机械振动理论中的一些原理问答

合集下载

机械振动答案

机械振动答案

机械振动答案(1)选择题1解析:选D.如图所示,设质点在A 、B 之间振动,O 点是它的平衡位置,并设向右为正.在质点由O 向A 运动过程中其位移为负值;而质点向左运动,速度也为负值.质点在通过平衡位置时,位移为零,回复力为零,加速度为零,但速度最大.振子通过平衡位置时,速度方向可正可负,由F =-kx 知,x 相同时F 相同,再由F =ma 知,a 相同,但振子在该点的速度方向可能向左也可能向右.2.解析:选B.据简谐运动的特点可知,振动的物体在平衡位置时速度最大,振动物体的位移为零,此时对应题图中的t 2时刻,B 对.3.解析:选BD.质点做简谐运动时加速度方向与回复力方向相同,与位移方向相反,总是指向平衡位置;位移增加时速度与位移方向相同,位移减小时速度与位移方向相反.4解析:选C.因为弹簧振子固有周期和频率与振幅大小无关,只由系统本身决定,所以f 1∶f 2=1∶1,选C.5解析:选B.对于阻尼振动来说,机械能不断转化为内能,但总能量是守恒的.6.解析:选B.因质点通过A 、B 两点时速度相同,说明A 、B 两点关于平衡位置对称,由时间的对称性可知,质点由B 到最大位移,与由A 到最大位移时间相等;即t 1=0.5 s ,则T2=t AB +2t 1=2 s ,即T =4 s ,由过程的对称性可知:质点在这2 s 内通过的路程恰为2 A ,即2A =12 cm ,A =6 cm ,故B 正确.7.解析:选A.两球释放后到槽最低点前的运动为简谐运动且为单摆模型.其周期T =2πR g,两球周期相同,从释放到最低点O 的时间t =T4相同,所以相遇在O 点,选项A 正确.8.解析:选C.从t =0时经过t =3π2L g 时间,这段时间为34T ,经过34T 摆球具有最大速度,说明此时摆球在平衡位置,在给出的四个图象中,经过34T 具有负向最大速度的只有C 图,选项C 正确.9.解析:选CD.单摆做简谐运动的周期T =2πlg,与摆球的质量无关,因此两单摆周期相同.碰后经过12T 都将回到最低点再次发生碰撞,下一次碰撞一定发生在平衡位置,不可能在平衡位置左侧或右侧.故C 、D 正确.10.解析:选D.通过调整发生器发出的声波就能使酒杯碎掉,是利用共振的原理,因此操作人员一定是将声波发生器发出的声波频率调到500 Hz ,故D 选项正确. 二、填空题(本题共2小题,每小题8分,共16分.把答案填在题中横线上)11答案:(1)B (2)摆长的测量、漏斗重心的变化、液体痕迹偏粗、阻力变化……12答案:(1)ABC (2)①98.50 ②B ③4π2k计算题13.(10分)解析:由题意知弹簧振子的周期T =0.5 s ,振幅A =4×10-2m. (1)a max =kx max m =kA m=40 m/s 2. (2)3 s 为6个周期,所以总路程为s =6×4×4×10-2m =0.96 m.答案:(1)40 m/s 2(2)0.96 m14.(10分)解析:设单摆的摆长为L ,地球的质量为M ,则据万有引力定律可得地面的重力加速度和高山上的重力加速度分别为:g =G M R 2,g h =G M R +h2据单摆的周期公式可知T 0=2πLg ,T =2πL g h由以上各式可求得h =(T T 0-1)R . 答案:(T T 0-1)R15.(12分解析:球A 运动的周期T A =2πl g, 球B 运动的周期T B =2π l /4g =πl g. 则该振动系统的周期T =12T A +12T B =12(T A +T B )=3π2l g. 在每个周期T 内两球会发生两次碰撞,球A 从最大位移处由静止开始释放后,经6T =9πlg,发生12次碰 撞,且第12次碰撞后A 球又回到最大位置处所用时间为t ′=T A /4. 所以从释放A 到发生第12次碰撞所用时间为t =6T -t ′=9πl g -2T 2l g =17π2lg. 答案:17π2l g16.(12分解析:在力F 作用下,玻璃板向上加速,图示OC 间曲线所反映出的是振动的音叉振动位移随时间变化的规律,其中直线OC 代表音叉振动1.5个周期内玻璃板运动的位移,而OA 、AB 、BC 间对应的时间均为0.5个周期,即t =T 2=12f=0.1 s .故可利用匀加速直线运动的规律——连续相等时间内的位移差等于恒量来求加速度.设板竖直向上的加速度为a ,则有:s BA -s AO =aT 2①s CB -s BA =aT 2,其中T =152 s =0.1 s ②由牛顿第二定律得F -mg =ma ③ 解①②③可求得F =24 N. 答案:24 N机械振动(2)机械振动(3)1【解析】 如图所示,图线中a 、b 两处,物体处于同一位置,位移为负值,加速度一定相同,但速度方向分别为负、正,A 错误,C 正确.物体的位移增大时,动能减少,势能增加,D 错误.单摆摆球在最低点时,处于平衡位置,回复力为零,但合外力不为零,B 错误.【答案】 C2【解析】 质量是惯性大小的量度,脱水桶转动过程中质量近似不变,惯性不变,脱水桶的转动频率与转速成正比,随着转动变慢,脱水桶的转动频率减小,因此,t 时刻的转动频率不是最大的,在t 时刻脱水桶的转动频率与机身的固有频率相等发生共振,故C 项正确.【答案】 C3【解析】 摆球从A 运动到B 的过程中绳拉力不为零,时间也不为零,故冲量不为零,所以选项A 错;由动能定理知选项B 对;摆球运动到B 时重力的瞬时功率是mg v cos90°=0,所以选项C 错;摆球从A 运动到B 的过程中,用时T /4,所以重力的平均功率为P =m v 2/2T /4=2m v 2T ,所以选项D 错.【答案】 B4【解析】 由振动图象可看出,在(T 2-Δt )和(T2+Δt )两时刻,振子的速度相同,加速度大小相等方向相反,相对平衡位置的位移大小相等方向相反,振动的能量相同,正确选项是D.【答案】 D5【解析】 据受迫振动发生共振的条件可知甲的振幅较大,因为甲的固有频率接近驱动力的频率.做受迫振动物体的频率等于驱动力的频率,所以B 选项正确.【答案】 B6【解析】 由题意知,在细线未断之前两个弹簧所受到的弹力是相等的,所以当细线断开后,甲、乙两个物体做简谐运动时的振幅是相等的,A 、B 错;两物体在平衡位置时的速度最大,此时的动能等于弹簧刚释放时的弹性势能,所以甲、乙两个物体的最大动能是相等的,则质量大的速度小,所以C 正确,D 错误.【答案】 C题号 1 2 3 4 5 6 7 8 9 10答案 ACBADACBDACADD(T 2-T 1)R/T 17【答案】 C8【解析】 根据题意,由能量守恒可知12kx 2=mg (h +x ),其中k 为弹簧劲度系数,h 为物块下落处距O 点的高度,x 为弹簧压缩量.当x =x 0时,物块速度为0,则kx 0-mg =ma ,a =kx 0-mg m =kx 0m -g =2mg (h +x 0)mx 0-g =2g (h +x 0)x 0-g >g ,故正确答案为D.【答案】 D9【解析】 由题中条件可得单摆的周期为T =0.30.2s =1.5s ,由周期公式T =2πlg可得l=0.56m.【答案】 A10【解析】 当摆球释放后,动能增大,势能减小,当运动至B 点时动能最大,势能最小,然后继续摆动,动能减小,势能增大,到达C 点后动能为零,势能最大,整个过程中摆球只有重力做功,摆球的机械能守恒,综上可知只有D 项正确.【答案】 D机械振动(4)1解析:选A.周期与振幅无关,故A 正确.2解析:选C.由单摆周期公式T =2π lg知周期只与l 、g 有关,与m 和v 无关,周期不变频率不变.又因为没改变质量前,设单摆最低点与最高点高度差为h ,最低点速度为v ,mgh =12m v 2.质量改变后:4mgh ′=12·4m ·(v 2)2,可知h ′≠h ,振幅改变.故选C.3解析:选D.此摆为复合摆,周期等于摆长为L 的半个周期与摆长为L2的半个周期之和,故D 正确.4解析:选B.由简谐运动的对称性可知,t Ob =0.1 s ,t bc =0.1 s ,故T4=0.2 s ,解得T =0.8s ,f =1T=1.25 Hz ,选项B 正确.5解析:选D.当单摆A 振动起来后,单摆B 、C 做受迫振动,做受迫振动的物体的周期(或频率)等于驱动力的周期(或频率),选项A 错误而D 正确;当物体的固有频率等于驱动力的频率时,发生共振现象,选项C 正确而B 错误.6解析:选BD.速度越来越大,说明振子正在向平衡位置运动,位移变小,A 错B 对;速度与位移反向,C 错D 对.7解析:选AD.P 、N 两点表示摆球的位移大小相等,所以重力势能相等,A 对;P 点的速度大,所以动能大,故B 、C 错D 对.8解析:选BD.受迫振动的频率总等于驱动力的频率,D 正确;驱动力频率越接近固有频率,受迫振动的振幅越大,B 正确.9解析:选B.读图可知,该简谐运动的周期为4 s ,频率为0.25 Hz ,在10 s 内质点经过的路程是2.5×4A =20 cm.第4 s 末的速度最大.在t =1 s 和t =3 s 两时刻,质点位移大小相等、方向相反.。

机械振动的原理和控制方法

机械振动的原理和控制方法

机械振动的原理和控制方法机械振动是指物体在弹性介质作用下,出现周期性的膨胀与收缩的现象。

机械振动广泛存在于工业、军事、天文等多个领域中,对于系统的稳定性、工作性能、安全性、寿命等方面都有着重要的影响。

因此,研究机械振动的原理和控制方法显得非常必要。

一、机械振动的原理机械振动是由于物体在弹性介质作用下,出现周期性的膨胀与收缩的现象。

这里主要涉及到两种形式的振动:一种是自由振动,即物体在没有外部作用下自然地振动;另一种是强制振动,即物体受外部强制作用而振动。

自由振动的原理:自由振动的主要原理是由于物体本身的初始形态造成的。

在没有外部作用时,物体会遵循自身特定的固有频率,反复执行某些动作。

这是由于物体受到扰动后,内部的弹性介质会将能量存储起来,随后再释放出来,从而使物体开始振动。

自由振动的特点是在系统中,没有外力或外干扰,其振动的幅度与频率都是恒定的。

强制振动的原理:另一种振动形式是强制振动,其原理是由外部的作用所引起。

通过施加一个外力,物体将发生周期性振动,并随之受到外力的影响。

此外,振动还可以通过参数的变化而被改变。

二、机械振动的控制方法机械振动对于工业生产、精密制造、核航天等领域的其他安全工程具有一定的风险。

因此,开发监控和控制机械振动的方法非常重要。

以下是三种常用的控制方法:1、主动控制主动控制是利用反馈控制来控制机械振动的方法。

它将传感器和控制器紧密结合,并利用控制算法来实现反馈控制。

主动控制可以在短时间内调整扰动力,避免波动的扩大。

这种方法多为闭环控制,实现快速响应和精密控制。

2、被动控制被动控制是通过设计结构或材料本身来抵消机械振动的方法。

例如,在应用中添加减振器、吸振器等来减少机械振动的影响。

被动控制的主要优点是不会引起额外的环境破坏。

3、半主动控制半主动控制通过结合主动控制和被动控制的特点来控制机械振动。

这种控制方法通常涉及添加补偿系统来调整扰动力。

比如,使用半主动液压隔振器来实现机械振动的控制。

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习及总结

机械振动和机械波知识点复习一 机械振动知识要点1. 机械振动:物体(质点)在平衡位置附近所作的往复运动叫机械振动,简称振动条件:a 、物体离开平衡位置后要受到回复力作用。

b 、阻力足够小。

回复力:效果力——在振动方向上的合力 平衡位置:物体静止时,受(合)力为零的位置: 运动过程中,回复力为零的位置(非平衡状态) 描述振动的物理量位移x (m )——均以平衡位置为起点指向末位置振幅A (m )——振动物体离开平衡位置的最大距离(描述振动强弱) 周期T (s )——完成一次全振动所用时间叫做周期(描述振动快慢) 全振动——物体先后两次运动状态(位移和速度)完全相同所经历的过程频率f (Hz )——1s 钟内完成全振动的次数叫做频率(描述振动快慢) 2. 简谐运动概念:回复力与位移大小成正比且方向相反的振动 受力特征:kx F -= 运动性质为变加速运动 从力和能量的角度分析x 、F 、a 、v 、E K 、E P 特点:运动过程中存在对称性平衡位置处:速度最大、动能最大;位移最小、回复力最小、加速度最小 最大位移处:速度最小、动能最小;位移最大、回复力最大、加速度最大✧ v 、E K 同步变化;x 、F 、a 、E P 同步变化,同一位置只有v 可能不同3. 简谐运动的图象(振动图象)物理意义:反映了1个振动质点在各个时刻的位移随时间变化的规律 可直接读出振幅A ,周期T (频率f ) 可知任意时刻振动质点的位移(或反之) 可知任意时刻质点的振动方向(速度方向) 可知某段时间F 、a 等的变化4. 简谐运动的表达式:)2sin(φπ+=t TA x 5. 单摆(理想模型)——在摆角很小时为简谐振动回复力:重力沿切线方向的分力 周期公式:glT π2= (T 与A 、m 、θ无关——等时性) 测定重力加速度g,g=224T Lπ 等效摆长L=L 线+r6. 阻尼振动、受迫振动、共振阻尼振动(减幅振动)——振动中受阻力,能量减少,振幅逐渐减小的振动 受迫振动:物体在外界周期性驱动力作用下的振动叫受迫振动。

机械振动理论中的一些原理问答

机械振动理论中的一些原理问答

1.请指出弹簧的串、并联组合方式的计算方法。

确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。

答:n 个刚度为i k 的弹簧串联,等效刚度∑==ni ieq k k 111;n 个刚度为i k 的弹簧并联的等效刚度为∑==ni i eq k k 1;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较其任何一个组成弹“簧软”。

确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。

2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括:(1)库仑阻尼计算公式⎪⎭⎫⎝⎛⋅=.sgn -x mg F e μ,其中,sgn 为符号函数,这里定义为)()()(sgn t x t x x ∙∙∙=,须注意,当0)(x =∙t 时,库仑阻尼力是不定的,它取决于合外力的大小,而方向与之相反;(2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、液体)中运动是,由流体介质所产生的阻尼,计算公式为⎪⎭⎫⎝⎛-=∙∙x x F n sgn 2γ;(3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2X E s α=∆ 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么?答:单自由度无阻尼系统的自由振动的运动微分方程()0=+∙∙t kx x m ; 自然频率:mk f n n ππω212==; 振幅:202⎪⎪⎭⎫ ⎝⎛+=nv x X ω;初相角:0x v arcrann ωϕ=。

4.对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么?答:单自由度无阻尼系统自由振动,确定自然频率的方法:(1)静变形法:该方法不需要到处系统的运动微分方程,只需根据静变形的关系就可以确定出固有频率具体如下:mg k st =δ,又mkn =ω,将这两个式子联立即可求得stn gδω=;(2)能量法,该方法又可以分为三种思路来求自然频率。

高中物理机械振动知识点与题型总结

高中物理机械振动知识点与题型总结

(一)机械振动物体(质点)在某一中心位置两侧所做的往复运动就叫做机械振动,物体能够围绕着平衡位置做往复运动,必然受到使它能够回到平衡位置的力即回复力。

回复力是以效果命名的力,它可以是一个力或一个力的分力,也可以是几个力的合力。

产生振动的必要条件是:a、物体离开平衡位置后要受到回复力作用。

b、阻力足够小。

(二)简谐振动1. 定义:物体在跟位移成正比,并且总是指向平衡位置的回复力作用下的振动叫简谐振动。

简谐振动是最简单,最基本的振动。

研究简谐振动物体的位置,常常建立以中心位置(平衡位置)为原点的坐标系,把物体的位移定义为物体偏离开坐标原点的位移。

因此简谐振动也可说是物体在跟位移大小成正比,方向跟位移相反的回复力作用下的振动,即F=-k x,其中“-”号表示力方向跟位移方向相反。

2. 简谐振动的条件:物体必须受到大小跟离开平衡位置的位移成正比,方向跟位移方向相反的回复力作用。

3. 简谐振动是一种机械运动,有关机械运动的概念和规律都适用,简谐振动的特点在于它是一种周期性运动,它的位移、回复力、速度、加速度以及动能和势能(重力势能和弹性势能)都随时间做周期性变化。

(三)描述振动的物理量,简谐振动是一种周期性运动,描述系统的整体的振动情况常引入下面几个物理量。

1. 振幅:振幅是振动物体离开平衡位置的最大距离,常用字母“A”表示,它是标量,为正值,振幅是表示振动强弱的物理量,振幅的大小表示了振动系统总机械能的大小,简谐振动在振动过程中,动能和势能相互转化而总机械能守恒。

2. 周期和频率,周期是振子完成一次全振动的时间,频率是一秒钟内振子完成全振动的次数。

振动的周期T跟频率f之间是倒数关系,即T=1/f。

振动的周期和频率都是描述振动快慢的物理量,简谐振动的周期和频率是由振动物体本身性质决定的,与振幅无关,所以又叫固有周期和固有频率。

(四)单摆:摆角小于5°的单摆是典型的简谐振动。

细线的一端固定在悬点,另一端拴一个小球,忽略线的伸缩和质量,球的直径远小于悬线长度的装置叫单摆。

物理中的机械振动知识点解析及解题技巧

物理中的机械振动知识点解析及解题技巧

物理中的机械振动知识点解析及解题技巧机械振动是物理学中的重要分支,研究物体在平衡位置附近做微小振幅周期性运动的规律。

在本文中,我们将对机械振动的知识点进行解析,并介绍一些解题技巧。

一、简谐振动简谐振动是理想化的机械振动模型,它假设振动系统没有能量损耗,且恢复力与位移成正比。

简谐振动的典型例子包括弹簧振子和摆锤等。

解析公式:1. 位移公式:x(t) = A*cos(ωt+φ),其中A为振幅,ω为角频率,t为时间,φ为初相位。

2. 速度公式:v(t) = -A*ω*sin(ωt+φ)。

3. 加速度公式:a(t) = -A*ω²*cos(ωt+φ)。

解题技巧:1. 周期与频率的关系:T = 1/f,其中T为周期,f为频率。

2. 角频率与频率的关系:ω = 2πf。

3. 振动的周期和频率与弹簧的劲度系数和质量有关:T = 2π√(m/k),其中m为质量,k为劲度系数。

二、阻尼振动阻尼振动是指振动系统中存在有能量消耗的情况下的振动现象。

根据阻尼的不同,可以分为无阻尼振动、欠阻尼振动和过阻尼振动。

解析公式:1. 无阻尼振动的位移公式:x(t) = A*cos(ωnt + φ),其中A为振幅,ωn为自然角频率,t为时间,φ为初相位。

2. 欠阻尼振动的位移公式:x(t) = A*e^(-βt)*cos(ωdt + φ)。

3. 过阻尼振动的位移公式:x(t) = A1*e^((-β1)t) + A2*e^((-β2)t),其中A1、A2为常数,β1、β2为自然频率。

解题技巧:1. 阻尼比:ζ = β/ωn,其中β为阻尼常数,ωn为自然角频率。

2. 衰减因子:η = e^(-βt)。

三、受迫振动受迫振动是指振动系统在受到外力作用下的振动现象。

当外力频率等于振动系统的固有频率时,会出现共振现象。

解析公式:1. 受迫振动的位移公式:x(t) = X*cos(ωt-δ),其中X为振幅,ω为外力角频率,t为时间,δ为初相位差。

机械振动试题

机械振动试题

机械振动试题一、选择题1. 下列关于机械振动的说法中,正确的是:A. 机械振动只存在于弹簧系统中B. 机械振动只存在于质点系统中C. 机械振动既存在于弹簧系统中,也存在于质点系统中D. 机械振动只存在于液体中2. 以下哪个现象不属于机械振动的特征:A. 周期性B. 振动幅度相等C. 能量交换D. 机械振动的振幅随时间变化3. 关于自由振动和受迫振动的说法,正确的是:A. 自由振动需要外力驱动B. 受迫振动不需要外力驱动C. 自由振动和受迫振动都需要外力驱动D. 自由振动和受迫振动都不需要外力驱动4. 振动系统的自然频率与以下哪个因素无关:A. 系统的刚度B. 系统的阻尼C. 系统的质量D. 系统所受的外力5. 下面哪种振动现象是产生共振的原因:A. 外力频率与振动系统自然频率相同B. 外力频率与振动系统自然频率不同C. 外力频率与振动系统自然频率较大差异D. 外力频率与振动系统自然频率较小差异二、简答题1. 什么是机械振动?机械振动是物体围绕平衡位置做周期性的往复运动。

它有着特定的振动频率和振幅,是一种具有周期性和能量交换的运动形式。

2. 机械振动有哪些特征?机械振动具有周期性、振幅相等、能量交换和振幅随时间变化等特征。

周期性表示机械振动运动形式的重复性;振幅相等表示振动系统在每个周期内的振动幅度相等;能量交换表示振动系统的能量在正、反向振动过程中的转化与交换;振幅随时间变化表示振动幅度随着时间的推移而发生变化。

3. 什么是自由振动和受迫振动?自由振动是指机械振动系统受到初位移或初速度激发后,在无外力驱动的情况下进行的振动。

受迫振动是指机械振动系统受到外力周期性激励后产生的振动。

4. 什么是共振现象?共振现象是指当外力的频率与振动系统的自然频率相同时,产生的振幅迅速增大的现象。

在共振状态下,系统振幅可能会无限增大,从而引起系统的损坏甚至破坏。

5. 如何减小机械振动的共振现象?减小机械振动的共振现象可以通过以下几种方法来实现:- 调整外力的频率,使其与振动系统的自然频率有所偏离,避免共振;- 增加阻尼,通过增加振动系统的阻尼来消耗振动能量,减小共振现象;- 改变振动系统的刚度和质量,使其自然频率与外力频率有所偏离,从而减少共振。

中国石油大学(北京)机械振动简答题

中国石油大学(北京)机械振动简答题

1.举例说明振系发生共振现象的原因及其常用消除方法共振:机械系统所受驱动力的频率与该系统的某阶固有频率相接近时,系统振幅显著增大的现象。

(1)电台通过天线发射出短波/长波信号,收音机通过将天线频率调至和电台电波信号相同频率来引起共振,电波信号将被放大,然后天线将放大后的信号经过过滤后传至喇叭发声。

(2)当驱动频率与桥的固有频率相同时,就会达到共振,共振的效果是使振幅增加。

桥本身的动能增加,当突破桥能够承受的形变时,桥就会坍塌。

(3)机床运转时,运动部分总会有某种不对称性,从而对机床的其他部件施加周期性作用力引起这些部件的受迫振动,当这种作用力的频率与机床的固有频率接近或相等时,会发生共振,从而影响加工精度。

防共振措施有:改进机械的结构或改变激励,使机械的固有频率避开激励频率;采用减振装置;机械起动或停车过程中快速通过共振区。

此外,利用共振原理的振动机械,可用较小的功率完成某些工艺过程,如共振筛等。

2.列举几种常见的弹性体振动的近似求解方法的核心内容及其相应的适用范围(1)集中质量法核心:应用离散思想对细长杆或缆索等对象进行分段,段与段之间通过有质量的节点连接,段是没有质量的且被看作弹性体。

外部载荷如重力、分布力均被集中作用在节点上。

通过列出各个节点的动平衡方程与边界条件形成非线性微分方程组,求解固有频率等。

适用范围:早先应用于那些物理参数分布不是很均匀(或相对也集中的)实际系统,后也应用于均匀或近乎均匀的弹性体。

(2)广义坐标法核心:将系统的惯性和弹性特性转化到一些振型上去。

振型本身都是物理坐标确定的函数,在找出这些振型的运动规律后,再用它们来确定系统物理坐标的运动。

该方法中采用了满足指定边值问题中全部边界条件的比较函数,和只满足边值问题中几何边界条件的函数(容许函数)。

这是弹性体振动问题可近似的表示为,从而求解相关参数。

适用范围:确定系统物理坐标的运动。

(3)假设模态法核心:有限个假设模态振动线性近似的描述弹性体的振动。

机械振动知识点总结.

机械振动知识点总结.

机械振动1、判断简谐振动的方法简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动。

特征是:F=-kx,a=-kx/m.要判定一个物体的运动是简谐运动,首先要判定这个物体的运动是机械振动,即看这个物体是不是做的往复运动;看这个物体在运动过程中有没有平衡位置;看当物体离开平衡位置时,会不会受到指向平衡位置的回复力作用,物体在运动中受到的阻力是不是足够小。

然后再找出平衡位置并以平衡位置为原点建立坐标系,再让物体沿着x 轴的正方向偏离平衡位置,求出物体所受回复力的大小,若回复力为F=-kx,则该物体的运动是简谐运动。

2、简谐运动中各物理量的变化特点简谐运动涉及到的物理量较多,但都与简谐运动物体相对平衡位置的位移x 存在直接或间接关系:如果弄清了上述关系,就很容易判断各物理量的变化情况3、简谐运动的对称性简谐运动的对称性是指振子经过关于平衡位置对称的两位置时,振子的位移、回复力、加速度、动能、势能、速度、动量等均是等大的(位移、回复力、加速度的方向相反,速度动量的方向不确定)。

运动时间也具有对称性,即在平衡位置对称两段位移间运动的时间相等。

理解好对称性这一点对解决有关问题很有帮助。

4、简谐运动的周期性5、简谐运动图象简谐运动图象能够反映简谐运动的运动规律,因此将简谐运动图象跟具体运动过程联系起来是讨论简谐运动的一种好方法。

6、受迫振动与共振(1)、受迫振动:物体在周期性驱动力作用下的振动,其振动频率和固有频率无关,等于驱动力的频率;受迫振动是等幅振动,振动物体因克服摩擦或其它阻力做功而消耗振动能量刚好由周期性的驱动力做功给予补充,维持其做等幅振动。

位移x回复力F=-Kx 加速度a=-Kx/m 位移x 势能E p =Kx 2/2 动能E k =E-Kx 2/2 速度m E V K 2(2)、共振:○1共振现象:在受迫振动中,驱动力的频率和物体的固有频率相等时,振幅最大,这种现象称为共振。

机械振动概念、知识点总结

机械振动概念、知识点总结

机械振动概念、知识点总结1、机械振动:物体在平衡位置附近的往复运动。

例1:乒乓球在地面上的来回运动属于往复运动,不属于机械振动。

因为:乒乓球没有在平衡位置附近做往复运动。

(1)平衡位置:①物体所受回复力为零的位置。

②振动方向上,合力为零的位置。

③物体原来静止时的位置。

(2)机械振动的平衡位置不一定是振动范围的中心。

(3)机械振动的位移:以平衡位置为起点,偏离平衡位置的位移。

(4)回复力:沿振动方向,指向平衡位置的合力。

①回复力是某些性质力充当了回复力,所以回复力是效果力,不是性质力。

②回复力与合外力的关系: 直线振动(如弹簧振子):回复力一定等于振子的合外力,也就是说,振子的合外力全部充当回复力。

曲线振动(如单摆):回复力不一定等于振子的合外力。

③平衡位置,回复力为零。

例2:判断:机械振动中,振子的平衡位置是合外力(加速度)为零的位置。

答:错误。

正例:弹簧振子的平衡位置是合外力为零的位置。

反例:单摆中,小球的最低点为平衡位置,回复力为零, 但合外力为:2mv F F T mg L==-=合向 最低点时,小球速度最大,0v ≠,所以0F ≠合2、简谐运动(简谐运动是变加速运动,不是匀变速运动) (1)简谐运动定义:①位移随时间做正弦变化②回复力与位移的关系: F 回=-kx ,即:回复力大小与位移大小成正比。

(2)F 回,x ,v 的关系①F 回与x 的大小成正比,方向总是相反。

(F 回总是指向平衡位置,x 总是背离平衡位置) ②v 的大小与F 回,x 反变化,但方向无联系。

振动范围的两端:F 回,x 最大,v=0,最小 平衡位置: F 回=0,x =0最小,v 最大例3:判断:简谐振动加速度大小与位移成正比 答:错误。

正例:弹簧振子的F 合=F 回=-kx ,a=F 合/m=-kx/m ,a 与位移大小成正比反例:单摆中,小球在平衡位置时,位移为零,但0F ≠合,0a ≠,a 与位移大小不成正比。

机械振动基础习题

机械振动基础习题

机械振动分析与应用习题第一部分问答题1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。

2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。

3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。

4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。

6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。

第二部分计算题1.求图2-1所示两系统的等效刚度。

图2-1 图2-2 图2-32.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。

3.如图2-3所示系统,求轴1的等效转动惯量。

图2-4 图2-5 图2-6 图2-74.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。

现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。

(注:飞轮外径100mm,R=150mm。

)5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。

6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。

7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。

8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。

图2-8 图2-99.长度为L 、重量为W 的均匀杆对称地支承在两根细绳上,如图2-8所示。

试建立杆相对于铅垂轴线o-o 的微角度振动方程并确定它的周期。

10.求图2-9所示系统的等效刚度和固有频率。

11.用能量法求图2-10所示均质圆柱体振荡的固有频率。

机械振动理论研究

机械振动理论研究

机械振动理论研究机械振动是研究物体在受到外力作用下发生的周期性运动的学科领域。

自古以来,人们就对振动现象产生了浓厚的兴趣,机械振动理论的研究也不断深入。

本文将探讨机械振动理论的基本原理、应用和发展趋势。

一、机械振动的基本原理机械振动的基本原理可以归结为两个方面:弹性力和阻尼力。

在没有外界干扰的情况下,物体会按照自身的固有频率发生振动。

这是由物体内部的弹性力引起的,它使物体恢复到平衡状态,产生周期性的摆动。

然而,在实际应用中,很少有物体能够完全摆脱外界干扰的影响。

这就引入了阻尼力的概念。

阻尼力可以分为线性阻尼和非线性阻尼两种形式。

线性阻尼使振动逐渐衰减直至停止,而非线性阻尼则导致各种非常规的振动现象。

二、机械振动的应用机械振动的应用领域非常广泛,涵盖了工程、物理、生物等多个学科。

在工程领域,机械振动理论被广泛应用于结构设计、机械传动、振动控制等方面。

首先,对于结构设计而言,机械振动理论可以帮助工程师预测和评估结构在不同载荷下的振动特性,避免共振和振动失稳的情况发生。

其次,在机械传动方面,机械振动理论可以用来研究齿轮、带传动、链传动等机构的振动特性,以及设计合适的减振措施,提高传动系统的可靠性和工作效率。

最后,在振动控制方面,机械振动理论可以应用于主动和被动控制系统中,用来抑制不必要的振动,提高系统的精度和稳定性。

例如,在高速列车的悬挂系统中,机械振动理论可以帮助设计减振器,降低列车运行时的振动和噪声。

三、机械振动理论的发展趋势近年来,随着科学技术的不断进步,机械振动理论的研究也在不断深入。

以下是几个机械振动理论的发展趋势:1. 多学科交叉融合在以往的研究中,机械振动理论主要依靠力学和数学等学科的理论方法。

未来,随着材料科学、控制论、计算机科学等学科的发展,将会出现更多的多学科交叉研究,为机械振动理论的发展提供更多的方法和思路。

2. 振动能量的转化和利用传统的机械振动理论主要关注于振动的抑制和控制,而缺乏对振动能量的转化和利用的研究。

机械振机械波_知识点_例题解答

机械振机械波_知识点_例题解答

一、机械振动1、机械振动:物体(或物体的一部分)在某一中心位置两侧做的往复运动.振动的特点:①存在某一中心位置;②往复运动,这是判断物体运动是否是机械振动的条件. 产生振动的条件:①振动物体受到回复力作用;②阻尼足够小;2、回复力:振动物体所受到的总是指向平衡位置的合外力.①回复力时刻指向平衡位置;②回复力是按效果命名的, 可由任意性质的力提供.可以是几个力的合力也可以是一个力的分力; ③合外力:指振动方向上的合外力,而不一定是物体受到的合外力.④在平衡位置处:回复力为零,而物体所受合外力不一定为零.如单摆运动,当小球在最低点处,回复力为零,而物体所受的合外力不为零.3、平衡位置:是振动物体受回复力等于零的位置;也是振动停止后,振动物体所在位置;平衡位置通常在振动轨迹的中点。

“平衡位置”不等于“平衡状态”。

平衡位置是指回复力为零的位置,物体在该位置所受的合外力不一定为零。

(如单摆摆到最低点时,沿振动方向的合力为零,但在指向悬点方向上的合力却不等于零,所以并不处于平衡状态)二、简谐振动及其描述物理量1、振动描述的物理量(1)位移:由平衡位置指向振动质点所在位置的有向线段.①是矢量,其最大值等于振幅;②始点是平衡位置,所以跟回复力方向永远相反;③位移随时间的变化图线就是振动图象.(2)振幅:离开平衡位置的最大距离.①是标量;②表示振动的强弱;(3)周期和频率:完成一次全变化所用的时间为周期T,每秒钟完成全变化的次数为频率f.①二者都表示振动的快慢;②二者互为倒数;T=1/f;③当T和f由振动系统本身的性质决定时(非受迫振动),则叫固有频率与固有周期是定值,固有周期和固有频率与物体所处的状态无关.2、简谐振动:物体所受的回复力跟位移大小成正比时,物体的振动是简偕振动.①受力特征:回复力F=—KX。

②运动特征:加速度a=一kx/m,方向与位移方向相反,总指向平衡位置。

简谐运动是一种变加速运动,在平衡位置时,速度最大,加速度为零;在最大位移处,速度为零,加速度最大。

机械振动基础习题

机械振动基础习题

机械振动分析与应用习题第一部分问答题1.一简谐振动,振幅为0.20cm,周期为0.15s,求最大速度和加速度。

2.一加速度计指示结构谐振在80HZ时具有最大加速度50g,求振动的振幅。

3.一简谐振动,频率为10Hz,最大速度为4.57m/s,求谐振动的振幅、周期、最大加速度。

4.阻尼对系统的自由振动有何影响?若仪器表头可等效为具有黏性阻尼的单自由度系统,欲使其在受扰动后尽快回零,最有效的办法是什么?5.什么是振动?研究振动的目的是什么?简述振动理论分析的一般过程。

6.何为隔振?一般分为哪几类?有何区别?试用力法写出系统的传递率,画出力传递率的曲线草图,分析其有何指导意义。

第二部分计算题1.求图2-1所示两系统的等效刚度。

图2-1 图2-2 图2-32.如图2-2所示,均匀刚性杆质量为m,长度为l,距左端O为l0处有一支点,求O点等效质量。

3.如图2-3所示系统,求轴1的等效转动惯量。

图2-4 图2-5 图2-6 图2-74.一个飞轮其内侧支承在刀刃上摆动,如图2-4所示。

现测得振荡周期为1.2s,飞轮质量为35kg,求飞轮绕中心的转动惯量。

(注:飞轮外径100mm,R=150mm。

)5.质量为0.5kg的重物悬挂在细弹簧上,伸长为8mm,求系统的固有频率。

6.质量为m1的重物悬挂在刚度为k的弹簧上并处于静平衡位置;另一质量为m2的重物从高度为h处自由降落到m l上而无弹跳,如图2-5所示,求其后的运动。

7.一质量为m、转动惯量为J的圆柱体作自由纯滚动,但圆心有一弹簧k约束,如图2-6所示,求振动的固有频率。

8.一薄长条板被弯成半圆形,如图2-7所示,让它在平面上摇摆,求它的摇摆周期。

图2-8 图2-99.长度为L 、重量为W 的均匀杆对称地支承在两根细绳上,如图2-8所示。

试建立杆相对于铅垂轴线o-o 的微角度振动方程并确定它的周期。

10.求图2-9所示系统的等效刚度和固有频率。

11.用能量法求图2-10所示均质圆柱体振荡的固有频率。

高中物理机械振动知识点详解和答案

高中物理机械振动知识点详解和答案

九、机械振动一、知识网络二、画龙点睛概念1、机械振动(1)平衡位置:物体振动时的中心位置,振动物体未开始振动时相对于参考系静止的位置,或沿振动方向所受合力等于零时所处的位置叫平衡位置。

(2)机械振动:物体在平衡位置附近所做的往复运动,叫做机械振动,通常简称为振动。

(3)振动特点:振动是一种往复运动,具有周期性和重复性2、简谐运动(1)弹簧振子:一个轻质弹簧联接一个质点,弹簧的另一端固定,就构成了一个弹簧振子。

(2)振动形成的原因①回复力:振动物体受到的总能使振动物体回到平衡位置,且始终指向平衡位置的力,叫回复力。

振动物体的平衡位置也可说成是振动物体振动时受到的回复力为零的位置。

②形成原因:振子离开平衡位置后,回复力的作用使振了回到平衡位置,振子的惯性使振子离开平衡位置;系统的阻力足够小。

(3)振动过程分析振子的运动A→O O→A′A′→O O→A对O点位移的方向向右向左向左向右(4)简谐运动的力学特征①简谐运动:物体在跟偏离平衡位置的位移大小成正比,并且总指向平衡位置的回复力的作用下的振动,叫做简谐运动。

②动力学特征:回复力F与位移x之间的关系为F=-kx式中F为回复力,x为偏离平衡位置的位移,k是常数。

简谐运动的动力学特征是判断物体是否为简谐运动的依据。

③简谐运动的运动学特征a=-k m x加速度的大小与振动物体相对平衡位置的位移成正比,方向始终与位移方向相反,总指向平衡位置。

简谐运动加速度的大小和方向都在变化,是一种变加速运动。

简谐运动的运动学特征也可用来判断物体是否为简谐运动。

例题:试证明在竖直方向的弹簧振子做的也是简谐振运动。

证明:设O为振子的平衡位置,向下方向为正方向,此时弹簧形变量为x0,根据胡克定律得x0=mg/k当振子向下偏离平衡位置x时,回复力为F=mg-k(x+x0)则F=-kx所以此振动为简谐运动。

3、振幅、周期和频率⑴振幅①物理意义:振幅是描述振动强弱的物理量。

②定义:振动物体离开平衡位置的最大距离,叫做振动的振幅。

机械振动的原理及应用

机械振动的原理及应用

机械振动的原理及应用一、什么是机械振动机械振动是指机械系统在受到外力作用或者自身固有特性发生变化时,产生周期性的运动或者摆动。

这种周期性的运动或摆动称为振动。

机械振动是机械工程中一个重要的研究领域,并在多个应用领域中发挥着重要作用。

二、机械振动的原理1.质点的简谐振动原理: 机械振动的基础理论是简谐振动。

简谐振动是指系统在外力作用下相对平衡位置做周期性的、大小和方向都相同的振动。

质点的简谐振动受到三个基本要素的影响:质点的质量、弹性恢复力和外力。

2.刚体的振动原理:刚体的振动与质点不同,无论是平动还是转动,都涉及到刚体上不同点之间的相对位置关系。

刚体的振动可以分为平动和转动两种类型。

刚体的振动受到质心的平动和转动之间的耦合效应所影响。

三、机械振动的应用1.振动工具和设备:机械振动被广泛应用于各种振动工具和设备中,例如振动筛、振动给料机、振动输送机等。

这些设备通过振动来实现物料的分离、输送和排放等功能。

2.振动检测与诊断:机械振动可用于检测和诊断装置或系统的故障。

通过监测和分析机械系统的振动特征,可以判断设备是否存在故障、预测故障发生的可能性以及确定故障的类型和位置。

3.振动控制与消除:机械振动在诸多领域中可能会引起一些负面影响,如噪音、损坏和疲劳等。

因此,控制和消除机械振动成为许多工程项目的重点。

采用合适的设计和控制方法,可以有效地减少机械振动,提高设备的性能和使用寿命。

4.振动能量回收:机械振动能量的回收利用成为一种新型的能源开发方式。

通过将机械系统中产生的振动能量转化为电能或其他可用能源,可以提高能源利用效率,减少对传统能源的依赖。

四、机械振动的未来发展与趋势1.智能化发展:随着科技的进步,机械振动领域也逐渐向着智能化、自动化的方向发展。

智能化振动控制系统的出现,将会更加准确地进行振动监测、诊断和控制,提高设备的效率和性能。

2.节能与环保:在全球节能与环保的背景下,减少机械振动对环境和人体健康的影响成为一个重要的课题。

机械振动复习思考题(含答案)

机械振动复习思考题(含答案)

机械振动复习思考题1心O 距离为l ϑϑsin 0mgl J -= ϑϑ≈sin 00=+ϑϑmgl J T J mgl n n 02,==ω2204n T mgl J=20ml J J c -=2 半径为r 、质量为的固有频率。

解:ϕϑr r R v c =-=)(ϑϕr r R -= 222121ϕ J mv T c c +=cos 1)((r R h --=(21R mg mgh V ==22ref 2max )(43,)(21m m r R m T r R mg V ϑϑ-=-=)(32refmax r R g T V n -==ω3 举例说明振动现象、振动的危害以及如何有效的利用振动。

答:1)振动现象:心脏的搏动、耳膜和声带的振动等;汽车、火车、飞机及机械设备的振动;家用电器、钟表的振动;地震以及声、电、磁、光的波动等等。

2)振动的危害轻则影响乘坐的舒适性;降低机器及仪表的精度,重则危害人体健康,引起机械设备及土木结构的破坏。

3)振动的利用琴弦振动;振动沉桩、振动拔桩以及振动捣固等;振动检测;振动压路机、振动给料机和振动成型机等。

4何为机械振动及研究目的?答:机械振动:机械或结构在平衡位置附近的往复运动。

研究目的:利用振动为人类造福;减少振动的危害。

5 何为振动系统的自由度?请举例说明。

答:自由度就是确定系统在振动过程中任何瞬时几何位置所需独立坐标的数目。

刚体在空间有6个自由度:三个方向的移动和绕三个方向的转动,如飞机、轮船;质点在空间有3个自由度:三个方向的移动,如高尔夫球;质点在平面有2个自由度:两个方向的移动,加上约束则成为单自由度。

6 如何对机械振动进行分类?答:1)按振动系统的自由度数分类单自由度系统振动——确定系统在振动过程中任何瞬时几何位置只需要一个独立坐标的振动;多自由度系统振动——确定系统在振动过程中任何瞬时几何位置需要多个独立坐标的振动;连续系统振动——确定系统在振动过程中任何瞬时几何位置需要无穷多个独立坐标的振动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.请指出弹簧的串、并联组合方式的计算方法。

确定弹性元件的组合方式是串联还是并联的方法是什么?对两种组合方式分别加以说明。

答:n 个刚度为i k 的弹簧串联,等效刚度∑==ni ieq k k 111;n 个刚度为i k 的弹簧并联的等效刚度为∑==ni i eq k k 1;并联弹簧的刚度较各组成弹簧“硬”,串联弹簧较其任何一个组成弹“簧软”。

确定弹性元件是串联还是并联的方法:若弹性元件是共位移——端部位移相等,则为并联关系;若弹性元件是共力——受力相等,则为串联关系。

2.非粘性阻尼包括哪几种?它们的计算公式分别是什么? 答:非粘性阻尼包括:(1)库仑阻尼计算公式⎪⎭⎫⎝⎛⋅=.sgn -x mg F e μ,其中,sgn 为符号函数,这里定义为)()()(sgn t x t x x ∙∙∙=,须注意,当0)(x =∙t 时,库仑阻尼力是不定的,它取决于合外力的大小,而方向与之相反;(2)流体阻尼计算公式:是当物体以较大速度在粘性较小的流体(如空气、液体)中运动是,由流体介质所产生的阻尼,计算公式为⎪⎭⎫⎝⎛-=∙∙x x F n sgn 2γ;(3)结构阻尼:由材料内部摩擦所产生的阻尼,计算公式为2X E s α=∆ 3.单自由度无阻尼系统的自由振动的运动微分方程是什么?其自然频率、振幅、初相角的计算公式分别是什么?答:单自由度无阻尼系统的自由振动的运动微分方程()0=+∙∙t kx x m ; 自然频率:mk f n n ππω212==; 振幅:202⎪⎪⎭⎫ ⎝⎛+=nv x X ω;初相角:0x v arcrann ωϕ=。

4.对于单自由度无阻尼系统自由振动,确定自然频率的方法有哪几种?具体过程是什么?答:单自由度无阻尼系统自由振动,确定自然频率的方法:(1)静变形法:该方法不需要到处系统的运动微分方程,只需根据静变形的关系就可以确定出固有频率具体如下:mg k st =δ,又mkn =ω,将这两个式子联立即可求得stn gδω=;(2)能量法,该方法又可以分为三种思路来求自然频率。

A :用能量法确定运动微分方程,然后根据运动微分方程来求自然频率。

无阻尼系统满足能量守恒定律,因此有常数==+E V T ,对该式进行求导可得()0dt dE =+=V T dt d根据此式即可导出运动微分方程,其中T 为质的动能,V 为弹簧的势能。

B :用能量法直接确定固有频率:其原理是依据系统在任意时刻的能量和(势能,动能和)相等,因此取两个特殊时刻静平衡位置(动能达到最大值m ax T )和最大位移处(势能达到最大m ax V ),可得m ax T =m ax V 该方法不用导出系统运动微分方程,因此对于复杂系统非常有效。

C :用能量法计算弹簧的等效质量,该方法利用弹簧的分布质量对系统振动频率的影响加以估计,从而得出较准确的频率值。

3'm m kn +=ω其中'm 为弹簧的质量。

5.对于单自由度有阻尼系统自由振动,其运动微分方程是什么?对无阻尼、小阻尼、过阻尼、临界阻尼的情况分别加以介绍。

对于小阻尼情况,其阻尼自然频率、振幅、初相角的计算公式是什么?答:单自由度有阻尼系统自由振动,其运动微分方程是()()()0=++∙∙∙t kx t x c t x m 或()()()022=++∙∙∙t x t x t x n n ωξω。

无阻尼: 0=ξ,此时运动微分方程的特征方程的特征根为虚数,此时系统运动微分方程的解为:()()ϕω-=n X t x cos 其中,X 、ϕ由初始条件确定此时特征根在复平面虚轴上,且处于原点对称的位置,此时,()t x 为等幅振动。

小阻尼:(10<<ξ),此时运动微分方程的解为:()()ϕωξω-=-t Xe t x d t n cos , 其中n d ωξω21-=为有阻尼自然()220020dn x v x X ωξω++=,dn x x v ωξωϕ000arctan+=系统的特征根为共轭复数,具有负实部,分别位于复平面左半面与实轴对称的位置上;有阻尼系统的自由振动是一种减幅振动,其振幅按指数规律衰减,阻尼率ξ越大,振幅衰减的越快;特征根的虚部的取值决定了自由振动的频率,阻尼系统的自然频率完全有系统本身的特性决定。

初始条件0x 与0v 只影响有阻尼自由振动的初始幅值与初相角。

过阻尼:(1>ξ)()t s t s e X e X t x 2121+=,式中,1X 、2X 为由初始条件确定的常数,特征根为负实数,位于复平面的实轴上这时系统不产生振动很快就趋近平衡位置。

临界阻尼(1=ξ),此时系统微分方程的解为:()()[]t x v x e t x n t n 000ωω++=- 临界阻尼mk c 20=,临界阻尼率0c c =ξ。

6.对数衰减率的定义是什么?如何运用对数衰减率计算阻尼率? 答:对数衰减率221122ln ln ξπξωπξωδ-==-=dnA A 。

其中1A 、2A 为间隔j个周期T 的振动位移的两个峰值,利用测得的峰值按公式()()jT t x t x j i i +=ln 1δ可以求得δ,然后利用公式224δπδξ+=,当阻尼率ξ很小时12<<δ,与4π相比可以略去,故ξ的近似计算公式为πδξ2=。

7.对于谐波激励下单自由度线性系统的强迫振动,其振幅和相位差的计算公式是什么?放大系数的定义是什么?幅频特性的定义是什么?幅频特性曲线的特性有哪些?幅频特性的极大值点和极大值是什么?答:谐波激励下单自由度线性系统的强迫振动: 振幅()[]()22221nnAX ωξωωω+-=,相位差:212arctan n nωωωξϕ-=。

放大系数的定义:振幅X 与激励的幅值A 成比例,即()A H X ω=,()ωH 是无量纲的,()222211⎪⎪⎭⎫ ⎝⎛+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫⎝⎛-=n nH ωωξωωω ,()ωH 表示动态振动的振幅X较静态位移A 放大的倍数,称为放大系数。

幅频特性:()ωH 与振幅X 之间仅差一个常数A ,因此,()ωH 描述了振幅与激励频率ω之间的函数关系,故又称()ωH 为系统的幅频特性。

幅频特性曲线的特性: (1)当0=ω时,()ωH =1,表明所有曲线从()ωH =1开始。

当激励频率很低,即n ωω<<时,()ωH 接近于1,说明低频激励时的振动幅值接近于静态位移。

这时的动态效应很小,强迫振动这一动态过程可以近似地用静变形过程来描述,1<<n ωω的这一频率范围又被称为“准静态区”或“刚度区”。

在这一区域内,振动系统的特性主要是弹性元件的作用结果。

(2)当激励频率ω很高1>>n ω时,()ωH <1,且∞→n ωω时,()0→ωH ,说明在高频率激励下,由于惯性的影响,系统来不及对高频做出响应,因而振幅很小。

因此,称为“惯性区”,这一区域内,振动系统的特性主要是质量元件作用的结果。

(3)在激励频率与固有频率相近的范围内,()ωH 曲线出现峰值,说明此时动态效应很大,振动幅值高出静态位移许多倍,当阻尼率较大时,()ωH 峰值较低,反之()ωH 的峰值较高。

因此,这一频率范围又被称为“阻尼区”这一区域内振动系统的特性主要是阻尼元件作用的结果,在此区域中,增大系统的阻尼对振动有很强的抑制效果。

(4)共振不发生在n ω处,而是发生在略低于n ω处,()ωH 的峰值点随ξ的增大而向低频方向移动。

当阻尼系数ξ<0.707时,系统不会出现共振,且动态位移比静态位移小。

(5)当ξ=0时,共振频率r ω等于自然频率n ω此时()∞=ωH 即振幅无穷大,这种情况下,共振振幅将随时间按线性关系增长。

复频特性的极大值点:221ξωω-=n r ,极大值:()2121ξξω-=r H 。

8.品质因数、半功率点、半功率带宽的定义是什么?如何运用半功率带宽计算系统的阻尼率?答:品质因数:ξω21≈=n H Q ; 复频特性曲线中,在峰值两边,()ωH 等于2Q的频率,1ω、2ω称为半功率点,1ω与2ω之间的频率范围12ωω-称为半功率带宽。

运用半功率带宽计算系统的阻尼率:利用()ωH 等于2Q 构建等式,结合半功率点,半功率带宽的性质,化简后可得 nωωωξ212-=。

通过激振实验得到()ωH 曲线,然后找出共振频率n r ωω=和半功率带宽()12ωω-带入上式即可求出阻尼率。

9.对于谐波激励下单自由度线性系统的强迫振动,相频特性的特点是什么?Nyquist 图的特点是什么?答:相频特性的特点:(1)当ω=0时,()00=ϕ,即所有曲线从()00=ϕ开始。

当激励频率ω很低时,n ωω取值很小,()ωϕ接近于0,说明低频激励时振动位移()t x 与激励()t f 之间几乎是同相;(2)当n ωω>>时()ωϕπ→,即()t x 与()t f 的相位相反; (3)当n ωω≈时,()2πωϕ≈,这正是“阻尼区的特点。

Nyquist 图的特点:(1)()ωϕ的变化范围为π~0,所以单自由度系统的Nyquist 图位于复平面的下半平面;(2)随着阻尼率ξ的增大,Nyquist 曲线的“环”变小;(3)在共振区域附近,()ωH 取值很大,()ωϕ变化剧烈,故在Nyquist 图上,共振区域的描述更加清楚,而非共振区域则“缩”得很小,显然,这对于分析研究共振区域附近的特性是方便的。

10.对于谐波激励下单自由度线性系统的强迫振动,库仑阻尼、流体阻尼、结构阻尼的等效阻尼系数的计算公式是什么?答:谐波激励下单自由度线性系统的强迫振动 库伦阻尼:X mg c eq πωμ4=;流体阻尼:X c eq γωπ38=;结构阻尼:πωα=eq c 。

11.如何运用Fourier 级数分析法对周期激励下的强迫振动响应进行分析?其幅频响应、放大系数和相位差分别是什么?答:运用Fourier 级数分析法对周期激励下的强迫振动响应进行分析的方法: 将周期激励分解为基波及其高次谐波的组合,再将对这些谐波的响应进行叠加这就是Fourier 级数分析法。

基本步骤:将周期激励函数()t f 展开为Fourier 级数,然后根据叠加原理对基波和高次谐波的响应进行叠加:()()()()()()∑∑∑∑∑∞=-∞=-∞=∞=∞======11010110000p t p i p p t p i p p tip p p tip p p p ppeX eA p H eA p H eX t x t x ϕωϕωωωωω复频响应:()()[]n n n nn p i p p i p p H ωωξωωωξωωωωω020202202112+⎥⎥⎦⎤⎢⎢⎣⎡⎪⎪⎭⎫ ⎝⎛-=+-=;放大系数:()()[]()202200211n n p p p H ωωξωωω+-=;相位差:()()200012arctan n np p p p ωωωξωϕ-=;式中,n ω是单自由度系统的自然频率。

相关文档
最新文档