部编版八年级数学上册期中考试卷

合集下载

部编数学八年级上册期中考试压轴题考点训练(一)(解析版)含答案

部编数学八年级上册期中考试压轴题考点训练(一)(解析版)含答案

期中考试压轴题考点训练(一)1.如图,将ABC D 沿DE EF 、翻折,使其顶点A B 、均落在点O 处,若72CDO CFO Ð+Ð=o ,则C Ð的度数为( )A .36oB .54oC .64oD .72o 【答案】B 【详解】解:延长FO 交AC 于点M ,∵将ABC D 沿DE ,EF 翻折,顶点A ,B 均落在点O 处,∴A DOE Ð=Ð,B EOF Ð=Ð,∴DOF A B Ð=Ð+Ð,∵180A B C Ð+Ð+Ð=°,∴180A B C Ð+Ð=°-Ð ,由三角形外角定理可知:DOF MDO DMO Ð=Ð+Ð,DMO C CFM Ð=Ð+Ð,∴DOF C CDO CFO Ð=Ð+Ð+Ð,即:180DOF C CDO CFO C Ð=Ð+Ð+Ð=°-Ð,∴72180C C Ð+°=°-Ð ,∴54CÐ=°,故选:B .2.如图,点D ,E 分别是△ABC 边BC ,AC 上一点,BD =2CD ,AE =CE ,连接AD ,BE 交于点F ,若△ABC 的面积为18,则△BDF 与△AEF 的面积之差S △BDF ﹣S △AEF 等于( )A .3B .185C .92D .63.如图,点C 在线段BD 上,AB BD ^于B ,ED BD ^于D .90ACE Ð=°,且5cm AC =,6cm CE =,点P 以2cm/s 的速度沿A C E ®®向终点E 运动,同时点Q 以3cm/s 的速度从E 开始,在线段EC 上往返运动(即沿E C E C ®®®®×××运动),当点P 到达终点时,P ,Q 同时停止运动.过P ,Q 分别作BD 的垂线,垂足为M ,N .设运动时间为s t ,当以P ,C ,M 为顶点的三角形与QCN △全等时,t 的值为( )A .1或3B .1或115C .1或115或235D .1或115或5【答案】C【详解】解:当点P 在AC 上,点Q 在CE 上时,∵以P ,C ,M 为顶点的三角形与△QCN 全等,∴PC =CQ ,∴5−2t =6−3t ,∴t =1,当点P 在AC 上,点Q 第一次从点C 返回时,4.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为( )A.105°B.115°C.120°D.130°【答案】B【详解】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图:此时BE+EF最小.∵AD是△ABC的角平分线,∠BAC=50°,∴∠BAD=∠B′AD=25°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,在△ABG 和△AB ′G 中,BAG B AG AG AGAGB AGB Ð=Ðìï=íïТ=Ðî¢,∴△ABG ≌△AB ′G (ASA ),∴BG =B ′G , AB =AB ′,∴AD 垂直平分BB ′,∴BE =BE ′,在△ABE ′和△AB ′E ′中,BE BE AE AE AB AB ¢¢¢¢ìï=íï=î=,∴△ABE ′≌△AB ′E ′(SSS ),∴∠AE ′B =AE ′B ′,∵AE ′B ′=∠BAD + AF ′E ′=25°+90°=115°,∴∠AE ′B =115°.即当BE +EF 的值最小时,∠AEB 的度数为115°.故选B .5.将长为2、宽为a (a 大于1且小于2)的长方形纸片按如图①所示的方式折叠并压平,剪下一个边长等于长方形宽的正方形,称为第一次操作;再把剩下的长方形按如图②所示的方式折叠并压平,剪下个边长等于此时长方形宽的正方形,称为第二次操作;如此反复操作下去…,若在第n 次操作后,剩下的长方形恰为正方形,则操作终止.当n =3时,a 的值为( )A .1.8或1.5B .1.5或1.2C .1.5D .1.2则第3次操作时,剪下的正方形边长为2﹣a ,剩下的长方形的两边分别为2﹣a 、(2a ﹣2)﹣(2﹣a )=3a ﹣4,则2﹣a =3a ﹣4,解得a =1.5.故选:B .6.如图,图1是长方形纸带,将纸带沿EF 折叠成图2,再沿BF 折叠成图3,若图3中108CFE Ð=°,则图1中的DEF Ð的度数是______.【答案】24°【详解】∵AD BC ∥,∴设∠DEF =∠EFB =a ,图2中,∠GFC =∠BGD =∠AEG =180°﹣2∠DEF =180°﹣2a ,图3中,∠CFE =∠GFC ﹣∠EFG =180°﹣2a ﹣a =108°.解得a =24°.即∠DEF =24°,故答案为:24°.7.如图,在等腰ABC V 中,120180BAC °<Ð<°,AD BC ^于点D ,以AC 为边作等边三角形ACE ,ACE V 与ABC V 在直线AC 的异侧,直线BE 交直线AD 于点F ,连接FC 交AE 于点M .若10BE =,2AF =,则FC =______.【答案】6【详解】解:如图1,∵AB AC =,∴12Ð=Ð,∵AD BC ^,∴直线AD 垂直平分BC ,∴FB FC =,∴FBC FCB Ð=Ð,∴12FBC FCB Ð-Ð=Ð-Ð,即34Ð=Ð,∴在等边三角形ACE 中,AC AE =,∴AB AE =,∴35Ð=Ð,∴45Ð=Ð,∵FME CMA Ð=Ð,∴EFC CAE Ð=Ð,∵在等边三角形ACE 中,60CAE Ð=°,∴60EFC Ð=°;在FC 上截取FN ,使FN FE =,连接EN ,∵60EFC Ð=°,FN FE =,∴EFN V 是等边三角形,∴60FEN Ð=°,EN EF =,∵ACE V 为等边三角形,∴60AEC Ð=°,EA EC =,∴FEN AEC Ð=Ð,∴FEN MEN AEC MEN -Ð=Ð-Ð,即56Ð=Ð,在EFA △和ENC △中,56EF EN EA EC =ìïÐ=Ðíï=î,∴()EFA ENC SAS △≌△,∴FA NC =,∴FE FA FN NC FC +=+=,∵102BE AF ==,,∴EF AF BF CF BE EF +===-,∴210EF EF +=-,∴4EF =,∴6CF =,故答案为:6.8.如图,在△ABC 中,AD⊥BC 于点D ,过A 作AE ∥BC ,且AE =AB ,AB 上有一点F ,连接EF .若EF =AC ,CD =4BD ,则ABC AEFS S V V =_____.9.如图1六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为m 度,如图2六边形的内角和123456Ð+Ð+Ð+Ð+Ð+Ð为n 度,则m n -=________.【答案】0【详解】如图1所示,将原六边形分成了两个三角形和一个四边形,∴123456m =Ð+Ð+Ð+Ð+Ð+Ð=180°×2+360°=720°如图2所示,将原六边形分成了四个三角形∴123456n =Ð+Ð+Ð+Ð+Ð+Ð=180°×4=720°∴m-n=0故答案为0.10.在ABC V 中,已知点D 、E 、F 分别是边AE 、BF 、CD 上的中点,若ABC V 的面积是14,则DEF V 的面积为_________.【答案】2【详解】解:如图,连接AF ,BD ,CE ,∵点D 是AE 的中点,点E 是BF 的中点,∴BD 是ABE D 的中线,DE 是BDF D 的中线,∴ABD BDE S S D D =,DEF BDE S S D D =,∴ABD BDE DEF S S S D D D ==;同理可得BCE CEF DEF S S S D D D ==;ACF ADF DEF S S S D D D ==;∴ABD BDE S S D D ==BCE CEF S S D D ==ACF ADF DEF S S S D D D ==,∵ABD BDE S S D D ++BCE CEF S S D D ++ACF ADF DEF ABC S S S S D D D D ++=,14ABC S D =,∴714DEF ABC S S D D ==,解得2DEF S D =,11.如图1,在等边三角形ABC 中,AD BC ^于,D CE AB ^于,E AD 与CE 相交于点O .(1)求证:2OA DO =;(2)如图2,若点G 是线段AD 上一点,CG 平分,60,BCE BGF GF ÐÐ=°交CE 所在直线于点F .求证:GB GF =.(3)如图3,若点G 是线段OA 上一点(不与点O 重合),连接BG ,在BG 下方作60,BGF Ð=°边GF 交CE 所在直线于点F .猜想:,OG OF OA 、三条线段之间的数量关系,并证明.【答案】(1)见解析;(2)见解析;(3)OF =OG +OA ,理由见解析∵CA =CB ,CE ⊥AB,∴AE =BE ,∴OA =OB ,∴∠OAB =∠OBA =30°,∴∠AOB =120°,∠AOM =∠BOM =60°,∵OM =OG ,∴△OMG 是等边三角形,∴GM =GO =OM ,∠MGO =∠OMG =60°,∵∠BGF =60°,∴∠BGF =∠MGO ,∴∠MGF =∠OGB ,∵∠GMF =120°,∴∠GMF =∠GOB ,在△GMF 和△GOB 中,MGF OGB GM GOGMF GOB Ð=Ðìï=íïÐ=Ðî,∴△GMF ≌△GOB (ASA ),∴MF =OB ,∴MF =OA ,∵OF =OM +MF ,∴OF =OG +OA .12.阅读下列材料:阳阳同学遇到这样一个问题:如图1,在ABC D 中AB AC =,BD 是ABC D 的高,P 是BC 边上一点,PM 、PN 分别与直线AB ,AC 垂直,垂足分别为点M 、N .求证:BD PM PN =+.阳阳发现,连接AP ,有ABC ABP ACP S S S D D D =+,即111222AC BD AB PM AC PN ×=×+×.由AB AC =,可得BD PM PN =+.他又画出了当点P 在CB 的延长线上,且上面问题中其他条件不变时的图形,如图2所示,他猜想此时BD 、PM 、PN 之间的数量关系是:BD PN PM =-.请回答:(1)请补全阳阳同学证明猜想的过程;证明:连接AP .ABC APC S S D D =-Q ________,1122AC BD AC \×=×________12AB -×________.AB AC =Q ,BD PN PM \=-.(2)参考阳阳同学思考问题的方法,解决下列问题:在ABC D 中,AB AC BC ==,BD 是ABC D 的高.P 是ABC D 所在平面上一点,PM 、PN 、PQ 分别与直线AB 、AC 、BC 垂直,垂足分别为点M 、N 、Q .①如图3,若点P 在ABC D 的内部,猜想BD 、PM 、PN 、PQ 之间的数量关系并写出推理过程.②若点P 在如图4所示的位置,利用图4探究得此时BD 、PM 、PN 、PQ 之间的数量关系是:_______.(直接写出结论即可)【答案】(1)S △APB ;PN ;PM ;(2)①BD =PM +PN +PQ ,证明见解析②BD =PM +PQ −PN .【详解】解:(1)证明:连接AP .∵S △ABC =S △APC −S △APB ,13.如图,在△ABC 中,∠ABC 的平分线BD 交∠ACB 的平分线CE 于点O .(1)求证:1902BOC A Ð=Ð+°.(2)如图1,若∠A =60°,请直接写出BE ,CD ,BC 的数量关系.(3)如图2,∠A =90°,F 是ED 的中点,连接FO .①求证:BC −BE −CD =2OF .②延长FO 交BC 于点G ,若OF =2,△DEO 的面积为10,直接写出OG 的长.∵∠BOC=1∠A+90°=120°,2∴∠BOE=60°,∵BD平分∠ABC,∴∠EBO=∠MBO,∴OM=2OF.∵F是ED的中点,∴EF=DF,∵∠DFO=∠EFM,14.在ABC V 中,90,ACB AC BC Ð=°=,直线MN 经过点C ,且AD MN ^于D ,BE MN ^于E ,(1)当直线MN 绕点C 旋转到图1的位置时,显然有:DE AD BE =+(不必证明);(2)当直线MN 绕点C 旋转到图2的位置时,求证:DE AD BE =-;(3)当直线MN 绕点C 旋转到图3的位置时,试问DE 、AD 、BE 具有怎样的等量关系?请直接写出这个等量关系.【答案】(1)见解析;(2)见解析;(3)DE =BE -AD【详解】解:(1)∵△ABC 中,∠ACB =90°,∴∠ACD +∠BCE =90°,又直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°∴∠ACD +∠DAC =90°,∴∠BCE =∠DAC ,在△ADC 和△CEB 中,ADC CEB DAC ECB AC BC Ð=ÐìïÐ=Ðíï=î,∴△ADC ≌△CEB (AAS ),∴CD =BE ,CE =AD ,∴DE =CD +CE =AD +BE ;(2)∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,而AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CE -CD =AD -BE ;(3)如图3,∵△ABC 中,∠ACB =90°,直线MN 经过点C ,且AD ⊥MN 于D ,BE ⊥MN 于E ,∴∠ADC =∠CEB =90°,∠ACD +∠BCE =∠BCE +∠CBE =90°,∴∠ACD =∠CBE ,∵AC =BC ,∴△ADC ≌△CEB ,∴CD =BE ,CE =AD ,∴DE =CD -CE =BE -AD ;DE 、A D 、BE 之间的关系为DE =BE -A D .15.在ABC V 中,90ABC Ð=°,AB BC =,D 为直线AB 上一点,连接CD ,过点B 作BE CD ^交CD 于点E ,交AC 于点F ,在直线AB 上截取AM BD =,连接FM .(1)当点D ,M 都在线段AB 上时,如图①,求证:BF MF CD +=;(2)当点D 在线段AB 的延长线上,点M 在线段BA 的延长线上时,如图②;当点D 在线段BA 的延长线上,点M 在线段AB 的延长线上时,如图③,直接写出线段BF ,MF ,CD 之间的数量关系,不需要证明.【答案】(1)见解析;(2)图②:BF MF CD -=;图③:FM BF CD+=【详解】(1)证明:如图,过点A 作AN AB ^交BF 的延长线于点N .0∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.(2)图②:BF MF CD -=.证明:过点A 作AN AB ^交BF 于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB DBC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB DBC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45CAB MAF Ð=Ð=°,∵90NAM Ð=°∴45NAF NAM MAF Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BF FN BN -=,∴BF MF CD -=.图③:FM BF CD +=.证明:如图,过点A 作AN AB ^交BF 的延长线于点N .∴90NAB Ð=°.∵90ABC Ð=°,∴90ABF EBC Ð+Ð=°,NAB ABC Ð=Ð.∵CD BF ^,∴90BCD EBC Ð+Ð=°.∴ABF BCD Ð=Ð.在ABN V 和BCD △中,,,,NAB ABC AB BC ABF BCD Ð=Ðìï=íïÐ=Ðî∴()ASA ABN BCD ≌△△.∴AN BD =,BN CD =.∵AB CB =,90ABC Ð=°,∴45CAB Ð=°.∴45NAF NAB BAC Ð=Ð-Ð=°.∴NAF FAM Ð=Ð.∵AN BD =,AM BD =,∴AN AM =.在NAF V 和M AF △中,,,,AN AM NAF MAF AF AF =ìïÐ=Ðíï=î∴()SAS NAF MAF ≌△△.∴FN FM =.∵BN FN BF =+,∴BF MF CD +=.。

八年级数学上册期中考试试卷及答案

八年级数学上册期中考试试卷及答案

专业课原理概述部分一、选择题(每题1分,共5分)1. 下列哪个数是偶数?A. 3B. 4C. 5D. 62. 如果 a = 3,b = 5,那么 a + b 等于多少?A. 6B. 8C. 9D. 103. 下列哪个数是质数?A. 12B. 13C. 15D. 184. 如果一个三角形的两边分别是3和4,那么第三边的长度可能是多少?A. 1B. 2C. 5D. 65. 下列哪个数是负数?A. 3B. 0C. 3D. 6二、判断题(每题1分,共5分)1. 2的平方等于4。

()2. 0是最小的自然数。

()3. 1是最大的质数。

()4. 两条对角线相等的四边形一定是矩形。

()5. 任何两个奇数相加的和都是偶数。

()三、填空题(每题1分,共5分)1. 一个正方形的边长是4,那么它的面积是______。

2. 如果 a = 2,那么 a 的平方是______。

3. 下列数中,最大的偶数是______。

4. 如果一个等边三角形的边长是3,那么它的周长是______。

5. 下列数中,最小的负数是______。

四、简答题(每题2分,共10分)1. 请解释什么是质数。

2. 请解释什么是偶数。

3. 请解释什么是等边三角形。

4. 请解释什么是自然数。

5. 请解释什么是正方形。

五、应用题(每题2分,共10分)1. 一个长方形的长是6,宽是4,求它的面积。

2. 如果 a = 3,b = 5,那么 a + b 的和是多少?3. 一个等腰三角形的底边长是8,腰长是5,求它的周长。

4. 一个正方形的边长是5,求它的对角线长度。

5. 如果一个数的平方是36,那么这个数可能是多少?六、分析题(每题5分,共10分)1. 请分析一个长方形的长和宽分别是多少时,它的面积最大。

2. 请分析一个等腰三角形的底边长和腰长分别是多少时,它的周长最小。

七、实践操作题(每题5分,共10分)1. 请画出一个边长为5的正方形,并标出它的对角线长度。

2. 请画出一个底边长为6,腰长为8的等腰三角形,并标出它的周长。

部编人教版八年级数学上册期中考试卷及答案【必考题】

部编人教版八年级数学上册期中考试卷及答案【必考题】

部编人教版八年级数学上册期中考试卷及答案【必考题】 班级: 姓名: 一、选择题(本大题共10小题,每题3分,共30分)1.计算32的结果估计在( )A .4至5之间B .5至6之间C .6至7之间D .4至6之间2.计算:(a -b)(a +b)(a 2+b 2)(a 4-b 4)的结果是( )A .a 8+2a 4b 4+b 8B .a 8-2a 4b 4+b 8C .a 8+b 8D .a 8-b 83.对于函数y =2x ﹣1,下列说法正确的是( )A .它的图象过点(1,0)B .y 值随着x 值增大而减小C .它的图象经过第二象限D .当x >1时,y >04.若m n >,下列不等式不一定成立的是( )A .33m n ++>B .33m n ﹣<﹣C .33m n >D .22m n >5.如图,a ,b ,c 在数轴上的位置如图所示,化简22()a a c c b -++-的结果是( )A .2c ﹣bB .﹣bC .bD .﹣2a ﹣b6.下列四个不等式组中,解集在数轴上表示如图所示的是( )A .23x x ≥⎧⎨>-⎩B .23x x ≤⎧⎨<-⎩C .23x x ≥⎧⎨<-⎩D .23x x ≤⎧⎨>-⎩7.如图,矩形纸片ABCD 中,已知AD =8,折叠纸片使AB 边与对角线AC 重合,点B 落在点F 处,折痕为AE ,且EF =3,则AB 的长为( )A.3 B.4 C.5 D.68.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由四个全等的直角三角形和一个小正方形拼成的一个大正方形,设直角三角形较长直角边长为a,较短直角边长为b,若2(,大正方形的面积为13,则小正方形的面积为()+=a b)21A.3 B.4 C.5 D.69.已知,如图,长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B 与点D重合,折痕为EF,则△ABE的面积为()A.6cm2B.8 cm2C.10 cm2D.12 cm210.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于()A.150°B.180°C.210°D.225°二、填空题(本大题共6小题,每小题3分,共18分)13=,则x=__________x x2.已知菱形ABCD的面积是12cm2,对角线AC=4cm,则菱形的边长是______cm .3.若关于x 的分式方程333x a x x +--=2a 无解,则a 的值为________. 4.观察下列各式:111233+=,112344+=,113455+=,……请你将发现的规律用含自然数n (n ≥1)的等式表示出来__________________.5.如图,在菱形ABCD 中,对角线,AC BD 交于点O ,过点A 作AH BC ⊥于点H ,已知BO=4,S 菱形ABCD =24,则AH =________.6.如图△ABC 中,分别延长边AB 、BC 、CA ,使得BD=AB ,CE=2BC ,AF=3CA ,若△ABC 的面积为1,则△DEF 的面积为________.三、解答题(本大题共6小题,共72分)1.解方程:214111x x x ++=--2.先化简,再求值[(x 2+y 2)-(x-y )2+2y (x-y )]÷2y ,其中x=-2,y=-12.3.已知x+12132x+y ﹣6的立方根是2,求3xy 的算术平方根.4.如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE≌△ACF;(2)若∠BAE=30°,则∠ADC= °.5.如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.6.今年义乌市准备争创全国卫生城市,某小区积极响应,决定在小区内安装垃圾分类的温馨提示牌和垃圾箱,若购买2个温馨提示牌和3个垃圾箱共需550元,且垃圾箱的单价是温馨提示牌单价的3倍.(1)求温馨提示牌和垃圾箱的单价各是多少元?(2)该小区至少需要安放48个垃圾箱,如果购买温馨提示牌和垃圾箱共100个,且费用不超过10000元,请你列举出所有购买方案,并指出哪种方案所需资金最少?最少是多少元?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、B2、B3、D4、D5、A6、D7、D8、C9、A10、B二、填空题(本大题共6小题,每小题3分,共18分)1、0或1.23、1或1 24(1)n n=+≥5、24 56、18三、解答题(本大题共6小题,共72分)1、x=﹣3.2、2x-y;-31 2.3、6.4、(1)略;(2)75.5、(1)略;(2)112.5°.6、(1)温馨提示牌和垃圾箱的单价各是50元和150元;(2)答案略。

八年级上册数学期中考试题

八年级上册数学期中考试题

八年级上册数学期中考试题八年级数学期中考试的日子日益临近,感觉复习得不错的你,一定要再接再厉,发挥自己最大的潜力,下面是小编为大家精心整理的八年级上册数学期中考试题,仅供参考。

八年级上册数学期中考试题目一.选择题:(每题2分)1.已知三角形两边的长分别是4和10,则此三角形第三边的长可能是( )A.5B.6C.11D.162.在△ABC中,∠A=55°,∠B比∠C大25°,则∠B等于( )A.50°B.75°C.100°D.125°3.一个多边形的每个内角均为150°,则这个多边形是( )A.九边形B.十边形C.十二边形D.十五边形4.如图1,将三角形的一个角折叠,三角形的顶点落在折叠后的四边形内部,则∠γ与∠α、∠β之间的关系是( )A.∠γ=∠α+∠βB.2∠γ=∠α+∠βC.3∠γ=2∠α+∠βD.3∠γ=2(∠α+∠β)5.如图2,已知AB∥CD,AD∥CB,则△ABC≌△CDA的依据是( )A.SASB.ASAC.AASD.SSS6.如图3,∠B=∠D=90°,∠A=∠E,点B,F,C,D在同一条直线上,再增加一个条件,不能判定△ABC≌△EDF的是( )A.AB=EDB.AC=EFC.AC∥EFD.BF=DC7.如图4,点P在∠AOB的平分线上,PC⊥OA于点C,PC=1,点Q是射线OB上的一个动点,线段PQ长度的最小值为a,下列说法正确的是( )A.a>1B.a=1C.a<1D.以上都有可能8.观察下列图形,是轴对称图形的是( )9.下列条件中,不能判定直线MN是线段AB(M,N不在AB上)的垂直平分线的是( )A.MA=MB,NA=NBB.MA=MB,MN⊥ABC.MA=NA,MB=NBD.MA=MB,MN平分AB10.如图5,等腰△ABC中,AB=AC,∠A=50°,CD⊥AB于D,则∠DCB等于( )A.30°B.25°C.15°D.20°11.如图6,在△ACD和△BCE中,AC=BC,AD=BE,CD=CE,∠ACE=55°,∠BCD=155°,AD与BE相交于点P,则∠BPD的度数为( )A.110°B.125°C.130°D.155°12.△ABC中,①若AB=BC=CA,则△ABC是等边三角形;②属于轴对称图形,且有一个角为60°的三角形是等边三角形;③有三条对称轴的三角形是等边三角形;④有两个角是60°的三角形是等边三角形.上述结论中正确的有( )A.1个B.2个C.3个D.4个得分阅卷人二、细心填一填:(每小题2分,共20分)13.一等腰三角形的周长为20,其中一边长为5,则它的腰长等于 .14.△ABC≌△DEF,AB=2,BC=4,若△DEF的周长为偶数,则DF= .15.在平面直角坐标系中,点A的坐标是(-2,3),作点A关于x 轴的对称点,得到点A′,再作点A′关于y轴的对称点,得到点A″,则点A″的坐标是 .16.已知,在△ABC中,AD是BC边上的高线,且∠ABC=25°,∠ACD=55°,则∠BAC= .17.如图7,带箭头的两条直线互相平行,其中一条直线经过正五边形的一个顶点,若∠1=45°,则∠2=.18.如图8,在平面直角坐标系中,以点O为圆心,适当的长为半径画弧,交x轴于点A,交y轴于点B,再分别以点A,B为圆心,大于12AB的长为半径画弧,两弧在第四象限交于点P.若点P的坐标为(2a,a-9),则a的值为 .19.点O在△ABC内,且OA=OB=OC,若∠BAC=60°,则∠BOC 的度数是 .20.在△ABC中,AC=BC=m,AB=n,∠ ACB=120°,则△ABC的面积是(用含m,n的式子表示).21.如图9,Rt△ABC中,∠ACB=90°,BC=3cm,CD⊥AB于D,在AC上取一点E,使EC=BC,过点E作EF⊥AC交CD的延长线于点F,若EF=5 cm,则AE=_______cm.22.如图10,在平面直角坐标系中,∠AOB=90°,OA=OB,若点A的坐标为(-1,4),则点B的坐标为.得分阅卷人三、认真解一解:(共56分)23.(本题5分)如图11,在△ABC中,∠C=∠ABC= ∠A,BD是边AC上的高.求∠DBC的度数.24.(本题6分)如图12,点B,E,C,F在同一条直线上,∠A=∠D,∠B=∠DEF,BE=CF.求证:AC=DF.25.(本题6分)如图13,在∠ABC的内部有一点P,点P到M,N 两点的距离相等且到∠ABC两边的距离也相等.请用尺规作图作出点P,不写作法,保留痕迹.26.(本题6分)如图14,在平面直角坐标系中,△ABC的顶点坐标分别为A(-5,1),B(-1,1),C(-4,3).(1)若△A1B1C1与△ABC关于y轴对称,点A,B,C的对应点分别为A1,B1,C1,请画出△A1B1C1并写出A1,B1,C1的坐标;(2)若点P为平面内不与C重合的一点,△PAB与△ABC全等,请写出点P的坐标.27.(本题6分)如图15,在△ABC中, AB=AC,D为BC上一点,且AB=BD,AD=DC,求∠C的度数.28.(本题6分)如图16,锐角三角形ABC的两条高BE、CD相交于点O,且OB=OC求证:点O在∠BAC的平分线上.29.(本题6分)如图17,△ABC是等边三角形,BD是中线,过点D 作DE⊥AB于E交BC边延长线于F,AE=1.求BF的长.30.(本题7分)如图18,∠A=∠B,CE∥DA,CE交AB于E.(1)求证:△CEB是等腰三角形;(2)若AB∥CD,求证:AD=BC.31.(本题8分)如图19,在△ABC中,∠ACB=90°,AC=BC,△ABC的高CD与角平分线AE相交点F,过点C作CH⊥AE于G,交AB于H.(1)求∠BCH的度数;(2)求证:CE=BH.八年级上册数学期中考试题参考答案一.选择题:(每题2分)题号 1 2 3 4 5 6 7 8 9 10 11 12答案 C B C B B C B A C B C D二.填空题:(每题2分)13、7.5;14、4;15、(2,-3);16、30°或100°;17、27°;18、3;19、120°;20、 ;21、2;22、(-4,-1)三.解答题:23、解:设∠A=x,则∠C=∠ABC= x,∵BD是边AC上的高∴∠ADB=∠CDB=90°………………………………1分∴∠ABD=90°-∠A=90°-x∠CBD=90°-∠C=90°- x………………………2分∴90°-x+90°- x= x……………………………3分解得x=45°………………………………………………4分∴∠CB D=90°-∠C=90°- x=22.5°………………5分24、证明:∵BE=CF∴BE+EC=CF+EC即BC=EF……………………………………………2分在△ABC和△DEF中∴△ABC≌△DEF………………………………………4分∴AC=DF………………………………………………6分25、连接MN作中垂线3分,作角平分线2分,结论1分.26、解:(1)图2分,坐标1分A1(4,1),B1(1,1),C1(4,3);(2)3分,坐标为(-2,3),(-2,-1),(-4,-1)27、解:设∠C=x∵AB=AC∴∠B=∠C=x………………………………………………1分∵AD=DC∴∠DAC=∠C=x……………………………………………2分∴∠BDA=∠DAC+∠C=2x…………………………………3分∵AB=BD∴∠BAD=∠BDA=2x………………………………………4分在△ABD中,∠B∠BAD+∠BDA=x+2x+2x=180°解得x=36°∴∠C=36°……………………………………………………6分28、证明:∵BE、CD是△ABC的两条高∴OD⊥AB,OE⊥AC,∠BDO=∠CEO=90°……………1分在△BDO和△CEO中∴△BDO≌△CEO…………………………………………4分∴OD=OE……………………………………………………5分又∵OD⊥A B,OE⊥AC∴点O在∠BAC的平分线上………………………………6分29、解:∵△ABC是等边三角形,BD是中线∴∠A=∠ACB=60°,AC=BC,AD=CD= AC…………1分∵ DE⊥AB于E∴∠ADE=90°-∠A=30°……………………………………2分∴CD=AD=2AE=2……………………………………………3分∴∠CDF=∠ADE=30°∴∠F=∠ACB-∠CDF=30°…………………………………4分∴∠CDF=∠F∴DC=CF………………………………………………………5分∴BF=BCCF=2AD+AD=6…………………………………6分30、证明:(1)∵CE∥DA∴∠A=∠CEB…………………………………………………1分∵∠A=∠B∴∠CEB=∠B…………………………………………………2分∴CE=CB∴△CEB是等腰三角形…………………………………………3分(2)连接DE∵CE∥DA,AB∥CD∴∠ADE=∠CED,∠AED=∠CDE…………………………4分在△ADE和△CED中∴△ADE≌△CED…………………………………………5分∴AD=CE…………………………………………………6分∵CE=CB∴AD=CB…………………………………………………7分31、解:(1)∵∠ACB=90°,AC=BC∴∠CAB=∠B=45°………………………………………1分∵AE是△ABC的角平分线∴∠CAE= ∠CAB=22.5°∴∠AEC=90°-∠CAE=67.5°………………………………2分∵CH⊥AE于G∴∠CGE=90°∴∠GCE=90°-∠AEC=22.5°……………………………3分(2)证明:∵∠ACB=90°,AC=BC,CD是△ABC的高∴∠ACD= ∠ACB=45°∴∠CFE=∠AEC+∠ACD=67.5°………………………4分∴∠CFE=∠AEC∴CF=CE……………………………………………………5分在△ACF和△CBH中∴△ACF≌△CBH…………………………………………6分∴CF=BH…………………………………………………7分∴CE=BH…………………………………………………6分八年级上数学期中试卷。

八年级上册数学期中考试试卷(附答案)

八年级上册数学期中考试试卷(附答案)

(1) 如图 1,若 ∠A = 40◦,则 ∠N M B 的度数是

(2) 如图 2,若 ∠A = 70◦,则 ∠N M B 的度数是

(3) 你可以再分别给出几个 ∠A(∠A 为锐角)的度数,你发现规律了吗?写出当 ∠A 为锐角时,你猜想出的 规律,并进行证明;
(4) 当 ∠A 为直角、钝角时,是否还有(3)中的结论(直接写出答案).
2 ∠A = 70◦ 时,∠N M B = 35◦,∠N M B = 1 ∠A,
2 ∴ ∠N M B = 1 ∠A,
2 理由如下:
∵ AB = AC, ∴ ∠B = ∠C
= 1 × (180◦ − ∠A) 2
= 90◦ − 1 ∠A, 2
∵ M N ⊥ AB,
∴ ∠M N B = 90◦,
∴ ∠N M B = 90◦ − ∠B
∵ ∠DBC = ∠ADB − ∠ACB,∠DBC = 20◦,
∴ 1 ∠DBC = 1 ∠ADB − 1 ∠ACB,
2
2
2
∴ 10◦ = 1 ∠ADB − 1 ∠ACB,
2
2
∵ ∠DEC = ∠ADE − ∠ACE
= 1 ∠ADB − 1 ∠ACB,
2
2
∴ ∠DEC = 10◦.
19. 在 △AOB 和 △COD 中, OA = OC, ∠OABO=BO=D∠, DOC, ∴ △AOB ≌ △COD (SAS).
( = 90◦ − 90◦ −
1
) ∠A
2
= 1 ∠A. 2
(4) 则当 ∠A 为直角、钝角时,(3)中的结论仍然成立. ∴ ∠N M B = 90◦ − 45◦ = 1 ∠A,
2 当 ∠A = 100◦ 时,∠B = ∠C = 40◦, ∴ ∠N M B = 90◦ − 40◦ = 1 ∠A,

八年级上册数学期中考试试卷及答案

八年级上册数学期中考试试卷及答案

八年级上册数学期中考试试卷及答案读书之乐何处寻,数点梅花天地心。

书是我生活中的一大乐趣。

我坚信,只有让我们的灵魂融入书的海洋,让书的内容融入我们的生命,才能有一个比水海更为宽敞的心灵空间!下面给大家共享一些关于〔八年级〕上册数学期中考试试卷及答案,希望对大家有所关怀。

试卷:一、选择题(每题3分,共30分)1、在,-2ab2,,中,分式共有()A.2个B.3个C.4个D.5个2、以下各组中的三条线段能组成三角形的是()A.3,4,5B.5,6,11C.6,3,10D.4,4,83、以下各题中,所求的最简公分母,错误的选项是()A.与最简公分母是6x2B.与最简公分母是3a2b3cC.与的最简公分母是(m+n)(m-n)D.与的最简公分母是ab(x-y)(y-x)4、不转变的值,把它的分子和分母中的各项系数都化为整数,所得的结果为()A.B.C.D.5、若分式,则x的值是()A.3或-3B.-3C.3D.96、如图,将三角尺的直角顶点放在直线a上,a‖b,∠1=50°,∠2=60°,则∠3的度数为()A.50°B.60°C.70°D.80°7、以下式子:①(-2)-2=;②错误!未找到引用源。

;③3a-2=;④-7.02×10-4=-0.000702.新$课$标$第$一$网其中正确的式子有()A.1个B.2个C.3个D.4个8、如图,D是线段AB,BC垂直平分线的交点,若∠ABC=150°,则∠ADC的大小是()A.60°B.70°C.75°D.80°9、甲、乙两班学生参加植树造林.已知甲班每天比乙班少植2棵树,甲班植60棵树所用天数与乙班植70棵树所用天数相等.若设甲班每天植树x棵,则根据题意列出方程正确的选项是()A.=B.=C.=D.=10、以下命题中是假命题的()A、在同一平面内,垂直于同一条直线的两条直线平行。

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】

八年级上册数学期中考试试卷【含答案】专业课原理概述部分一、选择题(每题1分,共5分)1. 若一个三角形的两边长分别为8cm和10cm,且这两边的夹角为60°,则这个三角形的周长为多少cm?A. 16cmB. 26cmC. 28cmD. 36cm2. 下列哪一个数是质数?A. 21B. 29C. 35D. 393. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的对角线长度为多少cm?A. 5cmB. 6cmC. 7cmD. 9cm4. 若一个等差数列的首项为2,公差为3,则第10项为多少?A. 29B. 30C. 31D. 325. 若一个圆的半径为5cm,则这个圆的面积为多少平方厘米?A. 25πcm²B. 50πcm²C. 75πcm²D. 100πcm²二、判断题(每题1分,共5分)1. 两个等腰三角形的底边相等,则这两个三角形全等。

()2. 任何两个奇数之和都是偶数。

()3. 一个数的平方和它的立方一定相等。

()4. 任何两个负数相乘的结果都是正数。

()5. 若一个数的平方是36,则这个数一定是6。

()三、填空题(每题1分,共5分)1. 若一个等边三角形的边长为6cm,则它的面积是______平方厘米。

2. 若一个等差数列的首项为3,公差为2,则第5项是______。

3. 一个圆的直径是10cm,则这个圆的周长是______厘米。

4. 若一个数的立方是64,则这个数的平方根是______。

5. 一个长方体的长、宽、高分别为2cm、3cm、4cm,则它的体积是______立方厘米。

四、简答题(每题2分,共10分)1. 简述勾股定理的内容。

2. 什么是等差数列?给出一个等差数列的例子。

3. 简述圆的周长和面积的计算公式。

4. 什么是质数?给出5个质数的例子。

5. 什么是因式分解?给出一个多项式因式分解的例子。

五、应用题(每题2分,共10分)1. 一个等腰三角形的底边长为8cm,腰长为5cm,求这个三角形的周长。

最新部编人教版八年级数学上册期中考试(必考题)

最新部编人教版八年级数学上册期中考试(必考题)

最新部编人教版八年级数学上册期中考试(必考题) 班级: 姓名:一、选择题(本大题共10小题,每题3分,共30分)1.将直线23y x =-向右平移2个单位,再向上平移3个单位后,所得的直线的表达式为( )A .24y x =-B .24y x =+C .22y x =+D .22y x =-2.下列各数中,313.14159 8 0.131131113 25 7π-⋅⋅⋅--,,,,,,无理数的个数有( )A .1个B .2个C .3个D .4个3.若﹣2a m b 4与5a n +2b 2m +n 可以合并成一项,则m-n 的值是( )A .2B .0C .-1D .14.□ABCD 中,E 、F 是对角线BD 上不同的两点,下列条件中,不能得出四边形AECF 一定为平行四边形的是( )A .BE=DFB .AE=CFC .AF//CED .∠BAE=∠DCF5.如图,O 为坐标原点,菱形OABC 的顶点A 的坐标为(34)-,,顶点C 在x 轴的负半轴上,函数(0)k y x x=<的图象经过顶点B ,则k 的值为( )A .12-B .27-C .32-D .36-6.一元二次方程(1)(1)23x x x +-=+的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .只有一个实数根D .没有实数根7.汉代数学家赵爽为了证明勾股定理,创制了一幅“弦图”,后人称其为“赵爽弦图”.如图是由弦图变化得到的,它由八个全等的直角三角形拼接而成,记图中正方形ABCD 、正方形EFGH 、正方形MNKT 的面积分别为S 1、S 2、S 3.若S 1+S 2+S 3=10,则S 2的值为( )A .113B .103C .3D .838.如图,已知点E 在正方形ABCD 内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )A .48B .60C .76D .809.如图将直尺与含30°角的三角尺摆放在一起,若120∠=︒,则2∠的度数是( )A .30B .40︒C .50︒D .60︒10.如图是由4个相同的小正方形组成的网格图,其中∠1+∠2等于( )A .150°B .180°C .210°D .225°二、填空题(本大题共6小题,每小题3分,共18分)1.若22(3)16x m x +-+是关于x 的完全平方式,则m =__________.2.计算1273-=___________.3.若214x xx++=,则2211xx++= ________.4.如图,▱ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为________.5.如图,平行四边形ABCD中,60BAD∠=︒,2AD=,点E是对角线AC上一动点,点F是边CD上一动点,连接BE、EF,则BE EF+的最小值是____________.6.如图,在平行四边形ABCD中,连接BD,且BD=CD,过点A作AM⊥BD于点M,过点D作DN⊥AB于点N,且DN=32,在DB的延长线上取一点P,满足∠ABD=∠MAP+∠PAB,则AP=________.三、解答题(本大题共6小题,共72分)1.解方程组:20 346 x yx y+=⎧⎨+=⎩2.先化简再求值:(a﹣22ab ba-)÷22a ba-,其中2,b=12.3.已知关于x 的一元二次方程2(3)0x m x m ---=.(1)求证:方程有两个不相等的实数根;(2)如果方程的两实根为1x ,2x ,且2212127x x x x +-=,求m 的值.4.(1)如图(1),已知:在△ABC 中,∠BAC =90°,AB=AC ,直线m 经过点A ,BD ⊥直线m, CE ⊥直线m,垂足分别为点D 、E.证明:DE=BD+CE.(2)如图(2),将(1)中的条件改为:在△ABC 中,AB=AC ,D 、A 、E 三点都在直线m 上,并且有∠BDA=∠AEC=∠BAC=α,其中α为任意锐角或钝角.请问结论DE=BD+CE 是否成立?如成立,请你给出证明;若不成立,请说明理由.(3)拓展与应用:如图(3),D 、E 是D 、A 、E 三点所在直线m 上的两动点(D 、A 、E 三点互不重合),点F 为∠BAC 平分线上的一点,且△ABF 和△ACF 均为等边三角形,连接BD 、CE,若∠BDA=∠AEC=∠BAC ,试判断△DEF 的形状.5.如图1,在正方形ABCD 中,P 是对角线BD 上的一点,点E 在AD 的延长线上,且PA=PE ,PE 交CD 于F(1)证明:PC=PE ;(2)求∠CPE 的度数;(3)如图2,把正方形ABCD 改为菱形ABCD ,其他条件不变,当∠ABC=120°时,连接CE ,试探究线段AP 与线段CE 的数量关系,并说明理由.6.班级组织同学乘大巴车前往“研学旅行”基地开展爱国教育活动,基地离学校有90公里,队伍8:00从学校出发.苏老师因有事情,8:30从学校自驾小车以大巴1.5倍的速度追赶,追上大巴后继续前行,结果比队伍提前15分钟到达基地.问:(1)大巴与小车的平均速度各是多少?(2)苏老师追上大巴的地点到基地的路程有多远?参考答案一、选择题(本大题共10小题,每题3分,共30分)1、A2、B3、A4、B5、C6、A7、B8、C9、C10、B二、填空题(本大题共6小题,每小题3分,共18分)1、7或-123、84、1456、6三、解答题(本大题共6小题,共72分)1、原方程组的解为=63 xy⎧⎨=-⎩2、原式=a b a b-=+3、(1)略(2)1或24、(1)见解析(2)成立(3)△DEF为等边三角形5、(1)略(2)90°(3)AP=CE6、(1)大巴的平均速度为40公里/时,则小车的平均速度为60公里/时;(2)苏老师追上大巴的地点到基地的路程有30公里。

部编人教版八年级数学上册期中考试卷及答案【必考题】

部编人教版八年级数学上册期中考试卷及答案【必考题】

专业课原理概述部分一、选择题(每题1分,共5分)1.下列哪个数是质数?A.21B.23C.25D.272.一个等腰三角形的底边长为10cm,腰长为13cm,则该三角形的周长是?A.32cmB.36cmC.42cmD.46cm3.若一个正方形的对角线长为10cm,则它的面积是?A.50cm²B.100cm²C.200cm²D.50√2cm²4.已知一组数据的平均数为10,标准差为2,则这组数据中可能有数值为?A.6B.8C.12D.145.下列函数中,哪一个不是一次函数?A.y=3x+2B.y=5x1C.y=x²+4D.y=2x+3二、判断题(每题1分,共5分)6.平方根和立方根都是唯一的。

()7.在直角坐标系中,第二象限的点其横坐标和纵坐标都是负数。

()8.任何两个奇数之和都是偶数。

()9.一个等边三角形的三个角都是60度。

()10.互为相反数的两个数的和为0。

()三、填空题(每题1分,共5分)11.两个质数的最小公倍数是它们的乘积。

12.一个等腰三角形的顶角是120度,则底角的度数是______度。

13.若一个正方形的边长为a,则它的对角线长是______。

14.一组数据3,5,7,9,11的平均数是______。

15.一次函数y=2x+3的图象是一条______。

四、简答题(每题2分,共10分)16.解释什么是质数,并给出5个质数的例子。

17.简述等腰三角形的性质。

18.什么是算术平均数,如何计算一组数据的平均数?19.描述一次函数的图象特点。

20.什么是标准差,它在统计学中有什么作用?五、应用题(每题2分,共10分)21.计算下列各式的值:a)√36b)³√64c)2²+3²d)(5+2)²e)12²5²22.一个等边三角形的边长为6cm,求其面积。

23.一个长方形的长是10cm,宽是6cm,求其面积和周长。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

部编版八年级数学上册期中考试卷(含答案)
一、选择题:(本大题共10小题,每小题3分,共30分)
1.下列现象属于图形平移的是 ( )
A 、轮船在大海上航行;
B 、飞速转动的电风扇;
C 、钟摆的摆动;
D 、 迎面而来的汽车。

2.√9 的算术平方根是 ( )
3
.下列说法不正确的是( )
4
.在下列几个数中,无理数的个数是( )
5.若平行四边形的周长为28㎝,两邻边之比为4:3,则其中较长的边长为( )
A 、8㎝;
B 、10㎝;
C 、12㎝;
D 、16㎝。

6. 正方形具有而菱形不一定具有的性质是( )
A 、对角线互相垂直
B 、对角线互相平分
C 、对角线相等
D 、对角线平分一组对角
7.如图,将大写字母N 绕它右下侧的点按逆时针方向旋转90°,作出旋转后的图案是( )
8.下列条件中,不能判断一个三角形是直角三角形的是( )
A 、三个角的比为1:2:3
B 、三条边满足关系a^2=b^2-c^2
C 、三条边的比为1:2:3
D 、三个角满足关系∠B+∠C=∠A
9.平行四边形ABCD 中,∠A 、∠B 、∠C 、∠D 的度数之比有可能是( )
A 、1∶2∶3∶4
B 、2∶2∶3∶3
C 、2∶3∶2∶3
D 、2∶3∶3∶2
10.已知
二、填空题:(本大题共10小题,每小题3分,共30分)
11.2的平方根是__________,27的立方根是_____________.
13.比较大小,在横线上填上“〉、=、〈”
14.
一个直角三角形的两条直角边长分别为

3 cm与

27 cm , 则这个直角三角形的面积为_____
_____,
15.2- √3 的相反数是__________,绝对值是__________.
16.如图,在▱ABCD中,点E、F在对角线AC上,要使图中能够出现三对全等三角形,只需添
加一个条件。

(填写一种即可)
18.如图,△A1B1C1是△ABC平移后得到的三角形,则△A1B1C1≌△ABC,理由是__________________
20、如图,在▱ABCD中,对角线AC=21㎝,BE⊥AC,垂足为E,且BE=5㎝,AD=7㎝,则
三.化简或计算:(4分×4=16分)
四.按要求作图。

(4分)
1、将△ABC向右平移7 个方格得到△A'B'C' ,再向上平移6 个方格后得到△A''B''C'',试作出
两次平移的图形。

五.解答题:(每题
5分,共
20分)
1.一艘帆船由于风向的原因先向正东方向航行了
160
千米,然后向正北方向航行了120千米,这时它离出发点有多远?
2、如图,在□ABCD 中,已知∠ADO=90°,OA=6cm ,OB=3cm , 求 AD 、AB 的长。

3.如图,平行四边形 ABCD 的两条对角线线交于O ,且 BD = 6 , AC = 10 , BC = √34 。

⑴ AC , BD 有什么关系?请说明理由 ;
⑵ 四边形 ABCD 是菱形?为什么?
4.阅读下列解题过程:
请回答下列问题:。

相关文档
最新文档