人教a版必修4学案:1.2.2同角三角函数的基本关系(含答案)

合集下载

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

人教版高一数学必修四1.2.2同角三角函数的基本关系(课件)

知识探究(一):基本关系
思考1:如图,设α是一个任意角,它
的终边与单位圆交于点P,那么,正弦
线MP和余弦线OM的长度有什么内在联
系?由此能得到什么结论?
y P
1
MO
x
思考2:上述关系反应了角α的正弦和 余弦之间的内在联系,根据等式的特点, 将它称为平方关系.那么当角α的终边 在坐标轴上时,上述关系成立吗?
y P
P Ox
思考3:设角α的终边与单位圆交于点
P(x,y),根据三角函数定义,有



由此可得sinα,cosα,tanα满足什
么关系?
思考4:上述关系称为商数关系,那么商 数关系成立的条件是多么?
思考5:平方关系和商数关系是反应同一 个角的三角函数之间的两个基本关系, 它们都是恒等式,如何用文字语言描述 这两个关系?
同一个角的正弦、余弦的平方和等于1, 商等于这个角的正切.
知识探究(二):基本变形 思考1:对于平方关系 可作哪些变形?
sin2 cos2 1
思考2:对于商数关系 哪些变形?
可作
思考3:结合平方关系和商数关系, 可得到哪些新的恒等式?
思考4:若已知sinα的值,如何求cosα 和tanα的值?
思考5:若已知tanα的值,如何求sinα 和cosα的值?
理论迁移
例1 求证:
例2 已知
,求
若α是第三象限角,则
若α是第四象限角,则
, 的值.

.

.
例3 已知tanα=2,求下列各式的值.
(1)
;(2)
5 2
例4 已知 求
, 的值.
小结作业
1.同角三角函数的两个基本关系是对同一个 角而言的,由此可以派生出许多变形公式, 应用中具有灵活、多变的特点.

高中数学学案 第一章 三角函数新课标人教A版必修4

高中数学学案 第一章 三角函数新课标人教A版必修4

§1.2.3同角三角函数的基本关系(新授课)【教学目标】1.能根据三角函数的定义导出同角三角函数的基本关系式及它们之间的联系;2.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。

3.牢固掌握同角三角函数的两个关系式,并能灵活运用于解题,提高学生分析、解决三角的思维能力;【教学重点】同角三角函数的基本关系式【教学难点】三角函数值的符号的确定,同角三角函数的基本关系式的变式应用【教学过程】一、 知识回顾1.任意角的三角函数定义:设角α是一个任意角,α终边上任意一点(,)P x y ,它与原点的距离为(0)r r ==>,那么:sin y r α=,cos x r α=,tan y xα=, 2.当角α分别在不同的象限时,sin α、cos α、tg α的符号分别是怎样的?3.背景:如果53sin =A ,A 为第一象限的角,如何求角A 的其它三角函数值; 4.问题:由于α的三角函数都是由x 、y 、r 表示的,则角α的三个三角函数之间有什么关系?二、预习自学1. 由三角函数的定义,我们可以得到以下关系:(1)商数关系:αααcon sin tan =(2)平方关系:1sin 22=+ααcon 说明:①注意“同角”,至于角的形式无关重要,如22sin 4cos 41αα+=等;②注意这些关系式都是对于使它们有意义的角而言的,如tan cot 1(,)2k k Z πααα⋅=≠∈; ③对这些关系式不仅要牢固掌握,还要能灵活运用(正用、反用、变形用),如:cos α= 22sin 1cos αα=-, sin cos tan ααα=等。

三.典型例题例1.(1)已知12sin 13α=,并且α是第二象限角,求cos ,tan ,cot ααα. (2)已知4cos 5α=-,求sin ,tan αα.例2.已知tan α为非零实数,用tan α表示sin ,cos αα.例3、已知α=αcos 2sin ,求ααααcos 2sin 5cos 4sin +-.αααα22cos cos sin 2sin 2-+⑵四、课堂练习练习1440练习2.)23( cos 1cos 1cos 1cos 1 πθπθθθθ<<-+++-化简例4.求证:cos 1sin 1sin cos x x x x+=-五、课堂小结、本节课你学了哪些知识?有哪些收获?你已经正确理解、掌握它们了吗?六、课后作业1:化简1--θθθtan cos sin2、化简:αα222-11-2sin cos3、化简ααααα22422⋅++⋅tan cos cos cos sin。

1.2.2同角三角函数关系(2015年人教A版数学必修四导学案)

1.2.2同角三角函数关系(2015年人教A版数学必修四导学案)
4、化简: (1) cos tan
2 cos2 1 (2) 1 2 sin 2 a
5、求证: (1) 1 tan
2
1 cos 2
(2) sin cos sin cos
4 4 2 2
课题:1.2.2 同角三角函数关系 班级: 【学习目标】 姓名: 备 注
4 , 且 为第三象限角, 则 sin =_______, tan =________。 5 1 2、已知 sin =- ,则 cos ________,tan =_________。 2
1、 已知 cos -
3、已知 sin =- ( A、- )
3 3 , ∈( ,2 ),则 tan 等于 5 2
1 (0 ) , 则 sin cos ___________ , 5
tan _____。
3 、 已 知 sin cos
60 , 且 , 则 sin __________ , 169 4 2
cos __________。
2
【课堂研讨】 例 1、已知 sin
4 ,且 是第二象限角,求 cos , tan 的值。 5
练习:已知 tan
12 ,求 sin , cos 的值。 5
例 2、已知 tan 2,求下列各式的值: ( 1 )
4 sin 2 cos 3 cos 3 sin
( 2 )
sin 2 2 sin cos 3 cos2
例 3、已知 sin cos
sin cos (1)
4 ,求下列各式的值: 3 sin 3 cos3 sin 4 cos4 (2) (3)

高一数学人教A版必修四教案:1.2.3 同角三角函数的基本关系 Word版含答案

高一数学人教A版必修四教案:1.2.3 同角三角函数的基本关系 Word版含答案

同角三角函数的基本关系教学目标:1.进一步提高学生对三角函数定义的认识,通过本节课的学习,学生能够利用定义探究同角三角函数的基本关系式.2.鼓励学生发展实验观察、分析联想等技能,深化数形结合、分类讨论和等价转化的思想,提高学生从特殊到一般的意识,完成此课后学生能够初步应用同角三角函数基本关系式处理求值、证明和化简这三类问题.3.培养学生对数学学科的兴趣,体验成果发现的愉悦,完成此课后学生能够对具体问题开展合作交流、探究学习.教学重点:利用定义、数形结合思想探究发现同角三角函数基本关系式,应用公式解决问题. 教学难点:求值过程中角度范围问题、恒等式证明的不同角度、化简最终结果,以及在恒等变形过程中公式的灵活应用.教学方法:探究式、讲解法教学用具:常规授课类型:新知课授课时数:1教学过程:一、复习引入:1.在角α的终边上任取一点(,)P x y ,它与原点的距离为1,请分别写出角α的正弦、余弦和正切值.2.若角α在第二象限,请分别画出它的正弦线、余弦线和正切线.3.请分别计算下列各式:(1)22(cos30)(sin 30)_______.︒+︒=(2)22(sin 30)(cos60)______.︒+︒=(3)tan 60_______.︒=(4)sin 60______.cos 60︒=︒二、探究新知:探究1、三角函数是以单位圆上点的坐标来定义的.你能从圆的几何性质出发,讨论一下同一个角的三角函数之间的关系?问题1.观察第3题的结论,你有何发现?问题2.以上结论对任一个角α都成立吗?你能够说明吗?(1)22(sin )(cos )1αα+=对任一个角α都成立; sin tan cos ααα=对任何一个不等于()2k k Z ππ+∈的角α都成立. (2)说明方法1:用三角函数的定义说明(利用定义)说明方法2:用三角函数线说明(数形结合)(3)体会从特殊到一般的认知规律,了解同角三角函数关系的几何意义. 结论:同角三角函数的基本关系:文字语言:同一个角α的正弦、余弦的平方和等于1,商等于角α的正切. 符号语言:平方关系——22sin cos 1αα+=(注意2sin α与2sin α的区别) 商数关系——sin tan (,)cos 2k k Z απααπα=≠+∈ 说明:“同角”有两层含义:一、“角相同”(22sin 2cos 21αα+=也成立),二、对“任意角”(在使得函数有意义的前提下)关系式都成立.三、新知应用:例1.已知3sin ,5α=-若α是第三象限角,求cos ,tan αα的值.解:变化1、已知3sin ,5α=-求cos ,tan αα的值.变化2、tan ϕ=sin ,cos ϕϕ的值.变化3、已知tan 3α=,求2cos 3sin 3cos 4sin αααα-+的值.例2.求证:cos 1sin 1sin cos αααα+=- 证法1、由cos 0,sin 1,1sin 0x x x ≠≠-+≠知所以22cos (1sin )cos (1sin )cos (1sin )(1sin )(1sin )(1sin )1sin cos s x x x x x x x x x x x co x ++++=====-+-左右 所以原等式成立.证法2、22(1sin )(1sin )1sin cos cos cos x x x x x x -+=-==1sin 0cos 0cos 1sin 1sin cos x x x x x x-≠≠+∴=-且,点评:证明恒等式常用方法:例3.化简下列各式:(1)cos tan θθ (2)2(1tan )cos αα+ (3) 100sin 12-点评:(1)公式的“变用”与“逆用”(2)化简实际上是一种不指定答案的恒等变形,化简题一定要尽量化成最简形式,本题不是特殊角,一般无须求出其余弦值,结果应最简(最好是常数). 变化1、已知1sin cos 2αα-=,试求下列各式的值: (1)sin cos αα⋅ (2)44sin cos αα+四、课堂总结:同角三角函数基本关系五、课后作业:六、板书设计:课题----同角三角函数的基本关系 例1 例2 例3七、课后反思:。

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课件2 新人教A版必修4.ppt

5
55
5
5
3.已知cos α= 1 ,且α是第四象限角,则sin α=( )
2
A . 1
B .3 C .3 D . 1
2
2
2
2
【解析】选C.因为α是第四象限角,所以sin α<0,
所以 sin 1cos21(1)23.
22
6
4.化简:s i n =_______.
tan
【解析】
sin tan
10
10 10
方法二:(cosα+2sinα)2= cos24sincos4sin2
sin2cos2
1 4 ta n 4 ta n 2 1 4 3 4 3 2 4 9
由已知条件得
分子分母同除以cos2α可得关于tanα的方程.
(cos2sin)2 sin2cos2
5,
12
【解析】方法一:因为cosα+2sinα= 5 , 所以cosα=-2sinα 5 , 又因为sin2α+cos2α=1,所以sin2α+(-2sinα- )2=5 1, 整理得5sin2α+4 s5 inα+4=0,( si5 nα+2)2=0,
sin sin
cos.
答案:cos θ cos
7
5.已知tan φ=- 2 ,φ∈( ,π),则sin φ=_____.
2
sin 2 cos 2 1,
【解析】由已知得
sin cos
所以
2,
sin2(sin)2 1, 2
所以sin2φ= 2 ,由φ∈( , π)得sin φ>0,
3
2
限决定的,不可凭空想象.
11

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

人教版高中数学必修四第一章1-2-2同角三角函数的基本关系式《学案》

班级:__________姓名:__________设计人:__________日期:__________♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒温馨寄语在年轻人的颈项上,没有什么东西能比事业心这颗灿烂的宝珠更迷人的了。

——哈菲兹学习目标1.理解同角三角函数的基本关系.2.会利用同角三角函数的基本关系化简、求值、证明恒等式.学习重点同角三角函数的基本关系式的推导,会利用同角三角函数的基本关系式进行三角函数的化简与证明学习难点会用同角三角函数的基本关系式进行三角函数的化简与证明自主学习同角三角函数的基本关系平方关系: .商的关系:.tanα=预习评价1.已知θ是第一象限角且,则cosθ=.2.化简:= .3.已知3sinα+cosα=0,则t a n = .♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒合作探究1.同角三角函数基本关系设角是一个任意象限角,点P(x,y)为角α终边上任意一点,它与原点的距离为r(r= >0),那么:,请根据三角函数的定义思考下面问题:(1)从以上三角函数的定义,试计算sin2α+cos2α与的值,并根据你计算的结果,写出sin ,cos ,t a n 之间的关系式.(2)同角三角函数的两个基本关系成立的条件各是什么?2.利用同角三角函数关系可以解决哪些问题?教师点拨对同角三角函数基本关系的三点说明(1)关系式中的角一定是同角,否则公式可能不成立,如sin230°+cos260°≠1.(2)同角不要拘泥于形式,将换成或2α也成立,如.(3)商的关系中要注意公式中的隐含条件,cos ≠0,即交流展示——利用基本关系求值1.已知( )A. B. C. D.2.已知,则等于A. B. C. D.3.______.4.已知是第二象限角,,则变式训练1.(2011·山东省潍坊市月考)已知cos α-sin α=-,则sin αcos α的值为()A. B.± C. D.±2.已知tan α=-2,且<α<π,则cos α+sin α=.交流展示——三角函数式的化简5.若,则sinαcosα=A. B. C. D.6.当角α的终边在直线3x+4y=0上时,sin α+cos α=B. C. D.±7.(2012·聊城测试)已知tan α,是关于x的方程x2-kx+k2-3=0的两个实根,且3π<α<π,则cos α+sin α=.变式训练已知,求(1);(2)的值.交流展示——三角恒等式的证明8.求证:.9.证明:(1-tan4A)cos2A+tan2A=1.变式训练求证:学习小结1.三角函数求值的常用方法若已知tan =m,求其他三角函数值,其方法是解方程组求出sin a和cos a的值.若已知tan =m,求形如的值,其方法是将分子、分母同除以co s a(或cos2a)转化为tan 的代数式,再求值.形如a sin2 +bsin •cos +c•cos2 通常把分母看作1,然后用sin2 +cos2 代换,分子分母同除以cos2 再求解.提醒:在应用平方关系求sin 或cos 时,函数值的正、负是由角的终边所在的象限决定的,切不可不加分析,凭想象乱写结果.2.三角函数式化简的本质及关注点(1)本质:三角函数式化简的本质是一种不指定答案的恒等变形,体现了由繁到简的最基本的数学解题原则.(2)关注点:不仅要熟悉和灵活运用同角三角函数的基本关系式,还要熟悉并灵活应用这些公式的等价变形,如sin2α=1-cos2α,cos2α=1-sin2α,1=sin2α+cos2α,sinα=tanα•cosα,cosα= .3.对三角函数式化简的原则(1)使三角函数式的次数尽量低.(2)使式中的项数尽量少.(3)使三角函数的种类尽量少.(4)使式中的分母尽量不含有三角函数.(5)使式中尽量不含有根号和绝对值符号.(6)能求值的要求出具体的值,否则就用三角函数式来表示.4.证明三角恒等式的常用方法证明恒等式的过程就是分析、转化、消去等式两边差异来促成统一的过程,证明时常用的方法有:(1)从一边开始,证明它等于另一边,遵循由繁到简的原则.(2)证明左右两边等于同一个式子.(3)证明左边减去右边等于零或左、右两边之比等于1.(4)证明与原式等价的另一个式子成立,从而推出原式成立.当堂检测1.已知A为三角形的一个内角,且,则cos A−sin A的值为A. B. C. D.2.化简(1+tan2α)·cos2α=__________.3.已知在△ABC中,.(1)求sin A·cos A的值.(2)判断△ABC是锐角三角形还是钝角三角形.(3)求tan A的值.知识拓展在中,,求的值.详细答案♒♒♒♒♒♒♒课前预习·预习案♒♒♒♒♒♒♒【自主学习】(1)sin2α+cos2α=1(2)【预习评价】1.2.cos20°3.♒♒♒♒♒♒♒知识拓展·探究案♒♒♒♒♒♒♒【合作探究】1.(1)sin2α+co s2α= + = =1,由以上计算结果可得出以下结论;sin2α+cos2α=1及tanα= .(2)对于平方关系只需同角即可;对于商的关系第一保证是同角,第二保证α≠kπ+ (k∈Z).2.(1)求值:已知一个角的三角函数值,求这个角的其他三角函数的值;(2)化简三角函数式;(3)证明三角恒等式.【交流展示——利用基本关系求值】1.C.【备注】对于与之间的关系,通过平方可以表达出来.2.A,结合可得,所以3.1【解析】本题主要考查同角三角函数基本关系.原式.4.【解析】本题考查同角三角函数基本关系式的应用.利用同角三角函数基本关系式,已知一个角的一个三角函数值可求这个角的其它三角函数值.,又,∴【变式训练】1.A【解析】由已知得(cos α-sin α)2=sin2α+cos2α-2sin αcos α=1-2sin αcos α=,解得sin αcos α=,故选A.2.【解析】本题主要考查了三角函数的概念,意在考查考生对基本概念的理解和应用能力由tan α=-2,得=-2,又sin2α+cos2α=1,且<α<π,解得sin α=,cos α=-,则sin α+cos α==.【交流展示——三角函数式的化简】5.B【解析】由,得,即t a nα.故选B.6.D【解析】在角α的终边上取点P(4t,-3t)(t≠0),则|OP|=5|t|.根据任意角的三角函数的定义,当t>0时,sin α==-,cos α==,sin α+cos α=;当t<0时,sin α==,cos α==-,sin α+cos α=-. 7.-【解析】∵tan α·=k2-3=1,∴k=±2,而3π<α<π,则tan α+=k=2,得tan α=1,则sin α=cos α=-,∴cos α+sin α=-.【变式训练】(1);(2).的一次或二次齐次式,所以可将分子和分母同除以或,然后将代入求解即可.【备注】注意到的应用.【交流展示——三角恒等式的证明】8.证明: 因为1cos sin sin 1cos x x x x+--(1cos )(1cos )sin sin sin (1cos )x x x x x x +--=- 22221cos sin sin sin 0sin (1cos )sin (1cos )x x x xx x x x ---===--,所以1cos sin =sin 1cos x x x x+-. 9.∵左边=·cos 2A+=+=+==1=右边,∴原等式成立. 【变式训练】右边左边.【解析】通过“切割化弦”将右边分子、分母中的正切化为再进行通分求解.【备注】在三角恒等式的证明中化异为同是基本思想,“1”的代换要灵活运用. 【当堂检测】 1.D【解析】由A 为三角形的内角且,可知,,∴cosA −,.故选D. 2.13.(1)由1sin cos 5A A +=,两边平方,得112sin cos 25A A +⋅=,所以12sin cos 25A A ⋅=-. (2)由(1)得12sin cos 025A A ⋅=-<.又0A π<<,所以cos 0A <, 所以A 为钝角.所以ABC ∆是钝角三角形.(3)因为12sin cos 25A A ⋅=-, 所以22449(sin cos )12sin cos 12525A A A A -=-⋅=+=, 又sin 0,cos 0A A ><,所以sin cos 0A A ->,所以7sin cos 5A A -=. 又1sin cos 5A A +=,所以43sin ,cos 55A A ==-. 所以4sin 45tan 3cos 35A A A ===--. 【知识拓展】解:∵,①∴,即,∴.∵,∴,.∴.∵,∴.②①+②,得.①−②,得.∴.【解析】本题主要考查同角三角函数基本关系以及三角形中函数符号的判定。

一年级【数学】1.2.2 同角三角函数的基本关系(人教A版必修4)2---第八版

一年级【数学】1.2.2 同角三角函数的基本关系(人教A版必修4)2---第八版
商数关系: sina = tana, cosa
倒数关系: tana cota =1,
cosa seca =1, sina csca =1,
学习数学公 式需要做好 哪几件事?
公式成立的条件
平方关系: sin2 a cos2 a =1, a R
商数关系: sina = tana, a k (k Z)
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
倒数
csca 关系 sina
cosa
倒数 关系
seca
tana
倒数关系
cota
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
sina
cosa
tana
公式运用之一
已知一个角的一个三角函数值,求这个 角的其它几个三角函数值。
上正下负
cosa、seca
右正左负
tana、cota
奇正偶负
还需重新证明!
已知:sina = 0.8,填空:cosa = _±__0_._6_
在初中,我们学过以下三个三角公式:
在初中, 公式中的角 为锐角!
sin2 a cos2 a =1
sina = tana cosa
对任意角 这些公式 是否成立?
tana = 1 m2
m
找不 出打 其草 中稿 的, 错你 误能 ?否
例题(二)
例3 已知:tana ≠0,用 tana 表示 sina.
解:sina = sina =
sin a
1
sin2 a cos2 a
tan a
=
正难则反! tan2 a 1
错在哪里?
tana = tan2 a 1

4-1.2.2同角三角函数的基本关系(1)--高一上学期必修四【文教案】

4-1.2.2同角三角函数的基本关系(1)--高一上学期必修四【文教案】

4 0, 5
∴ 在第二或三象限角。
又∵ cos
3 sin 3 ; , tan 5 cos 4 3 sin 3 . 当 在第四象限时,即有 sin 0 ,从而 sin , tan 5 cos 4
当 在第二象限时,即有 sin 0 ,从而 sin 总结: 1. 已知一个角的某一个三角函数值,便可运用基本关系式求出其它三角函数值。在求值 中,确定角的终边位置是关键和必要的。有时,由于角的终边位置的不确定,因此解 的情况不止一种。 2. 解题时产生遗漏的主要原因是:①没有确定好或不去确定角的终边位置;②利用平方 关系开平方时,漏掉了负的平方根。 例 2.已知 tan 为非零实数,用 tan 表示 sin ,cos . 解:∵ sin
高一数学[文教案]
高一数学组
4-1.2.2 同角三角函数的基本关系(1)
教学目的: 知识目标: 1.能根据三角函数的定义导出同角三角函数的基本关系式; 2.掌握三种基本关系式之间的联系; 3.熟练掌握已知一个角的三角函数值求其它三角函数值的方法。 能力目标: (1)牢固掌握同角三角函数三个关系式,并能灵活运用于解题,提高学生 分析、解决三角的思维能力; (2) 灵活运用同角三角函数关系式的不同变形, 提高三角恒等变形的能力; 德育目标:训练三角恒等变形的能力,进一步树立化归思想方法; 教学重点:同角三角函数的基本关系式 教学难点:三角函数值的符号的确定,同角三角函数的基本关系式的变式应用 授课类型:新授课 教学模式:启发、诱导发现教学. 教 具:多媒体、实物投影仪 教学过程: 一、复习引入: 1.任意角的三角函数定义: 设角 是一个任意角, 终边上任意一点 P( x, y ) ,
又∵ 是第二象限角,

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

高中数学 第一章 三角函数 1.2.2 同角三角函数的基本关系课后习题 新人教A版必修4-新人教A版

1.2.2 同角三角函数的基本关系一、A组1.化简sin2β+cos4β+sin2βcos2β的结果是()A. B. C.1 D.解析:原式=sin2β+cos2β(sin2β+cos2β)=sin2β+cos2β=1.答案:C2.(2016·某某某某实验中学检测)已知tan α=2,则sin2α-sin αcos α的值是()A. B.- C.-2 D.2解析:sin2α-sin αcos α==.答案:A3.(2016·某某某某十一中高一期中)(1+tan215°)cos215°的值等于()A. B.1 C.- D.解析:(1+tan215°)cos215°=cos215°=cos215°+sin215°=1.答案:B4.已知α是第四象限角,tan α=-,则sin α=()A. B.- C. D.-解析:∵α是第四象限角,∴sin α<0.由tan α=-,得=-,∴cos α=-sin α.由sin2α+cos2α=1,得sin2α+=1,∴sin2α=1,sin α=±.∵sin α<0,∴sin α=-.答案:D5.若角α的终边落在直线x+y=0上,则的值为()A.2B.-2C.0D.2或-2解析:由题知,α为第二或第四象限角,原式=.当α为第二象限角时,原式=-=0.当α为第四象限角时,原式==0.综上,原式=0.答案:C6.在△ABC中,cos A=,则tan A=.解析:在△ABC中,可得0<A<π.∵cos A=,∴sin A=.∴tan A==2.答案:27.已知sin α=2m,cos α=m+1,则m=.解析:∵sin2α+cos2α=1,∴(2m)2+(m+1)2=4m2+m2+2m+1=1,∴m=0或m=-.答案:0或-8.(2016·某某某某溧水中学月考)若tan2x-sin2x=,则tan2x sin2x=.解析:tan2x sin2x=tan2x(1-cos2x)=tan2x-tan2x cos2x=tan2x-sin2x=.答案:9.若<α<2π,化简:.解:∵<α<2π,∴sin α<0.∴原式====-=-.10.求证:(1)sin4α-cos4α=2sin2α-1;(2)sin θ(1+tan θ)+cos θ.证明:(1)左边=(sin2α+cos2α)(sin2α-cos2α)=sin2α-(1-sin2α)=2sin2α-1=右边,∴原式成立.(2)左边=sin θ+cos θ=sin θ++cos θ+===右边.∴原式成立.二、B组1.锐角α满足sin αcos α=,则tan α的值为()A.2-B.C.2±D.2+解析:将sin αcos α看作分母是1的分式,则sin αcos α=,分子、分母同时除以cos2α(cos α≠0),得,化成整式方程为tan2α-4tan α+1=0,解得tan α=2±,符合要求,故选C.答案:C2.化简的结果为()A.-cos 160°B.cos 160°C. D.解析:原式===|cos 160°|=-cos 160°,故选A.答案:A3.已知sin θ=,cos θ=,其中θ∈,则tan θ的值为()A.-B.C.-或-D.与m的值有关解析:∵sin2θ+cos2θ=1,∴=1,解得m=0或m=8.∵θ∈,∴sin θ≥0,cos θ≤0.当m=0时,sin θ=-,cos θ=,不符合题意;当m=8时,sin θ=,cos θ=-,tan θ=-,故选A.答案:A4.已知cos,0<α<,则sin=.解析:∵sin2+cos2=1,∴sin2=1-.∵0<α<,∴<α+.∴sin.答案:5.导学号08720014若0<α<,则的化简结果是. 解析:由0<α<,得0<,所以0<sin<cos.故原式==cos-sin+sin+cos=2cos.答案:2cos6.(2016·某某某某溧水中学月考)若α∈(π,2π),且sin α+cos α=.(1)求cos2α-cos4α的值;(2)求sin α-cos α的值.解:(1)因为sin α+cos α=,所以(sin α+cos α)2=,即1+2sin αcos α=,所以sin αcos α=-.所以cos2α-cos4α=cos2α(1-cos2α)=cos2αsin2α=(sin αcos α)2=.(2)(sin α-cos α)2=1-2sin αcos α=1-2×,由(1)知sin αcos α=-<0,又α∈(π,2π),所以α∈.所以sin α<0,cos α>0,所以sin α-cos α<0,所以sin α-cos α=-.7.导学号08720015已知关于x的方程2x2-(+1)x+m=0的两根为sin θ和cos θ.求:(1)的值;(2)m的值.解:因为已知方程有两根,所以(1)==sin θ+cos θ=.(2)对①式两边平方,得1+2sin θcos θ=, 所以sin θcos θ=.由②,得,即m=.由③,得m≤,所以m=.。

高中数学人教A版必修四教案:1.2.2 同角的三角函数的基本关系 Word版含答案

高中数学人教A版必修四教案:1.2.2 同角的三角函数的基本关系 Word版含答案

1.2.2同角三角函数的基本关系 一、教学目标:1、知识与技能(1) 使学生掌握同角三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.2、过程与方法由圆的几何性质出发,利用三角函数线,探究同一个角的不同三角函数之间的关系;学习已知一个三角函数值,求它的其余各三角函数值;利用同角三角函数关系式化简三角函数式;利用同角三角函数关系式证明三角恒等式等.通过例题讲解,总结方法.通过做练习,巩固所学知识.3、情态与价值通过本节的学习,牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;进一步树立化归思想方法和证明三角恒等式的一般方法.二、教学重、难点重点:公式1cos sin 22=+αα及αααtan cos sin =的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角α终边所在象限求出其三角函数值;选择适当的方法证明三角恒等式.三、学法与教学用具利用三角函数线的定义, 推导同角三角函数的基本关系式: 1cos sin 22=+αα及αααtan cos sin =,并灵活应用求三角函数值,化减三角函数式,证明三角恒等式等. 教学用具:圆规、三角板、投影四、教学设想【创设情境】与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化.【探究新知】1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗?如图:以正弦线MP ,余弦线OM 和半径OP 三者的长构成直角三角形,而且1OP =.由勾股定理由221MP OM +=,因此221x y +=,即22sin cos 1αα+=.根据三角函数的定义,当()2a k k Z ππ≠+∈时,有sin tan cos ααα=. A这就是说,同一个角α的正弦、余弦的平方等于1,商等于角α的正切.2. 例题讲评例6.已知3sin 5α=-,求cos ,tan αα的值. sin ,cos ,tan ααα三者知一求二,熟练掌握.3. 巩固练习23P 页第1,2,3题4.例题讲评例7.求证: cos 1sin 1sin cos x xxx +=-. 通过本例题,总结证明一个三角恒等式的方法步骤.5.巩固练习23P 页第4,5题6.学习小结(1)同角三角函数的关系式的前提是“同角”,因此1cos sin 22≠+βα,γβαcos sin tan ≠. (2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论.五、评价设计(1) 作业:习题1.2A 组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关系式;注意三角恒等式的证明方法与步骤.——————————————————————注意事项————————————————————以上高中数学必修教学课程教案均为word文字可编辑版,如果刚好符合你要求,欢迎下载使用。

人教版必修四1.2.2同角三角函数的基本关系教案

人教版必修四1.2.2同角三角函数的基本关系教案

1.2.2同角三角函数的基本关系(3)教学目的:知识目标:根据三角函数关系式进行三角式的化简和证明;能力目标:(1)了解已知一个三角函数关系式求三角函数(式)值的方法。

(2)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力;德育目标:训练三角恒等变形的能力,进一步树立化归思想方法;教学重点:同角三角函数的基本关系式教学难点:如何运用公式对三角式进行化简和证明。

授课类型:新授课教学模式:启发、诱导发现教学.教 具:多媒体、实物投影仪教学过程:一、复习引入:1.同角三角函数的基本关系式。

(1)倒数关系:sin csc 1αα⋅=,cos sec 1αα⋅=,tan cot 1αα⋅=.(2)商数关系:sin tan cos ααα=,cos cot sin ααα=. (3)平方关系:22sin cos 1αα+=,221tan sec αα+=,221cot csc αα+=.(练习)已知tan α43=,求cos α 2.tan αcos α= ,cot αsec α= ,(sec α+tan α)·( )=1二、讲解新课:例82tan α=-,试确定使等式成立的角α的集合。

=|1sin ||1sin |cos ||cos |αααα+-- =1sin 1sin |cos |ααα+-+=2sin |cos |αα.2tan α-=-, ∴2sin |cos |αα2sin 0cos αα+=, 即得sin 0α=或|cos |cos 0αα=-≠. 所以,角α的集合为:{|k ααπ=或322,}22k k k Z πππαπ+<<+∈. 例9.化简(1cot csc )(1tan sec )αααα-+-+.解:原式=cos 1sin 1(1)(1)sin sin cos cos αααααα-+-+ 2sin cos 1cos sin 11(sin cos )sin cos sin cos αααααααααα-+-+--=⋅=⋅112sin cos 2sin cos αααα-+⋅==⋅. 说明:化简后的简单三角函数式应尽量满足以下几点:(1)所含三角函数的种类最少;(2)能求值(指准确值)尽量求值;(3)不含特殊角的三角函数值。

高中数学 人教A版必修4 第1章 1.2.2同角三角函数的基本关系式(二)

高中数学 人教A版必修4    第1章 1.2.2同角三角函数的基本关系式(二)
1+sin α cos α ∴ = cos α . 1-sin α
分析三 因为左边分母为 1-sin α,故可将右式分子、分母同 乘 1-sin α.
研一研·问题探究、课堂更高效
1+sin α1-sin α 方法三 右边= cos α1-sin α 1-sin2α cos2α cos α = = = =左边, cos α1-sin α cos α1-sin α 1-sin α
若设 sin α-cos α=t,则 sin α-cos α=
2
.
研一研·问题探究、课堂更高效
1.2.2(二)
探究点一
三角函数式的化简
三角函数式的化简是将三角函数式尽量化为最简单的形式,其
本 课 时 栏 目 开 关
基本要求:尽量减少角的种数,尽量减少三角函数的种数,尽 量化为同角且同名的三角函数等.三角函数式的化简实质上是 一种不指定答案的恒等变形,体现了由繁到简的最基本的数学 解题原则.它不仅要求熟悉和灵活运用所学的三角公式,还需 要熟悉和灵活运用这些公式的等价形式.同时,这类问题还具 有较强的综合性,对其他非三角知识的运用也具有较高的要 求,因此在平常学习时要注意经验的积累. 化简三角函数式时,在题设的要求下,应合理利用有关公式, 常见的化简方法:异次化同次、高次化低次、切化弦、特殊角 的三角函数与特殊值互化等.
研一研·问题探究、课堂更高效
1.2.2(二)
请按照上述标准化简下列三角函数式: 已知 α 是第三象限角,化简:
本 答 课 时 栏 目 = 开 关
1+sin α - 1-sin α
1-sin α . 1+sin α
原式=
1+sin α2 - 1-sin α1+sin α 1-sin α2 cos2α

21-22版:1.2.2 同角三角函数的基本关系(创新设计)

21-22版:1.2.2 同角三角函数的基本关系(创新设计)
1.2.2 同角三角函数的基本关系
课前预习
课堂互动
课堂反馈
学习目标 1.理解并掌握同角三角函数的基本关系(重点).2.会 用同角三角函数的基本关系进行三角函数式的求值、化简和证 明(难点).
课前预习
课堂互动
课堂反馈
知识点 同角三角函数的基本关系
1.同角三角函数的基本关系式 (1)平方关系:__s_in_2_α_+__c_o_s_2α__=__1___. (2)商数关系:_t_a_n_α_=__cs_oi_ns_αα___(α_≠__k_π_+__π2_,__k_∈__Z_)________.
答案 B
课前预习
课堂互动
课堂反馈
2.已知 sin α=13,tan α=- 42,则 cos α=( )
A.-2
2 3
B.2 3 2
C.-13
D.
2 4
解析 由 sin α=13>0,tan α=- 42<0,可知 α 是第二象限角, ∴cos α=- 1-sin2α=-232.
答案 A
课前预习
课堂互动
=tan
tan2αsin2α α-sin αtan
αsin
α=tatnanαα-sisninαα=左边,
∴原等式成立.
课前预习
课堂互动
课堂反馈
课堂达标
1.若 cos α=-45,且 α 是第二象限角,则 tan α 的值等于( )
A.34
B.-34
C.43
D.-43
解析 由题意可得 sin α= 1-cos2α=35, ∴tan α=csoins αα=-34.
课堂反馈
3.化简1+cocsoθs θ-1-cocsoθs θ的结果是________.

人教A版高一数学:必修4 1.2.2 1.2.2同角三角函数的基本关系教学教学设计

人教A版高一数学:必修4 1.2.2 1.2.2同角三角函数的基本关系教学教学设计

1.2.2同角三角函数的根本关系教学设计一、教学背景1.教材分析:教材是在角的概念推广,利用单位圆中的三角函数线引入三角函数的定义后,展开此节的。

正文一开始也就将初中熟悉的直角三角形背景放到单位圆中,表达了这两个工具特殊和一般的关系;公式就只要求掌握平方关系和商的关系,相比老教材更精炼,抓住本质。

文中例题和课后习题展示了本节公式在根本求值、证明中和化简中的应用,并表达了公式的多样性变形,课程标准强调了单位圆的工具性,这些都是本课设计的依据。

2.学情分析:树德中学光华校区平行班学生,初中根底知识一般都掌握得不错,同学们初中就了解本节两个公式在直角三角形背景下的情形,因此可作特殊到一般的推广;但是大局部同学还停留在只习惯关注怎么套公式的初中学习层面,需要在课堂设计时渗透学法指导。

3.基于以上两个背景的课型和教法,学法设计:针对同学们的初中背景、课本背景设计成课前小翻转课堂:引导同学们应用工具〔直角三角形, 单位圆〕进行公式推导,然后课上展示和分析总结;针对上面提到的同学的学习层面,并受文学欣赏课中“人物性格分析〞的教学方法的启发,本课特别设计成围绕着“对公式和工具特点的分析〞这个核心主线展开,并按照同学们在预习过程中对工具的喜好,分小组对战,解题只是载体。

二、教学目标1.知识与技能目标:掌握同角三角函数的根本关系式的推导,根本公式和变形,掌握其在下面三个方面的应用:〔1〕一个角的一个三角函数值能求这个角的其它三角函数值;〔2〕会证明简单的三角恒等式;〔3〕会利用公式对三角代数式进行化简。

掌握直角三角形和单位圆两个工具。

2.过程与方法:(1)课堂小翻转;(2)围绕“对公式和解题工具特点的分析〞主线展开,题目是载体.3.情感、态度与价值观:培养学生自学能力和类比迁移能力;通过公式和工具在解题过程中的应用,培养学生分析问题,解决问题,优化问题的能力;并始终渗透哲学观点和学科素养。

三、核心素养表达教育部于2019年9月发布的中学生六大核心素养,本课多有表达。

人教版数学必修四:1.2.2同角三角函数关系(学生版)

人教版数学必修四:1.2.2同角三角函数关系(学生版)

课题:§1.2.2同角三角函数关系总第____课时班级_______________姓名_______________【学习目标】要求学生能根据三角函数的定义,导出同角三角函数的基本关系,并能正确运用公式进行三角函数式的求值、化简及三角恒等式的证明。

【重点难点】学习重点:同角三角函数关系式的推导学习难点:公式的灵活运用(求值、化简及证明)【学习过程】一、自主学习与交流反馈问题1:已知角α终边上任一点P(x,y),它到原点的距离为r,用x,y,r表示sinα,cosα,tanα,由x,y,r的关系探求同角α的正弦、余弦、正切之间有什么关系?问题2:在同角三角函数的关系中,角α分别有何限制条件?为什么?二、知识建构与应用:1. 同角三角函数之间的基本关系:(1)平方关系_________________;(2)商数关系______________2. 上述关系式如何证明呢?三、例题例1 (1) 已知54sin =α,且α是第二象限角,求ααtan ,cos 的值。

(2) 已知512tan =α,求ααcos ,sin 的值.例2 已知tan α=2 ,求下列各式的值:(1) ααααcos sin cos sin -+ (2)αααα2222cos 3sin 2cos sin 3+-(3)3sin 2α-cos 2α例3 化简tan α1sin 2α -1 ,其中α 是第二象限角。

例4 求证:sin α1+ cos α =1- cos α sin α四、巩固练习1. 已知54cos -=α,且α 为第三象限角,则αsin = ,αtan = 。

2. 化简:(1)ααtan cos = ; (2)αα22sin 211cos 2--= ; (3) 0040cos 40sin 21-= 。

3. (1) 已知21sin -=α,求ααtan ,cos 的值。

(2) 已知2tan =α,求ααcos ,sin 的值。

【高中数学】人教版必修四《1.2.2同角三角函数基本关系》优秀学案及答案

【高中数学】人教版必修四《1.2.2同角三角函数基本关系》优秀学案及答案

1.2.2同角三角函数的基本关系预习课本P18~20,思考并完成以下问题(1)同角三角函数的基本关系式有哪两种?(2)已知sin α,cos α和tan α其中的一个值,如何求其余两个值?[新知初探]同角三角函数的基本关系式(1)平方关系:.(2)商数关系:≠k π+π2,k ∈这就是说,同一个角α的正弦、余弦的平方和等于1,商等于角α≠k π+π2,k ∈[点睛](1)注意“同角”,这里“同角”有两层含义,一是“角相同”,二是对“任意”一个角(在使函数有意义的前提下)关系式都成立,即与角的表达形式无关,如sin 23α+cos 23α=1成立,但是sin 2α+cos 2β=1就不一定成立.(2)sin 2α是(sin α)2的简写,读作“sin α的平方”,不能将sin 2α写成sin α2,前者是α的正弦的平方,后者是α2的正弦,两者是不同的,要弄清它们的区别,并能正确书写.(3)注意同角三角函数的基本关系式都是对于使它们有意义的角而言的,sin 2α+cos 2α=1对一切α∈R 恒成立,而tan α=sin αcos α仅对α≠π2+k π(k ∈Z)成立.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)对任意角α,sin 2α3+cos 2α3=1都成立.()(2)对任意角α,sin 2αcos 2α=tan 2α都成立.()(3)若cos α=0,则sin α=1.()2.已知α是第二象限角,sin α=513,则cos α=()A .-1213B .-513C.513D.2133.已知α是第二象限角,且cos α=-817,则tan α的值是()A.817B .-817C.158D .-1584.已知sin α=35,αtan α=________.利用同角基本关系式求值[典例](1)已知tan α=2,则①sin α+cos αsin α-cos α=________;②2sin 2α-3cos 2α4sin 2α-9cos 2α=________;③4sin 2α-3sin αcos α-5cos 2α=________.(2)已知sinα=15,求cos α,tan α的值.已知角α的正切求关于sin α,cos α的齐次式的方法(1)关于sin α,cos α的齐次式就是式子中的每一项都是关于sin α,cos α的式子且它们的次数之和相同,设为n 次,将分子、分母同除以cos α的n 次幂,其式子可化为关于tan α的式子,再代入求值.(2)若无分母时,把分母看作1,并将1用sin 2α+cos 2α来代换,将分子、分母同除以cos 2α,可化为关于tan α的式子,再代入求值.1.已知cos α=-45,求sin α和tan α.2.已知tan α=2,试求2sin α-3cos αcos α+sin α的值.三角函数式的化简[典例](1)1-2sin 10°cos 10°sin 10°-1-sin 210°;(2)1-2sin α2cos α2+<α[活学活用]化简:(1)sin α1-cos α·tan α-sin αtan α+sin α;(2)证明简单的三角恒等式[典例]求证:tan αsin αtan α-sin α=tan α+sin αtan αsin α.[活学活用]已知tan 2α=2tan 2β+1,求证:sin 2β=2sin 2α-1.sin α±cos α与sin αcos α关系的应用[典例]已知sin α+cos α=15,求:(1)sin αcos α;(2)sin α-cos α;(3)sin 3α+cos 3α.已知sin α±cos α,sin αcos α求值问题,一般利用三角恒等式,采用整体代入的方法求解.涉及的三角恒等式有:①(sin α+cos α)2=1+2sin αcos α;②(sin α-cos α)2=1-2sin αcos α;③(sin α+cos α)2+(sin α-cos α)2=2;④(sin α-cos α)2=(sin α+cos α)2-4sin αcos α.[活学活用]1.已知0<θ<π,且sin θ-cos θ=15,求sin θ+cos θ,tan θ的值.2.若0<θ<π,sin θcos θ=-60169,求sin θ-cos θ.1.2.2同角三角函数的基本关系1.(1)√(2)×(3)×2.A3.D4.-利用同角基本关系式求值[典例](1)[解析](1)①注意到分式的分子和分母均是关于sinα,cosα的一次齐次式,可将分子分母同除以cosα(∵cosα≠0),然后整体代入tanα=2的值.则===3.②注意到分式的分子和分母均是关于sinα,cosα的二次齐次式,分子分母同除以cos2α(∵cos2α≠0),则===.③似乎跟前两题没什么联系,但若能注意到sin2α+cos2α=1,则有4sin2α-3sinαcosα-5cos2α==,这样便使得分子分母均为二次齐次式.同②有===1.答案:①3②③1(2)∵sinα=>0,∴α是第一或第二象限角.当α为第一象限角时,cosα===,tanα==;当α为第二象限角时,cosα=-,tanα=-.[活学活用]1.解:sin2α=1-cos2α=1-2=,因为cosα=-<0,所以α是第二或第三象限角,当α是第二象限角时,sinα=,tanα==-;当α是第三象限角时,sinα=-,tanα==.2.解:由tanα=2可得sinα=2cosα,故===.三角函数式的化简[典例][解](1)原式====-1.(2)原式=+=+=+.∴原式=cos-sin+cos+sin=2cos[活学活用]化简:(1)解:(1)原式=·=·=·=±1.(2)原式====1.证明简单的三角恒等式[典例][证明][法一直接法]左边======右边,∴原等式成立.[法二左右归一法]左边==,右边=====,∴左边=右边,原等式成立.[法三比较法]∵-======0,∴=.法四:(综合法)∵(tanα-sinα)(tanα+sinα)=tan2α-sin2α=tan2α-tan2α·cos2α=tan2α(1-cos2α)=tan2α·sin2α,∴=.[活学活用]证明:由tan2α=2tan2β+1,可得tan2β=,即=,故有==×,即sin2β(1-sin2α)=(1-sin2β),展开得sin2β=sin2α-,即sin2β=2sin2α-1.sinα±cosα与sinαcosα关系的应用[典例][解](1)由sinα+cosα=,平方得2sinαcosα=-,∴sinαcosα=-.(2)∵(sinα-cosα)2=1-2sinαcosα=1+=,∴sinα-cosα=±.(3)∵sin3α+cos3α=(sinα+cosα)(sin2α-sinαcosα+cos2α)=(sinα+cosα)(1-sinαcosα),由(1)知sinαcosα=-,且sinα+cosα=,∴sin3α+cos3α=×=×=.[活学活用]1.解:∵sinθ-cosθ=,∴(sinθ-cosθ)2=.解得sinθcosθ=.∵0<θ<π,且sinθ·cosθ=>0,∴sinθ>0,cosθ>0.∴sinθ+cosθ====.由得∴tanθ==.2.解:∵0<θ<π,sinθcosθ=-<0,∴sinθ>0,cosθ<0.∴sinθ-cosθ>0.∴sinθ-cosθ=====.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1.2.2 同角三角函数的基本关系自主学习知识梳理1.同角三角函数的基本关系式(1)平方关系:____________________.(2)商数关系:____________________.2.同角三角函数基本关系式的变形(1)sin 2α+cos 2α=1的变形公式:sin 2α=__________;cos 2α=__________;(sin α+cos α)2=__________;(sin α-cos α)2=____________;(sin α+cos α)2+(sin α-cos α)2=________;sin α·cos α=____________=____________.(2)tan α=sin αcos α的变形公式:sin α=____________; cos α=____________.自主探究1.利用任意角三角函数的定义推导平方关系.2.已知tan α=2,求下列代数式的值.(1)4sin α-2cos α5cos α+3sin α; (2)14sin 2α+13sin αcos α+12cos 2α.对点讲练知识点一 已知某一个三角函数值,求同角的其余三角函数值例1 已知cos α=-817,求sin α、tan α.回顾归纳 同角三角函数的基本关系式揭示了同角之间的三角函数关系,其最基本的应用是“知一求二”,要注意这个角所在的象限,由此来决定所求的是一解还是两解,同时应体会方程思想的应用.变式训练1 已知tan α=43,且α是第三象限角,求sin α,cos α的值.知识点二 利用同角的三角函数基本关系式化简例2 化简:1cos α1+tan 2α+1+sin α1-sin α-1-sin α1+sin α.回顾归纳 解答此类题目的关键在于公式的灵活运用,切实分析好同角三角函数间的关系.化简过程中常用的方法有:(1)化切为弦,即把非正弦、非余弦的函数都化成正弦、余弦函数,从而减少函数名称,达到化简的目的.(2)对于含有根号的,常把根号下化成完全平方式,然后去根号,达到化简的目的.(3)对于化简含高次的三角函数式,往往借助于因式分解.变式训练2 化简:1-cos 4α-sin 4α1-cos 6α-sin 6α.知识点三 利用同角的三角函数基本关系式证明恒等式例3 求证:cos α1+sin α-sin α1+cos α=2(cos α-sin α)1+sin α+cos α.回顾归纳 证明三角恒等式的实质是清除等式两端的差异,有目的地进行化简.证明三角恒等式的基本原则:由繁到简.常用方法:从左向右证;从右向左证;左、右同时证.常用技巧:切化弦、整体代换.变式训练3 求证:1-2sin 2x cos 2x cos 22x -sin 22x =1-tan 2x 1+tan 2x.1.同角三角函数的基本关系式揭示了“同角不同名”的三角函数的运算规律,它的精髓在“同角”二字上,如sin 22α+cos 22α=1,sin 8αcos 8α=tan 8α等都成立,理由是式子中的角为“同角”.2.已知角α的某一种三角函数值,求角α的其余三角函数值时,要注意公式的合理选择.一般是先选用平方关系,再用商数关系.在应用平方关系求sin α或cos α时,其正负号是由角α所在象限来决定,切不可不加分析,凭想象乱写公式.3.在进行三角函数式的求值时,细心观察题目的特征,灵活、恰当的选用公式,统一角、统一函数、降低次数是三角函数关系式变形的出发点.课时作业一、选择题1.化简sin 2β+cos 4β+sin 2βcos 2β的结果是( )A.14B.12 C .1 D.322.若α为第三象限角,则cos α1-sin 2α+2sin α1-cos 2α的值为( ) A .3 B .-3 C .1 D .-13.若sin α=45,且α是第二象限角,则tan α的值等于( ) A .-43 B.34 C .±34 D .±434.已知tan α=-12,则1+2sin αcos αsin 2α-cos 2α的值是( ) A.13 B .3 C .-13D .-3 5.已知sin α-cos α=-52,则tan α+1tan α的值为( ) A .-4 B .4 C .-8 D .8二、填空题6.已知α是第二象限角,tan α=-12,则cos α=________. 7.已知sin αcos α=18且π4<α<π2,则cos α-sin α= ______________________________________________________________________.8.若sin θ=k +1k -3,cos θ=k -1k -3,且θ的终边不落在坐标轴上,则tan θ的值为________.三、解答题9.证明:(1)1-cos 2αsin α-cos α-sin α+cos αtan 2α-1=sin α+cos α; (2)(2-cos 2α)(2+tan 2α)=(1+2tan 2α)(2-sin 2α).10.已知关于x 的方程2x 2-(3+1)x +m =0的两根为sin θ和cos θ,θ∈(0,2π) 求:(1)m 的值;(2)方程的两根及此时θ的值.1.2.2 同角三角函数的基本关系答案知识梳理1.(1)sin 2α+cos 2α=1 (2)tan α=sin αcos α (α≠k π+π2,k ∈Z ) 2.(1)1-cos 2α 1-sin 2α 1+2sin αcos α1-2sin αcos α 2 (sin α+cos α)2-121-(sin α-cos α)22(2)cos αtan α sin αtan α自主探究1.解 ∵sin α=y r ,cos α=x r ,tan α=y x,x 2+y 2=r 2, ∴sin 2α+cos 2α=y 2r 2+x 2r 2=x 2+y 2r 2=1 (α∈R ). sin αcos α=y r x r=y x =tan α (α≠k π+π2,k ∈Z ). 2.解 关于sin α、cos α的齐次式,可以通过分子、分母同除以cos α或cos 2α转化为关于tan α的式子后再求值.(1)原式=4tan α-23tan α+5=611. (2)原式=14sin 2α+13sin αcos α+12cos 2αsin 2α+cos 2α=14tan 2α+13tan α+12tan 2α+1=14×4+13×2+125=1330. 对点讲练例1 解 ∵cos α=-817<0且cos α≠-1, ∴α是第二或第三象限的角.(1)如果α是第二象限的角,可以得到sin α=1-cos 2α= 1-⎝⎛⎭⎫-8172=1517. tan α=sin αcos α=1517-817=-158. (2)如果α是第三象限的角,可得到:sin α=-1517,tan α=158. 变式训练1 解 由tan α=sin αcos α=43, 得sin α=43cos α. ① 又sin 2 α+cos 2α=1, ②由①②得169cos 2α+cos 2α=1,即cos 2α=925. 又α是第三象限角,∴cos α=-35,sin α=43cos α=-45. 例2 解 原式=1cos α 1+sin 2αcos 2α+(1+sin α)21-sin 2α -(1-sin α)21-sin 2α =|cos α|cos α+1+sin α|cos α|-1-sin α|cos α|=⎩⎪⎨⎪⎧1+2tan α(α为第一或第四象限角),-1-2tan α(α为第二或第三象限角). 变式训练2 解 原式=(1-cos 4 α)-sin 4 α(1-cos 6 α)-sin 6 α=(1-cos 2α)(1+cos 2α)-sin 4 α(1-cos 2α)(1+cos 2α+cos 4 α)-sin 6 α=sin 2α(1+cos 2α)-sin 4 αsin 2α(1+cos 2α+cos 4 α)-sin 6 α=1+cos 2α-sin 2α1+cos 2α+cos 4 α-sin 4 α=2cos 2α1+cos 2α+(cos 2α+sin 2α)(cos 2α-sin 2α)=2cos 2α1+cos 2α+cos 2α-sin 2α=2cos 2α3cos 2α=23. 例3 证明 左边=cos α(1+cos α)-sin α(1+sin α)(1+sin α)(1+cos α)=cos 2α-sin 2α+cos α-sin α1+sin α+cos α+sin αcos α=(cos α-sin α)(cos α+sin α+1)12(cos α+sin α)2+sin α+cos α+12=2(cos α-sin α)(cos α+sin α+1)(sin α+cos α+1)2=2(cos α-sin α)1+sin α+cos α=右边. ∴原式成立.变式训练3 证明 左边=cos 22x +sin 22x -2sin 2x cos 2x cos 22x -sin 22x=(cos 2x -sin 2x )2(cos 2x -sin 2x )(cos 2x +sin 2x )=cos 2x -sin 2x cos 2x +sin 2x=1-tan 2x 1+tan 2x=右边.∴原等式成立.课时作业1.C [sin 2β+cos 4β+sin 2βcos 2β=sin 2β+cos 2β(cos 2β+sin 2β)=sin 2β+cos 2β=1.]2.B [∵α为第三象限角,cos α<0,sin α<0,∴原式=cos αcos 2α+2sin αsin 2α=cos α-cos α+2sin α-sin α=-3.] 3.A [α为第二象限角,sin α=45,cos α=-35, tan α=-43.] 4.C [1+2sin αcos αsin 2α-cos 2α=(sin α+cos α)·(sin α+cos α)(sin α+cos α)·(sin α-cos α)=sin α+cos αsin α-cos α=tan α+1tan α-1=-12+1-12-1=-13.] 5.C [tan α+1tan α=sin αcos α+cos αsin α=1sin αcos α. ∵sin αcos α=1-(sin α-cos α)22=-18, ∴tan α+1tan α=-8.] 6.-255 解析 由α是第二象限的角且tan α=-12,则⎩⎪⎨⎪⎧sin α=-12cos αsin 2α+cos 2α=1,则⎩⎨⎧ sin α=55cos α=-255.7.-32解析 (cos α-sin α)2=1-2sin αcos α=34,∵π4<α<π2,∴cos α<sin α.∴cos α-sin α=-32.8.34解析 ∵sin 2θ+cos 2θ=⎝ ⎛⎭⎪⎫k +1k -32+⎝ ⎛⎭⎪⎫k -1k -32=1,∴k 2+6k -7=0,∴k 1=1或k 2=-7. 当k =1时,cos θ不符合,舍去.当k =-7时,sin θ=35,cos θ=45,tan θ=34.9.证明 (1)左边=sin 2αsin α-cos α-sin α+cos αsin 2αcos 2α-1=sin 2αsin α-cos α-sin α+cos αsin 2α-cos 2αcos 2α=sin 2αsin α-cos α-cos 2α(sin α+cos α)sin 2α-cos 2α=sin 2αsin α-cos α-cos 2αsin α-cos α=sin 2α-cos 2αsin α-cos α=sin α+cos α=右边.∴原式成立.(2)∵左边=4+2tan 2α-2cos 2α-sin 2α =2+2tan 2α+2sin 2α-sin 2α=2+2tan 2α+sin 2α右边=(1+2tan 2α)(1+cos 2α)=1+2tan 2α+cos 2α+2sin 2α=2+2tan 2α+sin 2α∴左边=右边,原式成立.10.解 (1)由韦达定理知⎩⎨⎧ sin θ+cos θ=3+12①sin θ·cos θ=m2 ②由①式可知1+2sin θcos θ=1+32, ∴sin θcos θ=34,∴m2=34,∴m =32, (2)当m =32时,原方程2x 2-(3+1)x +32=0, ∴x 1=32,x 2=12. ∵θ∈(0,2π)∴⎩⎨⎧ sin θ=32cos θ=12或⎩⎨⎧ sin θ=12cos θ=32. ∴θ=π3或θ=π6.。

相关文档
最新文档