)2=6,故选B.9.D解析:D【解析】试题分析:“射击运动员射击一次,命中靶心”这个事件是随机事件,属于不确定事件,故选D .考点:随机事件.10.C解析:C【解析】【分析】根据抛物线的开口方向、对称轴公式以及二次函数性质逐项进行判断即可得答案.【详解】A 、∵a=1>0,∴抛物线开口向上,选项A 不正确;B 、∵﹣122b a =,∴抛物线的对称轴为直线x=12,选项B 不正确; C 、当x=0时,y=x 2﹣x=0,∴抛物线经过原点,选项C 正确; D 、∵a >0,抛物线的对称轴为直线x=12, ∴当x >12时,y 随x 值的增大而增大,选项D 不正确, 故选C .【点睛】本题考查了二次函数的性质:二次函数y=ax 2+bx+c (a≠0),对称轴直线x=-2b a,当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,c=0时抛物线经过原点,熟练掌握相关知识是解题的关键.11.A解析:A【解析】【分析】让两个横坐标相加得0,纵坐标相加得0即可求得a ,b 的值.【详解】解:∵P (-b ,2)与点Q (3,2a )关于原点对称点,∴-b+3=0,2+2a=0,解得a=-1,b=3,故选A .【点睛】用到的知识点为:两点关于原点对称,这两点的横纵坐标均互为相反数;互为相反数的两个数和为0.12.D解析:D【解析】【分析】根据旋转的性质可得∠B ′=∠B =30°,∠BOB ′=52°,再由三角形外角的性质即可求得A CO ∠'的度数.【详解】∵△A′OB′是由△AOB绕点O顺时针旋转得到,∠B=30°,∴∠B′=∠B=30°,∵△AOB绕点O顺时针旋转52°,∴∠BOB′=52°,∵∠A′CO是△B′OC的外角,∴∠A′CO=∠B′+∠BOB′=30°+52°=82°.故选D.【点睛】本题主要考查了旋转的性质,熟知旋转的性质是解决问题的关键.二、填空题13.y=05(x-2)+5【解析】解:∵函数y=(x﹣2)2+1的图象过点A(1m)B (4n)∴m=(1﹣2)2+1=1n=(4﹣2)2+1=3∴A(11)B(43)过A作AC∥x 轴交B′B的延长线于点解析:y=0.5(x-2)2+5【解析】解:∵函数y=12(x﹣2)2+1的图象过点A(1,m),B(4,n),∴m=12(1﹣2)2+1=112,n=12(4﹣2)2+1=3,∴A(1,112),B(4,3),过A作AC∥x轴,交B′B的延长线于点C,则C(4,112),∴AC=4﹣1=3.∵曲线段AB扫过的面积为12(图中的阴影部分),∴AC•AA′=3AA′=12,∴AA′=4,即将函数y=12(x﹣2)2+1的图象沿y轴向上平移4个单位长度得到一条新函数的图象,∴新图象的函数表达式是y=12(x﹣2)2+5.故答案为y=0.5(x﹣2)2+5.点睛:本题主要考查了二次函数图象与几何变换以及平行四边形面积求法等知识,根据已知得出AA′是解题的关键.14.5【解析】【分析】过点M作ME⊥x轴于点EME与抛物线交于点P′由点P′在抛物线上可得出P′F=P′E结合点到直线之间垂线段最短及MF为定值即可得出当点P运动到点P′时△PMF周长取最小值【详解】解解析:5【解析】【分析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值.【详解】解:过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示.∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,22(30)(32)-+-=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.故答案为5.【点睛】本题考查了二次函数的性质、二次函数图象上点的坐标特征以及点到直线的距离,根据点到直线之间垂线段最短找出△PMF周长的取最小值时点P的位置是解题的关键. 15.【解析】分析:先求出扇形对应的圆的半径再根据扇形的面积公式求出面积即可详解:设扇形的半径为Rcm∵扇形的圆心角为135°弧长为3πcm∴=3π解得:R=4所以此扇形的面积为=6π(cm2)故答案为6解析:6π【解析】分析:先求出扇形对应的圆的半径,再根据扇形的面积公式求出面积即可.详解:设扇形的半径为Rcm,∵扇形的圆心角为135°,弧长为3πcm,∴135180Rπ⨯=3π,解得:R=4,所以此扇形的面积为21354180π⨯=6π(cm2),故答案为6π.点睛:本题考查了扇形的面积计算和弧长的面积计算,能熟记扇形的面积公式和弧长公式是解此题的关键.16.【解析】【分析】根据勾股定理求出的斜边AB再由等面积法即可求得内切圆的半径【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆设AC边上的切点为D连接OAOBOCOD∵∠ACB=90°AC解析:【解析】【分析】根据勾股定理求出的斜边AB,再由等面积法,即可求得内切圆的半径.【详解】由题意得:该三角形裁剪的最大的圆是Rt△ABC的内切圆,设AC边上的切点为D,连接OA、OB、OC,OD,∵∠ACB=90°,AC=30cm,BC=40cm,∴AB223040+50cm,设半径OD=rcm,∴S△ACB=12AC BC⋅=111AC r BC r AB r222⋅+⋅+⋅,∴30×40=30r+40r+50r,∴r=10,则该圆半径是 10cm.故答案为:10.【点睛】本题考查内切圆、勾股定理和等面积法的问题,属中档题.17.x1=1x2=-1【解析】分析:方程整理后利用平方根定义开方即可求出解详解:方程整理得:x2=1开方得:x=±1解得:x1=1x2=﹣1故答案为x1=1x2=﹣1点睛:本题考查了解一元二次方程﹣直接解析:x1=1,x2=-1【解析】分析:方程整理后,利用平方根定义开方即可求出解.详解:方程整理得:x2=1,开方得:x=±1,解得:x1=1,x2=﹣1.故答案为x1=1,x2=﹣1.点睛:本题考查了解一元二次方程﹣直接开平方法,熟练掌握直接开平方法是解答本题的关键.18.(-101010102)【解析】【分析】根据二次函数性质可得出点A1的坐标求得直线A1A2为y=x+2联立方程求得A2的坐标即可求得A3的坐标同理求得A4的坐标即可求得A5的坐标根据坐标的变化找出变解析:(-1010,10102)【解析】【分析】根据二次函数性质可得出点A1的坐标,求得直线A1A2为y=x+2,联立方程求得A2的坐标,即可求得A3的坐标,同理求得A4的坐标,即可求得A5的坐标,根据坐标的变化找出变化规律,即可找出点A2019的坐标.【详解】∵A点坐标为(1,1),∴直线OA为y=x,A1(-1,1),∵A1A2∥OA,∴直线A1A2为y=x+2,解22y x y x +⎧⎨⎩==得11xy-⎧⎨⎩==或24xy⎧⎨⎩==,∴A2(2,4),∴A3(-2,4),∵A3A4∥OA,∴直线A3A4为y=x+6,解26y x y x +⎧⎨⎩==得24xy-⎧⎨⎩==或39xy⎧⎨⎩==,∴A4(3,9),∴A5(-3,9)…,∴A2019(-1010,10102),故答案为(-1010,10102).【点睛】此题考查二次函数图象上点的坐标特征、一次函数的图象以及交点的坐标,根据坐标的变化找出变化规律是解题的关键.19.【解析】【分析】将圆锥侧面展开根据两点之间线段最短和勾股定理即可求得蚂蚁的最短路线长【详解】如图将圆锥侧面展开得到扇形ABB′则线段BF 为所求的最短路线设∠BAB′=n°∵∴n=120即∠BAB′=【解析】【分析】将圆锥侧面展开,根据“两点之间线段最短”和勾股定理,即可求得蚂蚁的最短路线长.【详解】如图将圆锥侧面展开,得到扇形ABB′,则线段BF为所求的最短路线.设∠BAB′=n°.∵64 180nππ⋅=,∴n=120,即∠BAB′=120°.∵E为弧BB′中点,∴∠AFB=90°,∠BAF=60°,Rt△AFB中,∠ABF=30°,AB=6∴AF=3,BF2263-=3,∴最短路线长为3.故答案为:3【点睛】本题考查“化曲面为平面”求最短路径问题,属中档题.20.600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得【详解】∵s=60t﹣15t2=﹣t2+60t=﹣(t﹣20)2+600∴当t=20时s取得最大值6 00即飞机着陆后滑行600米才能解析:600【解析】【分析】将函数解析式配方成顶点式求出s的最大值即可得.【详解】∵s=60t﹣1.5t2,=﹣32t2+60t,=﹣32(t﹣20)2+600,∴当t=20时,s取得最大值600,即飞机着陆后滑行600米才能停下来,故答案为:600.【点睛】此题考查二次函数解析式的配方法,利用配方法将函数解析式化为顶点式由此得到函数的最值是一种很重要的解题方法.三、解答题21.(1)x1=x2=32)x1=﹣2.5,x2=3【解析】【分析】(1)先求出b2﹣4ac的值,再代入公式求出即可;(2)先分解因式,即可得出两个一元一次方程,求出方程的解即可.【详解】x2﹣6x﹣6=0,∵a=1,b=-6,c=-6,∴b2﹣4ac=(﹣6)2﹣4×1×(﹣6)=60,x3=x1=x2=3(2)2x2﹣x﹣15=0,(2x+5)(x﹣3)=0,2x+5=0,x﹣3=0,x1=﹣2.5,x2=3.【点睛】此题考查一元二次方程的解法,根据每个方程的特点选择适合的方法是关键,由此才能使计算更简便.22.(1)当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【解析】【分析】(1)由销售量y=-x+2.6,而每吨的利润为x-0.4,所以w=y(x-0.4);(2)解出(2)中的函数是一个二次函数,对于二次函数取最值可使用配方法.【详解】解:(1)设销售利润为w万元,由题意可得:w=(x-0.4)y=(x-0.4)(-x+2.6)=-x2+3x-1.04,令w=0.96,则-x2+3x-1.04=0.96解得x1=1,x2=2,答:当每吨销售价为1万元或2万元时,销售利润为 0.96万元;(2)w=-x2+3x-1.04=-(x-1.5)2+1.21,当x=1.5时,w最大=1.21,∴每吨销售价为1.5万元时,销售利润最大,最大利润是1.21万元.【点睛】本题考查了一元二次方程的应用和二次函数的应用,解题的关键是掌握题中的数量关系,列出相应方程和函数表达式.23.小路的宽为1m.【解析】【分析】如果设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m,根据题意即可得出方程.【详解】设小路的宽度为xm,那么整个草坪的长为(16﹣2x)m,宽为(9﹣x)m.根据题意得:(16﹣2x)(9﹣x)=112解得:x1=1,x2=16.∵16>9,∴x=16不符合题意,舍去,∴x=1.答:小路的宽为1m.【点睛】本题考查了一元二次方程的应用,弄清“整个草坪的长和宽”是解决本题的关键.24.10%;3327.5万元.【解析】试题分析:(1)一般用增长后的量=增长前的量×(1+增长率),2015年要投入教育经费是2500(1+x)万元,在2015年的基础上再增长x,就是2016年的教育经费数额,即可列出方程求解.(2)利用2016年的经费×(1+增长率)即可.试题解析:(1)设增长率为x,根据题意2015年为2500(1+x)万元,2016年为2500(1+x)(1+x)万元.则2500(1+x)(1+x)=3025,解得x=0.1=10%,或x=﹣2.1(不合题意舍去).答:这两年投入教育经费的平均增长率为10%.(2)3025×(1+10%)=3327.5(万元).故根据(1)所得的年平均增长率,预计2017年该地区将投入教育经费3327.5万元.25.(1)见解析;(2)抛物线的解析式为y=﹣12x2+12x+3.【解析】【分析】(1)分别作出A,B,C的对应点A′,B′,C′即可.(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入求出a即可.【详解】解:(1)如图△A'B'C'即为所求.A′(0,2),B′(3,0),C′(1,4)(2)设抛物线的解析式为y=a(x+2)(x﹣3),把B(0,3)代入得到a=﹣12,∴抛物线的解析式为y=﹣12x2+12x+3.【点睛】本题考查的知识点是求抛物线解析式以及图形的旋转变换,根据旋转的性质得出A′,B′,C′的坐标是解此题的关键.。

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题含解析

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题含解析

山东省枣庄薛城区五校联考2024届九年级数学第一学期期末统考模拟试题注意事项1.考生要认真填写考场号和座位序号。

2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。

第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。

3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。

一、选择题(每题4分,共48分)1.如图,点G 是△ABC 的重心,下列结论中正确的个数有( ) ①12DG GB =;②AE ED AB BC =;③△EDG ∽△CBG ;④14EGDBGC S S =.A .1个B .2个C .3个D .4个 2.若3a b +=,2a b -=,则22a b -的值为( ) A .6 B .23 C .5 D .63.如图,O 是坐标原点,菱形OABC 顶点A 的坐标为()3,4-,顶点C 在x 轴的负半轴上,反比例函数k y x=的图象经过顶点B ,则k 的值为( )A .12-B .20-C .32-D .36-4.已知点()()121,,2,A y B y -都在双曲线3m y x +=上,且12y y >,则m 的取值范围是( ) A .m 0< B .0m > C .3m >-D .m 3<- 5.函数y=mx 2+2x+1的图像 与x 轴只有1个公共点,则常数m 的值是( )A .1B .2C .0,1D .1,26.已知二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),当x≥2时,y 随x 的增大而增大,且-2≤x≤1时,y 的最大值为9,则a 的值为( )A .1或2-B .-2或2C .2D .1 7.如图,AB 为O 的切线,切点为A ,连接AO BO 、,BO 与O 交于点C ,延长BO 与O 交于点D ,连接AD ,若36ABO ∠=,则ADC ∠的度数为( )A .54B .36C .32D .27 8.已知23x y =,则x y等于( ) A .2 B .3 C .23 D .329.二次三项式243x x -+配方的结果是( )A .2(2)7x -+B .2(2)1x --C .2(2)7x ++D .2(2)1x +-10.关于x 的一元二次方程2(3)(2)0x x p ---=的根的情况是()A .有两个不相等的实数根B .没有实数根C .有两个相等的实数根D .不确定11.如图,E 为平行四边形ABCD 的边AB 延长线上的一点,且BE:AB=2:3,△BEF 的面积为4,则平行四边形ABCD 的面积为()A .30B .27C .14D .3212.四条线段a b c d ,,,成比例,其中a =3cm ,4d cm =,6c cm =,则b 等于( ) A .2㎝ B .29㎝ C .92cm D .8㎝二、填空题(每题4分,共24分)13.点P (﹣6,3)关于x 轴对称的点的坐标为______.14.已知正六边形ABCDEF 3,则正六边形的半径为________cm.15.一个圆锥的母线长为5cm,底面圆半径为3 cm,则这个圆锥的侧面积是____ cm².(结果保留).16.若两个相似三角形的周长比为2:3,则它们的面积比是_________.17.如图,是用卡钳测量容器内径的示意图.量得卡钳上A,D两端点的距离为4cm,25AO DOOC OB==,则容器的内径BC的长为_____cm.18.请写出一个开口向下,且与y轴的交点坐标为(0,4)的抛物线的表达式_____.三、解答题(共78分)19.(8分)如图,AB是⊙O的直径,AC BC=,E是OB的中点,连接CE并延长到点F,使EF=CE.连接AF交⊙O于点D,连接BD,BF.(1)求证:直线BF是⊙O的切线;(2)若OB=2,求BD的长.20.(8分)如图,方格纸中有三个点A B C,,,要求作一个四边形使这三个点在这个四边形的边(包括顶点)上,且四边形的顶点在方格的顶点上.(1)在图甲中作出的四边形是中心对称图形但不是轴对称图形;(2)在图乙中作出的四边形是轴对称图形但不是中心对称图形;(3)在图丙中作出的四边形既是轴对称图形又是中心对称图形.(注:图甲、图乙、图丙在答题纸上)21.(8分)已知二次函数y =2x 2+4x+3,当﹣2≤x≤﹣1时,求函数y 的最小值和最大值,如图是小明同学的解答过程.你认为他做得正确吗?如果正确,请说明解答依据,如果不正确,请写出你得解答过程.22.(10分)如图,一次函数y kx b =+与反比例函数m y x =的图象交于(4,3)A ,点(2,)B n -两点,交x 轴于点C . (1)求m 、n 的值.(2)请根据图象直接写出不等式m kx b x+>的解集. (3)x 轴上是否存在一点D ,使得以A 、C 、D 三点为顶点的三角形是AC 为腰的等腰三角形,若存在,请直接写出符合条件的点D 的坐标,若不存在,请说明理由.23.(10分)如图,AD 是⊙O 的弦,AC 是⊙O 直径,⊙O 的切线BD 交AC 的延长线于点B ,切点为D ,∠DAC =30°.(1)求证:△ADB 是等腰三角形;(2)若BC =3,求AD 的长.24.(10分)如图,在△ABC 中,D 为AB 边上一点,∠B =∠ACD .(1)求证:△ABC ∽△ACD ;(2)如果AC =6,AD =4,求DB 的长.25.(12分)如图是数值转换机的示意图,小明按照其对应关系画出了y 与x 的函数图象(如图):(1)分别写出当0≤x≤4与x>4时,y与x的函数关系式:(2)求出所输出的y的值中最小一个数值;(3)写出当x满足什么范围时,输出的y的值满足3≤y≤1.26.一个四位数,记千位数字与个位数字之和为x,十位数字与百位数字之和为y,如果x y=,那么称这个四位数为“对称数”()1最小的“对称数”为;四位数A与2020之和为最大的“对称数”,则A的值为;()2一个四位的“对称数”M,它的百位数字是千位数字a的3倍,个位数字与十位数字之和为8,且千位数字a使得不等式组34214251x xx a--⎧-≤⎪⎨⎪->⎩恰有4个整数解,求出所有满足条件的“对称数”M的值.参考答案一、选择题(每题4分,共48分)1、D【分析】根据三角形的重心的概念和性质得到AE,CD是△ABC的中线,根据三角形中位线定理得到DE∥BC,DE=12BC,根据相似三角形的性质定理判断即可.【题目详解】解:∵点G是△ABC的重心,∴AE,CD是△ABC的中线,∴DE ∥BC ,DE =12BC , ∴△DGE ∽△BGC , ∴DG GB =12,①正确; AE ED AB BC=,②正确; △EDG ∽△CBG ,③正确;DE 12BC 4EGD BGC SS ⎛⎫== ⎪⎝⎭,④正确, 故选D .【题目点拨】本题考查三角形的重心的概念和性质,相似三角形的判定和性质,三角形中位线定理,掌握三角形的重心是三角形三条中线的交点,且重心到顶点的距离是它到对边中点的距离的2倍是解题关键.2、D【分析】先利用平方差公式得到22a b -=(a+b )(a-b ),再把a b +=a b -=【题目详解】解:22a b -=(a+b )(a-b ).故答案为D .【题目点拨】本题考查了平方差公式,把a+b 和a-b 看成一个整体是解题的关键.3、C【分析】根据点C 的坐标以及菱形的性质求出点B 的坐标,然后利用待定系数法求出k 的值即可. 【题目详解】∵()34A -,,∴5OA ==,∵四边形OABC 是菱形,∴AO=CB=OC=AB=5,则点B 的横坐标为358--=-,故B 的坐标为:()84-,, 将点B 的坐标代入k y x =得,48k =-, 解得:32k =-.故选:C .【题目点拨】本题考查了菱形的性质以及利用待定系数法求反比例函数解析式,解答本题的关键是根据菱形的性质求出点B 的坐标. 4、D【分析】分别将A ,B 两点代入双曲线解析式,表示出1y 和2y ,然后根据12y y >列出不等式,求出m 的取值范围.【题目详解】解:将A (-1,y 1),B (2,y 2)两点分别代入双曲线3m y x+=,得 13y m =--,232m y +=, ∵y 1>y 2,332m m +∴-->, 解得3m <-,故选:D .【题目点拨】本题考查了反比例函数图象上点的坐标特征,解不等式.反比例函数图象上的点的坐标满足函数解析式.5、C【解题分析】分两种情况讨论,当m=0和m ≠0,函数分别为一次函数和二次函数,由抛物线与x 轴只有一个交点,得到根的判别式的值等于0,列式求解即可.【题目详解】解:①若m=0,则函数y=2x+1,是一次函数,与x 轴只有一个交点;②若m ≠0,则函数y=mx 2+2x+1,是二次函数.根据题意得:b 2-4ac=4-4m=0,解得:m=1.∴m=0或m=1故选:C.【题目点拨】本题考查了一次函数的性质与抛物线与x 轴的交点,抛物线与x 轴的交点个数由根的判别式的值来确定.本题中函数可能是二次函数,也可能是一次函数,需要分类讨论,这是本题的容易失分之处.6、D【解题分析】先求出二次函数的对称轴,再根据二次函数的增减性得出抛物线开口向上a >0,然后由-2≤x≤1时,y 的最大值为9,可得x=1时,y=9,即可求出a .【题目详解】∵二次函数y=ax 2+2ax+3a 2+3(其中x 是自变量),∴对称轴是直线x=-22a a=-1, ∵当x≥2时,y 随x 的增大而增大,∴a >0,∵-2≤x≤1时,y 的最大值为9,∴x=1时,y=a+2a+3a 2+3=9,∴3a 2+3a-6=0,∴a=1,或a=-2(不合题意舍去).故选D .【题目点拨】本题考查了二次函数的性质,二次函数y=ax 2+bx+c (a≠0)的顶点坐标是(-2b a ,244ac b a -),对称轴直线x=-2b a ,二次函数y=ax 2+bx+c (a≠0)的图象具有如下性质:①当a >0时,抛物线y=ax 2+bx+c (a≠0)的开口向上,x <-2b a时,y 随x 的增大而减小;x >-2b a 时,y 随x 的增大而增大;x=-2b a 时,y 取得最小值244ac b a-,即顶点是抛物线的最低点.②当a <0时,抛物线y=ax 2+bx+c (a≠0)的开口向下,x <-2b a 时,y 随x 的增大而增大;x >-2b a时,y 随x 的增大而减小;x=-2b a 时,y 取得最大值244ac b a-,即顶点是抛物线的最高点. 7、D【分析】由切线性质得到AOB ∠,再由等腰三角形性质得到OAD ODA ∠=∠,然后用三角形外角性质得出ADC ∠【题目详解】切线性质得到90BAO ∠=903654AOB ∴∠=-=OD OA =OAD ODA ∠=∠∴AOB OAD ODA ∠=∠+∠27ADC ADO ∴∠=∠=故选D【题目点拨】本题主要考查圆的切线性质、三角形的外角性质等,掌握基础定义是解题关键8、D【题目详解】∵2x=3y , ∴32x y =. 故选D .9、B【解题分析】试题分析:在本题中,若所给的式子要配成完全平方式,常数项应该是一次项系数-4的一半的平方;可将常数项3拆分为4和-1,然后再按完全平方公式进行计算.解:x 2-4x+3=x 2-4x+4-1=(x-2)2-1.故选B .考点:配方法的应用.10、A【分析】将方程化简,再根据24b ac ∆=-判断方程的根的情况.【题目详解】解:原方程可化为22560x x p -+-=, 222(5)4(6)10p p ∴∆=---=+>所以原方程有两个不相等的实数根.故选:A【题目点拨】本题考查了一元二次方程根的情况,灵活利用∆的正负进行判断是解题的关键.当>0∆时,方程有两个不相等的实数根;当0∆=时,方程有两个不相等的实数根;当∆<0时,方程没有实数根. 11、A【解题分析】∵四边形ABCD 是平行四边形,∴AB//CD ,AB=CD ,AD//BC ,∴△BEF ∽△CDF ,△BEF ∽△AED , ∴22BEF BEF CDF AED S S BE BE S CD S AE ∆∆∆∆⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭, , ∵BE :AB=2:3,AE=AB+BE ,∴BE :CD=2:3,BE :AE=2:5, ∴44925BEF BEF CDF AED S S S S ∆∆∆∆==, ,∵S △BEF =4,∴S △CDF =9,S △AED =25,∴S 四边形ABFD =S △AED -S △BEF =25-4=21,∴S 平行四边形ABCD =S △CDF +S 四边形ABFD =9+21=30,故选A.【题目点拨】本题考查了平行四边形的性质,相似三角形的判定与性质等,熟记相似三角形的面积等于相似比的平方是解题的关键.12、A【分析】四条线段a ,b ,c ,d 成比例,则a b =c d,代入即可求得b 的值. 【题目详解】解:∵四条线段a ,b ,c ,d 成比例, ∴a b =c d, ∴b=ad c =346⨯ =2(cm ). 故选A .【题目点拨】本题考查成比例线段,解题关键是正确理解四条线段a ,b ,c ,d 成比例的定义.二、填空题(每题4分,共24分)13、 (﹣6,﹣3).【分析】根据“在平面直角坐标系中,关于x 轴对称的两点的坐标横坐标相同、纵坐标互为相反数”,即可得解.【题目详解】()6,3P -关于x 轴对称的点的坐标为()6,3--故答案为:()6,3--【题目点拨】本题比较容易,考查平面直角坐标系中关于x 轴对称的两点的坐标之间的关系,是需要识记的内容.14、1【题目详解】解:如图所示,连接OA 、OB ,过O 作OD ⊥AB ,∵多边形ABCDEF 是正六边形,∴∠OAD=60°,∴OD=OA•sin ∠ 解得:AO=1.故答案为1.【题目点拨】本题考查正多边形和圆,掌握解直角三角形的计算是解题关键.15、15π【分析】圆锥的侧面积=π×底面半径×母线长,把相应数值代入即可求解.【题目详解】解:圆锥的侧面积=π×3×5=15πcm2故答案为:15π.【题目点拨】本题考查圆锥侧面积公式的运用,掌握公式是关键.16、4∶1【解题分析】试题解析:∵两个相似三角形的周长比为2:3,∴这两个相似三角形的相似比为2:3,∴它们的面积比是4:1.考点:相似三角形的性质.17、1【分析】依题意得:△AOD∽△BOC,则其对应边成比例,由此求得BC的长度.【题目详解】解:如图,连接AD,BC,∵25AO DOOC OB==,∠AOD=∠BOC,∴△AOD∽△BOC,∴25 AD AOBC CO==,又AD=4cm,∴BC=52AD=1cm.故答案是:1.【题目点拨】本题考查相似三角形的判定与性质的实际应用及分析问题、解决问题的能力.利用数学知识解决实际问题是中学数学的重要内容.解决此问题的关键在于正确理解题意的基础上建立数学模型,把实际问题转化为数学问题.18、y=﹣x 2+4.【解题分析】试题解析:开口向下,则0.a <y 轴的交点坐标为()04,,4.c = 这个抛物线可以是2 4.y x =-+故答案为2 4.y x =-+三、解答题(共78分)19、(1)证明见解析;(2)BD=5. 【分析】(1)连接OC ,由已知可得∠BOC=90°,根据SAS 证明△OCE ≌△BFE ,根据全等三角形的对应角相等可得∠OBF=∠COE=90°,继而可证明直线BF 是⊙O 的切线;(2)由(1)的全等可知BF=OC=2,利用勾股定理求出AF 的长,然后由S △ABF =11··22AB BF AF BD =,即可求出BD=5. 【题目详解】解:(1)连接OC ,∵AB 是⊙O 的直径,AC BC =,∴∠BOC=90°,∵E 是OB 的中点,∴OE=BE ,在△OCE 和△BFE 中,OE BE OEC BEF CE EF =⎧⎪∠=∠⎨⎪=⎩,∴△OCE ≌△BFE (SAS ),∴∠OBF=∠COE=90°,∴直线BF 是⊙O 的切线;(2)∵OB=OC=2,由(1)得:△OCE ≌△BFE ,∴BF=OC=2,∴=∴S△ABF=11··22AB BF AF BD,即4×2=25BD,∴BD=455.【题目点拨】本题考查了切线的判定、全等三角形的判定与性质、勾股定理、三角形面积的不同表示方法,熟练掌握相关的性质与定理是解题的关键.20、(1)见解析;(2)见解析;(3)见解析.【分析】可以从特殊四边形着手考虑,平行四边形是中心对称图形但不是轴对称图形,等腰梯形是轴对称图形但不是中心对称图形,正方形既是轴对称图形又是中心对称图形【题目详解】解:如图:21、错误,见解析【分析】根据二次函数的性质和小明的做法,可以判断小明的做法是否正确,然后根据二次函数的性质即可解答本题.【题目详解】解:小明的做法是错误的,正确的做法如下:∵二次函数y=2x2+4x+1=2(x+1)2+1,∴该函数图象开口向上,该函数的对称轴是直线x=﹣1,当x=﹣1时取得最小值,最小值是1,∵﹣2≤x≤﹣1,∴当x=﹣2时取得最大值,此时y=1,当x=﹣1时取得最小值,最小值是y=1,由上可得,当﹣2≤x≤﹣1时,函数y的最小值是1,最大值是1.【题目点拨】本题考查二次函数的性质,关键在于熟记性质.22、 (1)12m =,6n =-;(2)4x >或20x -<<;(3)存在,点D 的坐标是(6,0)或(2或(2.【分析】(1)先把点A(4,3)代入m y x=求出m 的值,再把A(-2,n)代入求出n 即可; (2)利用图象法即可解决问题,写出直线的图象在反比例函数的图象上方的自变量的取值范围即可;(3)先求出直线AB 的解析式,然后分两种情况求解即可:①当AC=AD 时,②当CD=CA 时,其中又分为点D 在点C 的左边和右边两种情况.【题目详解】解:(1)∵反比例函数m y x =过点点A(4,3), ∴43m =, ∴12m =,12y x=, 把2x =-代入12y x =得6y =-, ∴6n =-;(2)由图像可知,不等式m kx b x+>的解集为4x >或20x -<<; (3)设直线AB 的解析式为y=kx+b ,把A(4,3),B(-2,-6),代入得4326k b k b +=⎧⎨-+=-⎩, 解得323k b ⎧=⎪⎨⎪=-⎩, ∴332y x =-, 当y=0时,3032x =-, 解得x=2,∴C(2,0),当AC=AD 时,作AH ⊥x 轴于点H ,则CH=4-2=2,∴CD 1=2CH=4,∴OD 1=2+4=6,∴D 1(6,0),当CD=CA 时,∵AC=()22423-+=13, ∴D 2(2+13,0),D 3(2-13,0),综上可知,点D 的坐标是(6,0)或(2+13,0)或(2-13,0).【题目点拨】本题考查了待定系数法求反比例函数和一次函数解析式,利用函数图象解不等式,等腰三角形的性质,坐标与图形的性质,勾股定理,以及分类讨论的数学思想.熟练掌握待定系数法和分类讨论的数学思想是解答本题的关键.23、(1)见解析;(2)AD =1.【分析】(1)根据切线的性质和等腰三角形的判定证明即可;(2)根据含10°角的直角三角形的性质解答即可.【题目详解】(1)证明:连接OD ,∵∠DAC =10°,AO=OD∴∠ADO =∠DAC =10°,∠DOC =60°∵BD 是⊙O 的切线,∴OD ⊥BD ,即∠ODB =90°,∴∠B =10°,∴∠DAC =∠B ,∴DA =DB ,即△ADB 是等腰三角形.(2)解:连接DC∵∠DAC =∠B =10°,∴∠DOC =60°,∵OD =OC ,∴△DOC 是等边三角形∵⊙O 的切线BD 交AC 的延长线于点B ,切点为D ,∴BC =DC =OC =3, ∴AD =2222(23)(3)3AC DC =-=-.【题目点拨】本题考查切线的判定和性质,解题的关键是根据切线的性质和等腰三角形的判定,以及勾股定理进行解题.24、(1)见解析;(2)DB =5.【分析】(1)根据两角相等的两个三角形相似即可证得结论;(2)根据相似三角形的对应边成比例即可求得AB 的长,进而可得结果. 【题目详解】解:(1)∵∠B =∠ACD ,∠A =∠A ,∴△ABC ∽△ACD ;(2)∵△ABC ∽△ACD ,∴AB AC AC AD =,即664AB =,解得AB =9,∴DB =AB -AD =5. 【题目点拨】本题考查了相似三角形的判定和性质,属于基础题型,熟练掌握相似三角形的判定和性质是解题关键.25、(1)当时,y=34x+3; 当时 y=(x-1)2+2(2)最小值2 (3) 0≤x≤5或7≤x≤2【解题分析】(1)当0≤x≤4时,函数关系式为y=34x+3;当x >4时,函数关系式为y=(x ﹣1)2+2; (2)根据一次函数与二次函数的性质,分别求出自变量在其取值范围内的最小值,然后比较即可;(3)由题意,可得不等式33343364x x ⎧+≥⎪⎪⎨⎪+≤⎪⎩和22(6)23(6)26x x ⎧-+≥⎨-+≤⎩,解答出x 的值即可. 【题目详解】解:(1)由图可知,当0≤x≤4时,y=34x+3; 当x >4时,y=(x ﹣1)2+2;(2)当0≤x≤4时,y=34x+3,此时y 随x 的增大而增大,∴当x=0时,y=34x+3有最小值,为y=3; 当x >4时,y=(x ﹣1)2+2,y 在顶点处取最小值,即当x=1时,y=(x ﹣1)2+2的最小值为y=2;∴所输出的y 的值中最小一个数值为2;(3)由题意得,当0≤x≤4时33343364x x ⎧+≥⎪⎪⎨⎪+≤⎪⎩, 解得,0≤x≤4;当x >4时,22(6)23(6)26x x ⎧-+≥⎨-+≤⎩, 解得,4≤x≤5或7≤x≤2;综上,x 的取值范围是:0≤x≤5或7≤x≤2.26、(1)1010;7979;(2)133526263917,, 【分析】(1)根据最小的“对称数”1001,最大的“对称数”9999即可解答;(2)先解不等式组34214251x x x a--⎧-≤⎪⎨⎪->⎩确定a 的值,然后根据a 和题意确定B ,即可确定M.【题目详解】解:()11010;9999-2020=7979()2由34214251x x x a--⎧-≤⎪⎨⎪->⎩得142a x +<≤,由x 有四个整数解, 得14a -≤<,又a 为千位数字,所以1,2,3a =.设个位数字为b ,由题意可得,十位数字为8b -,故()38a b a b +=+-,4b a =+.故满足题设条件的M 为133526263917,, 【题目点拨】本题考查新定义的概念,读懂题意,掌握据数的特点,确定字母a 取值范围是解答本题的关键.。

山东省枣庄市九年级(上)期末数学试卷

山东省枣庄市九年级(上)期末数学试卷
第 6 页,共 19 页
1.【答案】D
【解析】
答案和解析
解:对于函数 y=-2(x-m)2 的图象,
∵a=-2<0, ∴开口向下,对称轴 x=m,顶点坐标为(m,0),函数有最大值 0, ➓ A、B、C 正确, ➓选:D. 根据二次函数的性质即可一一判断. 本题考查二次函数的性质,解题的关键是熟练掌握二次函数的性质,属于基 础题,中考常考题型.
本题考查了根的判别式:一元二次方程 ax2+bx+c=0(a≠0)的根与△=b2-4ac 有如 下关系:当△>0 时,方程有两个不相等的实数根;当△=0 时,方程有两个相等 的实数根;当△<0 时,方程无实数根.
6.【答案】B
【解析】
解:设小正方形的边长为 1,则 AB=4 ,BD=4,
∴cos∠B= = .
4.【答案】B
【解析】
解:画树状图为:
共有 16 种等可能的结果数,其中所成的两位数是 3 的倍数的结果数为 5,
第 7 页,共 19 页
所以成的两位数是 3 的倍数的概率= .
➓选:B. 画树状图展示所有 16 种等可能的结果数,再找出所成的两位数是 3 的倍数的 结果数,然后根据概率公式求解. 本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结 果 n,再从中选出符合事件A 或 B 的结果数目m,然后利用概率公式求事件A 或 B 的概率..
点 C,与 AB 交于点 D,若△COD 的面积为 20,则 k 的
值等于

18. 如图,△ABC内接于⊙O,∠ACB=90°,∠ACB的角平分线交 ⊙O 于 D.若 AC=6,BD=52,则 BC 的长为 .
三、计算题(本大题共 1 小题,共 6.0 分) 19. 计算:-1-2+|2-3|+(π-3.14)0-tan60°+38.

九年级上册枣庄数学全册期末复习试卷测试与练习(word解析版)

九年级上册枣庄数学全册期末复习试卷测试与练习(word解析版)

九年级上册枣庄数学全册期末复习试卷测试与练习(word 解析版)一、选择题1.入冬以来气温变化异常,在校学生患流感人数明显增多,若某校某日九年级8个班因病缺课人数分别为2、6、4、6、10、4、6、2,则这组数据的众数是( ) A .5人B .6人C .4人D .8人2.某路口的交通信号灯每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒,当小明到达该路口时,遇到红灯的概率是( ) A .13B .512C .12D .13.一元二次方程x 2=-3x 的解是( ) A .x =0 B .x =3 C .x 1=0,x 2=3 D .x 1=0,x 2=-3 4.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的全面积是( ) A .265cm π B .290cm π C .2130cm π D .2155cm π 5.下列方程有两个相等的实数根是( )A .x 2﹣x +3=0B .x 2﹣3x +2=0C .x 2﹣2x +1=0D .x 2﹣4=06.如图,在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,点M 是AB 上的一点,点N 是CB 上的一点,43=BM CN ,当∠CAN 与△CMB 中的一个角相等时,则BM 的值为( )A .3或4B .83或4C .83或6D .4或67.二次函数()20y ax bx c a =++≠的图像如图所示,它的对称轴为直线1x =,与x 轴交点的横坐标分别为1x ,2x ,且110x -<<.下列结论中:①0abc <;②223x <<;③421a b c ++<-;④方程()2200ax bx c a ++-=≠有两个相等的实数根;⑤13a >.其中正确的有( )A .②③⑤B .②③C .②④D .①④⑤8.二次函数2y ax bx c =++(a ,b ,c 为常数,且0a ≠)中的x 与y 的部分对应值如下表:x2- 1-0 1 2y5 03-4-3-以下结论:①二次函数2y ax bx c =++有最小值为4-; ②当1x <时,y 随x 的增大而增大;③二次函数2y ax bx c =++的图象与x 轴只有一个交点;④当13x 时,0y <.其中正确的结论有( )个A .1B .2C .3D .49.抛物线y =x 2先向右平移1个单位,再向上平移3个单位,得到新的抛物线解析式是( ) A .y =(x+1)2+3 B .y =(x+1)2﹣3 C .y =(x ﹣1)2﹣3D .y =(x ﹣1)2+310.一个袋子中装有6个黑球3个白球,这些球除颜色外,形状、大小、质地等完全相同,在看不到球的条件下,随机地从这个袋子中摸出一个球,摸到白球的概率为( ) A .19B .13C .12D .2311.如图,P 、Q 是⊙O 的直径AB 上的两点,P 在OA 上,Q 在OB 上,PC ⊥AB 交⊙O 于C ,QD ⊥AB 交⊙O 于D ,弦CD 交AB 于点E ,若AB=20,PC=OQ=6,则OE 的长为( )A .1B .1.5C .2D .2.512.在同一坐标系内,一次函数y ax b =+与二次函数2y ax 8x b =++的图象可能是A .B .C .D .13.我国传统文化中的“福禄寿喜”图(如图)由四个图案构成.这四个图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .14.“一般的,如果二次函数y =ax 2+bx +c 的图象与x 轴有两个公共点,那么一元二次方程ax 2+bx +c =0有两个不相等的实数根.——苏科版《数学》九年级(下册)P 21”参考上述教材中的话,判断方程x 2﹣2x =1x﹣2实数根的情况是 ( ) A .有三个实数根 B .有两个实数根 C .有一个实数根 D .无实数根 15.抛物线y =(x ﹣2)2+3的顶点坐标是( )A .(2,3)B .(﹣2,3)C .(2,﹣3)D .(﹣2,﹣3)二、填空题16.如图所示,在正方形ABCD 中,G 为CD 边中点,连接AG 并延长交BC 边的延长线于E 点,对角线BD 交AG 于F 点.已知FG =2,则线段AE 的长度为_____.17.已知一组数据为1,2,3,4,5,则这组数据的方差为_____.18.已知矩形ABCD ,AB=3,AD=5,以点A 为圆心,4为半径作圆,则点C 与圆A 的位置关系为 __________.19.若记[]x 表示任意实数的整数部分,例如:[]4.24=,21=,…,则123420192020⎡⎡⎡⎤⎡⎡⎡⎤-+-+⋅⋅⋅⋅⋅⋅+-⎣⎣⎣⎦⎣⎣⎣⎦(其中“+”“-”依次相间)的值为______.20.如图,用一张半径为10 cm 的扇形纸板做一个圆锥形帽子(接缝忽略不计),如果做成的圆锥形帽子的高为8 cm,那么这张扇形纸板的弧长是________cm.21.如图,AB是⊙O的直径,点C是⊙O上的一点,若BC=6,AB=10,OD⊥BC于点D,则OD的长为______.22.如图,在ABCD中,13BE DF BC==,若1BEGS∆=,则ABFS∆=__________.23.已知线段a、b、c,其中c是a、b的比例中项,若a=2cm,b=8cm,则线段c=_____cm.24.如图,沿一条母线将圆锥侧面剪开并展平,得到一个扇形,若圆锥的底面圆的半径2r cm=,扇形的圆心角120θ=,则该圆锥的母线长l为___cm.25.如图,正方形ABCD的顶点A、B在圆O上,若23AB=cm,圆O的半径为2cm,则阴影部分的面积是__________2cm.(结果保留根号和π)26.把函数y=2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,则新函数的表达式是_____.27.在某市中考体考前,某初三学生对自己某次实心球训练的录像进行分析,发现实心球飞行高度y (米)与水平距离x (米)之间的关系为21251233y x x =-++,由此可知该生此次实心球训练的成绩为_______米.28.在一块边长为30 cm 的正方形飞镖游戏板上,有一个半径为10 cm 的圆形阴影区域,则飞镖落在阴影区域内的概率为__________.29.有4根细木棒,它们的长度分别是2cm 、4cm 、6cm 、8cm .从中任取3根恰好能搭成一个三角形的概率是_____.30.如图,四边形ABCD 中,∠A =∠B =90°,AB =5cm ,AD =3cm ,BC =2cm ,P 是AB 上一点,若以P 、A 、D 为顶点的三角形与△PBC 相似,则PA =_____cm .三、解答题31.画图并回答问题:(1)在网格图中,画出函数2y x x 2=--与1y x =+的图像;(2)直接写出不等式221x x x -->+的解集.32.习总书记在2020新年贺词中讲到“垃圾分类引领新时尚”为积极响应号召,普及垃圾分类知识,某社区工作人员在一个小区随机抽取了若干名居民,开展垃圾分类知识有奖问答,并用得到的数据绘制了如图所示条形统计图.请根据图中信息,解答下列问题: (1)本次调查一共抽取了______名居民(2)求本次调查获取的样本数据的平均数______:中位数______;(3)杜区决定对该小区2000名居民开展这项有奖问答活动,得10分者设为一等奖.根据调查结果,估计社区工作人员需准备多少份一等奖奖品?33.我们不妨约定:如图①,若点D 在△ABC 的边AB 上,且满足∠ACD=∠B (或∠BCD=∠A ),则称满足这样条件的点为△ABC 边AB 上的“理想点”.(1)如图①,若点D 是△ABC 的边AB 的中点,AC=22AB=4.试判断点D 是不是△ABC 边AB 上的“理想点”,并说明理由.(2)如图②,在⊙O 中,AB 为直径,且AB=5,AC=4.若点D 是△ABC 边AB 上的“理想点”,求CD 的长.(3)如图③,已知平面直角坐标系中,点A(0,2),B(0,-3),C 为x 轴正半轴上一点,且满足∠ACB=45°,在y 轴上是否存在一点D ,使点A 是B ,C ,D 三点围成的三角形的“理想点”,若存在,请求出点D 的坐标;若不存在,请说明理由.34.表是2019年天气预报显示宿迁市连续5天的天气气温情况.利用方差判断这5天的日最高气温波动大还是日最低气温波动大.12月17日12月18日 12月19日 12月20日 12月21日最高气温(℃) 10 67 8 9最低气温(℃)1 0 ﹣1 0 335.如图,AD 、A ′D ′分别是△ABC 和△A ′B ′C ′的中线,且AB BD ADA B B D A D ==''''''.判断△ABC 和△A ′B ′C ′是否相似,并说明理由.四、压轴题36.如图1:在Rt △ABC 中,AB =AC ,D 为BC 边上一点(不与点B ,C 重合),试探索AD ,BD ,CD 之间满足的等量关系,并证明你的结论.小明同学的思路是这样的:将线段AD 绕点A 逆时针旋转90°,得到线段AE ,连接EC ,DE .继续推理就可以使问题得到解决.(1)请根据小明的思路,试探索线段AD ,BD ,CD 之间满足的等量关系,并证明你的结论;(2)如图2,在Rt △ABC 中,AB =AC ,D 为△ABC 外的一点,且∠ADC =45°,线段AD ,BD ,CD 之间满足的等量关系又是如何的,请证明你的结论;(3)如图3,已知AB 是⊙O 的直径,点C ,D 是⊙O 上的点,且∠ADC =45°. ①若AD =6,BD =8,求弦CD 的长为 ;②若AD+BD =14,求2AD BD CD ⎛⎫⋅+ ⎪ ⎪⎝⎭的最大值,并求出此时⊙O 的半径.37.如图①,O 经过等边ABC 的顶点A ,C (圆心O 在ABC 内),分别与AB ,CB 的延长线交于点D ,E ,连结DE ,BF EC ⊥交AE 于点F .(1)求证:BD BE =.(2)当:3:2AF EF =,6AC =,求AE 的长.(3)当:3:2AF EF =,AC a =时,如图②,连结OF ,OB ,求OFB △的面积(用含a 的代数式表示).38.问题发现:(1)如图①,正方形ABCD的边长为4,对角线AC、BD相交于点O,E是AB上点(点E 不与A、B重合),将射线OE绕点O逆时针旋转90°,所得射线与BC交于点F,则四边形OEBF的面积为.问题探究:(2)如图②,线段BQ=10,C为BQ上点,在BQ上方作四边形ABCD,使∠ABC=∠ADC =90°,且AD=CD,连接DQ,求DQ的最小值;问题解决:(3)“绿水青山就是金山银山”,某市在生态治理活动中新建了一处南山植物园,图③为南山植物园花卉展示区的部分平面示意图,在四边形ABCD中,∠ABC=∠ADC=90°,AD=CD,AC=600米.其中AB、BD、BC为观赏小路,设计人员考虑到为分散人流和便观赏,提出三条小路的长度和要取得最大,试求AB+BD+BC的最大值.39.如图,已知矩形ABCD中,BC=2cm,AB3,点E在边AB上,点F在边AD上,点E由A向B运动,连结EC、EF,在运动的过程中,始终保持EC⊥EF,△EFG为等边三角形.(1)求证△AEF∽△BCE;(2)设BE的长为xcm,AF的长为ycm,求y与x的函数关系式,并写出线段AF长的范围;(3)若点H是EG的中点,试说明A、E、H、F四点在同一个圆上,并求在点E由A到B 运动过程中,点H移动的距离.40.如图,在边长为5的菱形OABC中,sin∠AOC=45,O为坐标原点,A点在x轴的正半轴上,B,C两点都在第一象限.点P以每秒1个单位的速度沿O→A→B→C→O运动一周,设运动时间为t(秒).请解答下列问题:(1)当CP⊥OA时,求t的值;(2)当t<10时,求点P的坐标(结果用含t的代数式表示);(3)以点P为圆心,以OP为半径画圆,当⊙P与菱形OABC的一边所在直线相切时,请直接写出t的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.B解析:B【解析】【分析】找出这组数据出现次数最多的那个数据即为众数.【详解】解:∵数据2、6、4、6、10、4、6、2,中数据6出现次数最多为3次,∴这组数据的众数是6.故选:B.【点睛】本题考查众数的概念,出现次数最多的数据为这组数的众数.2.C解析:C【解析】 【分析】根据随机事件A 的概率P(A)=事件A 可能出现的结果数÷所有可能出现的结果数,据此用红灯亮的时间除以以上三种灯亮的总时间,即可得出答案. 【详解】解:∵每分钟红灯亮30秒,绿灯亮25秒,黄灯亮5秒, ∴红灯的概率是:301302552=++.故答案为:C. 【点睛】本题考查的知识点是简单事件的概率问题,熟记概率公式是解题的关键.3.D解析:D 【解析】 【分析】先移项,然后利用因式分解法求解. 【详解】 解:(1)x 2=-3x , x 2+3x=0, x (x+3)=0, 解得:x 1=0,x 2=-3. 故选:D . 【点睛】本题考查了解一元二次方程-因式分解法,熟练掌握因式分解的方法是解题的关键.4.B解析:B 【解析】 【分析】先根据圆锥侧面积公式:S rl π=求出圆锥的侧面积,再加上底面积即得答案. 【详解】解:圆锥的侧面积=251365cm ππ⨯⨯=,所以这个圆锥的全面积=2265590cm πππ+⨯=. 故选:B. 【点睛】本题考查了圆锥的有关计算,属于基础题型,熟练掌握圆锥侧面积的计算公式是解答的关键.5.C解析:C 【解析】【分析】先根据方程求出△的值,再根据根的判别式的意义判断即可.【详解】A 、x 2﹣x+3=0,△=(﹣1)2﹣4×1×3=﹣11<0,所以方程没有实数根,故本选项不符合题意;B 、x 2﹣3x+2=0,△=(﹣3)2﹣4×1×2=1>0,所以方程有两个不相等的实数根,故本选项不符合题意;C 、x 2﹣2x+1=0,△=(﹣2)2﹣4×1×1=0,所以方程有两个相等的实数根,故本选项符合题意;D 、x 2﹣4=0,△=02﹣4×1×(﹣4)=16>0,所以方程有两个不相等的实数根,故本选项不符合题意;故选:C .【点睛】本题考查了根的判别式,能熟记根的判别式的意义是解此题的关键.6.D解析:D【解析】【分析】分两种情形:当CAN B ∠=∠时,CAN CBA ∆∆∽,设3CN k =,4BM k =,可得CN AC AC CB=,解出k 值即可;当CAN MCB ∠=∠时,过点M 作MH CB ⊥,可得CAN BAC ∆∆∽,得出125MH k =,165BH k =,则1685CH k =-,证明ACN CHM ∆∆∽,得出方程求解即可.【详解】解:在Rt △ABC 中,∠ACB =90°,AC =6,BC =8,∴CMB CAB CAN ∠>∠>∠,AB=10,CAN CAB ∴∠≠∠,设3CN k =,4BM k =,①当CAN B ∠=∠时,可得CAN CBA ∆∆∽, ∴CN AC AC CB=, ∴3668k =, 32k ∴=,6BM∴=.②当CAN MCB∠=∠时,如图2中,过点M作MH CB⊥,可得BMH BAC∆∆∽,∴BM MH BHBA AC BC==,∴41068k MH BH==,125MH k∴=,165BH k=,1685CH k∴=-,MCB CAN∠=∠,90CHM ACN∠=∠=︒,ACN CHM∴∆∆∽,∴CN MHAC CH=,∴123516685kkk=-,1k∴=,4BM∴=.综上所述,4BM=或6.故选:D.【点睛】本题考相似三角形的判定和性质,解题的关键是学会用分类讨论的思想思考问题,学会添加常用辅助线,构造相似三角形解决问题.7.A解析:A【解析】【分析】利用抛物线开口方向得到a<0,利用对称轴位置得到b>0,利用抛物线与y轴的交点在x 轴下方得c<0,则可对①进行判断;根据二次函数的对称性对②③进行判断;利用抛物线与直线y=2的交点个数对④进行判断,利用函数与坐标轴的交点列出不等式即可判断⑤.【详解】∵抛物线开口向下,∴a<0,∵对称轴为直线1x =∴b=-2a >0∵抛物线与y 轴的交点在x 轴下方,∴c <-1,∴abc >0,所以①错误;∵110x -<<,对称轴为直线1x =∴1212x x +=故223x <<,②正确; ∵对称轴x=1,∴当x=0,x=2时,y 值相等,故当x=0时,y=c <0,∴当x=2时,y=421a b c ++<-,③正确;如图,作y=2,与二次函数有两个交点,故方程()2200ax bx c a ++-=≠有两个不相等的实数根,故④错误; ∵当x=-1时,y=a-b+c=3a+c >0,当x=0时,y=c <-1∴3a >1,故13a >,⑤正确; 故选A.【点睛】本题考查了二次函数图象与系数的关系:对于二次函数y =ax 2+bx +c (a ≠0),二次项系数a 决定抛物线的开口方向和大小.当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置. 当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c ).也考查了二次函数的性质.8.B解析:B【解析】【分析】根据表中数据,可获取相关信息:抛物线的顶点坐标为(1,-4),开口向上,与x 轴的两个交点坐标是(-1,0)和(3,0),据此即可得到答案.①由表格给出的数据可知(0,-3)和(2,-3)是一对对称点,所以抛物线的对称轴为202+=1,即顶点的横坐标为x=1,所以当x=1时,函数取得最小值-4,故此选项正确; ②由表格和①可知当x <1时,函数y 随x 的增大而减少;故此选项错误;③由表格和①可知顶点坐标为(1,-4),开口向上,∴二次函数2y ax bx c =++的图象与x 轴有两个交点,一个是(-1,0),另一个是(3,0);故此选项错误;④函数图象在x 轴下方y<0,由表格和③可知,二次函数2y ax bx c =++的图象与x 轴的两个交点坐标是(-1,0)和(3,0),∴当13x时,y<0;故此选项正确;综上:①④两项正确,故选:B .【点睛】本题综合性的考查了二次函数的性质,解题的关键是能根据二次函数的对称性判断:纵坐标相同两个点的是一对对称点. 9.D解析:D【解析】【分析】按“左加右减,上加下减”的规律平移即可得出所求函数的解析式.【详解】抛物线y =x 2先向右平移1个单位得y =(x ﹣1)2,再向上平移3个单位得y =(x ﹣1)2+3.故选D.【点睛】本题考查了二次函数图象的平移,其规律是是:将二次函数解析式转化成顶点式y=a (x -h )2+k (a ,b ,c 为常数,a ≠0),确定其顶点坐标(h ,k ),在原有函数的基础上“h 值正右移,负左移; k 值正上移,负下移”.10.B解析:B【解析】【分析】让白球的个数除以球的总数即为摸到白球的概率.【详解】解:6个黑球3个白球一共有9个球,所以摸到白球的概率是3193=. 故选:B .【点睛】本题考查了概率,熟练掌握概率公式是解题的关键.解析:C【解析】【分析】因为OCP和ODQ为直角三角形,根据勾股定理可得OP、DQ、PQ的长度,又因为CP//DQ,两直线平行内错角相等,∠PCE=∠EDQ,且∠CPE=∠DQE=90°,可证CPE∽DQE,可得CP DQ=PE EQ,设PE=x,则EQ=14-x,解得x的取值,OE= OP-PE,则OE的长度可得.【详解】解:∵在⊙O中,直径AB=20,即半径OC=OD=10,其中CP⊥AB,QD⊥AB,∴OCP和ODQ为直角三角形,根据勾股定理:,,且OQ=6,∴PQ=OP+OQ=14,又∵CP⊥AB,QD⊥AB,垂直于用一直线的两直线相互平行,∴CP//DQ,且C、D连线交AB于点E,∴∠PCE=∠EDQ,(两直线平行,内错角相等)且∠CPE=∠DQE=90°,∴CPE∽DQE,故CP DQ=PE EQ,设PE=x,则EQ=14-x,∴68=x14-x,解得x=6,∴OE=OP-PE=8-6=2,故选:C.【点睛】本题考察了勾股定理、相似三角形的应用、两直线平行的性质、圆的半径,解题的关键在于证明CPE与DQE相似,并得出线段的比例关系.12.C解析:C【解析】【分析】x=0,求出两个函数图象在y轴上相交于同一点,再根据抛物线开口方向向上确定出a>0,然后确定出一次函数图象经过第一三象限,从而得解.【详解】x=0时,两个函数的函数值y=b,所以,两个函数图象与y轴相交于同一点,故B、D选项错误;由A、C选项可知,抛物线开口方向向上,所以,a>0,所以,一次函数y=ax+b经过第一三象限,所以,A选项错误,C选项正确.故选C.13.B解析:B【解析】试题分析:根据轴对称图形与中心对称图形的概念求解.解:A、不是轴对称图形,也不是中心对称图形.故错误;B、是轴对称图形,也是中心对称图形.故正确;C、是轴对称图形,不是中心对称图形.故错误;D、不是轴对称图形,也不是中心对称图形.故错误.故选B.点睛:掌握中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.14.C解析:C【解析】试题分析:由得,,即是判断函数与函数的图象的交点情况.因为函数与函数的图象只有一个交点所以方程只有一个实数根故选C.考点:函数的图象点评:函数的图象问题是初中数学的重点和难点,是中考常见题,在压轴题中比较常见,要特别注意.15.A解析:A【解析】【分析】根据抛物线的顶点式可直接得到顶点坐标.【详解】解:y=(x﹣2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选:A.【点睛】本题考查了二次函数的顶点式与顶点坐标,顶点式y=(x-h)2+k,顶点坐标为(h,k),对称轴为直线x=h,难度不大.二、填空题16.12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG 为△E解析:12【解析】【分析】根据正方形的性质可得出AB∥CD,进而可得出△ABF∽△GDF,根据相似三角形的性质可得出AF ABGF GD==2,结合FG=2可求出AF、AG的长度,由CG∥AB、AB=2CG可得出CG为△EAB的中位线,再利用三角形中位线的性质可求出AE的长度,此题得解.【详解】∵四边形ABCD为正方形,∴AB=CD,AB∥CD,∴∠ABF=∠GDF,∠BAF=∠DGF,∴△ABF∽△GDF,∴AF ABGF GD==2,∴AF=2GF=4,∴AG=6.∵CG∥AB,AB=2CG,∴CG为△EAB的中位线,∴AE=2AG=12.故答案为:12.【点睛】本题考查了相似三角形的判定与性质、正方形的性质以及三角形的中位线,利用相似三角形的性质求出AF的长度是解题的关键.17.【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4解析:【解析】试题分析:先根据平均数的定义确定平均数,再根据方差公式进行计算即可求出答案.由平均数的公式得:(1+2+3+4+5)÷5=3,∴方差=[(1﹣3)2+(2﹣3)2+(3﹣3)2+(4﹣3)2+(5﹣3)2]÷5=2.考点:方差.18.点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=厘米,∵半径为4厘米,∴点C在圆A外【点解析:点C在圆外【解析】【分析】由r和CA,AB、DA的大小关系即可判断各点与⊙A的位置关系.【详解】解:∵AB=3厘米,AD=5厘米,∴AC=22+=厘米,3534∵半径为4厘米,∴点C在圆A外【点睛】本题考查了对点与圆的位置关系的判断.关键要记住若半径为r,点到圆心的距离为d,则有:当d>r时,点在圆外;当d=r时,点在圆上,当d<r时,点在圆内.19.-22【解析】【分析】先确定的整数部分的规律,根据题意确定算式的运算规律,再进行实数运算. 【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数解析:-22【解析】【分析】2020的整数部分的规律,根据题意确定算式-+-+⋅⋅⋅⋅⋅⋅+-的运算规律,再进行实数运算.【详解】解:观察数据12=1,22=4,32=9,42=16,52=25,62=36的特征,得出数据1,2,3,4 (2020)中,算术平方根是1的有3个,算术平方根是2的有5个,算数平方根是3的有7个,算数平方根是4的有9个,…其中432=1849,442=1936,452=2025,所以在、⋅⋅⋅⋅⋅⋅中,算术平方根依次为1,2,3……43的个数分别为3,5,7,9……个,均为奇数个,最大算数平方根为44的有85个,所以-+-+⋅⋅⋅⋅⋅⋅+-=1-2+3-4+…+43-44= -22【点睛】本题考查自定义运算,通过正整数的算术平方根的整数部分出现的规律,找到算式中相同加数的个数及符号的规律,方能进行运算.20.【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,∴圆锥的底面半径为cm,∴底面周长为2π×6=12解析:12π【解析】【分析】首先求出圆锥的底面半径,然后可得底面周长,问题得解.【详解】解:∵扇形的半径为10cm,做成的圆锥形帽子的高为8cm,=cm,6∴底面周长为2π×6=12πcm,即这张扇形纸板的弧长是12πcm,故答案为:12π.【点睛】本题考查圆锥的计算,用到的知识点为:圆锥的底面周长=侧面展开扇形的弧长.21.4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=BC=3,∵OB=AB=5,∴在Rt△OBD中,OD==4.故答案为4.解析:4【解析】【分析】根据垂径定理求得BD,然后根据勾股定理求得即可.【详解】解:∵OD⊥BC,∴BD=CD=1BC=3,2∵OB=1AB=5,2∴在Rt△OBD中,=4.故答案为4.【点睛】本题考查垂径定理及其勾股定理,熟记定理并灵活应用是本题的解题关键.22.6【解析】【分析】先根据平行四边形的性质证得△BEG∽△FAG,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得,根据相似三角形的性质可求得,进而可得答案.解:∵四解析:6【解析】【分析】先根据平行四边形的性质证得△BEG ∽△FAG ,从而可得相似比,然后根据同高的两个三角形的面积等于底边之比可求得ABG S ∆,根据相似三角形的性质可求得AFG S ∆,进而可得答案.【详解】解:∵四边形ABCD 是平行四边形,∴AD=BC ,AD ∥BC ,∴△BEG ∽△FAG , ∵13BE DF BC ==, ∴12EG BE AG AF ==, ∴211,24BEG BEG ABG AFG S S EG BE S AG S AF ∆∆∆∆⎛⎫==== ⎪⎝⎭, ∵1BEG S ∆=,∴2ABG S ∆=,4AFG S ∆=,∴6ABF ABG AFG S S S ∆∆∆=+=.故答案为:6.【点睛】本题考查了平行四边形的性质、相似三角形的判定和性质以及三角形的面积等知识,属于常考题型,熟练掌握平行四边形的性质和相似三角形的判定与性质是解答的关键. 23.4【解析】【分析】根据比例中项的定义,列出比例式即可求解.【详解】∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm ,∴=,∴c2=ab =2×8=16,∴c1=4,c2=﹣4(舍解析:4【解析】【分析】根据比例中项的定义,列出比例式即可求解.∵线段c 是a 、b 的比例中项,线段a =2cm ,b =8cm , ∴a c =c b, ∴c 2=ab =2×8=16,∴c 1=4,c 2=﹣4(舍去),∴线段c =4cm .故答案为:4【点睛】本题考查了比例中项的概念:当两个比例内项相同时,就叫比例中项.这里注意线段不能是负数.24.【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长cm ,设圆锥的母线长为,则: ,解得,故答案为.【点睛】本解析:【解析】【分析】易得圆锥的底面周长,也就是侧面展开图的弧长,进而利用弧长公式即可求得圆锥的母线长.【详解】圆锥的底面周长224ππ=⨯=cm ,设圆锥的母线长为R ,则:1204180R ππ⨯=, 解得6R =,故答案为6.【点睛】本题考查了圆锥的计算,用到的知识点为:圆锥的侧面展开图的弧长等于底面周长;弧长公式为: 180n r π. 25.【解析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG⊥AE,根据90°的圆周角对应的弦是直径,可得AF 为圆的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求解析:412333π-- 【解析】【分析】设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE ,根据90°的圆周角对应的弦是直径,可得AF 为圆O 的直径,从而求出AF ,然后根据锐角三角函数和勾股定理,即可求出∠AFB 和BF ,然后根据平行线的性质、锐角三角函数和圆周角定理,即可求出OG 、AG 和∠EOF ,最后利用S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF 计算即可.【详解】解:设AD 和BC 分别与圆交于点E 和F ,连接AF 、OE ,过点O 作OG ⊥AE∵四边形ABCD 是正方形∴∠ABF=90°,AD ∥BC ,BC=CD=AD=23AB =∴AF 为圆O 的直径∵23AB =cm ,圆O 的半径为2cm ,∴AF=4cm在Rt △ABF 中sin ∠AFB=3AB AF ,BF=222AF AB -= ∴∠AFB=60°,FC=BC -BF=()232cm∴∠EAF=∠AFB=60°∴∠EOF=2∠EAF=120°在Rt △AOG 中,OG=sin ∠EAF ·3cm ,AG= cos ∠EAF ·AO=1cm根据垂径定理,AE=2AG=2cm∴S 阴影=S 梯形AFCD -S △AOE -S 扇形EOF=()21112022360OE CD FC AD AE OG π•+-•- =()211120223232232322360π•⨯+-⨯=24123cm π⎛⎫- ⎪⎝⎭故答案为:4123π-. 【点睛】 此题考查的是求不规则图形的面积,掌握正方形的性质、90°的圆周角对应的弦是直径、垂径定理、勾股定理和锐角三角函数的结合和扇形的面积公式是解决此题的关键.26.y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达解析:y =2(x ﹣3)2﹣2.【解析】【分析】利用二次函数平移规律即可求出结论.【详解】解:由函数y =2x 2的图象先向右平移3个单位长度,再向下平移2个单位长度得到新函数的图象,得新函数的表达式是y =2(x ﹣3)2﹣2,故答案为y =2(x ﹣3)2﹣2.【点睛】本题主要考查的是二次函数的图象与几何变换,熟知“上加下减,左加右减”的原则是解答此题的关键.27.10【解析】【分析】根据铅球落地时,高度,把实际问题可理解为当时,求x 的值即可.【详解】解:当时,,解得,(舍去),.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自解析:10【解析】【分析】根据铅球落地时,高度0y =,把实际问题可理解为当0y =时,求x 的值即可.【详解】解:当0y =时,212501233y x x =-++=, 解得,2x =-(舍去),10x =.故答案为10.【点睛】本题考查了二次函数的实际应用,解析式中自变量与函数表达的实际意义;结合题意,选取函数或自变量的特殊值,列出方程求解是解题关键.28.【解析】【分析】分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100 解析:9π 【解析】【分析】 分别计算半径为10cm 的圆的面积和边长为30cm 的正方形ABCD 的面积,然后计算S S 半圆正方形即可求出飞镖落在圆内的概率;【详解】解:(1)∵半径为10cm 的圆的面积=π•102=100πcm 2,边长为30cm 的正方形ABCD 的面积=302=900cm 2, ∴P (飞镖落在圆内)=100==9009S S ππ半圆正方形,故答案为:9π. 【点睛】本题考查了几何概率,掌握概率=相应的面积与总面积之比是解题的关键.29.【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、 解析:14【解析】【分析】根据题意列举出所有4种等可能的结果数,再根据题意得出能够构成三角形的结果数,最后根据概率公式即可求解.【详解】从中任取3根共有4种等可能的结果数,它们为2、4、6;2、4、8;2、6、8;、4、6、8,其中恰好能搭成一个三角形为4、6、8, 所以恰好能搭成一个三角形的概率=14. 故答案为14. 【点睛】本题考查列表法或树状图法和三角形三边关系,解题的关键是通过列表法或树状图法展示出所有等可能的结果数及求出构成三角形的结果数. 30.2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则解析:2或3【解析】【分析】根据相似三角形的判定与性质,当若点A ,P ,D 分别与点B ,C ,P 对应,与若点A ,P ,D 分别与点B ,P ,C 对应,分别分析得出AP 的长度即可.【详解】解:设AP =xcm .则BP =AB ﹣AP =(5﹣x )cm以A ,D ,P 为顶点的三角形与以B ,C ,P 为顶点的三角形相似,①当AD :PB =PA :BC 时,352x x =-, 解得x =2或3.。

2019-2020年初三数学第一学期期末考试参考答案

2019-2020年初三数学第一学期期末考试参考答案

2019-2020年初三数学第一学期期末考试参考答案阅卷说明:本试卷72分及格,102分优秀. 一、选择题:(本题共30分,每小题3分)二、填空题(本题共18分, 每小题3分)三、计算题:(本题共72分,第17—26题,每小题5分,第27题7分,第28题7分, 第29题8分)17. 4sin 304560︒︒︒.解:原式=33222214⨯+⨯-⨯--------------------- 4分 =2-1+3 =4--------------------- 5分18. 解:∵在Rt △ABC 中,∠C =90°,∠B =60°∵∠A=90°-∠B =30°--------------------- 1分∴AB==16--------------------- 3分∴AC=BCtanB=8.--------------------- 5分19. 解:(1)∵反比例函数图象两支分别位于第一、三象限,∴k ﹣1>0,解得:k >1;---------------- 2分(2)取k=3,∴反比例函数表达式为x2y = ---------------- 4分 当x=﹣6时,3162x 2y -=-==;--------------------- 5分 (答案不唯一)20. 解: 如图:连接OB,过O 点作OD ⊥BC 于点D ---------------- 1分B在Rt △OBD 中,∵∠BOD =︒︒=606360---------------- 2分 ∵ BD=OD ·tan60°---------------- 3分 =23---------------- 4分 ∴BC=2BD=43∴三角形的边长为43 cm ---------------- 5分 21.证明∵△ABC ∽△ADE ,∴∠BAC =∠DAE ,∠C =∠E ,---------------- 1分 ∴∠BAC -∠DAC =∠DAE -∠DAC ,∴∠1=∠3, ------------------------------ 2分 又∵∠C =∠E ,∠DOC =∠AOE ,∴△DOC ∽△AOE ,----------------------------3分 ∴∠2=∠3 , ----------------------------4分 ∴∠1=∠2=∠3. ----------------------------5分22. 解:过P 作PD ⊥AB 于D ,---------------- 1分在Rt △PBD 中,∠BDP =90°,∠B =45°, ∴BD =PD . ---------------- 2分在Rt △P AD 中,∠ADP =90°,∠A =30°, ∴AD =PD =PD=3PD ,--------------------3分 ∴PD =13100+≈36.6>35, 故计划修筑的高速公路不会穿过保护区.----------------------------5分23.解:(1)不同类型的正确结论有:①BE=CE ;②BD=CD ;③∠BED=90°;④∠BOD=∠A ;⑤AC//OD ;⑥AC ⊥BC ;⑦222OE +BE =OB ;⑧OE BC S ABC ∙=∆;⑨△BOD 是等腰三角形;⑩ΔBOE ΔBAC ~;等等。

枣庄市2020版九年级上学期数学期末考试试卷A卷

枣庄市2020版九年级上学期数学期末考试试卷A卷

枣庄市2020版九年级上学期数学期末考试试卷A卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2018九上·三门期中) 在二次函数的图像中,若随的增大而增大,则的取值范围是A .B .C .D .2. (2分)在等腰△ABC中,AB=AC=4,BC=6,那么cosB的值是A .B .C .D .3. (2分)(2019·上虞模拟) 有6张扑克牌(如图),背面朝上,从中任抽一张,则抽到方块牌的概率是()A .B .C .D .4. (2分)已知△ABC∽△DEF,且S△ABC:S△DEF=2:1,则AB与DE的比是()A . 1:2B . 2:1C . :1D . 1:5. (2分) (2018九上·江都月考) 如图,点A,B,C在上,,则的度数是A .B .C .D .6. (2分)(2018·南宁) 将抛物线y= x2﹣6x+21向左平移2个单位后,得到新抛物线的解析式为()A . y= (x﹣8)2+5B . y= (x﹣4)2+5C . y= (x﹣8)2+3D . y= (x﹣4)2+37. (2分)下列语句中,正确的是()A . 同一平面上三点确定一个圆B . 能够完全重合的弧是等弧C . 三角形的外心到三角形三边的距离相等D . 菱形的四个顶点在同一个圆上8. (2分)已知正方形ABCD,E是CD的中点,P是BC边上的一点,下列条件中不能推出△ABP与△ECP相似的是()A . ∠APB=∠EPCB . ∠APE=90°C . P是BC的中点D . BP︰BC=2︰39. (2分) (2017九上·鸡西期末) 身高为165cm的小冰在中午时影长为55cm,小雪此时在同一地点的影长为60cm,那么小雪的身高为()A . 185cmB . 180cmC . 170cmD . 160cm10. (2分)如图游戏:人从格外只能进入第1格,在格中,每次可向前跳1格或2格,那么人从格外跳到第6格可以有()种方法.A . 6B . 7C . 8D . 9二、填空题 (共6题;共6分)11. (1分) (2019九上·福田期中) 若,则 ________.12. (1分) (2017八下·新洲期末) 如图,从电线杆离地面12m处向地面拉一条长为13m的钢缆,则地面钢缆固定点A到电线杆底部B的距离为________.13. (1分) (2019九上·闵行期末) 已知线段AB = 4厘米,点P是线段AB的黄金分割点(AP > BP),那么线段AP =________厘米.(结果保留根号)14. (1分)如图,△ABC是等边三角形,边长为5,D为AC边上一动点,连接BD,⊙O为△ABD的外接圆,过点A作AE∥BC交⊙O于E,连接DE,则△BDE的面积的最小值为________.15. (1分)如图,正方形ABCD的对角线交于点O,以AD为边向外作Rt△ADE,∠AED=90°,连接OE,DE=6,OE=8 ,则另一直角边AE的长为________.16. (1分)(2020·扬州) 如图,在中,,,,点E为边AB上的一个动点,连接ED并延长至点F,使得,以EC、EF为邻边构造,连接EG,则EG的最小值为________.三、解答题 (共8题;共72分)17. (5分) (2020九下·汉中月考) 计算(-3)2+|2- |-18. (6分) (2018九上·东台期中) 小明周末要乘坐公交车到植物园游玩,从地图上查找路线发现,几条线路都需要换乘一次.在出发站点可选择空调车A、空调车B、普通车a,换乘站点可选择空调车C,普通车b、普通车c,且均在同一站点换乘.空调车投币2元,普通车投币1元.(1)求小明在出发站点乘坐空调车的概率;(2)求小明到达植物园恰好花费3元公交费的概率.19. (6分) (2016九上·仙游期中) 为了响应政府提出的由中国制造向中国创造转型的号召,某公司自主设计了一款成本为40元的可控温杯,并投放市场进行试销售,经过调查发现该产品每天的销售量y(件)与销售单价x(元)满足一次函数关系:y=﹣10x+1200.(1)求出利润S(元)与销售单价x(元)之间的关系式(利润=销售额﹣成本);(2)当销售单价定为多少时,该公司每天获取的利润最大?最大利润是多少元?20. (10分) (2016九下·重庆期中) 已知:a、b、c为△ABC的三边,且满足a2c2﹣b2c2=a4﹣b4 ,试判断△ABC的形状.解:∵a2c2﹣b2c2=a4﹣b4 ,①∴c2(a2﹣b2)=(a2+b2)(a2﹣b2).②∴c2=a2+b2 .③∴△ABC是直角三角形.问:(1)在上述解题过程中,从哪一步开始出现错误?请写出该步的代号:________;(2)错误的原因为________;(3)本题正确的解题过程:21. (10分)(2017·龙岩模拟) 如图1所示,在正方形ABCD中,AB=1,是以点B为圆心,AB长为半径的圆的一段弧,点E是边AD上的动点(点E与点A,D不重合),过E作所在圆的切线,交边DC于点F,G 为切点.(1)求证:EA=EG;(2)设AE=x,FC=y,求y关于x的函数关系式,并直接写出x的取值范围;(3)如图2所示,将△DEF沿直线EF翻折后得△D1EF,连接AD1 , D1D,试探索:当点E运动到何处时,△AD1D与△ED1F相似?请说明理由.22. (10分)(2019·本溪模拟) 如图,AD是等腰△ABC底边BC上的高,点O是AC中点,延长DO到E,使AE∥BC,连接AE.(1)求证:四边形ADCE是矩形;(2)①若AB=17,BC=16,则四边形ADCE的面积=________.②若AB=10,则BC=________时,四边形ADCE是正方形.23. (10分) (2019九上·浦东月考) 如图,在中,,,,把线段沿射线方向平移(点B始终在射线上)至位置,直线与直线交于点D,又联结与直线交于点E.(1)当时,求证:;(2)当点P位于线段上时(不含端点B、C),设,,试求y关于x的函数解析式,并写出定义域;(3)当以Q、D、E为顶点的三角形与相似时,求的长.24. (15分) (2020九下·宝山期中) 如图,在平面直角坐标系中,抛物线与x轴交于A、B两点(点A在点B左侧),经过点A的直线:与轴交于点C,与抛物线的另一个交点为D,且.(1)直接写出点A的坐标,并用含a的式子表示直线l的函数表达式(其中k、b用含a的式子表示).(2)点E为直线l下方抛物线上一点,当的面积的最大值为时,求抛物线的函数表达式;(3)设点P是抛物线对称轴上的一点,点Q在抛物线上,以点A、D、P、Q为顶点的四边形能否为矩形?若能,求出点P的坐标;若不能,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共6题;共6分)11-1、12-1、13-1、14-1、15-1、16-1、三、解答题 (共8题;共72分)17-1、18-1、18-2、19-1、19-2、20-1、20-2、20-3、21-1、21-2、21-3、22-1、22-2、23-1、23-2、23-3、24-1、24-2、。

枣庄市2020版九年级上学期数学期末考试试卷D卷

枣庄市2020版九年级上学期数学期末考试试卷D卷

枣庄市2020版九年级上学期数学期末考试试卷D卷姓名:________ 班级:________ 成绩:________一、选择题(每题4分,共48分) (共12题;共48分)1. (4分) (2019九上·长春期中) 一个十一边形的内角和等于()A .B .C .D .2. (4分)在直角三角形ABC中,∠C=90°,AC=3,AB=5.若以点C为圆心,画一个半径为3的圆,则点A,点B和⊙C的相互位置关系为()A . 点A,点B均在⊙C内B . 点A,点B均在⊙C外C . 点A,点B均在⊙C上D . 点A在⊙C上,点B在⊙C外3. (4分)抛物线y=x2+bx+c的图象向右平移2个单位长度再向下平移3个单位长度,所得图象的解析式为y=x2-2x-3,则b,c的值为()A . b=2,c=2B . b=2,c=0C . b=-2,c=-1D . b=-3,C=24. (4分) (2018九上·合浦期末) 一个不透明的布袋里装有6个黑球和3个白球,它们除颜色外其余都相同,从中任意摸出一个球,是白球的概率为()A .B .C .D .5. (4分) (2017九上·红山期末) 抛物线y=2x2 , y=﹣2x2 , y=2x2+1共有的性质是()A . 开口向上B . 对称轴都是y轴C . 都有最高点D . 顶点都是原点6. (4分)(2019·景县模拟) 如图,点A在双曲线y= (x>0)上,过点A作AB⊥x轴,垂足为点B,分别以点O和点A为圆心,大于 OA的长为半径作弧,两弧相交于D、E两点,作直线DE交x轴于点C,交y轴于点F(0,2),连接AC.若AC=1,则k的值为()A . 2B .C .D .7. (4分)如图,抛物线y=ax2+bx+c的对称轴是x=,小亮通过观察得出了下面四条信息:①c<0,②abc <0,③a-b+c>0,④2a-3b=0.你认为其中正确的有()A . 1个B . 2个C . 3个D . 4个8. (4分)如图,A、B、C、D四点都在⊙O上,若∠COD=80°,则∠ABD+∠OCA等于()A . 45°B . 50°C . 55°D . 60°9. (4分)如图,在菱形ABCD中,AB=5,对角线AC=6,若过点A作AE⊥BC,垂足为E,则sinB的值为()A .B .C .D .10. (4分)如图,ABCD是正方形,F是CD的中点,E是BC边上的一点,下列条件中,不能推出△ABE与△ECF 相似的是()A . ∠AEB=∠FECB . ∠AEF=90°C . E是BC的中点D . BE=BC11. (4分) (2018八下·邯郸开学考) 如图,正方形ABCD的边长为2,其面积标记为S1 ,以CD为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S2 ,…,按照此规律继续下去,则S9的值为()A . () 6B . ()7C . () 6D . ()712. (4分)(2017·六盘水模拟) 如图,M是平行四边形ABCD的AB边中点,CM交BD于点E,则图中阴影部分的面积与平行四边形ABCD的面积的比是()A . 1:3B . 1:4C . 1:6D . 5:12二、填空题(每小题4分,共24分) (共6题;共24分)13. (4分)若,则=________.14. (4分)下列说法:⑴若a为实数,则a2>0;⑵若a为实数,则a的倒数是;⑶若a为实数,则|a|≥0;⑷若a为无理数,则a的相反数是﹣a.其中正确的是________ (填序号)15. (4分) (2020八下·哈尔滨期中) 如图,将正方形ABCD沿FG折叠,点A恰好落在BC上的点E处,若BE=2,CE=4,则折痕FG的长度为________.16. (4分)(2017·东营) 如图,已知菱形ABCD的周长为16,面积为8 ,E为AB的中点,若P为对角线BD上一动点,则EP+AP的最小值为________.17. (4分)(2019·武昌模拟) 若直线与函数的图象有四个公共点,则m的取值范围为________.18. (4分)(2020·湖州模拟) 如图,△AOB和△ACD均为正三角形,顶点B,D在双曲线y= (x>0)上,则 =________.三、解答题(第19题6分,第20、21题各8分,第2224题各1 (共8题;共78分)19. (6分)(2019·福州模拟) 计算:|﹣3|+ •tan30°﹣(3.14﹣π)020. (8分)(2019·泸州) 某市气象局统计了5月1日至8日中午12时的气温(单位 ),整理后分别绘制成如图所示的两幅统计图.根据图中给出的信息,解答下列问题:(1)该市5月1日至8日中午时气温的平均数是________ ,中位数是________ ;(2)求扇形统计图中扇形的圆心角的度数;(3)现从该市5月1日至5日的天中,随机抽取天,求恰好抽到天中午12时的气温均低于的概率.21. (8分)如图,从A地到B地的公路需经过C地,图中AC=10千米,∠CAB=25°,∠CBA=37°,因城市规划的需要,将在A、B两地之间修建一条笔直的公路.(1)求改直的公路AB的长;(2)问公路改直后比原来缩短了多少千米?(sin25°≈0.42,cos25°≈0.91,sin37°≈0.60,tan37°≈0.75)22. (10分)如图,AB是⊙O的直径,弦CD⊥AB于点E,点M在⊙O上,MD恰好经过圆心O,连接MB.(1)若CD=16,BE=4,求⊙O的直径;(2)若∠M=∠D,求∠D的度数.23. (10.0分)(2016·百色) 正方形OABC的边长为4,对角线相交于点P,抛物线L经过O、P、A三点,点E是正方形内的抛物线上的动点.(1)建立适当的平面直角坐标系,①直接写出O、P、A三点坐标;②求抛物线L的解析式;(2)求△OAE与△OCE面积之和的最大值.24. (10.0分)(2018·通辽) 某网店销售甲、乙两种羽毛球,已知甲种羽毛球每筒的售价比乙种羽毛球多15元,王老师从该网店购买了2筒甲种羽毛球和3筒乙种羽毛球,共花费255元.(1)该网店甲、乙两种羽毛球每筒的售价各是多少元?(2)根据消费者需求,该网店决定用不超过8780元购进甲、乙两种羽毛球共200筒,且甲种羽毛球的数量大于乙种羽毛球数量的,已知甲种羽毛球每筒的进价为50元,乙种羽毛球每筒的进价为40元.①若设购进甲种羽毛球m筒,则该网店有哪几种进货方案?②若所购进羽毛球均可全部售出,请求出网店所获利润W(元)与甲种羽毛球进货量m(筒)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?25. (12分)(2020·江苏模拟) 已知,矩形中,,,是边上一点,连接,将沿直线翻折得 .(1)如图①,点恰好在上,求证:;(2)如图②,当时,延长交边于点,求的长.26. (14.0分)(2020·铜仁模拟) 如图在平面直角坐标系中顶点为点M的抛物线是由抛物线向右平移1个单位得到的,它与y轴负半轴交于点A,点B在抛物线上,且横坐标为3.(1)写出以M为顶点的抛物线解析式.(2)连接AB,AM,BM,求;(3)点P是顶点为M的抛物线上一点,且位于对称轴的右侧,设PO与x正半轴的夹角为,当时,求点P坐标.参考答案一、选择题(每题4分,共48分) (共12题;共48分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、二、填空题(每小题4分,共24分) (共6题;共24分)13-1、14-1、15-1、16-1、17-1、18-1、三、解答题(第19题6分,第20、21题各8分,第2224题各1 (共8题;共78分)19-1、20-1、20-2、20-3、21-1、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-1、26-2、26-3、。

枣庄市2020年九年级上学期数学期末考试试卷(II)卷

枣庄市2020年九年级上学期数学期末考试试卷(II)卷

枣庄市2020年九年级上学期数学期末考试试卷(II)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·铜川模拟) 如图,下面几何体是由一个圆柱被经过上下底面圆心的平面截得的,则它的左视图是()A .B .C .D .2. (2分)用配方法将x2﹣8x﹣1=0变形为(x﹣4)2=m,下列选项中,m的值是正确的是()A . 17B . 15C . 9D . 73. (2分) (2016九上·南开期中) 已知二次函数y=3x2+c与正比例函数y=4x的图象只有一个交点,则c的值为()A .B .C . 3D . 44. (2分) (2019八下·沙雅期中) 下列哪组条件能够判别四边形ABCD是平行四边形?()A . AB∥CD,AD=BCB . AB=CD,AD=BCC . ∠A=∠B,∠C=∠DD . AB=AD,CB=CD5. (2分) (2020七下·涡阳月考) 面积为3的正方形的边长范围在()A . 0和1之间B . 1和2之间C . 2和3之间D . 3和4之间6. (2分)下列命题正确的是()A . 三视图是中心投影B . 小华观察牡丹花,牡丹花就是视点C . 球的三视图均是半径相等的圆D . 阳光从矩形窗子里照射到地面上,得到的光区仍是矩形7. (2分)(2019·营口) 反比例函数的图象位于()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)如图,已知点D、E分别在△ABC的边AB、AC上,DE∥BC,点F在CD延长线上,AF∥BC,则下列结论错误的是()A . =B . =C . =D . =9. (2分)如图所示,已知AB=CD,AD=CB,AC、BD相交于O,则图中全等三角形有()A . 2对B . 3对C . 4对D . 5对10. (2分)(2017·沭阳模拟) 若菱形两条对角线的长分别为6和8,则这个菱形的周长为()A . 20B . 16C . 12D . 10二、填空题 (共8题;共9分)11. (1分)(2017·眉山) 已知一元二次方程x2﹣3x﹣2=0的两个实数根为x1 , x2 ,则(x1﹣1)(x2﹣1)的值是________.12. (1分)如图,在△ABC中有菱形AMPN,如果,那么=________.13. (2分) (2020九下·镇江月考) 如图,△ABC与△A'B'C'是以坐标原点O为位似中心的位似图形,且= ,已知点A(﹣1,0),点C(,1),则A'C'=________.14. (1分)形成投影应具备的条件有:________、________、________15. (1分) (2016九上·鼓楼期末) 若线段AB=6cm,点C是线段AB的一个黄金分割点(AC>BC),则AC的长为________cm(结果保留根号).16. (1分)(2018·江都模拟) 如图,点A是反比例函数y= (x>0)的图象上任意一点,AB∥x轴交反比例函数y=﹣的图象于点B,以AB为边作平行四边形ABCD,其中C、D在x轴上,则S▱ABCD为________.17. (1分) (2020·营口模拟) 分解因式:a3b+2a2b2+ab3=________.18. (1分)如图,在△ABC中,∠C=90°,D是AC上一点,DE⊥AB于点E,若AC=8,BC=6,DE=3,则AD的长为.三、解答题 (共8题;共59分)19. (5分) (2018八上·兴义期末) 先化简,再求值:,其中x=2.20. (5分) (2019八上·浦东新月考) 解方程.21. (10分) (2019九上·兴化月考) 某商场销售一批衬衫,平均每天可售出20件,每件盈利40元.为了扩大销售,增加盈利,商场采取了降价措施.假设在一定的范围内,衬衫的单价每降1元,商场平均每天可多售出2件.设销售单价降了x元.据此规律,请回答:(1)商场平均每天销售量为________件,每件衬衫盈利________元(用含x的代数式表示);(2)如果降价后商场销售这批衬衫每天要盈利1250元,那么衬衫的单价降了多少元?22. (10分)(2011·苏州) 如图所示的方格地面上,标有编号1、2、3的3个小方格地面是空地,另外6个小方格地面是草坪,除此以外小方格地面完全相同(1)一只自由飞翔的小鸟,将随意地落在图中所示的方格地面上,求小鸟落在草坪上的概率;(2)现准备从图中所示的3个小方格空地中任意选取2个种植草坪,则编号为1、2的2个小方格空地种植草坪的概率是多少(用树状图或列表法求解)?23. (2分)某水库大坝的横截面是如图所示的四边形ABCD,其中AB∥CD.瞭望台PC正前方水面上有两艘渔船M,N,观察员在瞭望台顶端P处观测渔船M的俯角α=31°,观测渔船N的俯角β=45°.已知MN所在直线与PC所在直线垂直,垂足为点E,PE长为30米.(1)求两渔船M,N之间的距离(结果精确到1米);(2)已知坝高24米,坝长100米,背水坡AD的坡度i=1:0.25.为提高大坝防洪能力,某施工队在大坝的背水坡填筑土石加固,加固后坝顶加宽3米,背水坡FH的坡度为i=1:1.5.施工12天后,为尽快完成加固任务,施工队增加了机械设备,工作效率提高到原来的1.5倍,结果比原计划提前20天完成加固任务.施工队原计划平均每天填筑土石方多少立方米?(参考数据:tan31°≈0.60,sin31°≈0.52)24. (10分)(2017·青岛) 已知:如图,在菱形ABCD中,点E,O,F分别为AB,AC,AD的中点,连接CE,CF,OE,OF.(1)求证:△BCE≌△DCF;(2)当AB与BC满足什么关系时,四边形AEOF是正方形?请说明理由.25. (2分)在矩形纸片ABCD中,AB=6,BC=8,(1)将矩形纸片沿BD折叠,点A落在点E处(如图①),设DE与BC相交于点F,试说明△DBF是等腰三角形,并求出其周长.(2)将矩形纸片折叠,使点B与点D重合(如图②),求折痕GH的长.26. (15分) (2020八下·重庆月考) 如图,在平行四边形ABCD中,点H为DC上一点,BD、AH交于点O,△ABO为等边三角形,点E在线段AO上,OD=OE,连接BE,点F为BE的中点,连接AF并延长交BC于点G,且∠GAD =60°.(1)若CH=2,AB=4,求BC的长;(2)求证:BD=AB+AE.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共8题;共59分)19-1、20-1、21-1、21-2、22-1、22-2、23-1、23-2、24-1、24-2、25-1、25-2、26-2、。

山东省枣庄市2020年九年级上学期数学期末考试试卷(I)卷

山东省枣庄市2020年九年级上学期数学期末考试试卷(I)卷

山东省枣庄市2020年九年级上学期数学期末考试试卷(I)卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2019八下·温州期中) 在平面直角坐标系内,点(-1,2)关于原点对称的点的坐标是()A . (2,-1)B . (1,2)C . (1,-2)D . (-1,-2)2. (2分)(2019·海珠模拟) 下列图形中是中心对称图形的是()A .B .C .D .3. (2分)(2018·吉林模拟) 在Rt△ABC中,∠C=90°,sinA= ,则cosB的值为()A .B .C .D .4. (2分) (2015九上·宝安期末) 如图,该几何体的左视图是()A .B .C .D .5. (2分) (2019九上·昌图期末) 关于反比例函数,下列说法正确的是()A . 图象过(1,1)点B . 图象在第一、三象限C . 当x>0时,y随x的增大而减小D . 当x<0时,y随x的增大而增大6. (2分) (2019九上·镇江期末) 将抛物线沿y轴翻折,所得抛物线的函数表达式是()A .B .C .D .7. (2分)△ABC中,∠BAC=90°,将△ABP绕点A逆时针旋转后,能与△ACP′重合,如果AP=3,那么PP′的长等于()A .B .C .D .8. (2分) (2018九上·惠山期中) 如图,在平面直角坐标系中,已知点A(1,0),B(1﹣a,0),C(1+a,0)(a>0),点P在以D(4,4)为圆心,1为半径的圆上运动,且始终满足∠BPC=90°,则a的最大值是()A . 3B . 4C . 5D . 69. (2分) (2019八下·越城期末) 如图,要在平行四边形内作一个菱形.甲,乙两位同学的作法分别如下:对于甲乙两人的作法,可判断()A . 甲正确,乙错误B . 甲错误,乙正确C . 甲,乙均正确D . 甲、乙均错误10. (2分)(2020·南山模拟) 已知抛物线y=ax2+bx+c(a≠0)的对称轴是直线x=1,其部分图象如图所示,下列说法中:①abc<0;②4a−2b+c<0;③若A(,y1)、B(,y2)、C(,y3)是抛物线上的三点,则有;④若m , n()为方程的两个根,则且,以上说法正确的有()A . ①②③④B . ②③④C . ①②④D . ①②③二、填空题 (共9题;共9分)11. (1分) (2020九下·卧龙模拟) 计算:–2cos60°=________.12. (1分) (2017九上·武邑月考) 抛物线y=3(x﹣9)2+1的顶点坐标为________.13. (1分)(2020·滨湖模拟) 在根式,,,中随机抽取一个,它是最简二次根式的概率为________.14. (1分)如图,在平面直角坐标系中,点A和点C分别在y轴和x轴正半轴上,以OA、OC为边作矩形OABC,双曲线y=(x>0)交AB于点E,AE:EB=1:3.则矩形OABC的面积是________.15. (1分)在同一时刻,身高1.6m的小明的影长是3.2m,某建筑物的影长是15m,则建筑物的高为________m .16. (1分)扇形的弧长是20π,面积是240π,则此扇形的圆心角的度数是________17. (1分)(2017·罗平模拟) 如图,⊙P内含于⊙O,⊙O的弦AB切⊙P于点C,且AB∥OP.若阴影部分的面积为16π,则弦AB的长为________.18. (1分) (2020八下·姜堰期中) 如图,在Rt△ABC中,∠B=90°,AC=5,BC=4,点D在线段BC上一动点,以AC为对角线的中,则DE的最小值是________.19. (1分) (2018九上·台州期末) 如图,矩形ABCD中,AB=5,BC=7,E为BC上的动点,将矩形沿直线AE 翻折,使点B的对应点B'落在∠ADC的平分线上,过点B'作B'F⊥BC于点F,求△B'EF的周长________.三、解答题 (共8题;共74分)20. (2分)用计算器求图中∠A的正弦值、余弦值、正切值.21. (5分)(2018·利州模拟) (﹣)﹣2﹣(2018﹣π)0﹣| |+2sin60°22. (2分)已知直角三角形的两条直角边的长恰好是方程2x2-8x+7=0的两个根,求这个直角三角形的斜边长23. (15分)(2020·珠海模拟) 为实现2020年全面脱贫的目标,我国实施“精准扶贫”战略,从而使贫困户的生活条件得到改善,生活质量明显提高.为了切实关注、关爱贫困家庭学生,某校对全校各班贫困家庭学生的人数情况进行了统计,统计发现班上贫困家庭学生人数分别有2名,3名,4名,5名,6名,共五种情况.并将其制成了如下两幅不完整的统计图:请回答下列问题:(1)求该校一共有班级________个;在扇形统计图中,贫困家庭学生人数有5名的班级所对应扇形圆心角为________°;(2)将条形图补充完整;(3)甲、乙、丙是贫困生中的三名学生,学校决定从这三名学生中随机抽取两名代表到市里进行发言,用列表法或画树状图法,求同时抽到甲,乙两名学生的概率.24. (10分) (2016八上·宁海月考) 如图,已知△ABC中,BD、CE是高, F是BC中点,连接DE、EF和DF,(1)求证:△DEF是等腰三角形.(2)若∠A=45°,试判断△DEF的形状,并说明理由.(3)若∠A:∠DFE=5:2,BC=4,求△DEF的面积.25. (10分) (2018九上·宝应月考) 某商品交易会上,一商人将每件进价为5元的纪念品,按每件9元出售,每天可售出32件.他想采用提高售价的办法来增加利润,经试验,发现这种纪念品每件提价2元,每天的销售量会减少8件.(1)当售价定为多少元时,每天的利润为140元?(2)写出每天所得的利润y(元)与售价(元/件)之间的函数关系式,每件售价定为多少元,才能使一天所得的利润最大?最大利润是多少元?(利润=(售价-进价)×售出件数)26. (15分) (2015八下·灌阳期中) 如图,在矩形ABCD中,AB=12cm,BC=6cm,点P沿AB边从点A开始向点B以2cm/秒的速度移动;点Q沿DA边从点D开始向点A以1cm/秒的速度移动,如果P、Q同时出发,用t(秒)表示移动的时间(0<t<6).(1)当t为何值时,△PBC为等腰直角三角形?(2)求当移动到△QAP为等腰直角三角形时斜边QP的长.27. (15分)(2020·永州) 在平面直角坐标系中,等腰直角的直角顶点C在y轴上,另两个顶点A , B在x轴上,且,抛物线经过A , B , C三点,如图1所示.(1) 求抛物线所表示的二次函数表达式.(2) 过原点任作直线l 交抛物线于M , N 两点,如图2所示. ①求 面积的最小值.②已知是抛物线上一定点,问抛物线上是否存在点P , 使得点P 与点Q 关于直线l 对称,若存在,求出点P 的坐标及直线l 的一次函数表达式;若不存在,请说明理由.参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共9题;共9分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、19-1、三、解答题 (共8题;共74分)20-1、21-1、22-1、23-1、23-2、23-3、24-1、24-2、24-3、25-1、25-2、26-1、26-2、27-1、。

2022-2023学年山东省枣庄市薛城区九年级数学第一学期期末达标测试试题含解析

2022-2023学年山东省枣庄市薛城区九年级数学第一学期期末达标测试试题含解析

2022-2023学年九上数学期末模拟试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。

选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。

2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。

3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。

一、选择题(每小题3分,共30分) 1.下列事件中,是必然事件的是( ) A .抛掷一枚硬币正面向上 B .从一副完整扑克牌中任抽一张,恰好抽到红桃A C .今天太阳从西边升起D .从4件红衣服和2件黑衣服中任抽3件有红衣服2.如图,AD ,BC 相交于点O ,//AB CD .若1AB =,2CD =,则ABO ∆与DCO ∆的面积之比为( )A .1:2B .1:4C .2:1D .4:13.如图,在平行四边形ABCD 中,F 是边AD 上的一点,射线CF 和BA 的延长线交于点E ,如果12C EAF C CDF =,那么S EAFS EBC的值是( )A .12B .13C .14D .194.一个不透明的布袋中有分别标着数字1,2,3,4的四个乒乓球,现从袋中随机摸出两个乒乓球,则这两个乒乓球上的数字之和大于5的概率为( ) A .16B .13C .12D .235.如图所示,在平面直角坐标系中,有两点A (4,2),B (3,0),以原点为位似中心,A'B'与AB 的相似比为12,得到线段A'B'.正确的画法是( )A .B .C .D .6.已知点()()12,3,,6A x B x 都在反比例函数3y x=的图象上,则下列关系式一定正确的是( ) A .120x x << B .120x x << C .210x x <<D .210x x <<7.如图,已知△ABC 与△DEF 位似,位似中心为点O ,且△ABC 的面积等于△DEF 面积的49,则AO :AD 的值为( )A .2:3B .2:5C .4:9D .4:138.已知x 2-2x=8,则3x 2-6x-18的值为( )A .54B .6C .-10D .-18 9.下列成语表示随机事件的是( )A .水中捞月B .水滴石穿C .瓮中捉鳖D .守株待兔10.已知关于x 的一元二次方程x 2+2x ﹣a=0有两个相等的实数根,则a 的值是( ) A .1B .﹣1C .14D .14-二、填空题(每小题3分,共24分)11.如图,将一张矩形纸片ABCD 沿对角线BD 折叠,点C 的对应点为C',再将所折得的图形沿EF 折叠,使得点D 和点A 重合.若AB 3=,BC 4=,则折痕EF 的长为______.12.如图所示,某建筑物有一抛物线形的大门,小明想知道这道门的高度,他先测出门的宽度8AB m =,然后用一根长为4m 的小竹竿CD 竖直的接触地面和门的内壁,并测得2AC m =,则门高OE 为__________.13.如图,在平面直角坐标系中,点()3,0A,点()0,1B ,作第一个正方形111OA C B 且点1A 在OA 上,点1B 在OB 上,点1C 在AB 上;作第二个正方形1222A A C B 且点2A 在1A A 上,点2B 在12A C 上,点2C 在AB 上…,如此下去,其中1C 纵坐标为______,点n C 的纵坐标为______.14.若某人沿坡度i=3∶4的斜坡前进10m ,则他比原来的位置升高了_________m . 15.如图,已知点A ,C 在反比例函数(0)a y a x =>的图象上,点B ,D 在反比例函(0)by b x=<的图象上,AB ∥CD ∥x 轴,AB ,CD 在x 轴的两侧,AB=5,CD=4,AB 与CD 的距离为6,则a −b 的值是_______.16.请写出一个位于第一、三象限的反比例函数表达式,y = .17.将一些半径相同的小圆按如图所示的规律摆放,请仔细观察,第_________个图形有94个小圆.18.如图,这是二次函数y =x 2﹣2x ﹣3的图象,根据图象可知,函数值小于0时x 的取值范围为_____.三、解答题(共66分)19.(10分)空间任意选定一点O ,以点O 为端点,作三条互相垂直的射线Ox ,Oy ,Oz .这三条互相垂直的射线分别称作x 轴、y 轴、z 轴,统称为坐标轴,它们的方向分别为Ox (水平向前),Oy (水平向右),Oz (竖直向上)方向,这样的坐标系称为空间直角坐标系.将相邻三个面的面积记为1S ,2S ,3S ,且123S S S <<的小长方体称为单位长方体,现将若干个单位长方体在空间直角坐标系内进行码放,要求码放时将单位长方体1S 所在的面与x 轴垂直,2S 所在的面与y 轴垂直,3S 所在的面与z 轴垂直,如图1所示.若将x 轴方向表示的量称为几何体码放的排数,y 轴方向表示的量称为几何体码放的列数,二轴方向表示的量称为几何体码放的层数;如图2是由若干个单位长方体在空间直角坐标内码放的一个几何体,其中这个几何体共码放了1排2列6层,用有序数组记作()1,2,6,如图3的几何体码放了2排3列4层,用有序数组记作()2,3,4.这样我们就可用每一个有序数组(),,x y z 表示一种几何体的码放方式.(1)有序数组()3,2,4所对应的码放的几何体是______________;A .B .C .D .(2)图4是由若干个单位长方体码放的一个几何体的三视图,则这种码放方式的有序数组为(______,_______,_______),组成这个几何体的单位长方体的个数为____________个.(3)为了进一步探究有序数组(),,x y z 的几何体的表面积公式(),,x y z S ,某同学针对若干个单位长方体进行码放,制作了下列表格:根据以上规律,请直接写出有序数组(),,x y z 的几何体表面积(),,x y z S 的计算公式;(用x ,y ,z ,1S ,2S ,3S 表示) (4)当12S =,23S =,34S =时,对由12个单位长方体码放的几何体进行打包,为了节约外包装材料,我们可以对12个单位长方体码放的几何体表面积最小的规律进行探究,请你根据自己探究的结果直接写出使几何体表面积最小的有序数组,这个有序数组为(______,_______, ______),此时求出的这个几何体表面积的大小为____________(缝隙不计)20.(6分)经过某十字路口的汽车,可能直行,也可能向左转或向右转.如果这三种可能性大小相同,求两辆车经过这个十字路口时,下列事件的概率: (1)两辆车中恰有一辆车向左转; (2)两辆车行驶方向相同.21.(6分)如图,在△ABC 中,BE 平分∠ABC 交AC 于点E ,过点E 作ED ∥BC 交AB 于点D . (1)求证:AE•BC=BD•AC ;(2)如果ADES=3,BDE S=2,DE=6,求BC 的长.22.(8分)用配方法解方程:22480x x --=23.(8分)现有3个型号相同的杯子,其中A 等品2个,B 等品1个,从中任意取1个杯子,记下等级后放回,第二次再从中取1个杯子,(1)用恰当的方法列举出两次取出杯子所有可能的结果; (2)求两次取出至少有一次是B 等品杯子的概率.24.(8分)如图,△ABC 中,AB =AC =10,BC =6,求sinB 的值.25.(10分)如图,抛物线y =-x 2+bx +c 与x 轴交于点A (-1,0),与y 轴交于点B (0,2),直线y =12x -1与y 轴交于点C ,与x 轴交于点D ,点P 是线段CD 上方的抛物线上一动点,过点P 作PF 垂直x 轴于点F ,交直线CD 于点E ,(1)求抛物线的解析式;(2)设点P 的横坐标为m ,当线段PE 的长取最大值时,解答以下问题. ①求此时m 的值.②设Q 是平面直角坐标系内一点,是否存在以P 、Q 、C 、D 为顶点的平行四边形?若存在,直接写出点Q 的坐标;若不存在,请说明理由.26.(10分)如图,建筑物AB 的高为6cm ,在其正东方向有个通信塔CD ,在它们之间的地面点M (B ,M ,D 三点在一条直线上)处测得建筑物顶端A 、塔项C 的仰角分别为37°和60°,在A 处测得塔顶C 的仰角为30°,则通信塔CD 的高度.(sin37°≈0.60,cos37°≈0.80,tan37°≈0.753,精确到0.1m )参考答案一、选择题(每小题3分,共30分)1、D【分析】必然事件是指在一定条件下一定会发生的事件,根据事件发生的可能性大小判断相应事件的类型即可.【详解】解:A、抛掷一枚硬币正面向上,是随机事件,故本选项错误;B、从一副完整扑克牌中任抽一张,恰好抽到红桃A,是随机事件.故本选项错误;C、今天太阳从西边升起,是不可能事件,故本选项错误;D、从4件红衣服和2件黑衣服中任抽3件有红衣服,是必然事件,故本选项正确.故选:D.【点睛】本题考查了事件发生的可能性,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.2、B【分析】先证明两三角形相似,再利用面积比是相似比的平方即可解出.【详解】∵AB∥CD,∴∠A=∠D,∠B=∠C,∴△ABO∽△DCO,∵AB=1,CD=2,∴△AOB和△DCO相似比为:1:2.∴△AOB和△DCO面积比为:1:4.故选B.【点睛】本题考查相似三角形的面积比,关键在于牢记面积比和相似比的关系.3、D【解析】分析:根据相似三角形的性质进行解答即可.详解:∵在平行四边形ABCD中,∴AE∥CD,∴△EAF∽△CDF,∵12EAFCDFCC,=∴12 AFDF=,∴11123 AFBC==+,∵AF∥BC,∴△EAF∽△EBC,∴21139EAFEBCSS⎛⎫==⎪⎝⎭,故选D.点睛:考查相似三角形的性质:相似三角形的面积比等于相似比的平方.4、B【解析】列表得:41+4=52+4=63+4=7-∵共有12种等可能的结果,这两个乒乓球上的数字之和大于5的有4种情况, ∴这两个乒乓球上的数字之和大于5的概率为:41123=.故选B . 5、D【分析】根据题意分两种情况画出满足题意的线段A′B ′,即可做出判断. 【详解】解:画出图形,如图所示:故选D . 【点睛】此题考查作图-位似变换,解题关键是画位似图形的一般步骤为:①确定位似中心,②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,得到放大或缩小的图形. 6、C【分析】根据反比例函数的性质即可得到答案.【详解】∵k=3>0,反比例函数的图形在第一象限或第三象限, ∴在每个象限内,y 随着x 的增大而减小, ∵点()()12,3,,6A x B x ,且3<6, ∴210x x <<, 故选:C. 【点睛】此题考查反比例函数的性质,正确掌握函数图象的增减性是解题的关键. 7、B【分析】由△ABC 经过位似变换得到△DEF ,点O 是位似中心,根据位似图形的性质得到AB :DO═2:3,进而得出答案.【详解】∵△ABC与△DEF位似,位似中心为点O,且△ABC的面积等于△DEF面积的49,∴ACDF=23,AC∥DF,∴AODO=ACDF=23,∴AOAD=25.故选:B.【点睛】此题考查了位似图形的性质.注意掌握位似是相似的特殊形式,位似比等于相似比,其对应的面积比等于相似比的平方.8、B【解析】所求式子前两项提取3变形后,将已知等式变形后代入计算即可求出值.【详解】∵x2−2x=8,∴3x2−1x−18=3(x2−2x)−18=24−18=1.故选:B.【点睛】此题考查了代数式求值,利用了整体代入的思想,是一道基本题型.9、D【解析】根据必然事件、不可能事件、随机事件的概念进行判断即可.【详解】解:水中捞月是不可能事件,故选项A不符合题意;B、水滴石穿是必然事件,故选项B不符合题意;C、瓮中捉鳖是必然事件,故选项C不符合题意;D、守株待兔是随机事件,故选项D符合题意;故选:D.【点睛】本题考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念.用到的知识点为:确定事件包括必然事件和不可能事件.必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.10、B【分析】根据关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根可知△=0,求出a的取值即可.【详解】解:∵关于x的一元二次方程x2+2x﹣a=0有两个相等的实数根,∴△=22+4a=0,解得a=﹣1. 故选B . 【点睛】本题考查一元二次方程根的判别式,熟记公式正确计算是本题的解题关键.二、填空题(每小题3分,共24分) 11、2512【分析】首先由折叠的性质与矩形的性质,证得BND 是等腰三角形,则在Rt ABN 中,利用勾股定理,借助于方程即可求得AN 的长,又由ANB ≌C'ND ,易得:FDM ABN ∠∠=,由三角函数的性质即可求得MF 的长,又由中位线的性质求得EM 的长,则问题得解【详解】如图,设BC'与AD 交于N ,EF 与AD 交于M ,根据折叠的性质可得:NBD CBD ∠∠=,1AM DM AD 2==,FMD EMD 90∠∠==, 四边形ABCD 是矩形,AD //BC ∴,AD BC 4==,BAD 90∠=,ADB CBD ∠∠∴=, NBD ADB ∠∠∴=, BN DN ∴=,设AN x =,则BN DN 4x ==-, 在Rt ABN 中,222AB AN BN +=,2223x (4x)∴+=-,7x 8∴=, 即7AN 8=,C'D CD AB 3===,BAD C'90∠∠==,ANB C'ND ∠∠=, ANB ∴≌()C'ND AAS ,FDM ABN ∠∠∴=, tan FDM tan ABN ∠∠∴=,AN MFAB MD ∴=, 7MF 832∴=,7MF 12∴=,由折叠的性质可得:EF AD ⊥,EF//AB ∴,AM DM =, 13ME AB 22∴==, 3725EF ME MF 21212∴=+=+=,故答案为2512. 【点睛】本题考查了折叠的性质,全等三角形的判定与性质,三角函数的性质以及勾股定理等知识,综合性较强,有一定的难度,解题时要注意数形结合思想与方程思想的应用. 12、163【分析】根据题意分别求出A,B,D 三点的坐标,利用待定系数法求出抛物线的表达式,从而找到顶点,即可找到OE 的高度.【详解】根据题意有(4,0),(4,0)A B -422CO OA AC =-=-=∴4()2,D -设抛物线的表达式为2y ax bx c =++ 将A,B,D 代入得16401640424a b c a b c a b c -+=⎧⎪++=⎨⎪-+=⎩ 解得130163a b c ⎧=-⎪⎪=⎨⎪⎪=⎩∴211633y x =-+ 当0x =时,163y =163OE ∴=故答案为:163. 【点睛】本题主要考查二次函数的最大值,掌握待定系数法是解题的关键.13n⎝⎭【分析】先确定直线AB 的解析式,然后再利用正方形的性质得出点C 1和C 2的纵坐标,归纳规律,然后按规律求解即可.【详解】解:设直线AB 的解析式y=kx+b则有:01b b +==⎪⎩,解得:1k b ⎧=⎪⎨⎪=⎩所以直线仍的解析式是:y=13x -+ 设C 1的横坐标为x,则纵坐标为y=13x -+ ∵正方形OA 1C 1B 1∴x=y,即13x x =-+,解得32x -== ∴点C 1的纵坐标为32- 同理可得:点C 2=232⎛- ⎝⎭ ∴点C n的纵坐标为32n⎛⎫- ⎪⎝⎭.故答案为:332-,332n⎛⎫- ⎪⎝⎭.【点睛】本题属于一次函数综合题,主要考查了运用待定系数法求一次函数的解析式、正方形的性质、一次函数图象上点的坐标特点等知识,掌握数形结合思想是解答本题的关键. 14、1.【详解】解:如图:由题意得,BC :AC=3:2. ∴BC :AB=3:3. ∵AB=10, ∴BC=1. 故答案为:1 【点睛】本题考查解直角三角形的应用-坡度坡角问题. 15、403【分析】利用反比例函数k 的几何意义得出a-b=4•OE ,a-b=5•OF ,求出45a b a b--+=6,即可求出答案. 【详解】如图,∵由题意知:a-b=4•OE ,a-b=5•OF , ∴OE=4a b-,OF=5a b -, 又∵OE+OF=6, ∴45a b a b --+=6,∴a-b=403, 故答案为:403.【点睛】本题考查了反比例函数图象上点的坐标特征,能求出方程45a b a b--+=6是解此题的关键. 16、2y x=(答案不唯一). 【详解】设反比例函数解析式为k y x=, ∵图象位于第一、三象限,∴k >0, ∴可写解析式为2y x=(答案不唯一). 考点:1.开放型;2.反比例函数的性质. 17、9.【分析】分析数据可得:第1个图形中小圆的个数为6;第2个图形中小圆的个数为10;第3个图形中小圆的个数为16;第1个图形中小圆的个数为21;则知第n 个图形中小圆的个数为n (n+1)+1.依此列出方程即可求得答案. 【详解】解:设第n 个图形有91个小圆,依题意有n 2+n+1=91 即n 2+n=90 (n+10)(n ﹣9)=0解得n 1=9,n 2=﹣10(不合题意舍去). 故第9个图形有91个小圆. 故答案为:9 【点睛】本题考查(1)、一元二次方程的应用;(2)、规律型:图形的变化类. 18、﹣1<x <1.【分析】根据图象直接可以得出答案【详解】如图,从二次函数y =x 2﹣2x ﹣1的图象中可以看出 函数值小于0时x 的取值范围为:﹣1<x <1 【点睛】此题重点考察学生对二次函数图象的理解,抓住图象性质是解题的关键三、解答题(共66分)19、 (1) B ;(2) 2,3,2 , 1 ;(3)S (x ,y ,z)=2(yzS 1+xzS 2+xyS 3);(4)2,2,3,2 【分析】(1)根据几何体码放的情况,即可得到答案;(2)根据几何体的三视图,可知:几何体有2排,3列,2层,进而即可得到答案;(3)根据有序数组(),,x y z 的几何体,表面上面积为S 1的个数为2yz 个, 表面上面积为S 2的个数为2xz 个,表面上面积为S 3的个数为2xy 个,即可得到答案;(4)由题意得:xyz=1,(),,x y z S =4yz +6xz +8xy ,要使(),,x y z S 的值最小,x ,y ,z 应满足x ≤y ≤z (x ,y ,z 为正整数),进而进行分类讨论,即可求解.【详解】(1)∵有序数组()3,2,4所对应的码放的几何体是:3排2列4层, ∴B 选项符合题意, 故选B .(2)根据几何体的三视图,可知:几何体有2排,3列,2层, ∴这种码放方式的有序数组为(2,3,2), ∵几何体有2层,每层有6个单位长方体, ∴组成这个几何体的单位长方体的个数为1个. 故答案是:2,3,2;1.(3)∵有序数组(),,x y z 的几何体,表面上面积为S 1的个数为2yz 个, 表面上面积为S 2的个数为2xz 个,表面上面积为S 3的个数为2xy 个, ∴(),,x y z S =2(yzS 1+xzS 2+xyS 3).(4)由题意得:xyz=1,(),,x y z S =4yz +6xz +8xy ,∴要使(),,x y z S 的值最小,x ,y ,z 应满足x ≤y ≤z (x ,y ,z 为正整数).∴在由1个单位长方体码放的几何体中,满足条件的有序数组为(1,1,1),(1,2,6),(1,3,4),(2,2,3), ∵()1,1,12=128S ,()1,2,6=100S ,()1,3,4=96S ,()2,2,3=92S ,∴由1个单位长方体码放的几何体中,表面积最小的有序数组为:(2,2,3),最小表面积为:2. 故答案是:2,2,3;2. 【点睛】本题主要考查几何体的三视图与表面积的综合,掌握几何体的三视图的定义和表面积公式,是解题的关键.20、(1)49;(2)13【分析】此题可以采用列表法求解.可以得到一共有9种情况,两辆车中恰有一辆车向左转的有4种情况,两辆车行驶方向相同有3种情况,根据概率公式求解即可. 【详解】解:列表得:共有9种等可能结果,其中,两辆车中恰有一辆车向左转的有4种情况;两辆车行驶方向相同有3种情况 (1)P (两辆车中恰有一辆车向左转)=49; (2)P (两辆车行驶方向相同)=3193=. 【点睛】列表法可以不重不漏的列举出所有可能发生的情况,列举法适合于两步完成的事件,树状图法适合于两步或两步以上完成的事件.解题时注意看清题目的要求,要按要求解题.概率=所求情况数与总情况数之比. 21、 (1)证明详见解析;(2)1.【详解】试题分析:(1)由BE 平分∠ABC 交AC 于点E ,ED ∥BC ,可证得BD=DE ,△ADE ∽△ABC ,然后由相似三角形的对应边成比例,证得AE•BC=BD•AC ; (2)根据三角形面积公式与ADES =3,BDE S=2,可得AD :BD=3:2,然后由平行线分线段成比例定理,求得BC 的长.试题解析:(1)∵BE 平分∠ABC , ∴∠ABE=∠CBE , ∵DE ∥BC , ∴∠DEB=∠CBE , ∴∠ABE=∠DEB , ∴BD=DE , ∵DE ∥BC , ∴△ADE ∽△ABC , ∴AE DEAC BC=,∴AE BDAC BC=, ∴AE•BC=BD•AC ;(2)解:设△ABE 中边AB 上的高为h ,∴1·21·2ADE BDEAD hS AD SBD BD h ===32,∵DE ∥BC ,∴DE ADBC AB =, ∴635BC =, ∴BC=1.考点:相似三角形的判定与性质. 22、x 1=5+1,x 2=5-+1【分析】先把方程进行整理,然后利用配方法进行解方程,即可得到答案. 【详解】解:∵22480x x --=, ∴2240x x --=, ∴2(1)5x -=, ∴15x -=±, ∴x 1=5+1,x 2=5-+1. 【点睛】本题考查了解一元二次方程,解题的关键是熟练掌握配方法进行解一元二次方程. 23、(1)见解析;(2)59. 【分析】(1)根据已知条件画出树状图得出所有等情况数即可;(2)找出两次取出至少有一次是B 等品杯子的情况数,再根据概率公式即可得出答案. 【详解】解:(1)根据题意画树状图如下:由图可知,共有9中等可能情况数;(2)∵共有9中等可能情况数,其中两次取出至少有一次是B 等品杯子的有5种, ∴两次取出至少有一次是B 等品杯子的概率是59. 【点睛】本题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比。

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷

山东省枣庄市2020年九年级上学期数学期末考试试卷B卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分) (2013八下·茂名竞赛) 在下列平面图形中,是中心对称图形的是()A .B .C .D .2. (2分)设有反比例函数y=,(x1 , y1)、(x2 , y2)为其图象上的两点,若x1<0<x2时y1>y2 ,则k的取值范围是()A . k>0B . k<0C . k>-1D . k<-13. (2分) (2017九下·萧山开学考) 将抛物线y=x2﹣2向左平移1个单位后再向上平移1个单位所得抛物线的表达式为()A .B .C .D .4. (2分)如图,一个正六边形转盘被分成6个全等的正三角形,任意旋转这个转盘1次,当旋转停止时,指针指向阴影区域的概率是().A .B .C .D .5. (2分) (2016九上·栖霞期末) 如图,在Rt△ABC中,∠C=90°,AC=4,BC=3,O是△ABC的内心,以O 为圆心,r为半径的圆与线段AB有交点,则r的取值范围是()A . r≥1B . 1≤r≤C . 1≤r≤D . 1≤r≤46. (2分)已知a,b是一元二次方程x2﹣2x﹣1=0的两个实数根,则代数式(a﹣b)(a+b﹣2)+ab的值等于()A . ﹣1B . 1C . ±8﹣1D . ±8+17. (2分)二元二次方程组的解的个数是()A . 1B . 2C . 3D . 48. (2分)下列说法正确的是()A . 圆内接正六边形的边长与该圆的半径相等B . 在平面直角坐标系中,不同的坐标可以表示同一点C . 一元二次方程ax2+bx+c=0(a≠0)一定有实数根D . 将△ABC绕A点按顺时针方向旋转60°得△ADE,则△ABC与△ADE不全等9. (2分)一次函数与反比例函数,在同一直角坐标系中的图象如图所示,若,则x的取值范围是()A . 或B . 或C .D .10. (2分) (2016九上·大石桥期中) 如图,从地面竖直向上抛出一个小球,小球的高度h(单位:m )与小球运动时间t(单位:s)之间的函数关系式为h=30t﹣5t2 ,那么小球从抛出至回落到地面所需的时间是()A . 6 sB . 4 sC . 3 sD . 2 s二、填空题 (共6题;共6分)11. (1分)(2020·黄石模拟) 甲、乙两位同学各抛掷一枚质地均匀的骰子,他们抛掷的点数分别记为、,则能被整除的概率为________.12. (1分) (2018八上·巍山期中) 点P(1,-1)关于原点对称的点的坐标是________.13. (1分)(2018·天河模拟) 如图,用一个圆心角为120°的扇形围成一个无底的圆锥,如果这个圆锥底面圆的半径为1 cm,则这个扇形的半径是________cm.14. (1分)(2019·无锡) 如图,在△ABC中,AC:BC:AB=5:12:13,⊙O在△ABC内自由移动,若⊙O的半径为1,且圆心O在△ABC内所能到达的区域的面积为,则△ABC的周长为________.15. (1分)(2019·乌鲁木齐模拟) 如图,正比例函数y=kx与反比例函数y= 的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是________ .16. (1分)若m是方程x2﹣2x=2的一个根,则2m2﹣4m+2010的值是________.三、解答题 (共9题;共97分)17. (10分)解下列方程(1)x2﹣8x+9=0(2)(2x﹣3)(x﹣4)=0(3)2(x﹣3)2=方程可变为:2x﹣3=0,x﹣4=0,解得:x1= ,x2=4x﹣3.18. (5分)一个宽为2cm的刻度尺在圆形光盘上移动,当刻度尺的一边与光盘相切时,另一边与光盘边缘两个交点处的读数恰好是“2”和“10”(单位:cm),那么该光盘的直径是多少?19. (10分) (2019九上·大丰月考) 如图,在边长为1的正方形组成的网格中,的顶点均在格点上,绕点顺时针旋转后得到 .(1)画出;(其中、对应点分别是、)(2)分别画出旋转过程中,点点经过的路径;①求点经过的路径的长;②求线段所扫过的面积.20. (11分) (2018九上·来宾期末) 中华文明,源远流长;中华汉字,寓意深广.为传承中华优秀传统文化,某校团委组织了一次全校3000名学生参加的“汉字听写”大赛.为了解本次大赛的成绩,校团委随机抽取了其中200名学生的成绩作为样本进行统计,制成如下不完整的统计图表:频数频率分布表成绩x(分)频数(人)频率50≤x<60100.0560≤x<70300.1570≤x<8040n80≤x<90m0.3590≤x≤100500.25根据所给信息,解答下列问题:(1) m=________,n=________;(2)补全频数分布直方图;(3)这200名学生成绩的中位数会落在________分数段;(4)若成绩在90分以上(包括90分)为“优”等,请你估计该校参加本次比赛的3000名学生中成绩是“优”等的约有多少人?21. (10分)(2018·濮阳模拟) 如图,一次函数y=kx+b的图象与反比例函数y= 的图象交于点A(﹣3,m+8),B(n,﹣6)两点.(1)求一次函数与反比例函数的解析式;(2)求△AOB的面积.22. (11分) (2019九上·东台月考) 已知二次函数 .(1)求抛物线顶点M的坐标;(2)设抛物线与x轴交于A、B两点,与y轴交于C点,求A、B、C的坐标(点A在点B的左侧),并画出函数图像的大致示意图;(3)根据图像,写出不等式的解集.23. (10分)(2014·无锡) 如图,二次函数y=ax2+bx(a<0)的图象过坐标原点O,与x轴的负半轴交于点A,过A点的直线与y轴交于B,与二次函数的图象交于另一点C,且C点的横坐标为﹣1,AC:BC=3:1.(1)求点A的坐标;(2)设二次函数图象的顶点为F,其对称轴与直线AB及x轴分别交于点D和点E,若△FCD与△AED相似,求此二次函数的关系式.24. (15分) (2020八上·苍南期末) 如图,直角坐标系中,点C是直线y= x上第一象限内的点点A(1,0),以AC为边作等腰Rt△ACB,AC=BC点B在x轴上,且位于点A的右边,直线BC交y轴于点D。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第 1 页 共 24 页 2019-2020学年山东省枣庄市薛城区九年级上学期期末考试
数学试卷
一.选择题(共12小题,每小题3分,共36分)
1.方程(x +1)2=4的解是( )
A .x 1=﹣3,x 2=3
B .x 1=﹣3,x 2=1
C .x 1=﹣1,x 2=1
D .x 1=1,x 2=3 2.已知a 为锐角,且sin (a ﹣10°)=√32,则a 等于( )
A .50°
B .60°
C .70°
D .80° 3.已知反比例函数y =2x ﹣1,下列结论中,不正确的是( )
A .点(﹣2,﹣1)在它的图象上
B .y 随x 的增大而减小
C .图象在第一、三象限
D .若x <0时,y 随x 的增大而减小
4.一个不透明的袋子里装有两双只有颜色不同的手套,小明已经摸出一只手套,他再任意
摸取一只,恰好两只手套凑成同一双的概率为( )
A .14
B .13
C .12
D .1
5.某药品原价为100元,连续两次降价a %后,售价为64元,则a 的值为( )
A .10
B .20
C .23
D .36
6.将二次函数y =x 2的图象向右平移一个单位长度,再向下平移3个单位长度所得的图象
解析式为( )
A .y =(x ﹣1)2+3
B .y =(x +1)2+3
C .y =(x ﹣1)2﹣3
D .y =(x +1)2﹣3
7.如图,在平面直角坐标系xOy 中,正方形ABCD 的顶点D 在y 轴上且A (﹣3,0),B
(2,b ),则正方形ABCD 的面积是( )
A .20
B .16
C .34
D .25。

相关文档
最新文档