(完整版)数列章末检测卷(含答案)

合集下载

高三数学数列章末检测题及答案

高三数学数列章末检测题及答案

高三数学数列章末检测题及答案高三数学数列章末检测题及答案一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知{an}为等差数列,若a3+a4+a8=9,则S9=( )A.24 B.27C.15 D.54解析 B 由a3+a4+a8=9,得3(a1+4d)=9,即a5=3.则S9=9a1+a92=9a5=27.2.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则a9-13a11的值为( )A.14 B.15C.16 D.17解析C ∵a4+a6+a8+a10+a12=120,∴5a8=120,a8=24,∴a9-13a11=(a8+d)-13(a8+3d)=23a8=16.3.已知{an}是由正数组成的等比数列,Sn表示{an}的前n项的和,若a1=3,a2a4=144,则S5的值是( )A.692 B.69C.93 D.189解析 C 由a2a4=a23=144得a3=12(a3=-12舍去),又a1=3,各项均为正数,则q=2.所以S5=a11-q51-q=3×1-321-2=93.4.在数列1,2,7,10,13,4,…中,219是这个数列的第几项( )A.16 B.24C.26 D.28解析C 因为a1=1=1,a2=2=4,a3=7,a4=10,a5=13,a6=4=16,…,所以an=3n-2.令an=3n-2=219=76,得n=26.故选C.5.已知等差数列的前n项和为Sn,若S13<0,s12>0,则在数列中绝对值最小的项为( )A.第5项 B.第6项C.第7项 D.第8项解析C ∵S13<0,∴a1+a13=2a7<0,又s12>0,∴a1+a12=a6+a7>0,∴a6>0,且|a6|>|a7|.故选C.6.122-1+132-1+142-1+…+1n+12-1的值为( )A.n+12n+2B.34-n+12n+2C.34-121n+1+1n+2D.32-1n+1+1n+2解析C ∵1n+12-1=1n2+2n=1nn+2=121n-1n+2,∴Sn=121-13+12-14+13-15+…+1n-1n+2=1232-1n+1-1n+2=34-121n+1+1n+2.7.正项等比数列{an}中,若log2(a2a98)=4,则a40a60等于( ) A.-16 B.10C.16 D.256解析 C 由log2(a2a98)=4,得a2a98=24=16,则a40a60=a2a98=16.8.设f(n)=2+24+27+210+…+23n+10(n∈N),则f(n)=( )A.27(8n-1)B.27(8n+1-1)C.27(8n+3-1)D.27(8n+4-1)解析D ∵数列1,4,7,10,…,3n+10共有n+4项,∴f(n)=2[1-23n+4]1-23=27(8n+4-1).9.△ABC中,tan A是以-4为第三项,-1为第七项的等差数列的公差,tan B是以12为第三项,4为第六项的等比数列的公比,则该三角形的形状是( ) A.钝角三角形 B.锐角三角形C.等腰直角三角形 D.以上均错解析 B 由题意知,tan A=-1--47-3=34>0.又∵tan3B=412=8,∴tan B=2>0,∴A、B均为锐角.又∵tan(A+B)=34+21-34×2=-112<0,∴A+B为钝角,即C为锐角,∴△ABC为锐角三角形.10.在等差数列{an}中,前n项和为Sn=nm,前m项和Sm=mn,其中m≠n,则Sm+n的值( )A.大于4 B.等于4C.小于4 D.大于2且小于4解析 A 由题意可设Sk=ak2+bk(其中k为正整数),则an2+bn=nm,am2+bm=mn,解得a=1mn,b=0,∴Sk =k2mn,∴Sm+n=m+n2mn>4mnmn=4.11.等差数列{an}的前n项和为Sn(n=1,2,3,…),若当首项a1 和公差d变化时,a5+a8+ a11是一个定值,则下列选项中为定值的是( )A.S17 B.S18C.S15 D.S14解析 C 由a5+a8+a11=3a1+21d=3(a1+7d)=3a8是定值,可知a8是定值.所以S15=15a1+a152=15a8是定值.12.数列{an}的通项公式an=1nn+1,其前n项和为910,则在平面直角坐标系中,直线(n+1)x+y+n=0在y轴上的截距为( )A.-10 B.-9C.10 D.9解析B ∵an=1n-1n+1,∴Sn=1-12+12-13+…+1n-1n +1=nn+1,由nn+1=910,得n=9,∴直线方程为10x+y+9=0,其在y 轴上的截距为-9.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中横线上)13.设Sn是等差数列{an}(n∈N*)的前n项和,且a1=1,a4=7,则S5=________.解析∵a1=1,a4=7,∴d=7-14-1=2.∴S5=5a1+5×5-12d=5×1+5×42×2=25.【答案】 2514.若数列{an}满足关系a1=3,an+1=2an+1,则该数列的通项公式为________.解析∵an+1=2an+1,∴an+1+1=2(an+1),∴数列{an+1}是首项为4,公比为2的等比数列,∴an+1=42n-1,∴an=2n+1-1.【答案】 an=2n+1-115.(20 11北京高考)在等比数列{an}中,若a1=12,a4=-4,则公比q=________;|a1|+|a2|+…+|an|=________.解析∵数列{an}为等比数列,∴a4=12q3=-4,q=-2;an=12(-2)n-1, |an|=122n-1,由等比数列前n项和公式得|a1|+|a2|+…+|an|=121-2n1-2=-12+122n=2n-1-12.【答案】-2 2n-1-1216.给定:an=logn+1(n+2)(n∈N*),定义使a1a2…ak为整数的数k(k∈N*)叫做数列{an}的“ 企盼数”,则区间[1,2 013]内所有“企盼数”的和M=________.解析设a1a2…ak=log23log34…logk(k+1)logk+1(k+2)=log2(k+2)为整数m,则k+2=2m,∴k=2m-2.又1≤k≤2 013,∴1≤2m-2≤2 013,∴2≤m≤10.∴区间[1,2 013]内所有“企盼数”的和为M=(22-2)+(23-2)+…+(210-2)=(22+23+…+210)-18=22×1-291-2-18=2 026.【答案】 2 026三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(10分)已知等差数列{an}的前三项为a,4,3a,前k项的和Sk =2 550,求通项公式an及k的值.解析法一:由题意知,a1=a,a2=4,a3=3a,Sk=2 550.∵数列{an}是等差数列,∴a+3a=2×4,∴a1=a=2,公差d=a2-a1=2,∴an=2+2(n-1)=2n.又∵Sk=ka1+kk-12d,即k2+kk-122=2 550,整理,得k2+k-2 550=0,解得k1=50, k2=-51(舍去),∴an=2n,k=50.法二:由法一,得a1=a=2,d=2,∴an=2+2(n-1)=2n,∴Sn=na1+an2=n2+2n2=n 2+n.又∵Sk=2 550,∴k2+k=2 550,即k2+k-2 550=0,解得k=50(k=-51舍去).∴an=2n,k=50.18.(12分)(1)已知数列{an}的前n项和Sn=3n2-2n,求数列{an}的通项公式;新课标(2)已知数列{an}的前n项和为Sn=3+2n,求an.解析 (1)n=1时,a1=S1=1.当n≥2时,an=Sn-Sn-1=3n2-2n-3(n-1)2+2(n-1)= 6n-5,因为a1也适合上式,所以通项公式为an=6n-5.(2)当n=1时,a1=S1=3+2=5.当n≥2时,an=Sn-Sn-1=3+2n-(3+2n-1)=2n-2n-1=2n-1.因为n=1时,不符合an=2n-1,所以数列{an}的通项公式为an=5, n=1,2n-1,n≥2.19.(12分)有10台型号相同的联合收割机,收割一片土地上的庄稼.若同时投入至收割完毕需用24小时,但现在它们是每隔相同的`时间依次投入工作的,每一台投入工作后都一直工作到庄稼收割完毕.如果第一台收割机工作的时间是最后一台的5倍.求用这种收割方法收割完这片土地上的庄稼需用多长时间?解析设从第一台投入工作起,这10台收割机工作的时间依次为a1,a2,a3,…,a10小时,依题意,{an}组成一个等差数列,每台收割机每小时工作效率是1240,且有a1240+a2240+…+a10240=1,①a1=5a10,②由①得,a1+a2+…+a10=240.∵数列{an}是等差数列,∴a1+a10×102=240,即a1+a10=48.③将②③联立,解得a1=40(小时),即用这种方法收割完这片土地上的庄稼共需40小时.20.(12分)已知数列{an}满足a1=5,a2=5,an+1=an+6an -1.(1)求证:{an+1+2an}是等比数列;(2)求数列{an}的通项公式;(3)设3nbn=n(3n-an),求|b1|+|b2|+…+|bn|.解析(1)∵an+1=an+6an-1,∴an+1+2an=3an+6an-1=3(an+2an-1).又a1=5,a2=5,∴a2+2a1=15,∴an+an+1≠0,∴an+1+2anan+2an-1=3,∴数列{an+1+2an}是以15为首项,3为公比的等比数列.(2)由(1)得an+1+2an=15×3n-1=5×3n,即an+1=-2an+5×3n,∴an+1-3n+1=-2(an-3n).又∵a1-3=2,∴an-3n≠0,∴{an-3n}是以2为首项,-2为公比的等比数列.∴an-3n=2×(-2)n-1,即an=2×(-2)n-1+3n(n∈N*).(3)由(2)及3nbn= n(3n-an),可得3nbn=-n(an-3n)=-n[2×(-2)n-1]=n(-2)n,∴bn=n-23n,∴|bn|=n23n.∴Tn=|b1|+|b2|+…+|bn|=23+2×232+…+n×23n,①①×23,得23Tn=232+2×233+…+(n-1)×23n+n×23n+1,②①-②得13Tn=23+232+…+23n-n×23n+1=2-3×23n+1-n23n+1=2-(n+3)23n+1,∴Tn=6-2(n+3)23n.21.(12分)已知函数f(x)满足f(x+y)=f(x)f(y)且f(1)=12.(1)当n∈N*时,求f(n)的表达式;(2)设an=nf(n),n∈N*,求证:a1+a2+a3+…+an<2;(3)设bn=(9-n)fn+1fn,n∈N*,Sn为{bn}的前n项和,当Sn 最大时,求n的值.解析 (1)令x=n,y=1,得f(n+1)=f(n)f(1)=12f(n),∴{f(n)}是首项为12,公比为12的等比数列,即f(n)=12n.(2)设Tn为{an}的前n项和,∵an=nf(n)=n12n,∴Tn=12+2×122+3×123+…+n×12n,12Tn=122+2×123+3×124+…+(n-1)×12n+n×12n+1,两式相减得12Tn=12+122+…+12n-n×12n+1,整理,得Tn=2-12n-1-n×12n<2.(3)∵f(n)=12n,∴bn=(9-n)fn+1fn=(9-n)12n+112n=9-n2,∴当n≤8时,bn>0;当n=9时,bn=0;当n>9时,bn<0.∴当n=8或9时,Sn取到最大值.22.(12分)设数列{an}满足a1+3a2+32a3+…+3n-1an=n3(n∈N*) .(1)求数列{an}的通项;(2)设bn=nan,求数列{bn}的前n项和Sn.解析(1)∵a1+3a2+32a3+…+3n-1an=n3,①∴a1=13,a1+3a2+32a3+…+3n-2an-1=n-13(n≥2),②①-②得3n-1an=n3-n-13=13(n≥2),化简得an=13n(n≥2).显然a1=13也满足上式,故an=13n(n∈N*).(2)由①得bn=n3n.于是Sn=13+232+333+…+n3n,③3Sn=132+233+334+…+n3n+1,④③-④得-2Sn=3+32+33+…+3n-n3n+1,即-2Sn=3-3n+11-3-n3n+1,Sn=n23n+1-143n+1+34.【高三数学数列章末检测题及答案】。

(完整版)数列单元测试卷含答案

(完整版)数列单元测试卷含答案

数列单元测试卷注意事项:1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.2.答题前,考生务必将自己的姓名、准考证号等信息填涂在答卷相应位置.第Ⅰ卷(选择题)一.选择题:本大题共12小题,每小题5分,共60分。

每小题给出的四个选项中,只有一项是符合题目要求的.1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+12.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n3..记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.74.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.525.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.1906.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=( )A.1 B.2 C.4 D.87.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根 D .不能确定有无实根8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-19.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 05811.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.212.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30第II 卷(非选择题)二、填空题(本题共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答).14.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.15.已知数列{a n }的前n 项和S n =-2n 2+n +2.则{a n }的通项公式a n =________16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)三.解答题(共70分,解答应写出必要的文字说明、证明过程或演算步骤)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和.20.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,.(1)求{}n a 的通项公式; (2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和.22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a na n +2n(n ∈N *).(1)证明:数列{2na n}是等差数列;(2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n .数列单元测试卷(解答)一、选择题(共12小题,每小题5分,共60分)1.数列3,5,9,17,33,…的通项公式a n等于( )A.2n B.2n+1 C.2n-1 D.2n+1解析:选B 由于3=2+1,5=22+1,9=23+1,…,所以通项公式是a n=2n+1,故选B. 2.下列四个数列中,既是无穷数列又是递增数列的是( )A.1,12,13,14,…B.-1,2,-3,4,…C.-1,-12,-14,-18,…D.1,2,3,…,n解析:选C A为递减数列,B为摆动数列,D为有穷数列.3.记等差数列的前n项和为S n,若a1=1/2,S4=20,则该数列的公差d=________.( ) A.2 B.3 C.6 D.7解析:选B S4-S2=a3+a4=20-4=16,∴a3+a4-S2=(a3-a1)+(a4-a2)=4d=16-4=12,∴d=3.4.在数列{a n}中,a1=2,2a n+1-2a n=1,则a101的值为( )A.49 B.50 C.51 D.52解析:选D ∵2a n+1-2a n=1,∴a n+1-a n=12,∴数列{a n}是首项a1=2,公差d=12的等差数列,∴a101=2+12(101-1)=52.5.等差数列{a n}的公差不为零,首项a1=1,a2是a1和a5的等比中项,则数列的前10项之和是( )A.90 B.100 C.145 D.190解析:选B 设公差为d , ∴(1+d )2=1×(1+4d ), ∵d ≠0,∴d =2,从而S 10=100.6.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则a 5=( ) A .1 B.2 C .4 D .8解析:选A 因为a 3a 11=a 27,又数列{a n }的各项都是正数,所以解得a 7=4,由a 7=a 5·22=4a 5,求得a 5=1.7.等差数列{a n }中,a 2+a 5+a 8=9,那么关于x 的方程:x 2+(a 4+a 6)x +10=0( ) A .无实根B.有两个相等实根 C .有两个不等实根D .不能确定有无实根解析:选A 由于a 4+a 6=a 2+a 8=2a 5,即3a 5=9, ∴a 5=3,方程为x 2+6x +10=0,无实数解.8.已知数列{a n }中,a 3=2,a 7=1,又数列⎩⎨⎧⎭⎬⎫11+a n 是等差数列,则a 11等于( ) A .0 B.12 C.23 D .-1解析:选B 设数列{b n }的通项b n =11+a n ,因{b n }为等差数列,b 3=11+a 3=13,b 7=11+a 7=12,公差d =b 7-b 34=124, ∴b 11=b 3+(11-3)d =13+8×124=23,即得1+a 11=32,a 11=12.9.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项 B.第12项 C .第13项 D .第6项解析:选C 162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则A .1 033 B.1 034 C .2 057 D .2 058 解析:选A 由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1, 因此(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10 =1-2101-2+10=1 033.11.设n S 为等差数列{}n a 的前n 项和,且28,171==S a .记[]n n a b lg =,其中[]x 表示不超过x 的最大整数,如[]09.0=,[]199lg =.则b 11的值为( ) A.11 B.1 C. 约等于1 D.2解析:设{}n a 的公差为d ,据已知有1×72128d +=, 解得 1.d =所以{}n a 的通项公式为.n a n = b 11=[lg11 ]=112.我们把1,3,6,10,15,…这些数叫做三角形数,因为这些数目的点可以排成一个正三角形,如下图所示:则第七个三角形数是( )A .27 B.28 C .29 D .30解析:选 B 法一:∵a 1=1,a 2=3,a 3=6,a 4=10,a 5=15,a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,∴a 6-a 5=6,a 6=21,a 7-a 6=7,a 7=28. 法二:由图可知第n 个三角形数为n n +12,∴a 7=7×82=28.二、填空题(共4小题,每小题5分,共20分)13.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N *),则前8项的和S 8=________(用数字作答). 解析:由a 1=1,a n +1=2a n (n ∈N *)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知S 8=a 11-q 81-q =1·1-281-2=255.答案: 25514.数列{a n }满足a 1=1,a n =a n -1+n (n ≥2),则a 5=________.解析:由a n =a n -1+n (n ≥2),得a n -a n -1=n .则a 2-a 1=2,a 3-a 2=3,a 4-a 3=4,a 5-a 4=5,把各式相加,得a 5-a 1=2+3+4+5=14,∴a 5=14+a 1=14+1=15. 答案:1515.已知数列{a n }的前n 项和S n =-2n 2+n +2. 则{a n }的通项公式a n =________ [解] ∵S n =-2n 2+n +2,当n ≥2时,S n -1=-2(n -1)2+(n -1)+2 =-2n 2+5n -1, ∴a n =S n -S n -1=(-2n 2+n +2)-(-2n 2+5n -1) =-4n +3.又a 1=S 1=1,不满足a n =-4n +3, ∴数列{a n }的通项公式是a n =⎩⎪⎨⎪⎧1,n =1,-4n +3,n ≥2.16.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题: ①此数列的公差d <0; ②S 9一定小于S 6; ③a 7是各项中最大的一项; ④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号) 解析:∵S 7>S 6,即S 6<S 6+a 7, ∴a 7>0.同理可知a 8<0. ∴d =a 8-a 7<0.又∵S 9-S 6=a 7+a 8+a 9=3a 8<0, ∴S 9<S 6.∵数列{a n }为递减数列,且a 7>0,a 8<0, ∴可知S 7为S n 中的最大项. 答案:①②④三、解答题(共4小题,共50分)17.(12分) (1) (全国卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,求S n(2) 已知{b n }是各项都是正数的等比数列,若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式.解: (1)设等差数列首项为a 1,公差为d, 则a 4+a 5=2a 1+7d=24,① S 6=6a 1+d=6a 1+15d=48,②由①②得d=4.a 1=-2S N =-2n+n(n-1) ×4/2=2n 2-4n(2)由题意可设公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1,∴q 2=2+q ,解得q =2或q =-1(舍去), 故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(12分)等比数列{a n }中,已知a 1=2,a 4=16,(1)求数列{a n }的通项公式; (2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解:(1)设{a n }的公比为q ,由已知得16=2q 3,解得q =2, ∴a n =2n.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32. 设{b n }的公差为d ,则有⎩⎪⎨⎪⎧b 1+2d =8, b 1+4d =32,解得⎩⎪⎨⎪⎧b 1=-16,d =12.从b n =-16+12(n -1)=12n -28, 所以数列{b n }的前n 项和S n =n -16+12n -282=6n 2-22n .19. (12分)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前10项和. 解:(1)设等差数列{a n }的公差为d, 则a 2=a 1+d,a 3=a 1+2d, 由题意得解得或所以由等差数列通项公式可得a n =2-3(n-1)=-3n+5,或a n =-4+3(n-1)=3n-7. 故a n =-3n+5,或a n =3n-7.(2)当a n =-3n+5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n-7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n-7|=记数列{|a n |}的前n 项和为S n . S 10=|a 1|+|a 2|+|a 3|+|a 4|+……+|a 10|=4+1+(3×3-7)+(3×4-7)+……+(3×10-7) =5+[2×8+8×7×3/2] =10520.(12分)数列{a n }的前n 项和为S n ,数列{b n }中,b 1=a 1,b n =a n -a n -1(n ≥2),若a n +S n =n ,c n =a n -1.(1)求证:数列{c n }是等比数列; (2)求数列{b n }的通项公式.解:(1)证明:∵a 1=S 1,a n +S n =n ①,∴a 1+S 1=1,得a 1=12. 又a n +1+S n +1=n +1②,①②两式相减得2(a n +1-1)=a n -1,即a n +1-1a n -1=12,也即c n +1c n =12, 故数列{c n }是等比数列. (2)∵c 1=a 1-1=-12, ∴c n =-12n ,a n =c n +1=1-12n , a n -1=1-12n -1.故当n ≥2时,b n =a n -a n -1=12n -1-12n =12n . 又b 1=a 1=12, 所以b n =12n . 21.(12分)(全国卷)设数列{}n a 满足+3+…+(2n -1) =2n ,. (1)求{}n a 的通项公式;(2)求数列21n a n ⎧⎫⎨⎬+⎩⎭的前n 项和. 解:(1)因为+3+…+(2n -1)=2n ,故当n ≥2时, +3+…+(-3) =2(n -1) 两式相减得(2n -1)=2所以= (n≥2)又因题设可得 =2.从而{} 的通项公式为 =.(2)记 {}的前n 项和为 ,由(1)知 = = - . 则 = - + - +…+ - = .22.(12分)数列{a n }满足a 1=1,a n +1=2n +1a n a n +2n (n ∈N *). (1)证明:数列{2n a n}是等差数列; (2)求数列{a n }的通项公式a n ;(3)设b n =n (n +1)a n ,求数列{b n }的前n 项和S n . 解:(1)证明:由已知可得a n +12n +1=a na n +2n , 即2n +1a n +1=2n a n+1,即2n +1a n +1-2na n =1. ∴数列{2n a n}是公差为1的等差数列. (2)由(1)知2na n =2a 1+(n -1)×1=n +1, ∴a n =2nn +1. (3)由(2)知b n =n ·2n . S n =1·2+2·22+3·23+…+n ·2n , 2S n =1·22+2·23+…+(n -1)·2n +n ·2n +1, 相减得-S n =2+22+23+…+2n -n ·2n +1 =21-2n 1-2-n ·2n +1 =2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2.。

高中数学《数列章末检测卷(一)》专题突破含解析

高中数学《数列章末检测卷(一)》专题突破含解析

章末检测卷(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中只有一项符合题目要求)1.已知{a n}是首项为1,公差为3的等差数列,如果a n=2 023,则序号n等于( )A.667B.668C.669D.675解析 由2 023=1+3(n-1),解得n=675.答案 D2.在等差数列{a n}中,a3+a5=12-a7,则a1+a9=( )A.8B.12C.16D.20解析 由a3+a5=12-a7,得a3+a5+a7=12=3a5,即a5=4,故a1+a9=2a5=8.答案 A3.已知数列{a n}是等差数列,a1=2,其公差d≠0.若a5是a3和a8的等比中项,则S18=( )A.398B.388C.189D.199解析 由题可得a25=a3a8,即(2+4d)2=(2+2d)(2+7d),整理得d2-d=0,由d≠0,所以d=1.故S18=18×2+12×18×17×1=189.答案 C4.等比数列{a n}中,a2=9,a5=243,则{a n}的前4项和是( )A.81B.120C.168D.192解析 由a5=a2q3得q=3.∴a1=a2q=3,S4=a1(1-q4)1-q=3(1-34)1-3=120.答案 B5.已知数列{a n}满足递推关系:a n+1=a na n+1,a1=12,则a2 020=( )A.12 019B.12 020C.12 021D.12 022解析 由a n+1=a na n+1得1a n+1=1a n+1,所以数列{1a n}是等差数列,首项1a1=2,公差为1,所以1a2 020=2+(2 020-1)×1=2 021,则a2 020=12 021.答案 C6.已知两个等差数列{a n}与{b n}的前n项和分别为A n和B n,且A nB n=7n+45n+3,则使得a nb n为整数的正整数n的个数是( )A.2B.3C.4D.5解析 设数列{a n}的首项为a1,数列{b n}的首项为b1.∵数列{a n}和{b n}均为等差数列,且其前n项和A n和B n满足A nB n=7n+45n+3,∴a nb n=2a n2b n=(2n-1)(a1+a2n-1)2(2n-1)(b1+b2n-1)2=A2n-1B2n-1=14n+382n+2=7(2n+2)+242n+2=7+242n+2=7+12 n+1.经验证知,当n=1,2,3,5,11时,a nb n为整数.故选D.答案 D7.已知数列{a n}的前n项和S n=3n(λ-n)-6,若数列{a n}单调递减,则λ的取值范围是( )A.(-∞,2)B.(-∞,3)C.(-∞,4)D.(-∞,5)解析 ∵S n=3n(λ-n)-6,①∴S n-1=3n-1(λ-n+1)-6,n>1,②①-②得a n=3n-1(2λ-2n-1)(n>1,n∈N*),又{a n}为单调递减数列,∴a n>a n+1,且a1>a2.∴3n-1(2λ-2n-1)>3n(2λ-2n-3),化为λ<n+2(n>1),且λ<2,∴λ<2,∴λ的取值范围是(-∞,2).故选A.答案 A8.从2017年起,某人每年的5月1日到银行存入a元的定期储蓄,若年利率为p且保持不变,并约定每年到期,存款的本息均自动转为新的一年的定期,到2021年的5月1日将所有存款及利息全部取出,则可取出钱(元)的总数为( )A.a(1+p)4B.a(1+p)5C.ap[(1+p)4-(1+p)] D.ap[(1+p)5-(1+p)]解析 设自2018年起每年到5月1日存款本息合计为a1,a2,a3,a4.则a1=a+a·p=a(1+p),a2=a(1+p)(1+p)+a(1+p)=a(1+p)2+a(1+p),a3=a2(1+p)+a(1+p)=a(1+p)3+a(1+p)2+a(1+p),a4=a3(1+p)+a(1+p)=a[(1+p)4+(1+p)3+(1+p)2+(1+p)]=a·(1+p)[1-(1+p)4] 1-(1+p)=ap[(1+p)5-(1+p)].答案 D二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中有多项符合题目要求,全部选对得5分,选对但不全的得3分,有选错的不得分)9.若S n为数列{a n}的前n项和,且S n=2a n+1(n∈N*),则下列结论正确的是( )A.a5=-16B.S5=-31C.数列{a n}是等比数列D.数列{S n+1}是等比数列解析 因为S n为数列{a n}的前n项和,且S n=2a n+1(n∈N*),所以S1=2a1+1,因此a1=-1.当n≥2时,a n=S n-S n-1=2a n-2a n-1,即a n=2a n-1,所以数列{a n}是以-1为首项,以2为公比的等比数列,故C正确;因此a5=-1×24=-16,故A正确;又S n=2a n+1=-2n+1,所以S5=-25+1=-31,故B正确;因为S1+1=0,所以数列{S n+1}不是等比数列,故D错误.故选ABC.答案 ABC10.已知数列{a n}是等比数列,那么下列数列一定是等比数列的是( )A.{1a n}B.log2(a n)2C.{a n+a n+1}D.{a n+a n+1+a n+2}解析 当a n=1时,log2(a n)2=0,所以数列{log2(a n)2}不一定是等比数列;当q=-1时,a n+a n+1=0,所以数列{a n+a n+1}不一定是等比数列;由等比数列的定义知{1a n}和{a n+a n+1+a n+2}都是等比数列.故选AD.答案 AD11.记S n 为等差数列{a n }的前n 项和.若a 1+3a 5=S 7,则以下结论一定正确的是( )A.a 4=0 B.S n 的最大值为S 3C.S 1=S 6D.|a 3|<|a 5|解析 设等差数列{a n }的公差为d ,则a 1+3(a 1+4d )=7a 1+21d ,解得a 1=-3d ,所以a n =a 1+(n -1)d =(n -4)d ,所以a 4=0,故A 正确;因为S 6-S 1=5a 4=0,所以S 1=S 6,故C 正确;由于d 的正负不清楚,故S 3可能为最大值或最小值,故B 不正确;因为a 3+a 5=2a 4=0,所以a 3=-a 5,即|a 3|=|a 5|,故D 不正确.故选AC.答案 AC12.将n 2个数排成n 行n 列的一个数阵,如下图:a 11 a 12 a 13 …… a 1n a 21 a 22 a 23 …… a 2n a 31 a 32 a 33 …… a 3n……a n 1 a n 2 a n 3 …… a nn该数阵第一列的n 个数从上到下构成以m 为公差的等差数列,每一行的n 个数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 13=a 61+1,记这n 2个数的和为S .下列结论正确的有( )A.m =3B.a 67=17×37C.a ij =(3i -1)×3j -1D.S =14n (3n +1)(3n -1)解析 由a 11=2,a 13=a 61+1,可得a 13=a 11m 2=2m 2,a 61=a 11+5m =2+5m ,所以2m 2=2+5m +1,解得m =3或m =-12(舍去),所以选项A 是正确的;又由a 67=a 61m 6=(2+5×3)×36=17×36,所以选项B 不正确;又由a ij =a i 1m j -1=[a 11+(i -1)·m ]·m j -1=[2+(i -1)×3]×3j -1=(3i -1)×3j -1,所以选项C 是正确的;又由这n 2个数的和为S ,则S =(a 11+a 12+…+a 1n )+(a 21+a 22+…+a 2n )+…+(a n 1+a n 2+…+a nn ) =a 11(1-3n )1-3+a 21(1-3n )1-3+…+a n 1(1-3n )1-3=12(3n -1)×(2+3n -1)n 2=14n(3n+1)(3n-1),所以选项D是正确的,故选ACD.答案 ACD三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中的横线上)13.若数列{a n}满足a1=1,a n+1=2a n(n∈N*),则a4=________,前8项的和S8=________.(本题第一空2分,第二空3分)解析 由a1=1,a n+1=2a n(n∈N*),可知数列{a n}为等比数列,故a4=8,S8=255.答案 8 25514.已知等比数列{a n}是递增数列,S n是{a n}的前n项和.若a1,a3是方程x2-5x+4=0的两个根,则S6=________.解析 ∵a1,a3是方程x2-5x+4=0的两根,且q>1,∴a1=1,a3=4,则公比q=2,因此S6=1×(1-26)1-2=63.答案 6315.“中国剩余定理”又称“孙子定理”.1852年,英国来华传教士伟烈亚力将《孙子算经》中“物不知数”问题的解法传至欧洲.1874年,英国数学家马西森指出此法符合1801年由高斯得到的关于同余式解法的一般性定理,因而西方称之为“中国剩余定理”.“中国剩余定理”讲的是一个关于整除的问题,现有这样一个整除问题:将1到2020这2020个数中,能被3除余1且被5整除余1的数按从小到大的顺序排成一列,构成数列{a n},则此数列的项数为________.解析 因为能被3除余1且被5除余1的数就是能被15除余1的数,故a n=15n-14≤2 020,解得n≤13535,数列{a n}共有135项.答案 13516.将数列{3n-1}按“第n组有n个数”的规则分组如下:(1),(3,9),(27,81,243),…,则第100组中的第一个数是________.解析 在“第n组有n个数”的规则分组中,各组数的个数构成一个以1为首项,1为公差的等差数列.因为前99组中数的个数共有(1+99)×992=4 950个,且第1个数为30,故第100组中的第1个数是34 950.答案 34 950四、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(本小题满分10分)记S n为等差数列{a n}的前n项和,已知a1=-7,S3=-15.(1)求{a n}的通项公式;(2)求S n,并求S n的最小值.解 (1)设{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2.所以{a n }的通项公式为a n =2n -9.(2)由(1)得S n =n 2-8n =(n -4)2-16.所以当n =4时,S n 取得最小值,最小值为-16.18.(本小题满分12分)已知数列{a n }满足a 1=78,且a n +1=12a n +13,n ∈N *.(1)求证:{a n -23}是等比数列;(2)求数列{a n }的通项公式.(1)证明 由已知得a n +1-23=12a n -13=12(a n -23).因为a 1=78,所以a 1-23=524,所以{a n -23}是以524为首项,12为公比的等比数列.(2)解 由(1)知{a n -23}是以524为首项,12为公比的等比数列,所以a n -23=524×(12)n -1,所以a n =524×(12)n -1+23.19.(本小题满分12分)已知数列{a n }的通项公式为a n =13n -2,n ∈N *.(1)求数列{a n +2a n }的前n 项和S n ;(2)设b n =a n a n +1,求{b n}的前n 项和T n .解 (1)∵2a n =6n -4,∴a n +2a n =1+2an =6n -3,所以{a n +2a n }是首项为3,公差为6的等差数列,所以S n =3n +n (n -1)2×6=3n 2.(2)∵b n =a n a n +1=13n -2×13n +1=13(13n -2-13n +1),∴T n =b 1+b 2+…+b n -1+b n=13[(1-14)+(14-17)+…+(13n -5-13n -2)+(13n -2-13n +1)]=13(1-13n +1)=n3n +1.20.(本小题满分12分)设{a n }是等差数列,其前n 项和为S n (n ∈N *);{b n }是等比数列,公比大于0,其前n项和为T n(n∈N*).已知b1=1,b3=b2+2,b4=a3+a5,b5=a4+2a6.(1)求S n和T n;(2)若S n+(T1+T2+…+T n)=a n+4b n,求正整数n的值.解 (1)设等比数列{b n}的公比为q(q>0).由b1=1,b3=b2+2,可得q2-q-2=0.因为q>0,可得q=2,故b n=2n-1.所以,T n=1-2n1-2=2n-1.设等差数列{a n}的公差为d.由b4=a3+a5,可得a1+3d=4.由b5=a4+2a6,可得3a1+13d=16,从而a1=1,d=1,故a n=n.所以,S n=n(n+1)2.(2)由(1),有T1+T2+…+T n=(21+22+…+2n)-n=2×(1-2n)1-2-n=2n+1-n-2.由S n+(T1+T2+…+T n)=a n+4b n可得n(n+1)2+2n+1-n-2=n+2n+1,整理得n2-3n-4=0,解得n=-1(舍)或n=4.所以,n的值为4.21.(本小题满分12分)2015年推出一种新型家用轿车,购买时费用为16.9万元,每年应交付保险费、养路费及汽油费共1.2万元,汽车的维修费为:第一年无维修费用,第二年为0.2万元,从第三年起,每年的维修费均比上一年增加0.2万元.(1)设该辆轿车使用n年的总费用(包括购买费用、保险费、养路费、汽油费及维修费)为f(n),求f(n)的表达式;(2)这种汽车使用多少年报废最合算(即该车使用多少年,年平均费用最少)?解 (1)由题意,每年的维修费构成一等差数列,n年的维修总费用为n[0+0.2(n-1)]2=0.1n2-0.1n(万元),所以f(n)=16.9+1.2n+(0.1n2-0.1n) =0.1n2+1.1n+16.9(万元),n∈N*.(2)该辆轿车使用n年的年平均费用为f(n)n=0.1n2+1.1n+16.9n=0.1n+16.9n+1.1 ≥20.1n·16.9n+1.1=3.7(万元).当且仅当0.1n=16.9n时取等号,此时n=13.故这种汽车使用13年报废最合算.22.(本小题满分12分)若数列{a n}是公差为2的等差数列,数列{b n}满足b1=1,b2=2,且a n b n +b n=nb n+1.(1)求数列{a n},{b n}的通项公式;(2)设数列{c n}满足c n=a n+1b n+1,数列{c n}的前n项和为T n,若不等式(-1)nλ<T n+n2n-1对一切n∈N*恒成立,求实数λ的取值范围.解 (1)∵数列{b n}满足b1=1,b2=2,且a n b n+b n=nb n+1.∴a1+1=2,解得a1=1.又∵数列{a n}是公差为2的等差数列,∴a n=1+2(n-1)=2n-1.∴2nb n=nb n+1,2b n=b n+1,∴数列{b n}是以1为首项,2为公比的等比数列,即b n=2n-1.(2)数列{c n}满足c n=a n+1b n+1=2n2n=n2n-1,数列{c n}的前n项和T n=1+22+322+…+n2n-1,∴12T n=12+222+…+n-12n-1+n2n,两式相减得12T n=1+12+122+…+12n-1-n2n=1-12n1-12-n2n=2-n+22n,∴T n=4-n+22n-1,不等式(-1)nλ<T n+n2n-1,即(-1)nλ<4-22n-1恒成立,当n=2k(k∈N*)时,λ<4-22n-1,∴λ<3;当n=2k-1(k∈N*)时,-λ<4-22n-1,∴λ>-2.综上可得,实数λ的取值范围是(-2,3).。

高中数学选择性必修二 精讲精炼 第4章 列 章末测试(基础)(含答案)

高中数学选择性必修二 精讲精炼 第4章 列 章末测试(基础)(含答案)

第4章 数 列 章末测试(基础)一、单选题(每题只有一个选项为正确答案。

每题5分,8题共40分) 1.(2021·河南高二月考)设数列{}n a 满足11n n a a n++=,12a =,则3a =( ) A .1- B .12C .2D .32【答案】D【解析】因为121a a +=,12a =,2312a a +=,所以332a =.故选:D . 2.(2021·河南高二月考)设等比数列{}n a 的前n 项和为147258,9,18,n S a a a a a a ++=++=则9S =( ) A .27 B .36 C .63 D .72【答案】C【解析由题意,设等比数列{}n a 的公比为q 258147()a a a a a a q ∴++=++ 2q ∴=,又369258()36a a a a a a q ++=++=91472583699183663S a a a a a a a a a ∴=++++++++=++=故选:C3.(2021·河南高二月考)设等差数列{}n a 的前n 项和为n S ,若235,,S S S 成等差数列,且110a =,则{}n a 的公差d =( ) A .2 B .1 C .1- D .2-【答案】D 【解析235,,S S S 成等差数列,3252S S S ∴=+,即()1112332510a d a d a d +=+++,110a =,可解得2d =-.故选:D.4.(2021·河南高二月考)猜想数列282680,,,,3579--⋅⋅⋅的一个通项公式为n a =( )A .()31121nn n --+ B .()12121n nn +-+ C .()121121n n n +--+ D .()31121n nn --+【答案】D【解析根据数列可得,分母3,5,7,9,…满足21n , 分子2,8,26,80,…满足31n -,又数列的奇数项为负,偶数项为正,所以可得()31121n nn a n -=-+. 故选:D.5.(2021·江苏省阜宁中学高二月考)在数列{}n a 中,22293n a n n =-++,则此数列最大项的值是( ) A .107 B .9658C .9178D .108【答案】D【解析22298172293248n a n n n ⎛⎫=-++=--+ ⎪⎝⎭,因为n ∈+N ,且78108,107a a ==, 所以此数列最大项为7108a =. 故选:D.6.(2021·全国高二课时练习)数列{}n a 中,11a =,对所有的2n ≥,*n ∈N ,都有2123····n a a a a n ⋯=,则35a a +等于( ) A .259B .2516 C .6116D .3115【答案】C【解析当2n =时,2122a a =;当3n =时,21233a a a =;当4n =时,212344a a a a =;当5n =时,2123455a a a a a =;则212331229=243a a a a a a ==,21231245524325=4165a a a a a a a a a a ==; 所以356116a a +=. 故选:C.7.(2021·全国高二课时练习)一弹球从100米高处自由落下,每次着地后又跳回到原来高度的一半再落下,则第10次着地时所经过的路程和是(结果保留到个位)( ) A .300米B .299米C .199米D .166米【答案】A【解析由题意,可得小球10次着地共经过的路程为: 828111110010050100()100100[1()()]2222++++⨯=+++++ 9911()12100100300200()3001212-=+⨯=-⨯≈-米 故选:A.8.(2021·上海市大同中学高二月考)有一个三人报数游戏:首先A 报数字1,然后B 报两个数字2、3,接下来C 报三个数字4、5、6,然后轮到A 报四个数字7、8、9、10,依次循环,直到报出10000,则A 报出的第2021个数字为( ) A .5979 B .5980 C .5981 D .以上都不对【答案】C【解析由题可得A 第n *()n N ∈次报数的个数为32n -, 则A 第n 次报完数后总共报数的个数为[1(32)](31)22n n n n n T +--==,再代入正整数n ,使2020,n T n ≥的最小值为37,得372035T =, 而A 第37次报时,3人总共报数为3631109⨯+=次, 当A 第109次报完数3人总的报数个数为109(1091)12310959952m S +=++++==, 即A 报出的第2035个数字为5995, 故A 报出的第2021个数字为5981. 故选:C二、多选题(每题不止一个选项为正确答案,每题5分,4题共20分)9.(2021·全国高二课时练习)已知数列{}n a 是公比为q 的等比数列,且1a ,3a ,2a 成等差数列,则q 的值可能为( ) A .12 B .1C .12-D .-2【答案】BC【解析由题意,可知3122a a a =+,即21112a q a a q =+.又10a ≠,∴221q q =+,∴1q =或12-.故选:BC .10.(2021·全国高二课时练习)(多选)在《增删算法统宗》中有如下问题:“三百七十八里关,初行健步不为难;次日脚痛减一半,六朝才得到其关”其意思是:“某人到某地需走378里路,第一天健步行走,从第二天起脚痛每天走的路程为前一天的一半,走了6天才到达目的地”则下列说法正确的是( ) A .此人第二天走了96里路B .此人第三天走的路程占全程的18C .此人第一天走的路程比后五天走的路程多6里D .此人第五天和第六天共走了30里路 【答案】AC【解析设此人第n 天走了n a 里路,则数列{}n a 是首项为1a ,公比q 为12的等比数列,其前n 项和为S n ,因6378S =,即1661(1)2378112a S -==-,解得1192a =,11192(),N ,62n na n n -*=⋅∈≤,由于21192962a =⋅=,即此人第二天走了96里路,A 正确;由于31192484a =⋅=,4813788>,B 错误; 后五天走的路程为378192186-=(里),1921866-=(里),此人第一天走的路程比后五天走的路程多6里,C 正确;由于5611192192181632a a +=⋅+⋅=,D 错误. 故选:AC11.(2021·全国高二课时练习)(多选)已知数列{}n a 的通项公式为2n a n n =+,则下列是该数列中的项的是( ) A .18 B .12 C .25 D .30【答案】BD【解析】因为2n a n n =+,所以n 越大,n a 越大.当3n =时,233312a =+=;当4n =时,244420a =+=;当5n =时,255530a =+=;当6n =时,266642a =+=.故选:BD .12.(2021·全国高二课时练习)已知数列{}n a 的前n 项和为n S 且满足()1302n n n a S S n -+=≥,113a =,则下列命题中正确的是( )A .1n S ⎧⎫⎨⎬⎩⎭是等差数列B .13n S n=C .()131n a n n =--D .{}3n S 是等比数列【答案】ABD【解析】因为()12n n n a S S n -=-≥,()1302n n n a S S n -+=≥, 所以1130n n n n S S S S ---+=,所以1113n n S S --=, 所以1n S ⎧⎫⎨⎬⎩⎭是公差为3的等差数列,A 正确;因为11113S a ==, 所以()13313n n n S =+-=,13n S n =,B 正确;2n ≥时,由1n n n a S S -=-,得()131n a n n =--,但113a =不满足此式,因此C 错误;由13n S n =得1311333n n n S +==⨯,所以{}3n S 是等比数列,D 正确. 故选:ABD .三、填空题(每题5分,4题共20分)13.(2021·河南高二月考 )设等差数列{}n a 的前n 项和为n S ,若4683315a a a -+=,则11S =______. 【答案】33 【解析】{}n a 是等差数列,由4683315a a a -+=可得()486315a a a +-=,即66615a a -=,可得63a =,则()1111161111332a a S a +===. 故答案为:33.14.(2021·全国高二课时练习)已知1x >,1y >,且lg x ,2,lg y 成等差数列,则x y +有最小值_____ 【答案】200【解析】因为lg x ,2,lg y 成等差数列,所以lg lg 22x y +=⨯,即410xy =所以200x y +≥,当且仅当100x y ==时等号成立, 所以x y +的最小值为200, 故答案为:200.15.(2021·全国高二课时练习)已知ABC 的一个内角为120︒,并且三边长构成公差为4的等差数列,则ABC 最长边的边长等于________. 【答案】14 【解析】ABC 三边长构成公差为4的等差数列,∴设处于中间长度的一条边长为x ,则最大的边长为4x +,最小的边长为4x -,ABC 的一个内角为120︒,即为最大角,则它对应的边的长度最长,即为4x +,则()()()222441cos120242x x x x x +--+︒==--, 化简得:164x x -=-,解得10x =, 所以三角形的三边分别为:6,10,14,最长边为14, 故答案为:14.16.(2021·全国高二课时练习)根据下列5个图形及相应点的个数的变化规律,可以得出第n 个图中有________个点.【答案】n 2-n +1【解析】图(1)只有1个点,无分支;图(2)除中间1个点外,有2个分支,每个分支有1个点; 图(3)除中间1个点外,有3个分支,每个分支有2个点; 图(4)除中间1个点外,有4个分支,每个分支有3个点;…猜想第n 个图中除中间一个点外,有n 个分支,每个分支有(n -1)个点, 故第n 个图中点的个数为1+n (n -1)=n 2-n +1. 故答案为:n 2-n +1四、解答题(17题10分,其余每题12分,共6题70分)17.(2021·河南高二月考 )在等差数列{}n a 中,36787,3a a a a =-++=. (1)求{}n a 的通项公式;(2)求{}n a 的前n 项和n S 及n S 的最小值.【答案】(1)213n a n =-;(2)212n n S n =-,-36.【解析】(1)设{}n a 的公差为d ,根据题意得31678127,3183?a a d a a a a d =+=-⎧⎨++=+=⎩ 解得11,2a d =-⎧⎨=⎩,所以()1121213n a n n =-+-=-.(2)根据等差数列的前n 项和公式得()21112122n n n S n n -=-+⨯=- 则当6n =时,n S 取得最小值36-.18.(2021·全国高二课时练习)已知数列{a n }中,a 1=1,前n 项和S n =23n +a n . (1)求a 2,a 3; (2)求{a n }的通项公式.【答案】(1)a 2=3,a 3=6 ;(2)a n =(1)2n n +. 【解析】(1)由S 2=43a 2,得(a 1+a 2)=43a 2,又a 1=1,∴a 2=3a 1=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,∴a 3=32(a 1+a 2)=6.(2)∴当n ≥2时,a n =S n -S n -1=23n +a n -13n +a n -1, ∴a n =11n n +-a n -1,即1n n a a -=11n n +-.∴a n =1n n a a -·12n n a a --·…·32a a ·21a a ·a 1=11n n +-·2nn -·…·42·31·1 =(1)2n n +. 又a 1=1满足上式, ∴a n =(1)2n n +. 19.(2021·全国高二课时练习)已知数列{a n }满足a 1=76,S n 是{a n }的前n 项和,点(2S n +a n ,S n +1)在()1123f x x =+的图象上. (1)求数列{a n }的通项公式;(2)若c n =2()3n a -n ,T n 为c n 的前n 项和,n ∴N *,求T n .【答案】(1)2132n n a =+;(2)222n n n T +=-. 【解析】(1)∴点(2S n +a n ,S n +1)在()1123f x x =+的图象上,∴()111223n n n S S a +=++, ∴11123n n a a +=+.∴1212323n n a a +⎛⎫-=- ⎪⎝⎭, ∴数列23n a ⎧⎫-⎨⎬⎩⎭是以12132a -=为首项,以12为公比的等比数列,∴121113222n n na -⎛⎫-=⨯=⎪⎝⎭,即2132nn a =+, (2)∴232n n n n c a n ⎛⎫=-= ⎪⎝⎭,∴23111232222n n nT =+⨯+⨯++,∴∴234111112322222n n nT +=+⨯+⨯++,∴ ∴-∴得23111111222222n n n n T +=++++-, ∴222n nnT +=-. 20.(2021·全国高二课时练习)已知数列{}n a 的前n 项和是n S ,且112n n S a +=.(1)证明数列{}n a 是等比数列,并求其通项公式;(2)设31log (1)n n b S +=-,求满足方程122311112551n n b b b b b b ++++=的n 的值. 【答案】(1)证明见解析;23n na =;(2)100. 【解析】(1)证明:由112n n S a +=得,11112S a +=,又因为11a S =,所以123a =,因为112n n S a =- ∴,所以当2n ≥时,11112n n S a --=- ∴,由∴-∴得,111122n n n n n a S S a a --=-=-+即113n n a a -=, 故{}n a 是以23为首项,13为公比的等比数列,从而1212()333n n n a -=⨯=.(2)由(1)中可知,11111223n n n n n S a S a =-⇒-==所以31311log (1)log 13n n n b S n ++=-==--, 从而11111(1)(2)12n n b b n n n n +==-++++, 故1223111111111111252334122251n n b b b b b b n n n ++++=-+-++-=-=+++, 解得,100n =.21.(2021·全国高二专题练习)已知{a n }是等差数列,公差为d ,首项a 1=3,前n 项和为S n ,令c n =(-1)n S n (n ∴N *),{c n }的前20项和T 20=330.数列{b n }满足212(2)2n n n b a d --=-+,a ∴R . (1)求数列{a n }的通项公式;(2)若b n +1≤b n ,n ∴N *,求a 的取值范围. 【答案】(1)a n =3n ;(2)54a ≤. 【解析】(1)设等差数列的公差为d ,因为(1)nn n c S =-,所以20123420330T S S S S S =-+-++⋯+=, 则24620330a a a a +++⋯+=, 则10910(3)23302d d ⨯++⨯=, 解得3d =,所以33(1)3n a n n =+-=;(2)由(1)知212(2)32n n n b a --=-+,则12112(2)32[2(2)32]n n n n n n b b a a ---+-=-+--+2122124(2)3243[(2)()]23n n n n a a ----=-+=-+由1n n b b +≤⇔221212(2)()02()2323n n a a ---+≤⇔≤- 因为2122()23n --随着n 的增大而增大, 所以1n =时,2122()23n --最小值为54,所以54a ≤. 22.(2021·全国高二专题练习)某学校实验室有浓度为2 g/ml 和0.2 g/ml 的两种K 溶液.在使用之前需要重新配制溶液,具体操作方法为取浓度为2 g/ml 和0.2 g/ml 的两种K 溶液各300 ml 分别装入两个容积都为500 ml 的锥形瓶A ,B 中,先从瓶A 中取出100 ml 溶液放入B 瓶中,充分混合后,再从B 瓶中取出100 ml 溶液放入A 瓶中,再充分混合.以上两次混合过程完成后算完成一次操作.设在完成第n 次操作后,A 瓶中溶液浓度为a n g/ml ,B 瓶中溶液浓度为b n g/ml.(lg 2≈0.301,lg 3≈0.477)(1)请计算a 1,b 1,并判定数列{a n -b n }是否为等比数列?若是,求出其通项公式;若不是,请说明理由; (2)若要使得A ,B 两个瓶中的溶液浓度之差小于0.01 g/ml ,则至少要经过几次? 【答案】(1)是,a n -b n =0.9·(12)n -1;(2)8次. 【【解析】 (1)由题意,得b 1=0.23002100300100⨯+⨯+=0.65 g /ml ,a 1=0.651002200200100⨯+⨯+=1.55 g /ml .当n ≥2时,b n =1400(300b n -1+100a n -1)=14(3b n -1+a n -1),a n =1300(200a n -1+100b n )=14(3a n -1+b n -1),∴a n -b n =12(a n -1-b n -1), ∴等比数列{a n -b n }的公比为12, 其首项a 1-b 1=1.55-0.65=0.9, ∴a n -b n =0.9·(12)n -1.(2)由题意可知,问题转化为解不等式0.9·(12)n -1<10-2,∴n>1+12lg3lg2≈7.49,∴至少要操作8次才能达到要求.。

人教版高中数学选择性必修第一册-第4章 数列 章末测试卷(含解析)

人教版高中数学选择性必修第一册-第4章 数列 章末测试卷(含解析)

第四章数列章末检测(原卷版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n-1,若35是这个数列的第n项,则n=()A.20B.21C.22D.232.已知3,a+2,b+4成等比数列,1,a+1,b+1成等差数列,则等差数列的公差为()A.4或-2B.-4或2C.4D.-43.用数学归纳法证明1+12+14+…+12n-1>12764(n∈N*)成立,某初始值至少应取()A.7B.8C.9D.104.公差不为0的等差数列{a n},其前23项和等于其前10项和,a8+a k=0,则正整数k =()A.24B.25C.26D.275.(2021年长春模拟)已知等比数列{a n}的各项均为正数,其前n项和为S n,若a2=2,S6-S4=6a4,则a5=()A.10B.16C.24D.326.设等差数列{a n}的前n项和为S n,若2a8=6+a11,则S9=()A.54B.45C.36D.277.已知各项都为正数的等比数列{a n}中,a2a4=4,a1+a2+a3=14,则满足a n·a n+1·a n+2>19的最大正整数n的值为()A.3B.4C .5D .68.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为2911.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列B C .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B.a2019a2021-1<0C.T2020是数列{T n}中的最大值D.数列{T n}无最大值三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n}满足a1=1,a n+1=2a n(n∈N*),S n为{a n}的前n项和,则S8=________.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n},则a1=________,a n=________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).15.(2021年淮北期末)已知数列{a n}的通项公式为a n=[lg n]([x]表示不超过x的最大整数),T n为数列{a n}的前n项和,若存在k∈N*满足T k=k,则k的值为__________.16.(2022年武汉模拟)对任一实数序列A=(a1,a2,a3,…),定义新序列△A=(a2-a1,a3-a2,a4-a3,…),它的第n项为a n+1-a n.假定序列△(△A)的所有项都是1,且a12=a22=0,则a2=________.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n}的前n项和为S n,a1=1,________.是否存在正整数k(k>1),使得a1,a k,S k+2成等比数列?若存在,求出k的值;若不存在,说明理由.-2a n=0;②S n=S n-1+n(n≥2);③S n=n2这三个条件中任选一个,补充在上面从①a n+1问题中并作答.18.(12分)(2022年平顶山期末)在等差数列{a n}中,设前n项和为S n,已知a1=2,S4=26.(1)求{a n}的通项公式;}的前n项和T n.(2)令b n=1a n a n+1,求数列{b n19.(12分)设a>0,函数f(x)=ax=1,a n+1=f(a n),n∈N*.a+x,令a1(1)写出a2,a3,a4的值,并猜想数列{a n}的通项公式;(2)用数学归纳法证明你的结论.20.(12分)(2022年潍坊模拟)若数列{a n}的前n项和S n满足S n=2a n-λ(λ>0,n∈N*).(1)求证:数列{a n}为等比数列,并求a n;(2)若λ=4,b n n ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.第四章数列章末检测(解析版)(时间:120分钟,满分150分)一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(2021年郑州模拟)已知数列1,3,5,7,…,2n -1,若35是这个数列的第n 项,则n =()A .20B .21C .22D .23【答案】D【解析】由2n -1=35=45,得2n -1=45,即2n =46,解得n =23.2.已知3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,则等差数列的公差为()A .4或-2B .-4或2C .4D .-4【答案】C【解析】∵3,a +2,b +4成等比数列,1,a +1,b +1成等差数列,∴(a+2)2=3(b +4),2(a +1)=1+b +1=-2,4=4,=8.=-2,=-4时,a +2=0与3,a +2,b +4=4,=8时,等差数列的公差为(a +1)-1=a=4.3.用数学归纳法证明1+12+14+…+12n -1>12764(n ∈N *)成立,某初始值至少应取()A .7B .8C .9D .10【答案】B 【解析】1+12+14+…+12n -1=1-12n1-12>12764,整理得2n >128,解得n >7,所以初始值至少应取8.4.公差不为0的等差数列{a n },其前23项和等于其前10项和,a 8+a k =0,则正整数k =()A .24B .25C .26D .27【答案】C【解析】由题意设等差数列{a n }的公差为d ,d ≠0,∵其前23项和等于其前10项和,∴23a 1+23×222d =10a 1+10×92d ,变形可得13(a 1+16d )=0,∴a 17=a 1+16d =0.由等差数列的性质可得a 8+a 26=2a 17=0,∴k =26.5.(2021年长春模拟)已知等比数列{a n }的各项均为正数,其前n 项和为S n ,若a 2=2,S 6-S 4=6a 4,则a 5=()A .10B .16C .24D .32【答案】B【解析】设公比为q (q >0),S 6-S 4=a 5+a 6=6a 4.因为a 2=2,所以2q 3+2q 4=12q 2,即q 2+q -6=0,解得q =2,则a 5=2×23=16.6.设等差数列{a n }的前n 项和为S n ,若2a 8=6+a 11,则S 9=()A .54B .45C .36D .27【答案】A【解析】∵2a 8=a 5+a 11,2a 8=6+a 11,∴a 5=6,∴S 9=9a 5=54.7.已知各项都为正数的等比数列{a n }中,a 2a 4=4,a 1+a 2+a 3=14,则满足a n ·a n +1·a n +2>19的最大正整数n 的值为()A .3B .4C .5D .6【答案】B【解析】∵a 2a 4=4,a n >0,∴a 3=2,∴a 1+a 2=12,1+a 1q =12,1q 2=2,消去a 1,得1+q q2=6.∵q >0,∴q =12,∴a 1=8,∴a n =8-1=24-n ,∴不等式a n a n +1a n +2>19化为29-3n >19,当n =4时,29-3×4=18>19,当n =5时,29-3×5=164<19,∴最大正整数n =4.8.已知各项均为正数的数列{a n }的前n 项和为S n ,且S n 满足n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),则S 1+S 2+…+S 2021=()A .12021B .12022C .20202021D .20212022【答案】D【解析】∵n (n +1)S 2n +(n 2+n -1)S n -1=0(n ∈N *),∴(S n +1)[n (n +1)S n -1]=0.又∵S n >0,∴n (n +1)S n -1=0,∴S n =1n (n +1)=1n -1n +1,∴S 1+S 2+…+S 2021…20212022.二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知n ∈N *,则下列表达式能作为数列0,1,0,1,0,1,0,1,…的通项公式的是()A .a n ,n 为奇数,,n 为偶数B .a n =1+(-1)n2C .a n =1+cos n π2D .a n =|sinn π2|【答案】ABC 【解析】检验知A ,B ,C 都是所给数列的通项公式.10.(2022年宿迁期末)设等差数列{a n }前n 项和为S n ,公差d >0,若S 9=S 20,则下列结论中正确的有()A .S 30=0B .当n =15时,S n 取得最小值C .a 10+a 22>0D .当S n >0时,n 的最小值为29【答案】BC 【解析】由S 9=S 20⇒9a 1+12×9×8d =20a 1+12×20×19d ⇒a 1+14d =0⇒a 15=0.因为d >0,所以有S 30=30a 1+12×30×29d =30·(-14d )+435d =15d >0,故A 不正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以当n =15或n =14时,S n 取得最小值,故B 正确;因为d >0,所以该等差数列是单调递增数列,因为a 15=0,所以a 10+a 22=2a 16=2(a 15+d )=2d >0,故C 正确;因为d >0,n ∈N *,所以由S n =na 1+12n (n -1)d =n (-14d )+12n (n -1)d =12dn (n -29)>0,可得n >29,n ∈N *,因此n 的最小值为30,故D 不正确.故选BC .11.已知等比数列{a n }的公比为q ,满足a 1=1,q =2,则()A .数列{a 2n }是等比数列BC .数列{log 2a n }是等差数列D .数列{a n }中,S 10,S 20,S 30仍成等比数列【答案】AC【解析】等比数列{a n }中,由a 1=1,q =2,得a n =2n -1,∴a 2n =22n -1,∴数列{a 2n }是等比数列,故A B 不正确;∵log 2a n =n -1,故数列{log 2a n }是等差数列,故C 正确;数列{a n }中,S 10=1-2101-2=210-1,同理可得S 20=220-1,S 30=230-1,不成等比数列,故D 错误.12.设等比数列{a n }的公比为q ,其前n 项和为S n ,前n 项积为T n ,并满足条件a 1>1,a 2019a 2020>1,a 2019-1a 2020-1<0,下列结论正确的是()A .S 2019<S 2020B .a 2019a 2021-1<0C .T 2020是数列{T n }中的最大值D .数列{T n }无最大值【答案】AB 【解析】若a 2019a 2020>1,则a 1q 2018×a 1q 2019=a 21q 4037>1.又由a 1>1,必有q >0,则数列{a n }各项均为正值.又由a 2019-1a 2020-1<0,即(a 2019-1)(a 2020-1)<0,则有2019<1,2020>1或2019>1,2020<1,又由a 1>1,必有0<q <1,2019>1,2020<1.有S 2020-S 2019=a 2020>0,即S 2019<S 2020,则A正确;有a 2020<1,则a 2019a 2021=a 22020<1,则B 2019>1,2020<1,则T 2019是数列{T n }中的最大值,C ,D 错误.三、填空题:本题共4小题,每小题5分,共20分.13.若数列{a n }满足a 1=1,a n +1=2a n (n ∈N *),S n 为{a n }的前n 项和,则S 8=________.【答案】255【解析】由a 1=1,a n +1=2a n 知{a n }是以1为首项、2为公比的等比数列,所以S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255.14.(2022年北京一模)中国古代数学著作《孙子算经》中有这样一道算术题:“今有物不知其数,三三数之余二,五五数之余三,问物几何?”,将上述问题的所有正整数答案从小到大组成一个数列{a n },则a 1=________,a n =________(注:三三数之余二是指此数被3除余2,例如“5”,五五数之余三是指此数被5除余3,例如“8”).【答案】815n -7【解析】被3除余2的正整数可表示为3x +2,被5除余3的正整数可表示为5y +3,其中x ,y ∈N *,∴数列{a n }为等差数列,公差为15,首项为8,∴a 1=8,a n =8+15(n -1)=15n -7.15.(2021年淮北期末)已知数列{a n }的通项公式为a n =[lg n ]([x ]表示不超过x 的最大整数),T n 为数列{a n }的前n 项和,若存在k ∈N *满足T k =k ,则k 的值为__________.【答案】108【解析】a n,1≤n <10,,10≤n <100,,10k ≤n <10k +1.当1≤k <10时,T k =0,显然不存在;当10≤k <100时,T k =k -9=k ,显然不存在;当100≤k <1000时,T k =99-9+(k -99)×2=k ,解得k =108.16.(2022年武汉模拟)对任一实数序列A =(a 1,a 2,a 3,…),定义新序列△A =(a 2-a 1,a 3-a 2,a 4-a 3,…),它的第n 项为a n +1-a n .假定序列△(△A )的所有项都是1,且a 12=a 22=0,则a 2=________.【答案】100【解析】令b n =a n +1-a n ,依题意知数列{b n }为等差数列,且公差为1,所以b n =b 1+(n -1)×1,a 1=a 1,a 2-a 1=b 1,a 3-a 2=b 2,…,a n -a n -1=b n -1,累加得a n =a 1+b 1+…+b n -1=a 1+(n -1)b 1+(n -1)(n -2)2.分别令n =12,n =22,得a 2-10a 1+55=0①,a 2-20a 1+210=0②,①×2-②,得a 2=100.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)(2022年北京二模)已知数列{a n }的前n 项和为S n ,a 1=1,________.是否存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列?若存在,求出k 的值;若不存在,说明理由.从①a n +1-2a n =0;②S n =S n -1+n (n ≥2);③S n =n 2这三个条件中任选一个,补充在上面问题中并作答.解:若选①a n +1-2a n =0,则a 2-2a 1=0,说明数列{a n }是首项为1,公比为2的等比数列,∴a 1=1,a k =2k -1,S k +2=1-2k +21-2=2k +2-1.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(2k +2-1)=2k +2-1.左边为偶数,右边为奇数,即不存在正整数k (k >1),使得a 1,a k ,S k +2成等比数列.若选②S n =S n -1+n (n ≥2),即S n -S n -1=n ⇒a n =n (n ≥2)且a 1=1也适合此式,∴{a n }是首项为1,公差为1的等差数列,∴a k =k ,S k +2=(k +2)(k +3)2.若a 1,a k ,S k +2成等比数列,则k 2=1×(k +2)(k +3)2⇒k 2-5k -6=0⇒k =6(k =-1舍去),即存在正整数k =6,使得a 1,a k ,S k +2成等比数列.若选③S n =n 2,∴a n =S n -S n -1=n 2-(n -1)2=2n -1(n ≥2),且a 1=1适合上式.若a 1,a k ,S k +2成等比数列,则(2k -1)2=1×(k +2)2⇒3k 2-8k -3=0⇒k ==-13舍去即存在正整数k =3,使得a 1,a k ,S k +2成等比数列.18.(12分)(2022年平顶山期末)在等差数列{a n }中,设前n 项和为S n ,已知a 1=2,S 4=26.(1)求{a n }的通项公式;(2)令b n =1a n a n +1,求数列{b n }的前n 项和T n .解:(1)设{a n }的公差为d ,由已知得4×2+4×32d =26,解得d =3,所以a n =a 1+(n -1)d =2+3(n -1)=3n -1.(2)b n =1a n a n +1=1(3n -1)(3n +2)=所以T n…=16-13(3n +2)=n 6n +4.19.(12分)设a >0,函数f (x )=axa +x,令a 1=1,a n +1=f (a n ),n ∈N *.(1)写出a 2,a 3,a 4的值,并猜想数列{a n }的通项公式;(2)用数学归纳法证明你的结论.(1)解:∵a 1=1,∴a 2=f (a 1)=f (1)=a 1+a,a 3=f (a 2)=a 2+a ,a 4=f (a 3)=a3+a ,猜想a n =a(n -1)+a.(2)证明:①易知n =1时,猜想正确;②假设n =k 时,a k =a (k -1)+a成立,则a k +1=f (a k )=a ·a k a +a k =a ·a (k -1)+a a +a (k -1)+a=a (k -1)+a +1=a [(k +1)-1]+a ,∴n =k +1时成立.由①②知,对任何n ∈N *,都有a n =a (n -1)+a.20.(12分)(2022年潍坊模拟)若数列{a n }的前n 项和S n 满足S n =2a n -λ(λ>0,n ∈N *).(1)求证:数列{a n }为等比数列,并求a n ;(2)若λ=4,b nn ,n 为奇数,2a n ,n 为偶数(n ∈N *),求数列{b n }的前2n 项和T 2n .(1)证明:∵S n =2a n -λ,当n =1时,得a 1=λ.当n ≥2时,S n -1=2a n -1-λ,∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1,∴a n =2a n -1,∴数列{a n }是以λ为首项,2为公比的等比数列,∴a n =λ·2n -1.(2)解:∵λ=4,∴a n =4·2n -1=2n +1,∴b nn +1,n 为奇数,+1,n 为偶数,∴T 2n =22+3+24+5+26+7+…+22n +2n +1=(22+24+…+22n )+(3+5+…+2n +1)=4-4n ·41-4+n (3+2n +1)2=4n +1-43+n (n +2),∴T 2n =4n +13+n 2+2n -43.21.(12分)已知等比数列{a n }满足a n +1+a n =9·2n -1,n ∈N *.(1)求数列{a n }的通项公式;(2)设b n =na n ,求数列{b n }的前n 项和S n .解:(1)设等比数列{a n }的公比为q .∵a n +1+a n =9·2n -1,∴a 2+a 1=9,a 3+a 2=18,∴q =a 3+a 2a 2+a 1=189=2.又∵2a 1+a 1=9,∴a 1=3,∴a n =3·2n -1,n ∈N *.(2)∵b n =na n =3n ·2n -1,∴13S n =1×20+2×21+…+(n -1)×2n -2+n ×2n -1①,∴23S n =1×21+2×22+…+(n -1)×2n -1+n ×2n ②,①-②,得-13S n =1+21+22+…+2n -1-n ×2n =1-2n 1-2-n ×2n =(1-n )2n -1,∴S n =3(n -1)2n +3.22.(12分)数列{a n }是公比为12的等比数列且1-a 2是a 1与1+a 3的等比中项,前n 项和为S n ;数列{b n }是等差数列,b 1=8,其前n 项和T n 满足T n =nλ·b n +1(λ为常数且λ≠1).(1)求数列{a n }的通项公式及λ的值;(2)比较1T 1+1T 2+1T 3+…+1T n 与12S n 的大小.解:(1)由题意,得(1-a 2)2=a 1(1+a 3),∴(1-a 1q )2=a 1(1+a 1q 2).∵q =12,∴a 1=12,∴a n.1=λb 2,2=2λb 3,=λ(8+d ),+d =2λ(8+2d ),∴λ=12,d =8.(2)由(1)得b n =8n ,∴T n =4n (n +1),∴1T n =令C n =1T 1+1T 2+…+1T n =…∴18≤C n <14.∵S n =21-12=1,∴12S n =121∴14≤12S n <12,∴C n <12S n 即1T 1+1T 2+1T 3+…+1T n <12S n .。

新人教版高中数学选修二第一单元《数列》检测卷(有答案解析)

新人教版高中数学选修二第一单元《数列》检测卷(有答案解析)

一、选择题1.已知数列{}n a 中,12a =,111(2)n n a n a -=-≥,则2021a 等于( ) A .1-B .12-C .12D .22.已知数列{}n a 为等差数列,首项为2,公差为3,数列{}n b 为等比数列,首项为2,公比为2,设n n b c a =,n T 为数列{}n c 的前n 项和,则当2020n T <时,n 的最大值是( ) A .8B .9C .10D .113.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11284.若数列{}n a 满足12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈),则2018a 等于( ) A .12B .2C .3D .235.已知数列{}n a 满足21n n n a a a ++=+,*,n N ∈.若564316a a +=,则129a a a ++⋅⋅⋅+=( )A .16B .28C .32D .486.如果函数*()1(0,)f x kx k x N =-≠∈,(1)(2)()n S f f f n =++⋅⋅⋅+,若(1)f ,(3)f ,(13)f 成等比数列,则( )A .275()n S f n -≤B .275()n S f n +≤C .275()n S f n -≥D .275()n S f n +≥7.朱载堉(1536-1611),明太祖九世孙,音乐家,数学家,天文历算家,在他多达百万字著述中以《乐律全书》最为著名,在西方人眼中他是大百科全书式的学者王子,他对文乙的最大贡献是他创建了“十二平均律”,此理论被广泛应用在世界各国的键盘乐器上,包善钢琴,故朱载堉被誉为“钢琴理论的鼻担”.“十二平均律"是指一个八度有13个音,相邻两个音之间的频率之比相等,且最后一个音频率是最初那个音频率的2倍,设第三个音频率为3f ,第九个音频率9f ,则93f f 等于( )ABCD8.数学著作《孙子算经》中有这样一个问题:“今有物不知其数,三三数之剩二(除以3余2),五五数之剩三(除以5余3),问物几何?”现将1到2020共2020个整数中,同时满足“三三数之剩二,五五数之剩三”的数按从小到大的顺序排成一列,构成数列{},n a 则该数列共有( )A .132项B .133项C .134项D .135项9.已知数列{}n a 满足:113a =,1(1)21n n n a na n ++-=+,*n N ∈,则下列说法正确的是( ) A .1n n a a +≥ B .1n n a a +≤C .数列{}n a 的最小项为3a 和4aD .数列{}n a 的最大项为3a 和4a 10.已知函数()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n *=∈N 得数列{}n a ,若数列{}n a 为递增数列,则实数a 的取值范围为( ) A .()1,3B .()2,3C .9,34⎛⎫ ⎪⎝⎭D .92,4⎛⎫ ⎪⎝⎭11.已知数列{}n a 的前n 项和为n S ,且21n n S a =-,则66(S a = ) A .6332B .3116C .12364 D .12712812.已知数列{}n a 满足:11a =,()*12nn n a a n N a +=∈+.若()*+11()1n n b n n N a λ⎛⎫=-+∈ ⎪⎝⎭,1b λ=-,且数列{}n b 是单调递增数列,则实数λ的取值范围为( ) A .2λ>B .3λ>C .2λ<D .3λ<二、填空题13.等比数列{}n a 的首项为32,公比为12-,前n 项和为n S ,则当n *∈N 时,1nn S S -的最大值与最小值之和为_________.14.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=______.15.今年冬天流感盛行,据医务室统计,北校近30天每天因病请假人数依次构成数列{}n a ,已知11a =,22a=,且()*21(1)nn n a a n N +-=+-∈,则这30天因病请假的人数共有人______.16.设数列{}n a 的前n 项和为n S ,若()*11111n n n n N S S a +⎛⎫-=∈ ⎪⎝⎭,且112a =-,则20191S =_______.17.一个等差数列的前12项和为354,前12项中偶数项和与奇数项和之比为32:27,则公差d 为_________.18.已知{}n a 是公差不为零的等差数列,29a =,且3a 是1a 和4a 的等比中项,则数列{}n a 的前10项和10S =________. 19.等差数列{}n a 满足:123202012320201111a a a a a a a a ++++=-+-+-+⋯+-12320201111a a a a =++++++++,则其公差d 的取值范围为______.20.有一个数阵排列如下: 1 2 3 4 5 6 7 8 …… 2 4 6 8 10 12 14…… 4 8 12 16 20…… 8 16 24 32…… 16 32 48 64…… 32 64 96…… 64……则第9行从左至右第3个数字为________________.三、解答题21.设各项均为正数的数列{}n a 的前n 项和为n S ,满足对任意*n ∈N ,都有333212n n a a a S +++=.(1)求证:数列{}n a 为等差数列;(2)若()2(1)2n n n b a =-,求数列{}n b 的前n 项和n T .22.现某厂商抓住商机在去年用450万元购进一批VR 设备,经调试后今年投入使用,计划第一年维修、保养费用22万元,从第二年开始,每年所需维修、保养费用比上一年增加4万元,该设备使用后,每年的总收入为180万元,设使用x 年后设备的盈利额为y 万元. (1)写出y 与x 之间的函数关系式;(2)使用若干年后,当年平均盈利额达到最大值时,求该厂商的盈利额. 23.设数列{}n a 的前n 项和为n S ,已知()*214,21n n S a S n N +==+∈.数列{}nb 是首项为1a ,公差不为零的等差数列,且127,,b b b 成等比数列. (1)求数列{}n a 和{}n b 的通项公式; (2)若nn nb c a =,数列{}n c 的前n 项和为n T ,且n T m <恒成立,求m 的取值范围. 24.已知数列{}n a 中,12a =,24a =,()2112n n n a a a n -+=≥.(1)求数列{}n a 的通项公式; (2)设1n n b a =-,1212231n n n n a a aS b b b b b b +=++⋅⋅⋅+,对任意n *∈N ,证明:1n S <.参考答案25.已知{}n a 是公差不为零的等差数列,11a =,且139,,a a a 成等比数列. (1)求数列{}n a 的通项.(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T . 26.已知数列{}n a 前n 项和为n S ,12a =,13(1)2n n n S S n a n +⎛⎫=+++ ⎪⎝⎭.(1)求数列{}n a 的通项公式;(2)若n n b a n =+,求数列{}n b 的前n 项和n T .【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】先计算出{}n a 的前几项,然后分析{}n a 的周期性,根据周期可将2021a 转化为2a ,结合12a =求解出结果.【详解】因为12a =,所以23412311111,11,12,......2a a a a a a =-==-=-=-= 所以3211111111111111111111n n nn n n n na a a a a a a a +++-=-=-=-=-=-=------, 所以{}n a 是周期为3的周期数列,所以20213673+2212a a a ⨯===, 故选:C. 【点睛】思路点睛:根据递推公式证明数列{}n a 为周期数列的步骤:(1)先根据已知条件写出数列{}n a 的前几项,直至出现数列中项循环,判断循环的项包含的项数A ;(2)证明()*n A n a a A N+=∈,则可说明数列{}na 是周期为A 的数列.2.A解析:A 【分析】由已知分别写出等差数列与等比数列的通项公式,求得数列{}n c 的通项公式,利用数列的分组求和法可得数列{}n c 的前n 项和n T ,验证得答案. 【详解】解:由题意得:323(1)1n a n n ⨯-=+-=,2nn b =,2321n n n n b c a a ==⨯-=,123n T c c c ∴=+++…n c +123321321321=⨯-+⨯-+⨯-+…321n +⨯-(1233222=⨯+++…)2n n +-()212312n n ⨯-=⨯--1326n n +=⨯--,当8n =时,98326815222020T =⨯--=<; 当9n =时,109326930572020T =⨯--=>,n ∴的最大值为8.故选:A. 【点睛】关键点点睛:本题解题的关键是求出数列{}n c 的通项公式,利用分组求和求出数列{}n c 的前n 项和n T .3.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a =令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.4.C解析:C 【分析】先由题设求得数列{}n a 的前几项,然后得到数列{}n a 的周期,进而求得结果. 【详解】因为12a =,23a =,12n n n a a a --=(3n ≥且*N n ∈), 所以23132a a a ==,34231232a a a ===, 453112332a a a ===, 564123132a a a ===,67523213a a a ===,7862323a a a ===,,所以数列{}n a 是周期为6的周期数列, 所以20183366223a a a ⨯+===, 故选:C. 【点睛】思路点睛:该题考查的是有关数列的问题,解题方法如下: (1)根据题中所给的前两项以及递推公式,逐项写出数列的前几项; (2)根据规律判断出数列的周期;(3)根据所求的数列的周期,求得20182a a =,进而求得结果.5.C解析:C 【分析】由21n n n a a a ++=+,分别求出3456789,,,,,,a a a a a a a 关于12,a a 的表达式, 再利用564316a a +=,即可求解 【详解】由21n n n a a a ++=+可得,321a a a =+,432212a a a a a =+=+5432132a a a a a =+=+,6542153a a a a a =+=+,7652185a a a a a =+=+, 87621138a a a a a =+=+,987212113a a a a a =+=+, ∴129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,564316a a +=,21214(32)3(53)16a a a a ∴+++=,即21271716a a +=, ∴129212154342(2717)32a a a a a a a ++⋅⋅⋅+=+=⨯+=故选:C 【点睛】关键点睛,利用递推式21n n n a a a ++=+,求得129212154342(2717)a a a a a a a ++⋅⋅⋅+=+=⨯+,再利用564316a a +=,求得21271716a a +=,进而求解,主要考查学生的数学运算能力,属于中档题6.D解析:D 【分析】根据等比中项求出2k =,()21f x x =-,*x ∈N ,根据等差数列的求和公式求出n S 2n =,然后作差比较可知D 正确.【详解】因为(1)f ,(3)f ,(13)f 成等比数列,所以[]2(3)(1)(13)f f f =⋅,即2(31)(1)(131)k k k -=--,即220k k -=,因为0k ≠,所以2k =.所以()21f x x =-,*x ∈N ,5()5(21)105f n n n =-=-,2(121)2n n n S n +-==, 22275()271052102n S f n n n n n --=--+=--22(51)n n =--,当5n ≤时,275()0n S f n --<,所以275()n S f n -<,当6n ≥时,275()0n S f n -->,所以275()n S f n ->,故,A C 不正确;22275()2710521012n S f n n n n n +-=+-+=-+2(2)(3)n n =--0≥在*n N ∈时恒成立,所以275()n S f n +≥,故B 不正确,D 正确. 故选:D 【点睛】关键点点睛:掌握等比中项的概念和等差数列的求和公式是本题的解题关键.7.A解析:A 【分析】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,推导出1122q =,由此能求出93f f 的值. 【详解】依题意13个音的频率成等比数列,记为{}n a ,设公比为q ,则12131=a a q ,且1312=a a ,1122∴=q ,86912316191232⎛⎫=∴==== ⎪⎝⎭q q f q a a f a a 故选:A . 【点睛】关键点点睛:本题考查等比数列的通项公式及性质,解题的关键是分析题意将13个音的频率构成等比数列,再利用等比数列的性质求解,考查学生的分析解题能力与转化思想及运算能力,属于基础题.8.D解析:D 【分析】由题意抽象出数列是等差数列,再根据通项公式计算项数. 【详解】被3除余2且被5除余3的数构成首项为8,公差为15的等差数列,记为{}n a ,则()8151157n a n n =+-=-,令1572020n a n =-≤,解得:213515n ≤, 所以该数列的项数共有135项. 故选:D 【点睛】关键点点睛:本题以数学文化为背景,考查等差数列,本题的关键是读懂题意,并能抽象出等差数列.9.C解析:C 【分析】令n n b na =,由已知得121n n b b n +-=+运用累加法得2+12n b n =,从而可得12+n a n n =,作差得()()()+13+4+1n n a n n a n n -=-,从而可得12345>>n a a a a a a =<<<,由此可得选项. 【详解】令n n b na =,则121n n b b n +-=+,又113a =,所以113b =,213b b -=,325b b -=,,121n n b b n --=-, 所以累加得()()213+2113++122nn n b n --==,所以2+1212+n nb n an n n n===, 所以()()()()+13+41212+1+++1+1n n n n a a n n n n n n -⎛⎫-=-= ⎪⎝⎭,所以当3n <时,+1n n a a <,当3n =时,+1n n a a =,即34a a =,当>3n 时,+1>n n a a , 即12345>>n a a a a a a =<<<,所以数列{}n a 的最小项为3a 和4a ,故选:C. 【点睛】本题考查构造新数列,运用累加法求数列的通项,以及运用作差法判断差的正负得出数列的增减性,属于中档题.10.B解析:B 【分析】 由()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩,()()n a f n n N *=∈得数列{}n a ,根据数列{}n a 为递增数列,联立方程组,即可求得答案. 【详解】()()633,7,,7.x a x x f x a x -⎧--≤=⎨>⎩令()()n a f n n N *=∈得数列{}n a∴()633,7,7n n a n n a a n -⎧--≤=⎨>⎩()n N *∈且数列{}na 为递增数列,得()230,1,733,a a a a ⎧->⎪>⎨⎪--<⎩解得23a <<. 即:()2,3a ∈ 故选:B. 【点睛】本题主要考查了根据递增数列求参数范围问题,解题关键是掌握递增数列的定义,考查了分析能力和计算能力,属于中档题.11.A解析:A 【分析】利用数列递推关系:1n =时,1121a a =-,解得1a ;2n 时,1n n n a S S -=-.再利用等比数列的通项公式与求和公式即可得出. 【详解】21n n S a =-,1n ∴=时,1121a a =-,解得11a =;2n 时,1121(21)n n n n n a S S a a --=-=---,化为:12n n a a -=.∴数列{}n a 是等比数列,公比为2.56232a ∴==,66216321S -==-.则666332S a =. 故选:A . 【点睛】本题考查数列递推关系、等比数列的通项公式与求和公式,考查推理能力与计算能力,属于中档题.12.C解析:C 【分析】 数列{a n }满足()*12n n n a a n N a +=∈+,两边取倒数可得1121n na a +=+,从而得到11=2n n a +,于是b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n ,由于数列{b n }是单调递增数列,可得b n +1>b n ,解出即可. 【详解】∵数列{a n }满足:a 1=1,()*12nn n a a n N a +=∈+, ∴1121n n a a +=+,化为111121n n a a +⎛⎫+=+ ⎪⎝⎭, ∴数列11n a ⎧⎫+⎨⎬⎩⎭是首项为11a +1=2,公比为2的等比数列,∴11=2n na +, ∴b n +1=(n ﹣λ)(11a +1)=(n ﹣λ)•2n , ∵数列{b n }是单调递增数列,∴b n +1>b n ,∴n ≥2时,(n ﹣λ)•2n >(n ﹣1﹣λ)•2n ﹣1,化为λ<n +1, ∵数列{n +1}为单调递增数列,∴λ<3.当n =1时,b 2=(1﹣λ)×2>﹣λ=b 1,解得λ<2.综上可得:实数λ的取值范围为λ<2.故选:C.【点睛】本题考查由数列的递推关系式求数列的通项公式、考查由数列的单调性求解参数问题,考查等比数列的通项公式,考查推理能力与计算能力,属于中档题.二、填空题13.【分析】求出讨论n的奇偶利用数列单调性求出的最值即可得出【详解】依题意得当为奇数时随着的增大而减小随着的增大而增大;当为偶数时随着的增大而增大随着的增大而增大因此的最大值与最小值分别为其最大值与最小解析:1 4【分析】求出n S,讨论n的奇偶利用数列单调性求出n S的最值即可得出.【详解】依题意得,31122111212nn nS⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎛⎫⎣⎦==--⎪⎛⎫⎝⎭--⎪⎝⎭.当n为奇数时,112n nS=+随着n的增大而减小,∴1131122n nS S<=+≤=,1nnSS-随着nS的增大而增大,∴156nnSS<-≤;当n为偶数时,112n nS随着n的增大而增大,∴2311142n nS S=≤=-<,1nnSS-随着nS的增大而增大,7112nnSS-≤-<.因此1nnSS-的最大值与最小值分别为56,712-,其最大值与最小值之和为5716124-=.故答案为:14.【点睛】本题考查求数列的最值问题,解题的关键是讨论n的奇偶根据单调性求出范围.14.23【分析】先设奇数项公差为偶数项公比为根据已知条件列关系求解和再计算即得结果【详解】设数列的奇数项依次成公差为的等差数列偶数项依次成公比为的等比数列由故解方程得故则故答案为:23【点睛】本题考查了解析:23【分析】先设奇数项公差为d ,偶数项公比为q ,根据已知条件列关系求解d 和q ,再计算78,a a ,即得结果. 【详解】设数列{}n a 的奇数项依次成公差为d 的等差数列,偶数项依次成公比为q 的等比数列,由11a =,22a =,347a a +=,5613a a +=,故127d q ++=,212213d q ++=, 解方程得2d q ==.故3718237,16a a d a a q =+==⋅=,则7823a a +=.故答案为:23. 【点睛】本题考查了等差数列与等比数列的综合应用,属于中档题.15.255【分析】根据题目所给递推关系找到数列的规律由此求得前天的请假人数之和【详解】依题意且所以以此类推数列的奇数项均为偶数项是首项为公差为的等差数列所以前项的和故答案为:【点睛】本小题主要考查分组求解析:255 【分析】根据题目所给递推关系找到数列{}n a 的规律,由此求得前30天的请假人数之和30S . 【详解】依题意11a =,22a =,且()*21(1)n n n a a n N +-=+-∈,所以31311101a a a a -=-=⇒==,4241124a a a -=+=⇒=, 53531101a a a a -=-=⇒==, 6461126a a a -=+=⇒=,以此类推,数列{}n a 的奇数项均为1,偶数项是首项为2、公差为2的等差数列, 所以前30项的和()()301112430S =+++++++23015151516152552+=+⨯=+⨯=. 故答案为:255 【点睛】本小题主要考查分组求和法,考查等差数列前n 项和公式,属于中档题.16.【分析】用代入已知等式得变形可得说明是等差数列求其通项公式可得的值【详解】整理可得则即所以是以为公差的等差数列又则故答案为:【点评】本题考查数列递推式考查等差数列的判定训练了等差数列通项公式的求法是 解析:2020-【分析】用11n n n a S S ++=-,代入已知等式,得11n n n n S S S S ++-=⋅,变形可得1111n nS S +-=-,说明1n S ⎧⎫⎨⎬⎩⎭是等差数列,求其通项公式,可得20191S 的值. 【详解】11n n n a S S ++=-,1111111n n n n nS S a S S ++⎛⎫∴-== ⎪-⎝⎭,整理可得11n n n n S S S S ++-=⋅, 则111111n n n n n n S S S S S S +++-=-=,即1111n nS S +-=-, 所以,1n S ⎧⎫⎨⎬⎩⎭是以1-为公差的等差数列,又11112S a ==-, ()()()12111nn n S ∴=-+-⋅-=-+,则201912020S =-. 故答案为:2020-. 【点评】本题考查数列递推式,考查等差数列的判定,训练了等差数列通项公式的求法,是中档题.17.5【分析】设偶数项和为则奇数项和为由可得的值根据公差求得结果【详解】设偶数项和为则奇数项和为由可得故公差故答案为:5【点睛】本题考查等差数列的定义和性质得到公差是解题的关键解析:5 【分析】设偶数项和为32k ,则奇数项和为27k ,由3227354k k += 可得k 的值,根据 公差32276k kd -=求得结果. 【详解】 设偶数项和为32k ,则奇数项和为27k ,由322759354k k k +== 可得6k =,故公差32275566k k kd -===, 故答案为:5. 【点睛】本题考查等差数列的定义和性质,得到6k =,公差32276k kd -=,是解题的关键. 18.【分析】设等差数列的公差为根据题中条件列出有关的方程组可求出的值计算出的值【详解】在等差数列中由是和的等比中项得解得所以故答案为;【点睛】本题考查等比中项的运用与等差数列的基本量的求解以及求前项和考 解析:15-【分析】设等差数列{}n a 的公差为()0d d ≠,根据题中条件列出有关1a 、d 的方程组,可求出1a 、d 的值,计算出10S 的值.【详解】在等差数列{}n a 中,由29a =,3a 是1a 和4a 的等比中项,得()()121119230a d a d a a d d +=⎧⎪+=⋅+⎨⎪≠⎩,解得112a =,3d =-. ()()21133271212222n n n d S na n n n n n -=+=--=-+, 所以21032710101522S =-⨯+⨯=-. 故答案为15-; 【点睛】本题考查等比中项的运用与等差数列的基本量的求解以及求前n 项和,考查计算能力,属于中等题.19.【分析】由题意知等差数列中的项一定有正有负分成首项大于零和小于零两种情况进行讨论结合已知条件可知或从而可求出公差的取值范围【详解】解:由题意知等差数列中的项一定有正有负当时由则由则所以所以即;当时同 解析:(][),22,-∞-+∞【分析】由题意知,等差数列{}n a 中的项一定有正有负,分成首项大于零和小于零两种情况进行讨论,结合已知条件,可知101110101,1a a ≥<-或101110101,1a a ≤->,从而可求出公差的取值范围. 【详解】解:由题意知,等差数列{}n a 中的项一定有正有负,当10,0a d <>时, 由123202012320201111a a a a a a a a ++++=-+-+-+⋯+-,则10111010100a a -≥⎧⎨≤⎩ , 由123202012320201111a a a a a a a a ++++=++++++++,则1011101010a a ≥⎧⎨+≤⎩, 所以101110101,1a a ≥≤-,所以10101a d +≥,即101012d a ≥-≥; 当10,0a d ><时,同理可求出101012d a ≤--≤-,综上所述,公差d 的取值范围为(][),22,-∞-+∞.故答案为: (][),22,-∞-+∞.【点睛】本题考查了等差数列的通项公式,考查了数列的单调性.本题的易错点是未讨论首项的正负问题.20.768【分析】数阵排列第一列是首项为1公比为2的等比数列可求出第9行首项;每行按公差为排列可解【详解】数阵排列第一列是首项为1公比为2的等比数列所以第9行首项为第9行公差为所以第9行从左至右第3个数解析:768 【分析】数阵排列第一列是首项为1,公比为2的等比数列,可求出第9行首项;每行按公差为12n - 排列,可解 【详解】数阵排列第一列是首项为1,公比为2的等比数列12n n a所以第9行首项为82=256,第9行公差为82=256, 所以第9行从左至右第3个数字为768 故答案为:768 【点睛】本题考查等差数列、等比数列基本量运算及学生观察分析能力.解决等差、等比数列基本量计算问题利用方程的思想.等差、等比数列中有五个量一般可以“知三求二”,通过列方程(组)求关键量.三、解答题21.(1)证明见解析;(2)()()21,21,n n n n T n n n ⎧+⎪=⎨-+⎪⎩为偶数为奇数【分析】(1)令1n =求出首项,令2n =求出2a ,将n 换为1n -,两式相减得出21+n n n a S S -=,再将n 换为1n -,两式相减得11n n a a +-=,即得证;(2)求出n b ,分别讨论n 为奇数和偶数,并项求和结合等差数列的求和公式可求出. 【详解】 (1)333212n n a a a S +++=当1n =时,322111a S a ==,11a ∴=,当2n ≥时,33321211n n a a a S --+++=,两式相减得()()()3221111++n n n n n n n n n n a S S S S S S a S S ----=-=-=,21+n n n a S S -∴=,则2+1+1+n n n a S S =,两式相减得2211+n n n n a a a a ++-=,即()()111++n n n n n n a a a a a a +++-=,因为各项为正,11n n a a +∴-=,当2n =时,则()2331212++a a a a =,即()23221+1+a a =,解得22a =,满足211a a -=, 所以数列{}n a 是首项为1,公差为1的等差数列; (2)由(1)可得()1+11n a n n =-⨯=,()()212n n b n ∴=-⨯,当n 为偶数时,()()2222222+46+822+2n T n n =-----()()()()()()424+2+868+6++2222+22n n n n =-----⎡⎤⎡⎤⎣⎦⎣⎦()()()2+222+4+6+8+22212n n n n n ==⨯=+, 当n 为奇数时,()()21+21421n n n T T b n n n n n -==--=-+,综上,()()21,21,n n n n T n n n ⎧+⎪=⎨-+⎪⎩为偶数为奇数. 【点睛】方法点睛:证明或判断等差数列的方法,(1)定义法:对于数列{}n a ,若1n n a a d --=,则数列{}n a 为等差数列; (2)等比中项法:对于数列{}n a ,若21+2n n n a a a ++=,则数列{}n a 为等差数列; (3)通项公式法:若n a pn q =+,则数列{}n a 为等差数列; (4)特殊值法:若是选择题、填空题可以用特殊值法判断. 22.(1)()2*2160450,y x x x N =-+-∈;(2)1500万元.【分析】(1)保养费用是首项为22,公差为4的等差数列,再利用收入-维修费用-成本,写出y 关于x 的函数关系式;(2)利用基本不等式计算yx的最大值. 【详解】(1)依题可得2(1)1802244502160450()2x x y x x x x x N -⎢⎥=-+⨯-=-+-∈⎢⎥⎣⎦即y 关于x 的函数关系式为22160450y x x =-+-,()*x N∈.(2)由(1)知,当年的平均盈利额为:45045021601602160100y x x x x x ⎛⎫=-+-=-+≤-= ⎪⎝⎭, 当且仅当4502x x=时,即15x =时等号成立.所以使用15年后平均盈利额达到最大值,该厂商盈利额为1500万元. 【点睛】关键点点睛:本题的关键是知道设备的维修费用是等差数列求和,才能正确写出函数关系.23.(1)13-=n n a ,43n b n =-;(2)9+2⎡⎫∞⎪⎢⎣⎭,. 【分析】(1)运用数列的递推式和等比数列的通项公式可得{}n a ,再由等差数列的通项公式以及等比的定义,解方程可得公差,进而得到所求通项公式;(2)利用错位相减法求出()34391223nn n T +⎛⎫=- ⎪⎝⎭,易得92n T <,进而可得结果. 【详解】(1)∵()*121n n a S n N+=+∈,当2n ≥时,121n n a S -=+,两式相减化简可得:13n n a a +=, 即数列{}n a 是以3为公比的等比数列,又∵24S =,∴1134a a +=,解得14a =,即13-=n n a , 设数列{}n b 的公差为d ,111b a ==,∵127,,b b b 成等比数列,∴()()21161d d ⨯+=+, 解得4d =或0d =(舍去),即43n b n =-, ∴数列{}n a 和{}n b 的通项公式为13-=n n a ,43n b n =-. (2)由(1)得1433n n n n b n c a --==, ∴()0121111159433333n n T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,()12311111594333333nn T n ⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++- ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭,两式相减得:()1212111114444333333n nn T n -⎛⎫⎛⎫⎛⎫⎛⎫=+⨯+⨯++⨯-- ⎪ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭⎝⎭()13433nn ⎛⎫=-+ ⎪⎝⎭∴()34391223nn n T +⎛⎫=- ⎪⎝⎭,即有92n T <恒成立, n T m <恒成立,可得92m ≥,即m 的范围是9+2⎡⎫∞⎪⎢⎣⎭,. 【点睛】一般地,如果数列{a n }是等差数列,{b n }是等比数列,求数列{a n ·b n }的前n 项和时,可采用错位相减法求和,一般是和式两边同乘以等比数列{b n }的公比,然后作差求解.24.(1)2nn a =;(2)证明见解析.【分析】(1)由等比中项概念可知{}n a 为等比数列. (2)裂项求和即可. 【详解】(1)∵12a =,24a =,211n n n a a a -+=,∴数列{}n a 是等比数列,首项为2,公比为2,∴2nn a =.(2)121nn n b a =-=-,∴()()11121121212121n n n n n n n n a b b +++==-----, ∴1212231n n n n a a aS b b b b b b +=++⋅⋅⋅+ 2231111111111<1212121212121n n n ++⎛⎫⎛⎫⎛⎫=-+-+⋅⋅⋅+-=- ⎪ ⎪ ⎪------⎝⎭⎝⎭⎝⎭,即1n S <成立. 【点睛】此题考查等比数列的概念性质,同时也考查裂项求和的方法. 25.(1)n a n =;(2)21nn +. 【分析】(1)由11a =,且139,,a a a 成等比数列,列方程求出公差,再利用等差数列的通项公式可得答案;(2)结合(1)利用等差数列的求和公式求得2121121n S n n n n ⎛⎫==- ⎪++⎝⎭,再利用裂项相消法可得答案. 【详解】(1)设公差为,0d d ≠, 由11a =,且139,,a a a 成等比数列,则1218112d dd++=+ 解得:1d =或0d =(舍去),()()11111n a a n d n n =+-=+-⨯=,故{}n a 的通项n a n =. (2)n a n =,则()2122n n n n nS ++==所以:()212211211n S n n n n n n ⎛⎫===- ⎪+++⎝⎭11111212231n T n n ⎛⎫∴=-+-+⋅⋅⋅+- ⎪+⎝⎭1211n ⎛⎫=- ⎪+⎝⎭11211n n n +⎛⎫=- ⎪++⎝⎭1121n n +-⎛⎫= ⎪+⎝⎭21nn =+ 【点睛】方法点睛:裂项相消法是最难把握的求和方法之一,其原因是有时很难找到裂项的方向,突破这一难点的方法是根据式子的结构特点,常见的裂项技巧:(1)()1111n n k k n n k ⎛⎫=- ⎪++⎝⎭;(2)1k=; (3)()()1111212122121n n n n ⎛⎫=- ⎪-+-+⎝⎭;(4)()()122121n n n +--()()()()1121212121n n n n ++---=--1112121n n +=---;此外,需注意裂项之后相消的过程中容易出现丢项或多项的问题,导致计算结果错误. 26.(1)3n n a n n =⨯-;(2)1(21)3344n n n T +-=+.【分析】(1)由13(1)(2)n n n S S n a n +=+++整理可得1321n n a an n +=⨯++;进而得到1n a n ⎧⎫+⎨⎬⎩⎭是首项为3,公比为3的等比数列,即可求出其通项,从而求得结论;(2)利用第一问的结论,求得数列{}n b 的通项,再结合错位相减法即可求得结论. 【详解】解:(1)由题知113(1)2n n n n a a S S n n ++⎛⎫=-=++ ⎪⎝⎭, 即1321n n a an n+=⨯++, 即11311n n a a n n +⎛⎫+=+ ⎪+⎝⎭,∵11a =,∴1130a +=≠,∴10n a n +≠, ∴数列1n a n ⎧⎫+⎨⎬⎩⎭是首项为3,公比为3的等比数列, ∴13n na n+=,∴3n n a n n =⨯-; (2)由(1)知,3nn b n =⨯,∴221323333n n T n =⨯+⨯+⨯++⨯, ①∴23131323(1)33n n n T n n +=⨯+⨯++-⨯+⨯, ②①-②得,()12311313(12)3323333331322n n n n n n n T n n +++---=++++-⨯=-⨯=--,∴1(21)3344n n n T +-=+.【点睛】数列求和的方法技巧(1)倒序相加:用于等差数列、与二项式系数、对称性相关联的数列的求和. (2)错位相减:用于等差数列与等比数列的积数列的求和. (3)分组求和:用于若干个等差或等比数列的和或差数列的求和.。

人教版高中数学选修二第一单元《数列》检测卷(包含答案解析)

人教版高中数学选修二第一单元《数列》检测卷(包含答案解析)

一、选择题1.对大于1的自然数m 的三次幂可用奇数进行以下形式的“分裂”:仿此,若3m 的“分裂数”中有一个是2017,则m 的值为( )3331373152,39,4,5171119⎧⎧⎪⎧⎪⎪⎨⎨⎨⎩⎪⎪⎩⎪⎩A .44B .45C .46D .472.数列{}n a 中,112a =,()*,m n m n a a a m n +=∀∈N ,则6a =( ) A .116B .132C .164D .11283.如果函数*()1(0,)f x kx k x N =-≠∈,(1)(2)()n S f f f n =++⋅⋅⋅+,若(1)f ,(3)f ,(13)f 成等比数列,则( )A .275()n S f n -≤B .275()n S f n +≤C .275()n S f n -≥D .275()n S f n +≥4.在函数()y f x =的图像上有点列{},n n x y ,若数列{}n x 是等比数列,数列{}n y 是等差数列,则函数()y f x =的解析式可能是( ) A .3(4)f x x =+B .2()4f x x =C .3()4xf x ⎛⎫= ⎪⎝⎭D .4()log f x x =5.已知正项数列{}n a 满足11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-=⎪⎪⎝⎭⎝⎭,数列{}n b 满足1111n n nb a a +=+,记{}n b 的前n 项和为n T ,则20T 的值为( ) A .1B .2C .3D .46.在等差数列{}n a 中,25812a a a ++=,则{}n a 的前9项和9S =( ) A .36B .48C .56D .727.已知数列{}n a 满足25111,,25a a a ==且*121210,n n n n a a a ++-+=∈N ,则*n N ∈时,使得不等式100n n a a +≥恒成立的实数a 的最大值是( ) A .19B .20C .21D .228.十九世纪下半叶集合论的创立,奠定了现代数学的基础.著名的“康托三分集”是数学理性思维的构造产物,具有典型的分形特征,其操作过程如下:将闭区间[0,1]均分为三段,去掉中间的区间段12(,)33,记为第一次操作;再将剩下的两个区间1[0,]3,2[,1]3分别均分为三段,并各自去掉中间的区间段,记为第二次操作;…,如此这样,每次在上一次操作的基础上,将剩下的各个区间分别均分为三段,同样各自去掉中间的区间段.操作过程不断地进行下去,以至无穷,剩下的区间集合即是“康托三分集”.若使去掉的各区间长度之和不小于910,则需要操作的次数n 的最小值为( )(参考数据:lg 20.3010=,lg30.4771=)A .4B .5C .6D .79.两等差数列{}n a 和{}n b ,前n 项和分别为n S ,n T ,且723n n S n T n +=+,则220715a ab b ++的值为( )A .14924B .7914C .165 D .511010.设y =f (x )是一次函数,若f (0)=1,且(1),(4),(13)f f f 成等比数列,则(2)(4)(2)f f f n +++等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)11.已知等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),则λ=( ) A .2-B .1-C .1D .212.已知等差数列{}n a 中,50a >,470a a +<则{}n a 的前n 项和n S 的最大值为( ) A .4SB .5SC .6SD .7S二、填空题13.已知正项数列{}n a 中,21129n n a a +=+,若对于一切的*n N ∈都有1n n a a +>成立,则1a 的取值范围是________.14.天干地支纪看法源于中国,中国自古便有十天干与十二地支.十天干:甲、乙、丙、丁、戊、已、庚、辛、壬、癸.十二地支:子、丑、寅、卯、辰、巳、午、未、申、酉、戌、亥.天干地支纪年法是按顺序以一个天干和一个地支相配,排列起来,天干在前,地支在后,天干由“甲”起,地支由“子”起,比如第一年为“甲子”,第二年为“乙丑”,第三年为“丙寅”,…,以此类推,排列到“癸酉”后,天干回到“甲”重新开始,即“甲戌”,“乙亥”,之后地支回到“子”重新开始,即“丙子”,…,以此类推,已知2020年为庚子年,那么到建国100年时,即2049年以天干地支纪年法为__________.15.朱载堉(1536-1611)是中国明代一位杰出的音乐家、数学家和天文历算家,他的著作《律学新说》中制作了最早的“十二平均律”.十二平均律是目前世界上通用的把一组音(八度)分成十二个半音音程的律制,各相邻两律之间的频率之比完全相等,亦称“十二等程律”,即一个八度13个音,相邻两个音之间的频率之比相等,且最后一个音是最初那个音的频率的2倍.设第三个音的频率为1f ,第七个音的频率为2f ,则21f f=______. 16.已知数列{}n a 的奇数项依次成等差数列,偶数项依次成等比数列,且11a =,22a =,347a a +=,5613a a +=,则78a a +=______.17.数列{}n a 满足, 123231111212222n na a a a n ++++=+,写出数列{}n a 的通项公式__________.18.根据下面的图形及相应的点数,写出点数构成的数列的一个通项公式n a =__________.19.正项数列{}n a 的前n 项和为n S ,且()22n nn S a a n N *++∈,设()2112n n n na c S +=-⋅,则数列{}n c 的前2019项的和为___________.20.数列{}n a 满足()211122,3,1n n nn n a a a a n a -+--+==+,21a =,33a =,则7a =________.三、解答题21.已知{}n a 是首项为19,公差为2-的等差数列. (1)求数列{}n a 的通项公式n a ;(2)设{}n n b a -是首项为1,公比为3的等比数列,求数列{}n b 的通项公式及其前n 项和n T .22.已知等比数列{n a }的各项均为正数,1a +3a ==5,且其前n 项和n S 满足72S =33S . (1)求数列的通项公式; (2)若()()111nn n n a b a a +=++求数列{n a }的前n 项和n T23.已知数列{}n a 的前n 项和n S 满足()()*231n n S a n N =-∈.(1)求数列{}n a 的通项公式; (2)记()()111nn n n a b a a +=--,n T 是数列{}n b 的前n 项和,若对任意的*n ∈N ,不等式141n k T n >-+都成立,求实数k 的取值范围. 24.已知数列{}n a 的前n 项和n S 满足()*12n n a S n N =-∈.(1)求数列{}n a 的通项公式, (2)设函数13()log f x x =,()()()12n n b f a f a f a =+++,1231111n nT b b b b =+++求证:2n T <. 25.已知数列{a n }的前n 项和S n =3n +1-t ,求证:数列{a n }是等比数列的充要条件为t =3.26.已知数列{}n a 中,12a =,24a =,()2112n n n a a a n -+=≥.(1)求数列{}n a 的通项公式; (2)设1n n b a =-,1212231n n n n a a aS b b b b b b +=++⋅⋅⋅+,对任意n *∈N ,证明:1n S <.参考答案【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,再由2017是从3开始的第1008个奇数,可得选项. 【详解】由题意,从32到3m ,正好用去从3开始的连续奇数,共123(2)(1)2m m m +++=+-个,212017n += ,得1008n =, 所以2017是从3开始的第1008个奇数,当45m =时,从32到345,用去从3开始的连续奇数共474410342⨯=个, 当44m =时,从32到344,用去从3开始的连续奇数共46439892⨯=个, 所以45m =,故选:B . 【点睛】方法点睛:对于新定义的数列问题,关键在于找出相应的规律,再运用等差数列和等比数列的通项公式和求和公式,得以解决.2.C解析:C 【分析】由,m n 的任意性,令1m =,可得112n n a a +=,即数列{}n a 是首项为12,公比为12得等比数列,即可求出答案. 【详解】由于*,m n ∀∈N ,有m n m n a a a +=,且112a =令1m =,则1112n n n a a a a +==,即数列{}n a 是首项为12,公比为12得等比数列,所以111111222n n n n a a q --⎛⎫⎛⎫==⨯= ⎪ ⎪⎝⎭⎝⎭,故6611264a ⎛⎫==⎪⎝⎭ 故选:C. 【点睛】关键点点睛:本题考查等比数列,解题的关键是特殊值取法,由,m n 的任意性,令1m =,即可知数列{}n a 是等比数列,考查学生的分析解题能力与运算能力,属于一般题.3.D解析:D 【分析】根据等比中项求出2k =,()21f x x =-,*x ∈N ,根据等差数列的求和公式求出n S 2n =,然后作差比较可知D 正确.【详解】因为(1)f ,(3)f ,(13)f 成等比数列,所以[]2(3)(1)(13)f f f =⋅,即2(31)(1)(131)k k k -=--,即220k k -=,因为0k ≠,所以2k =.所以()21f x x =-,*x ∈N ,5()5(21)105f n n n =-=-,2(121)2n n n S n +-==, 22275()271052102n S f n n n n n --=--+=--22(51)n n =--,当5n ≤时,275()0n S f n --<,所以275()n S f n -<,当6n ≥时,275()0n S f n -->,所以275()n S f n ->,故,A C 不正确;22275()2710521012n S f n n n n n +-=+-+=-+2(2)(3)n n =--0≥在*n N ∈时恒成立,所以275()n S f n +≥,故B 不正确,D 正确. 故选:D 【点睛】关键点点睛:掌握等比中项的概念和等差数列的求和公式是本题的解题关键.4.D解析:D 【分析】把点列代入函数解析式,根据{x n }是等比数列,可知1n nx x +为常数进而可求得1n n y y +-的结果为一个与n 无关的常数,可判断出{y n }是等差数列. 【详解】对于A ,函数3(4)f x x =+上的点列{x n ,y n },有y n =43n x +,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=()()()()114343441n n n n n x x x x x q +++-+=-=-这是一个与n 有关的数,故{y n }不是等差数列;对于B ,函数2()4f x x =上的点列{x n ,y n },有y n =24n x ,由于{x n }是等比数列,所以1n nx x +为常数,因此1n n y y +-=()222214441n n n x x x q +-=-这是一个与n 有关的数,故{y n }不是等差数列;对于C ,函数3()4xf x ⎛⎫= ⎪⎝⎭上的点列{x n ,y n },有y n =3()4n x ,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=133()()44n n x x+-=33()()144n qx⎡⎤-⎢⎥⎣⎦,这是一个与n 有关的数,故{y n }不是等差数列;对于D ,函数4()log f x x =上的点列{x n ,y n },有y n =4log n x,由于{x n }是等比数列,所以1n nx x +为常数, 因此1n n y y +-=114444log log log log n n n nx x x x q ++-==为常数,故{y n }是等差数列;故选:D . 【点睛】 方法点睛:判断数列是不是等差数列的方法:定义法,等差中项法.5.B解析:B 【分析】 由题意可得221114n na a +-=,运用等差数列的通项公式可得2143n n a =-,求得14n b =,然后利用裂项相消求和法可求得结果【详解】解:由11a =,1111114n n n n a a a a ++⎛⎫⎛⎫+-= ⎪⎪⎝⎭⎝⎭,得221114n na a +-=, 所以数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,所以2114(1)43nn n a =+-=-,因为0n a >,所以n a =,所以1111n n nb a a +=+=所以14n b ==,所以201220T b b b =++⋅⋅⋅+111339(91)244=++⋅⋅⋅+=⨯-=, 故选:B 【点睛】关键点点睛:此题考查由数列的递推式求数列的前n 项和,解题的关键是由已知条件得221114n n a a +-=,从而数列21n a ⎧⎫⎨⎬⎩⎭是以4为公差,以1为首项的等差数列,进而可求n a =,14n b ==,然后利用裂项相消法可求得结果,考查计算能力和转化思想,属于中档题6.A解析:A 【分析】根据等差数列的性质,由题中条件,得出54a =,再由等差数列前n 项和公式,即可得出结果. 【详解】因为{}n a 为等差数列,25812a a a ++=, 所以5312a =,即54a =, 所以()1999983622a a S +⨯===. 故选:A . 【点睛】熟练运用等差数列性质的应用及等差数列前n 项和的基本量运算是解题关键.7.B解析:B 【分析】由等差数列的性质可得数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,再由等差数列的通项公式可得1n n a ,进而可得1n a n=,再结合基本不等式即可得解. 【详解】 因为*121210,n n n n a a a ++-+=∈N ,所以12211n n n a a a ++=+, 所以数列1n a ⎧⎫⎨⎬⎩⎭为等差数列,设其公差为d , 由25111,25a a a ==可得25112,115a a a ==⋅, 所以111121145d a d a a ⎧+=⎪⎪⎨⎪+=⋅⎪⎩,解得1111a d ⎧=⎪⎨⎪=⎩,所以()1111n n d n a a =+-=,所以1n a n=,所以不等式100n n a a +≥即100n a n+≥对任意的*n N ∈恒成立,又10020n n +≥=,当且仅当10n =时,等号成立, 所以20a ≤即实数a 的最大值是20. 故选:B. 【点睛】关键点点睛:解决本题的关键是构造新数列求数列通项及基本不等式的应用.8.C解析:C【分析】依次求出第次去掉的区间长度之和,这个和构成一个等比数列,再求其前n 项和,列出不等式解之可得. 【详解】第一次操作去掉的区间长度为13;第二次操作去掉两个长度为19的区间,长度和为29;第三次操作去掉四个长度为127的区间,长度和为427;…第n 次操作去掉12n -个长度为13n 的区间,长度和为123n n -,于是进行了n 次操作后,所有去掉的区间长度之和为1122213933nn n n S -⎛⎫=++⋅⋅⋅+=- ⎪⎝⎭, 由题意,902131n⎛⎫-≥ ⎪⎝⎭,即21lg lg1031n ≤=-,即()lg3lg21n -≥,解得:115.679lg3lg 20.47710.3010n ≥=≈--,又n 为整数,所以n 的最小值为6. 故选:C . 【点睛】本题以数学文化为背景,考查等比数列通项、前n 项和等知识及估算能力,属于中档题.9.A解析:A 【分析】在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以结合此性质可得:2202171521a a Sb b T +=+,再根据题意得到答案.【详解】解:在{}n a 为等差数列中,当(m n p q m +=+,n ,p ,)q N +∈时,m n p q a a a a +=+.所以1212202171521121121()2121()2a a a a Sb b T b b ⨯+⨯+==+⨯+⨯, 又因为723n n S n T n +=+, 所以22071514924a ab b +=+. 故选:A . 【点睛】本题主要考查等差数列的下标和性质,属于中档题.10.A解析:A 【分析】由已知可以假设一次函数为1y kx =+,在根据(1),(4),(13)f f f 成等比数列,得出3k =,利用等差数列的求和公式求解即可. 【详解】由已知,假设()f x kx b =+,(0)k ≠(0)10f k b ==⨯+,1b ∴=.(1),(4),(13)f f f 成等比数列,且41,(13(1)1,(4)1)13k f f k f k =+=+=+.1k ∴+,41k +,131k +成等比数列,即2(41)(1)(131)k k k +=++,22161813141k k k k ++=++,从而解得0k =(舍去),2k =,(2)(4)(2)f f f n +++(221)(421)(221)n =⨯++⨯++⋯+⨯+ (242)2n n =++⋯+⨯+(1)42n n n +=⨯+2(1)n n n =++ ()22332n n n n ==++.故选:A . 【点睛】本题考查了等比数列、等差数列和函数的综合应用,考查了学生的计算能力,解题时要认真审题,仔细解答,避免错误,属于中档题.11.C解析:C 【分析】分别求出等比数列的前三项,利用等比数列的性质能求出入的值. 【详解】∵等比数列{}n a 的前n 项和()232nn S λλ=+-⋅(λ为常数),∴()1123246a S λλλ==+-⨯=-,()()222123223226a S S λλλλλ=-=+-⋅-+-⋅=-⎡⎤⎣⎦()()32332232232412a S S λλλλλ⎡⎤=-=+-⋅-+-⋅=-⎣⎦,123,,a a a 成等比数列,∴()()()22646412λλλ-=--,解得1λ=或3λ=∵3λ=时,2n S λ=是常数,不成立,故舍去3λ=.1λ∴=故选:C 【点睛】本题主要考查等比数列的性质等基础知识,求和公式与通项的关系,考查运算求解能力,属于中档题.12.B解析:B 【分析】根据50a >和470a a +<判断出数列的单调性,根据数列的单调性确定出n S 的最大值. 【详解】因为470a a +<,所以560a a +<,又因为50a >,所以60a <, 因为{}n a 为等差数列,所以650d a a =-<,所以{}n a 为单调递减数列, 所以n S 的最大值为5S , 故选:B. 【点睛】本题考查根据等差数列的单调性求解前n 项和的最大值,难度一般.求解等差数列前n 项和的最值,关键是分析等差数列的单调性,借助单调性可说明n S 有最大值还是最小值并且求解出对应结果.二、填空题13.【分析】根据列出关于的不等式求解出的取值范围从而的取值范围可确定出【详解】因为所以解得满足所以即故答案为:【点睛】关键点点睛:解答本题的关键是通过之间的不等关系求解出的取值范围由此可确定出的取值范围 解析:()3,6【分析】根据1n n a a +>列出关于n a 的不等式,求解出n a 的取值范围,从而1a 的取值范围可确定出. 【详解】 因为21129n n n a a a +=+<,所以29180n n a a -+<,解得36n a <<,满足0n a >, 所以136a <<,即()13,6a ∈, 故答案为:()3,6. 【点睛】关键点点睛:解答本题的关键是通过1,n n a a +之间的不等关系求解出n a 的取值范围,由此可确定出1a 的取值范围.14.已巳【分析】本题由题意可得数列天干是10个为一个循环的循环数列地支是以12个一个循环的循环数列以2020年的天干和地支分别为首项即可求解【详解】由题意可知数列天干是10个为一个循环的循环数列地支是以解析:已巳 【分析】本题由题意可得数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,以2020年的天干和地支分别为首项,即可求解. 【详解】由题意可知数列天干是10个为一个循环的循环数列,地支是以12个一个循环的循环数列,从2020年到2049年一共有30年,且2020年为庚子年, 则30103÷=,2049年的天干为已,30122÷=余6,2049年的地支为巳,故2049年为已巳年, 故答案为:已巳. 【点睛】关键点点睛:本题主要考查了循环数列的实际应用,能否根据题意得出天干是10个为一个循环的循环数列以及地支是以12个一个循环的循环数列是解决本题的关键,着重考查了分析问题和解答问题的能力,是中档题.15.【分析】将每个音的频率看作等比数列利用等比数列知识可求得结果【详解】由题知:一个八度13个音且相邻两个音之间的频率之比相等可以将每个音的频率看作等比数列一共13项且最后一个音是最初那个音的频率的2倍 解析:132【分析】将每个音的频率看作等比数列{}n a ,利用等比数列知识可求得结果. 【详解】由题知:一个八度13个音,且相邻两个音之间的频率之比相等,∴可以将每个音的频率看作等比数列{}n a ,一共13项,且1nn a q a -=, 最后一个音是最初那个音的频率的2倍,1312a a ∴=,12121122a q a q =⇒=,()1164122113321312f a a q q q f a a q ∴=====,12312ff ∴=. 故答案为:132【点睛】关键点点睛:构造等比数列求解是解题关键.16.23【分析】先设奇数项公差为偶数项公比为根据已知条件列关系求解和再计算即得结果【详解】设数列的奇数项依次成公差为的等差数列偶数项依次成公比为的等比数列由故解方程得故则故答案为:23【点睛】本题考查了解析:23 【分析】先设奇数项公差为d ,偶数项公比为q ,根据已知条件列关系求解d 和q ,再计算78,a a ,即得结果. 【详解】设数列{}n a 的奇数项依次成公差为d 的等差数列,偶数项依次成公比为q 的等比数列,由11a =,22a =,347a a +=,5613a a +=,故127d q ++=,212213d q ++=, 解方程得2d q ==.故3718237,16a a d a a q =+==⋅=,则7823a a +=.故答案为:23. 【点睛】本题考查了等差数列与等比数列的综合应用,属于中档题.17.【分析】当时有作差可求出再验证是否成立即可得出答案【详解】当时由所以—可得所以当时所以不满足上式所以故答案为:【点睛】本题主要考查数列通项公式的求法做题的关键是掌握属于中档题解析:16,12,2n n n a n +=⎧=⎨≥⎩【分析】当2n ≥时,有()12312311111211212222n n a a a a n n --+++=-+=+-,作差可求出12n n a +=,再验证1a 是否成立,即可得出答案.【详解】当2n ≥时,由123231111212222n n a a a a n ++++=+, 所以()12312311111211212222n n a a a a n n --+++=-+=+-, —可得()1212122n n a n n =+--=,所以1222n n n a +⋅==, 当1n =时,112132a =+=,所以16a =,不满足上式,所以16,12,2n n n a n +=⎧=⎨≥⎩.故答案为: 16,12,2n n n a n +=⎧=⎨≥⎩【点睛】本题主要考查数列通项公式的求法,做题的关键是掌握1n n n a S S -=-,属于中档题.18.【分析】观察图中点数增加规律是依次增加5可得求解【详解】第一图点数是1;第二图点数;第三图是;第四图是则第个图点数故答案为:【点睛】本题考查由数列的前几项求通项公式数列的前几项求通项公式的思路方法: 解析:54n -【分析】观察图中点数增加规律是依次增加5,可得求解。

高中数学选择性必修二 第四章 数列(章末测试)(含答案)

高中数学选择性必修二 第四章 数列(章末测试)(含答案)

第四章 数 列 章末测试注意事项:1.答题前填写好自己的姓名、班级、考号等信息 2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题(每题只有一个选项为正确答案,每题5分,共40分)1.(2020·山东泗水·期中(文))已知数列{}n a 中,11a =,122nn n a a a +=+,则5a 等于( ) A .25B .13C .23D .12【答案】B【解析】在数列{}n a 中,11a =,122n n n a a a +=+,则12122122123a a a ⨯===++,2322221322223a a a ⨯===++, 3431222212522a a a ⨯===++,4542221522325a a a ⨯===++.故选:B. 2.(2020·四川阆中中学月考(理))等比数列{}n a 的各项均为正实数,其前n 项和为S n ,若a 3=4,a 2·a 6=64,则S 5=( ) A .32 B .31C .64D .63【答案】B【解析】依题意3264640n a a a a =⎧⎪⋅=⎨⎪>⎩,即2151114640,0a q a q a q a q ⎧⋅=⎪⋅=⎨⎪>>⎩,解得11,2a q ==,所以()551123112S ⨯-==-.故选:B3.(2020·湖南武陵·常德市一中月考)在等比数列{}n a 中,5113133,4a a a a =+=,则122a a =( ) A .3 B .13-C .3或13D .3-或13-【答案】C【解析】若{}n a 的公比为q ,∵3135113a a a a ==,又由3134a a +=,即有31313a a =⎧⎨=⎩或31331a a =⎧⎨=⎩, ∴1013q =或3,故有101223a q a ==或13故选:C 4.(2021·黑龙江哈尔滨市第六中学校月考(理))在递减等比数列{}n a 中,n S 是其前n 项和,若245a a +=,154a a ⋅=,则7S =( ).A .1278B .212C .638D .6332【答案】A【解析】则24152454a a a a a a +=⎧⎨==⎩,解得2414a a =⎧⎨=⎩或2441a a =⎧⎨=⎩,∵{}n a 是递减数列,则2441a a =⎧⎨=⎩,∴24214a q a ==,12q =(12q =-舍去).∴218a a q ==,7717181(1)21112a q S q ⎛⎫⨯- ⎪-⎝⎭==--1278=. 故选:A .5.(2020·重庆高一期末)《莱茵德纸草书》是世界上最古老的数学著作之一.书中有这样一道题目:把100个面包分给5个人,使每个人所得成等差数列,且使较大的三份之和的17是较小的两份之和,则最小的一份为( )A .53B .103C .56D .116【答案】A【解析】设5人分到的面包数量从小到大记为{}n a ,设公差为d ,依题意可得,15535()51002a a S a +===, 33451220,7()a a a a a a ∴=++=+, 6037(403)d d ∴+=-,解得556d =, 1355522033a a d ∴=-=-=. 故选:A.6.(2020·贵州贵阳·为明国际学校其他(理))已知等比数列{}n a 的前n 项和为n S ,若公比6121,24q S =-=,则数列{}n a 的前n 项积n T 的最大值为( ) A .16 B .64C .128D .256【答案】B【解析】由12q =-,6214S =,得61112211412a ⎡⎤⎛⎫--⎢⎥⎪⎝⎭⎢⎥⎣⎦=⎛⎫-- ⎪⎝⎭,解得18a =, 所以数列{}n a 为8,4-,2,1-,12,14-,……,前4项乘积最大为64. 故选:B .7.(2020·吉林市第二中学月考)已知等差数列{}n a 的前n 项的和为n S ,且675S S S >>,有下面4个结论: ①0d <;②110S >;③120S <;④数列{}n S 中的最大项为11S , 其中正确结论的序号为( ) A .②③ B .①②C .①③D .①④【答案】B【解析】由675S S S >>得760S S -<,750S S ->,则70a <,670a a +>,所以60a >,所以0d <,①正确;111116111102a a S a +=⨯=>,故②正确; 1126712126()02a a S a a +=⨯=+>,故③错误; 因为60a >,70a <,故数列{}n S 中的最大项为6S ,故④错误. 故选:B.8.(2020·上海市市西中学月考)已知等差数列{}n a 的前n 项和为n S ,若2415a a a ++是一个确定的常数,则数列{}n S 中是常数的项是( )A .7S ;B .8S ;C .11S ;D .13S【解析】由于题目所给数列为等差数列,根据等差数列的性质, 有()2415117318363a a a a d a d a ++=+=+=, 故7a 为确定常数,由等差数列前n 项和公式可知()11313713132a a S a+⋅==也为确定的常数.故选:D二、多选题(每题有多个选项为正确答案,少选且正确得3分,每题5分,共20分)9.(2020·鱼台县第一中学月考)设{}n a 是等差数列,n S 为其前n 项和,且78S S <,8910S S S =>,则下列结论正确的是( ) A .0d < B .90a =C .117S S >D .8S 、9S 均为n S 的最大值【答案】ABD【解析】由78S S <得12377812a a a a a a a a +++⋯+<++⋯++,即80a >, 又∵89S S =,1229188a a a a a a a ∴++⋯+=++⋯++,90a ∴=,故B 正确;同理由910S S >,得100a <,1090d a a =-<,故A 正确;对C ,117S S >,即8910110a a a a +++>,可得(9102)0a a +>, 由结论9100,0a a =<,显然C 是错误的;7898810,,S S S S S S <=>∴与9S 均为n S 的最大值,故D 正确;10.(2020·河北邯郸·高三月考)已知数列{}n a 满足:13a =,当2n ≥时,)211n a =-,则关于数列{}n a 说法正确的是( ) A .28a =B .数列{}n a 为递增数列C .数列{}n a 为周期数列D .22n a n n =+【答案】ABD【解析】)211n a =-得)211n a +=,1=,即数列2=,公差为1的等差数列,2(1)11n n =+-⨯=+,∴22n a n n =+,得28a =,由二次函数的性质得数列{}n a 为递增数列,所以易知ABD 正确, 故选:ABD.11.(2020·湖南雁峰·衡阳市八中高二月考)在《增减算法统宗》中有这样一则故事:三百七十八里关,初行健步不为难;次日脚痛减一半,如此六日过其关.则下列说法正确的是( ) A .此人第三天走了二十四里路B .此人第一天走的路程比后五天走的路程多六里C .此人第二天走的路程占全程的14D .此人走的前三天路程之和是后三天路程之和的8倍【解析】由题意,此人每天所走路程构成以12为公比的等比数列, 记该等比数列为{}n a ,公比为12q =,前n 项和为n S , 则16611163237813212a S a ⎛⎫- ⎪⎝⎭===-,解得1192a =,所以此人第三天走的路程为23148a a q =⋅=,故A 错;此人第一天走的路程比后五天走的路程多()1611623843786a S a a S --=-=-=里,故B 正确;此人第二天走的路程为213789694.54a a q =⋅=≠=,故C 错; 此人前三天走的路程为31231929648336S a a a =++=++=,后三天走的路程为6337833642S S -=-=,336428=⨯,即前三天路程之和是后三天路程之和的8倍,D 正确;故选:BD.12.(2019·山东省招远第一中学高二期中)已知两个等差数列{}n a 和{}n b 的前n 项和分别为n S 和n T ,且3393n n S n T n +=+,则使得n na b 为整数的正整数n 的值为( ) A .2 B .3C .4D .14【答案】ACD【解析】由题意可得()()()()()()12121121212121221212n n n n n n n nn a a n a S a n b b T n b b -----+-===-+-,则()()21213213931815321311n n n n n a S n b T n n n ---++====+-+++,由于nna b 为整数,则1n +为15的正约数,则1n +的可能取值有3、5、15, 因此,正整数n 的可能取值有2、4、14. 故选:ACD.第II 卷(非选择题)三、填空题(每题5分,共20分)13.(2020·山东泗水·期中(文))已知{}n a 是等比数列,14a =,412a =,则12231n n a a a a a a +++⋅⋅⋅+=______. 【答案】321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦【解析】由题意,等比数列{}n a 中,14a =,412a =,可得34218a q a ==,解得12q =,又由2111114n n n n n n a a a q a a a ++--===,且21218a a a q ==, 即数列{}1n n a a +表示首项为8,公比为14的等比数列, 所以1223118[1()]3214113414n n n n a a a a a a +⨯-⎡⎤⎛⎫++⋅⋅⋅+==-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦-. 故答案为:321134n⎡⎤⎛⎫-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦.14.(2021·黑龙江哈尔滨市第六中学校月考(理))在各项都是正数的等比数列{}n a 中,2a ,312a ,1a 成等差数列,则7856a a a a ++的值是________.【答案】32+【解析】设等比数列{}n a 的公比为()0q q >, 由321a a a =+, 得210q q --=,解得12q +=(负值舍),则222278565656a a a q a q q a a a a ++====++⎝⎭.15.(2020·吉林市第二中学月考)各项均为正数的等比数列{a n }的前n 项和为S n ,已知S 6=30,S 9=70,则S 3=________. 【答案】10【解析】根据等比数列的前n 项和的性质,若S n 是等比数列的和,则S n ,S 2n -S n ,S 3n -S 2n ,…仍是等比数列,得到(S 6-S 3)2=S 3(S 9-S 6), 即()()233307030S S -=⋅-. 解得S 3=10或S 3=90(舍). 故答案为:1016.(2020·四川武侯·成都七中月考)已知等差数列{}n a 的公差2d =,前n 项之和为n S ,若对任意正整数n 恒有2n S S ≥,则1a 的取值范围是______.【答案】[]4,2--【解析】因为对任意正整数n 恒有2n S S ≥,所以2S 为n S 最小值,因此230,0a a ≤≥,即111+20,+4042a a a ≤≥∴-≤≤- 故答案为:[]4,2--四、解答题(17题10分,其余每题12分,共6题70分)17.(2020·安徽省舒城中学月考(文))已知在等差数列{}n a 中,35a =,1763a a =. (1)求数列{}n a 的通项公式:(2)设2(3)n n b n a =+,求数列{}n b 的前n 项和n S .【答案】(1)21n a n =-;(2)1n n +. 【解析】设等差数列{}n a 的公差为d ,由317653a a a =⎧⎨=⎩,可得()111251635a d a d a d +=⎧⎨+=+⎩ 解得1a 1,d 2,所以等差数列{}n a 的通项公式可得21n a n =-;(2) 由(1)可得211(3)22(1)1n n b n a n n n n ===-+++,所以111111 (22311)n n S n n n ⎛⎫⎛⎫⎛⎫=-+-++-= ⎪ ⎪ ⎪++⎝⎭⎝⎭⎝⎭. 18.(2020·湖南武陵·常德市一中月考)已知数列{}n a 的前n 项和为n S ,()()()111,11,2n n a n S nS n n n N n -+=-=+-∈≥.(1)求证:数列n S n ⎧⎫⎨⎬⎩⎭为等差数列; (2)记数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,求n T 【答案】(1)证明见解析;(2)21n n T n =+. 【解析】(1)当2n ≥时,因为()()111n n n S nS n n --=+-, 所以()1121n n S S n n n --=≥-, 即n S n ⎧⎫⎨⎬⎩⎭首项为1,公差为1的等差数列. (2)由(1)得n S n n=,2n S n =. 当2n ≥时,()22121n a n n n =--=-.当1n =时,11a =,符合题意,所以21n a n =-. 所以()()111111212122121n n a a n n n n +⎛⎫==- ⎪-+-+⎝⎭, 所以111111123352121n T n n ⎡⎤⎛⎫⎛⎫⎛⎫=-+-+⋯+- ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎣⎦ 11122121n n T n n ⎛⎫=-= ⎪++⎝⎭. 19.(2021·黑龙江鹤岗一中月考(理))已知各项均为正数的等差数列{}n a 中,12315a a a ++=,且12a +,25a +,313a +构成等比数列{}n b 的前三项.(1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .【答案】(1)21n a n =+,152n n b -=⋅;(2)5(21)21n n T n ⎡⎤=-+⎣⎦【解析】(1)设等差数列的公差为d ,则由已知得:1232315a a a a ++==,即25a =, 又(52)(513)100d d -+++=,解得2d =或13d =-(舍去),123a a d =-=,1(1)21n a a n d n ∴=+-⨯=+,又1125b a =+=,22510b a =+=,2q ∴=,152n n b -∴=⋅;(2)21535272(21)2n n T n -⎡⎤=+⨯+⨯+++⨯⎣⎦,2325325272(21)2n n T n ⎡⎤=⨯+⨯+⨯+++⨯⎣⎦,两式相减得2153222222(21)25(12)21n n n n T n n -⎡⎤⎡⎤-=+⨯+⨯++⨯-+⨯=--⎣⎦⎣⎦, 则5(21)21n n T n ⎡⎤=-+⎣⎦.20.(2020·四川省绵阳南山中学月考(理))已知数列{}n a 为等差数列,11a =,0n a >,其前n 项和为n S ,且数列也为等差数列. (1)求数列{}n a 的通项公式;(2)设11n n n n a b S S ++=⋅,求数列{}n b 的前n 项和.【答案】(1)21n a n =-;(2)222(1)n n n ++. 【解析】(1)设等差数列{}n a 的公差为(0)d d ≥, 11S ===1∴=+2d =,1(1)221n a n n ∴+-⨯=-=,n ==, 所以数列为等差数列,21na n ∴=-. (2)2(121)2n n n S n +-==,22222111(1)(1)n nb n n n n +∴==-⋅++, 设数列{}n b 的前n 项和为n T ,则2222222221111111211223(1)(1)(1)n n n T n n n n ⎛⎫+⎛⎫⎛⎫=-+-++-=-= ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭. 21.(2020·浙江月考)已知等比数列{}n a 的公比1q >,且13542a a a ++=,39a +是1a ,5a 的等差中项. (1)求数列{}n a 的通项公式;(2)证明:3n n n n a b a =+,设{}n b 的前n 项的和为n S ,求证:2113n S <. 【答案】(1)2n n a =;(2)证明见解析.【解析】(1)由39a +是1a ,5a 的等差中项得153218a a a +=+,所以135a a a ++331842a =+=,解得38a =,由1534a a +=,得228834q q +=,解得24q =或214q =, 因为1q >,所以2q. 所以2n n a =.(2)112()333()1()22n n n nb =<=+, 3412324222()()()513333n n n S b b b b ∴=++++<++++24688221()6599313n -=+-⋅≤在3n ≥成立, 又有1222146215136513S S =<=<,, 2113n S ∴<. 22.(2020·黑龙江让胡路·铁人中学高二期中(理))已知数列{}n a 中,n S 是{}n a 的前n 项和且n S 是2a 与2n na -的等差中项,其中a 是不为0的常数.(1)求123,,a a a .(2)猜想n a 的表达式,并用数学归纳法进行证明.【答案】(1)12a a =;26a a =;312a a =(2)猜想:()()*1n a a n N n n =∈+;证明见解析 【解析】(1)由题意知:222n n S a na =-即n n S a na =-,当1n =时,111S a a a ==-,解得12a a =.当2n =时,21222S a a a a =+=-,解得26a a =. 当3n =时,312333S a a a a a =++=-,解得312a a =. (2)猜想:()()*1n a a n N n n =∈+ 证明:①当1n =时,由(1)知等式成立.②假设当()*1,n k k k N =≥∈时等式成立,即()1k a a k k =+, 则当1n k =+时,又n n S a na =-则k k S a ka =-,11k k S a ka ++=-, ∴()()1111k k k k k a S S a k a a ka +++=-=-+--, 即()()1211k k a a k a ka k k k k ++==⨯=++ 所以()()()()112111k aa a k k k k +==+++++⎡⎤⎣⎦, 即当1n k =+时,等式成立.结合①②得()1n a a n n =+对任意*n N ∈均成立.。

必修5《第一章数列》章末测试卷含解析

必修5《第一章数列》章末测试卷含解析

, [学生用书单独成册])(时间:100分钟,满分:120分)一、选择题(本大题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列四个数列中,既是无穷数列又是递增数列的是( )A .1,12,13,14,… B .-1,2,-3,4,…C .-1,-12,-14,-18,… D .1,2,3,…,n解析:选C.A 为递减数列,B 为摆动数列,D 为有穷数列.2.有穷数列1,23,26,29,…,23n +6的项数是( )A .3n +7B .3n +6C .n +3D .n +2解析:选C.此数列的次数依次为0,3,6,9,…,3n +6,为等差数列,且首项a 1=0,公差d =3,设3n +6是第x 项,3n +6=0+(x -1)×3,所以x =n +3.故选C.3.某种细胞开始有2个,1小时后分裂成4个并死去1个,2小时后分裂成6个并死去1个,3小时后分裂成10个并死去1个,…, 按此规律进行下去,6小时后细胞存活的个数是( )A .33个B .65个C .66个D .129个解析:选B.设开始的细胞数和每小时后的细胞数构成的数列为{a n }.则⎩⎪⎨⎪⎧a 1=2,a n +1=2a n -1,即a n +1-1a n -1=2. 所以a n -1=1·2n -1,a n =2n -1+1,a 7=65.4.等差数列{a n }的公差不为零,首项a 1=1,a 2是a 1和a 5的等比中项,则数列的前10项之和是( )A .90B .100C .145D .190解析:选B.设公差为d ,所以(1+d )2=1×(1+4d ),因为d ≠0,所以d =2,从而S 10=100.5.已知数列{a n }满足a 1=0,a n +1=a n -33a n +1(n ∈N +),则a 20=( ) A .0 B .- 3C. 3D.32解析:选B.由a 1=0,a n +1=a n -33a n +1(n ∈N +), 得a 2=-3,a 3=3,a 4=0,…由此可知数列{a n }是周期变化的,周期为3,所以a 20=a 2=- 3.6.设y =f (x )是一次函数,若f (0)=1,且f (1),f (4),f (13)成等比数列,则f (2)+f (4)+…+f (2n )等于( )A .n (2n +3)B .n (n +4)C .2n (2n +3)D .2n (n +4)解析:选A.设y =kx +b (k ≠0),因为f (0)=1,所以b =1.又因为f (1),f (4),f (13)成等比数列,所以(4k +1)2=(k +1)·(13k +1),所以k =2,所以y =2x+1.所以f (2)+f (4)+…+f (2n )=(2×2+1)+(2×4+1)+…+(2×2n +1)=2(2+4+…+2n )+n =2n 2+2n +n =n (2n +3).故选A.7.等比数列{a n }的通项为a n =2·3n -1,现把每相邻两项之间都插入两个数,构成一个新的数列{b n },那么162是新数列{b n }的( )A .第5项B .第12项C .第13项D .第6项解析:选C.162是数列{a n }的第5项,则它是新数列{b n }的第5+(5-1)×2=13项.8.数列{a n }满足递推公式a n =3a n -1+3n -1(n ≥2),又a 1=5,则使得{a n +λ3n }为等差数列的实数λ等于( )A .2B .5C .-12 D.12解析:选C.a 1=5,a 2=23,a 3=95,令b n =a n +λ3n , 则b 1=5+λ3,b 2=23+λ9,b 3=95+λ27, 因为b 1+b 3=2b 2,所以λ=-12. 9.近年来,我国最大的淡水湖鄱阳湖湖区面积逐年减少,江西省政府决定将原3万亩围垦区退垦还湖,计划2013年退垦还湖面积为3 000亩,以后每年退垦还湖面积比上一年增加20%,那么从2013年起到哪一年可以基本完成退垦还湖工作(参考数据:lg 3≈0.477 1,lg 1.2≈0.079 2)( )A .2015年B .2016年C .2017年D .2018年解析:选D.由题意可知每年退垦还湖面积依次构成一个等比数列,记为{a n },则首项a 1=3 000,公比q =1+20%=1.2,前n 项和S n =30 000,由3 000(1-1.2n )1-1.2=30 000,得1.2n =3,所以n =log 1.23=lg 3lg 1.2≈6,即到2018年可以基本完成退垦还湖工作,故选D. 10.设数列{a n }是以2为首项,1为公差的等差数列,{b n }是以1为首项,2为公比的等比数列,则ab 1+ab 2+…+ab 10等于( )A .1 033B .1 034C .2 057D .2 058解析:选A.由已知可得a n =n +1,b n =2n -1,于是ab n =b n +1,因此ab 1+ab 2+…+ab 10=(b 1+1)+(b 2+1)+…+(b 10+1)=b 1+b 2+…+b 10+10=20+21+…+29+10=1-2101-2+10=1 033. 二、填空题(本大题共5小题,每小题5分,共25分.把答案填在题中的横线上)11.若数列{a n }满足:a 1=1,a n +1=2a n (n ∈N +),则a 5=________;前8项的和S 8=________(用数字作答).解析:由a 1=1,a n +1=2a n (n ∈N +)知{a n }是以1为首项,以2为公比的等比数列,由通项公式及前n 项和公式知a 5=a 1q 4=16,S 8=a 1(1-q 8)1-q =1·(1-28)1-2=255. 答案:16 25512.设数列{a n }中,a 1=2,a n +1=a n +n +1,则通项公式a n =________.解析:因为a 1=2,a n +1=a n +n +1,所以a n -a n -1=n ,a n -1-a n -2=n -1,a n -2-a n -3=n -2,…,a 3-a 2=3,a 2-a 1=2,a 1=2.将以上各式的两边分别相加,得a n =[n +(n -1)+(n -2)+(n -3)+…+2+1]+1=n (n +1)2+1.答案:n (n +1)2+1 13.数列{a n }满足a n +1=11-a n ,a 8=2,则a 1=________. 解析:因为a n +1=11-a n, 所以a n +1=11-a n =11-11-a n -1=1-a n -11-a n -1-1 =1-a n -1-a n -1=1-1a n -1=1-111-a n -2=1-(1-a n -2)=a n -2, 所以周期T =(n +1)-(n -2)=3.所以a 8=a 3×2+2=a 2=2.而a 2=11-a 1,所以a 1=12. 答案:1214.已知a ,b ,a +b 成等差数列,a ,b ,ab 成等比数列,则通项为a n =82an 2+bn的数列{a n }的前n 项和为________.解析:因为a ,b ,a +b 成等差数列,所以2b =a +a +b ,故b =2a .因为a ,b ,ab 成等比数列,所以b 2=a 2b ,又b ≠0,故b =a 2,所以a 2=2a ,又a ≠0,所以a =2,b =4,所以a n =82an 2+bn =84n 2+4n =2n (n +1)=2(1n -1n +1), 所以{a n }的前n 项和S n =2(1-12+12-13+…+1n -1n +1)=2(1-1n +1)=2n n +1. 答案:2n n +115.在等差数列{a n }中,其前n 项的和为S n ,且S 6<S 7,S 7>S 8,有下列四个命题:①此数列的公差d <0;②S 9一定小于S 6;③a 7是各项中最大的一项;④S 7一定是S n 中的最大项.其中正确的命题是________.(填入所有正确命题的序号)解析:因为S 7>S 6,即S 6<S 6+a 7,所以a 7>0.同理可知a 8<0.所以d =a 8-a 7<0.又因为S 9-S 6=a 7+a 8+a 9=3a 8<0,所以S 9<S 6.因为数列{a n }为递减数列,且a 7>0,a 8<0,所以可知S 7为S n 中的最大项.答案:①②④三、解答题(本大题共5小题,共55分.解答应写出必要的文字说明、证明过程或演算步骤)16.(本小题满分10分)一个等比数列的前三项依次是a ,2a +2,3a +3,则-1312是否是这个数列中的一项?如果是,是第几项?如果不是,请说明理由.解:因为a ,2a +2,3a +3是等比数列的前三项,所以a (3a +3)=(2a +2)2,解得a =-1或a =-4.当a =-1时,数列的前三项依次为-1,0,0,与等比数列定义矛盾,故a =-1舍去.当a =-4时,数列的前三项依次为-4,-6,-9,则公比为q =32,所以a n =-4(32)n -1,令-4(32)n -1=-1312,即(32)n -1=278=(32)3. 所以n -1=3,即n =4,所以-1312是这个数列中的第4项. 17.(本小题满分10分)已知{a n }是公差不为零的等差数列,{b n }是各项都是正数的等比数列,(1)若a 1=1,且a 1,a 3,a 9成等比数列,求数列{a n }的通项公式;(2)若b 1=1,且b 2,12b 3,2b 1成等差数列,求数列{b n }的通项公式. 解:(1)由题意可设{a n }公差为d ,则d ≠0,由a 1=1,a 1,a 3,a 9成等比数列得1+2d 1=1+8d 1+2d, 解得d =1或d =0(舍去),故数列{a n }的通项公式为a n =1+(n -1)×1=n .(2)由题意可设{b n }公比为q ,则q >0,由b 1=1,且b 2,12b 3,2b 1成等差数列得b 3=b 2+2b 1, 所以q 2=2+q ,解得q =2或q =-1(舍去),故数列{b n }的通项公式为b n =1×2n -1=2n -1.18.(本小题满分10分)已知首项都是1的两个数列{a n },{b n }(b n ≠0,n ∈N +)满足a n b n +1-a n +1b n +2b n +1b n =0.(1)令c n =a n b n,求数列{c n }的通项公式; (2)若b n =3n -1,求数列{a n }的前n 项和S n .解:(1)因为a n b n +1-a n +1b n +2b n +1b n =0,b n ≠0(n ∈N +),所以a n +1b n +1-a n b n=2,即c n +1-c n =2, 所以数列{c n }是以首项c 1=1,公差d =2的等差数列,故c n =2n -1.(2)由b n =3n -1知a n =c n b n =(2n -1)3n -1,于是数列{a n }的前n 项和S n =1·30+3·31+5·32+…+(2n -1)·3n -1,3S n =1·31+3·32+…+(2n -3)·3n -1+(2n -1)·3n ,相减得-2S n =1+2·(31+32+…+3n -1)-(2n -1)·3n =-2-(2n -2)3n ,所以S n =(n -1)3n +1.19.(本小题满分12分)某地现有居民住房的面积为a m 2,其中需要拆除的旧住房面积占了一半,当地有关部门决定在每年拆除一定数量旧住房的情况下,仍以10%的住房增长率建新住房.(1)如果10年后该地的住房总面积正好比目前翻一番,那么每年应拆除的旧住房总面积x 是多少(可取1.110≈2.6)?(2)在(1)的条件下过10年还未拆除的旧住房总面积占当时住房总面积的百分比是多少(保留到小数点后第1位)?解:(1)根据题意,可知1年后住房总面积为1.1a -x ;2年后住房总面积为1.1(1.1a -x )-x =1.12a -1.1x -x ;3年后住房总面积为1.1(1.12a -1.1x -x )-x =1.13a -1.12x -1.1x -x ;…10年后住房总面积为1.110a -1.19x -1.18x -…-1.1x -x=1.110a -1.110-11.1-1x ≈2.6a -16x . 由题意,得2.6a -16x =2a .解得x =380a (m 2). (2)所求百分比为a 2-380a ×102a =116≈6.3%. 即过10年未拆除的旧房总面积占当时住房总面积的百分比是6.3%.20.(本小题满分13分)已知数列{a n }的前n 项和为S n ,点(n ,S n n )在直线y =12x +112上.数列{b n }满足b n +2-2b n +1+b n =0(n ∈N +),b 3=11,且其前9项和为153.(1)求数列{a n },{b n }的通项公式;(2)设c n =3(2a n -11)(2b n -1),数列{c n }的前n 项和为T n ,求使不等式T n >k 57对一切n ∈N +都成立的最大正整数k 的值.解:(1)由已知得S n n =12n +112, 所以S n =12n 2+112n . 当n ≥2时,a n =S n -S n -1=12n 2+112n -12(n -1)2-112(n -1)=n +5; 当n =1时,a 1=S 1=6也符合上式.所以a n =n +5.由b n +2-2b n +1+b n =0(n ∈N +)知{b n }是等差数列,由{b n }的前9项和为153,可得9(b 1+b 9)2=9b 5=153, 得b 5=17,又b 3=11,所以{b n }的公差d =b 5-b 32=3,b 3=b 1+2d , 所以b 1=5,所以b n =3n +2.(2)c n =3(2n -1)(6n +3)=12(12n -1-12n +1), 所以T n =12(1-13+13-15+…+12n -1-12n +1) =12(1-12n +1). 因为n 增大,T n 增大,所以{T n }是递增数列.所以T n ≥T 1=13. T n >k 57对一切n ∈N +都成立,只要T 1=13>k 57,所以k <19,则k max =18.。

第四章 数列 章末检测试卷一(第四章)(含解析)高中数学人教A版选择性必修第二册

第四章 数列 章末检测试卷一(第四章)(含解析)高中数学人教A版选择性必修第二册

章末检测试卷一(第四章)[时间:120分钟分值:150分]一、单项选择题(本题共8小题,每小题5分,共40分)1.已知数列1,3,5,7,…,2n―1,则35是这个数列的第( )A.20项B.21项C.22项D.23项2.设等差数列{a n}的前n项和为S n,若a4=8,S3=18,则S5等于( )A.34B.35C.36D.383.已知等比数列{a n}的各项均为正数,若log3a1+log3a2+…+log3a12=12,则a6a7等于( )A.1B.3C.6D.94.等差数列{a n}的前n项和为S n.若a1011+a1012+a1013+a1014=8,则S2024等于( )A.8096B.4048C.4046D.20245.已知圆O的半径为5,|OP|=3,过点P的2024条弦的长度组成一个等差数列{a n},圆O的最短弦长为a1,最长弦长为a2024,则其公差为( )A.12 023B.22 023C.31 011D.15056.已知等差数列{a n}的前n项和为S n,若a6+a7>0,a6+a8<0,则S n最大时n的值为( )A.4B.5C.6D.77.已知数列{a n}中的项都是整数,且满足a n+1={a n2,a n为偶数,3a n+1,a n为奇数,若a8=1,a1的所有可能取值构成集合M,则M中的元素的个数是( )A.7B.6C.5D.48.若数列{a n}的前n项和为S n,b n=S nn,则称数列{b n}是数列{a n}的“均值数列”.已知数列{b n}是数列{a n}的“均值数列”且通项公式为b n=n,设数列{1a n a n+1}的前n项和为T n,若T n<12m2-m-1对一切n∈N*恒成立,则实数m的取值范围为( )A.(-1,3)B.[-1,3]C.(-∞,-1)∪(3,+∞)D.(-∞,-1]∪[3,+∞)二、多项选择题(本题共3小题,每小题6分,共18分.全部选对的得6分,部分选对的得部分分,有选错的得0分)9.已知数列{a n }的通项公式为a n =(n +2)·(67)n,则下列说法正确的是( )A.a 1是数列{a n }的最小项B.a 4是数列{a n }的最大项C.a 5是数列{a n }的最大项D.当n ≥5时,数列{a n }为递减数列10.设d ,S n 分别为等差数列{a n }的公差与前n 项和,若S 10=S 20,则下列说法中正确的是( )A.当n =15时,S n 取最大值B.当n =30时,S n =0C.当d >0时,a 10+a 22>0D.当d <0时,|a 10|>|a 22|11.已知两个等差数列{a n }和{b n }的前n 项和分别为S n 和T n ,且S n T n=3n +39n +3,则使得a n b n 为整数的正整数n的值为( )A.2 B.3C.4D.14三、填空题(本题共3小题,每小题5分,共15分)12.已知数列{a n }的前n 项和为S n ,a 1=1,a n +a n +1=4×3n -1,则S 2 024= .13.在等差数列{a n }中,前m (m 为奇数)项和为135,其中偶数项之和为63,且a m -a 1=14,则a 100的值为 .14.已知函数f (x )=(x +1)3+1,正项等比数列{a n }满足a 1 013=110,则2 025Σk =1f (lg a k )= . 四、解答题(本题共5小题,共77分)15.(13分)在数列{a n }中,a 1=1,a n +1=3a n .(1)求{a n }的通项公式;(6分)(2)数列{b n }是等差数列,S n 为{b n }的前n 项和,若b 1=a 1+a 2+a 3,b 3=a 3,求S n .(7分)16.(15分)已知等差数列{a n }中,a 5-a 2=6,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式;(6分)(2)设b n =1a n a n +1,数列{b n }的前n 项和为S n ,若S n =335,求n 的值.(9分)17.(15分)在数列{a n }中,前n 项和S n =1+ka n (k ≠0,k ≠1).(1)证明:数列{a n }为等比数列;(5分)(2)求数列{a n }的通项公式;(4分)(3)当k =-1时,求a 21+a 22+…+a 2n .(6分)18.(17分)某公司计划今年年初用196万元引进一条永磁电机生产线,第一年需要安装、人工等费用24万元,从第二年起,包括人工、维修等费用每年所需费用比上一年增加8万元,该生产线每年年产值保持在100万元.(1)引进该生产线几年后总盈利最大,最大是多少万元?(8分)(2)引进该生产线几年后平均盈利最多,最多是多少万元?(9分)19.(17分)在如图所示的三角形数阵中,第n 行有n 个数,a ij 表示第i 行第j 个数,例如,a 43表示第4行第3个数.该数阵中每一行的第一个数从上到下构成以m 为公差的等差数列,从第三行起每一行的数从左到右构成以m 为公比的等比数列(其中m >0).已知a 11=2,a 41=12a 32+2,a 22a 21=m .(1)求m 及a 53;(7分)(2)记T n =a 11+a 22+a 33+…+a nn ,求T n .(10分)答案精析1.D [已知数列1,3,5,7,…,2n ―1,则该数列的通项公式为a n =2n ―1,若2n ―1=35=45,即2n -1=45,解得n =23,则35是这个数列的第23项.]2.B [因为{a n }是等差数列,设其公差为d ,因为S 3=a 1+a 2+a 3=3a 2=18,则a 2=6,所以2d =a 4-a 2=2,则d =1,所以a 5=9,S 5=S 3+a 4+a 5=18+8+9=35.]3.D [因为等比数列{a n }的各项均为正数,且log 3a 1+log 3a 2+…+log 3a 12=12,即log 3(a 1·a 2·…·a 12)=12,所以a 1·a 2·…·a 12=312,所以(a 6a 7)6=312,所以a 6a 7=32=9.]4.B [由等差数列的性质可得a 1 011+a 1 012+a 1 013+a 1 014=2(a 1 012+a 1 013)=8,所以a 1 012+a 1 013=4,所以S 2 024=2 024(a 1+a 2 024)2=2 024(a 1 012+a 1 013)2=4 048,故B 正确.]5.B [由题意,知最长弦长为直径,即a 2 024=10,最短弦长和最长弦长垂直,由弦长公式得a 1=252―32=8,所以d =a 2 024―a 12 024―1=22 023.]6.C [∵等差数列{a n }的前n 项和为S n ,a 6+a 7>0,a 6+a 8<0,∴a 6+a 8=2a 7<0,∴a 6>0,a 7<0,∴S n 最大时n 的值为6.]7.B [a n +1={a n2,a n 为偶数,3a n +1,a n 为奇数,若a 8=1,可得a 7=2,a 6=4,所以a 5=8或a 5=1.①若a 5=8,则a 4=16,a 3=32或a 3=5,当a 3=32时,a 2=64,a 1=128或a 1=21;当a 3=5时,a 2=10,a 1=20或a 1=3; ②若a 5=1,则a 4=2,a 3=4,a 2=8或a 2=1,当a 2=8时,a 1=16;当a 2=1时,a 1=2,故当a 8=1时,a 1的所有可能的取值集合M ={2,3,16,20,21,128},即集合M 中含有6个元素.]8.D [由题意,得数列{a n }的前n 项和为S n ,由“均值数列”的定义可得S nn =n ,所以S n =n 2,当n =1时,a 1=S 1=1;当n ≥2时,a n =S n -S n -1=n 2-(n -1)2=2n -1,a 1=1也满足a n =2n -1,所以a n =2n -1,所以1a n a n +1=1(2n ―1)(2n +1)=12(12n ―1―12n +1),所以T n =12(1―13+13―15+…+12n ―1―12n +1)=12(1―12n +1)<12,又T n <12m 2-m -1对一切n ∈N *恒成立,所以12m 2-m -1≥12,整理得m 2-2m -3≥0,解得m ≤-1或m ≥3.即实数m 的取值范围为(-∞,-1]∪[3,+∞).]9.BCD [假设第n 项为{a n }的最大项,则{a n ≥a n―1,a n ≥a n +1,即{(n +2)·(67)n≥(n +1)·(67)n―1,(n +2)·(67)n≥(n +3)·(67)n +1,所以{n ≤5,n ≥4,又n ∈N *,所以n =4或n =5,故数列{a n }中a 4与a 5均为最大项,且a 4=a 5=6574,故B ,C 正确;当n ≥5时,数列{a n }为递减数列,故A 错误,D 正确.]10.BC [因为S 10=S 20,所以10a 1+10×92d =20a 1+20×192d ,解得a 1=-292d.所以S n =-292dn +n (n ―1)2d =d 2n 2-15nd =d 2[(n -15)2-225].对于选项A ,因为d 的正负不确定,S n 不一定有最大值,故A 错误;对于选项B ,S 30=30a 1+30×292d =30×(―292d )+15×29d =0,故B 正确;对于选项C ,a 10+a 22=2a 16=2(a 1+15d )=2(―292d +15d )=d >0,故C 正确;对于选项D ,a 10=a 1+9d =-292d +182d =-112d ,a 22=a 1+21d =-292d +422d =132d ,因为d <0,所以|a 10|=-112d ,|a 22|=-132d ,|a 10|<|a 22|,故D 错误.]11.ACD [由题意可得S 2n―1T 2n―1=(2n ―1)(a 1+a 2n―1)2(2n ―1)(b 1+b 2n―1)2=(2n ―1)a n (2n ―1)b n =a n b n ,则a n b n =S 2n―1T 2n―1=3(2n ―1)+39(2n ―1)+3=3n +18n +1=3+15n +1,由于a nb n 为整数,则n +1为15的正约数,则n +1的可能取值有3,5,15,因此,正整数n 的可能取值有2,4,14.]12.32 024―12解析 根据题意,可得a 1+a 2=4×30=4,a 3+a 4=4×32,…,a 2 023+a 2 024=4×32 022,所以S 2 024=4×30+4×32+…+4×32 022=4×(30+32+…+32 022)=4×1―(32)1 0121―32=32 024―12.13.101解析 ∵在前m 项中偶数项之和为S 偶=63,∴奇数项之和为S 奇=135-63=72,设等差数列{a n }的公差为d ,则S 奇-S 偶=2a 1+(m ―1)d2=72-63=9.又a m =a 1+d (m -1),∴a 1+a m2=9,∵a m -a 1=14,∴a 1=2,a m =16.∵m (a 1+a m )2=135,∴m =15,∴d =a m ―a 1m ―1=1,∴a 100=a 1+99d =101.14.2 025解析 函数f (x )=(x +1)3+1的图象可看成由y =x 3的图象向左平移1个单位长度,再向上平移1个单位长度得到,因为y =x 3的对称中心为(0,0),所以f (x )=(x +1)3+1的对称中心为(-1,1),所以f (x )+f (-2-x )=2,因为正项等比数列{a n }满足a 1 013=110,所以a 1·a 2 025=a 2·a 2 024=…=a 21 013=1100,所以lg a 1+lg a 2 025=lg a 2+lg a 2 024=...=2lg a 1 013=-2,所以f (lg a 1)+f (lg a 2 025)=f (lg a 2)+f (lg a 2 024)= (2)2 025Σk =1f (lg a k )=f (lg a 1)+f (lg a 2)+f (lg a 3)+…+f (lg a 2 025),①2 025Σk =1f (lg a k )=f (lg a 2 025)+f (lg a 2 024)+f (lg a 2 023)+…+f (lg a 1),②则①②相加得22 025Σk =1f (lg a k )=[f (lg a 1)+f (lg a 2 025)]+[f (lg a 2)+f (lg a 2 024)]+…+[f (lg a 2 025)+f (lg a 1)]=2 025×2,所以2 025Σk =1f (lg a k )=2 025.15.解 (1)因为a 1=1,a n +1=3a n ,所以数列{a n }是首项为1,公比为3的等比数列,所以a n =3n -1.(2)由(1)得,b 1=a 1+a 2+a 3=1+3+9=13,b 3=9,则b 3-b 1=2d =-4,解得d =-2,所以S n =13n +n (n ―1)2×(-2)=-n 2+14n.16.解 (1)设数列{a n }的公差为d ,因为a 5-a 2=6,所以3d =6,解得d =2.因为a 1,a 6,a 21依次成等比数列,所以a 26=a 1a 21,即(a 1+5×2)2=a 1(a 1+20×2),解得a 1=5,所以a n =2n +3.(2)由(1)知b n =1a n a n +1=1(2n +3)(2n +5),所以b n =12(12n +3―12n +5),所以S n =12[(15―17)+(17―19)+…+(12n +3―12n +5)]=n5(2n +5),由n5(2n +5)=335,得n =15.17.(1)证明 因为S n =1+ka n ,①S n -1=1+ka n -1(n ≥2),②由①-②,得S n -S n -1=ka n -ka n -1(n ≥2),所以a n =kk ―1a n -1.当n =1时,S 1=a 1=1+ka 1,所以a 1=11―k .所以{a n }是首项为11―k ,公比为kk ―1的等比数列.(2)解 因为a 1=11―k ,q =kk ―1,所以a n =11―k ·(k k ―1)n―1=-k n―1(k ―1)n .(3)解 因为在数列{a n }中,a 1=11―k ,公比q =kk ―1,所以数列{a 2n }是首项为(1k ―1)2,公比为(k k ―1)2的等比数列.当k =-1时,等比数列{a 2n }的首项为14,公比为14,所以a 21+a 22+…+a 2n=14×[1―(14)n ]1―14=13×[1―(14)n ].18.解 (1)设引进设备n 年后总盈利为f (n )万元,设除去设备引进费用,第n 年的成本为a n ,构成一等差数列,前n 年成本之和为[24n +n (n ―1)2×8]万元,所以f (n )=100n -[24n +4n (n -1)+196]=-4n 2+80n -196=-4(n ―10)2+204,n ∈N *,所以当n =10时,f (n )max =204(万元),即引进生产线10年后总盈利最大,为204万元.(2)设n 年后平均盈利为g (n )万元,则g (n )=f (n )n=-4n -196n +80,n ∈N *,因为g (n )=-4(n +49n)+80,当n ∈N *时,n +49n ≥2n·49n=14,当且仅当n =49n ,即n =7时取等号,故当n =7时,g(n)max=g(7)=24(万元),即引进生产线7年后平均盈利最多,为24万元.19.解 (1)由已知得a31=a11+(3-1)×m=2m+2,a32=a31×m=(2m+2)×m=2m2+2m,a41=a11+(4-1)×m=3m+2,a32+2,∵a41=12(2m2+2m)+2,∴3m+2=12即m2-2m=0.又m>0,∴m=2,∴a51=a11+4×2=10,∴a53=a51×22=40.(2)由(1)得a n1=a11+(n-1)×2=2n.当n≥3时,a nn=a n1·2n-1=n·2n.(*)又a21=a11+2=4,a22=ma21=2×4=8.a11=2,a22=8符合(*)式,∴a nn=n·2n.∵T n=a11+a22+a33+…+a nn,∴T n=1×21+2×22+3×23+4×24+…+n·2n,①2T n=1×22+2×23+3×24+…+(n-1)·2n+n·2n+1,②由①-②得,-T n=21+22+23+24+…+2n-n·2n+1-n·2n+1=2×(1―2n)1―2=2n+1-2-n·2n+1=(1-n)·2n+1-2,∴T n=(n-1)·2n+1+2.。

(完整版)数列测试题及标准答案

(完整版)数列测试题及标准答案

必修5《数列》单元测试卷一、选择题(每小题3分,共33分)1、数列⋯--,924,715,58,1的一个通项公式是A .12)1(3++-=n nn a nnB .12)3()1(++-=n n n a nnC .121)1()1(2--+-=n n a n nD .12)2()1(++-=n n n a nn 2、已知数列{a n }的通项公式)(43*2N n n n a n ∈--=,则a 4等于( ). A 1 B 2 C 3 D 0 3、在等比数列}{n a 中,,8,1641=-=a a 则=7a ( )A 4-B 4±C 2-D 2±4、已知等差数列}{n a 的公差为2,若1a ,3a ,4a 成等比数列,则2a 等于( ) A 4- B 6- C 8- D 10-5、等比数列{a n }的前3项的和等于首项的3倍,则该等比数列的公比为 ( )A .-2B .1C .-2或1D .2或-16、等差数列}a {n 中,已知前15项的和90S 15=,则8a 等于( ).A .245B .12C .445 D .67、已知等比数列{a n } 的前n 项和为S n , 若S 4=1,S 8=4,则a 13+a 14+a 15+a 16=( ).A .7B .16C .27D .648、一个三角形的三个内角A 、B 、C 成等差数列,那么()tan A C +的值是A B .C . D .不确定 9、若一个凸多边形的内角度数成等差数列,最小角为100°,最大角为140°,这个凸多边形的边数为A .6B .8C .10D .12 10、 在等比数列{a n }中,4S =1,8S =3,则20191817a a a a +++的值是A .14B .16C .18D .2011、计算机的成本不断降低,若每隔3年计算机价格降低31,现在价格为8100元的计算机,9年后的价格可降为( )A .2400元B .900元C .300元D .3600元二、填空题(每小题4分,共20分)12、已知等比数列{n a }中,1a =2,4a =54,则该等比数列的通项公式n a = 13、 等比数列的公比为2, 且前4项之和等于30, 那么前8项之和等于 14、数列11111,2,3,,,2482n n ++++……的前n 项和是 . 15、 黑白两种颜色的正六边形地面砖按如图的规律拼成若干个图案: 则第n 个图案中有白色地面砖_________________块.16、在数列{}n a 中,11a =,且对于任意自然数n ,都有1n n a a n +=+,则100a = 三、解答题17、(本小题满分8分)等差数列{}n a 中,已知33,4,31521==+=n a a a a ,试求n 的值18、(本小题满分8分)在等比数列{}n a 中,5162a =,公比3q =,前n 项和242n S =,求首项1a 和项数n .19、(本小题满分10分)已知:等差数列{n a }中,4a =14,前10项和18510=S . (1)求n a ;(2)将{n a }中的第2项,第4项,…,第n 2项按原来的顺序排成一个新数列,求此数列的前n 项和n G .20、(本小题满分10分)某城市2001年底人口为500万,人均住房面积为6 m 2,如果该城市每年人口平均增长率为1%,则从2002年起,每年平均需新增住房面积为多少万m 2,才能使2020年底该城市人均住房面积至少为24m 2?(可参考的数据 1.0118=1.20,1.0119=1.21,1.0120=1.22).21、(本小题满分11分)已知等差数列{a n }的首项a 1=1,公差d >0,且第二项,第五项,第十四项分别是等比数列{b n }的第二项,第三项,第四项. (1)求数列{a n }与{b n }的通项公式; (2)设数列{c n }对任意自然数n ,均有1332211+=+⋯⋯+++n nn a b c b c b c b c , 求c 1+c 2+c 3+……+c 2006值.参考答案12、3.2n-1 13、51014、n (n+1)+1-2n 15、4n+2 16、495117、d=32,n=5018、解:由已知,得51113162,(13)242,13n a a -⎧⋅=⎪⎨-=⎪-⎩①②由①得181162a =,解得 12a =.将12a =代入②得()21324213n =--,即 3243n =,解得 n =5.∴ 数列{}n a 的首项12a =,项数n =5.19、解析:(1)、由41014185a S =⎧⎨=⎩ ∴ 11314,1101099185,2a d a d +=⎧⎪⎨+⋅⋅⋅=⎪⎩ 153a d =⎧⎨=⎩ 23+=∴n a n (2)、设新数列为{n b },由已知,223+⋅=n n bn n G n n n 2)12(62)2222(3321+-=+++++=∴ *)(,62231N n n n ∈-+⋅=+20.解 设从2002年起,每年平均需新增住房面积为x 万m 2,则由题设可得下列不等式19500619500(10.01)24x ⨯+≥⨯+⨯解得605x ≥.答 设从2002年起,每年平均需新增住房面积为605万m 2.21、解:(1)由题意得(a 1+d )(a 1+13d )=(a 1+4d )2(d >0) 解得d =2,∴a n =2n -1,b n =3n -1.(2)当n =1时,c 1=3 当n ≥2时,,1n n n n a a b c -=+ 132-⋅=n n c ,⎩⎨⎧≥⋅==-)2(32)1(31n n c n n22005200612200632323233c c c ∴++⋯+=+⨯+⨯+⋯+⨯=。

第四章 数列 章末测试(解析版)

第四章 数列 章末测试(解析版)

第四章:数列章末测试一、单选题:本大题共8个小题,每个小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2019·浙江·温州中学高二开学考试)已知数列{}n a 的前4项为:1,12-,14,18-,则数列{}n a 的通项公式能为()A.12n a n=B.112n n a -=C.1(1)2n n na --=D.112n n a -⎛⎫=- ⎪⎝⎭【答案】D【解析】正负相间用1(1)n --表示,∴111(1)122n n n n a ----⎛⎫==- ⎪⎝⎭.故选:D2.(广西北海市2023届高三上学期第一次模拟考试数学(理)试题)在等差数列{}n a 中,38a =,712a =,则12a =()A.19B.18C.17D.20【答案】C【解析】设等差数列{}n a 的公差为d ,则由题意可得1128612a d a d +=⎧⎨+=⎩,解得161a d =⎧⎨=⎩,所以1211161117a a d =+=+=,故选:C.3.(2022·陕西·西安市西光中学高二阶段练习)等差数列{}n a 与{}n b 的前n 项和分别为,n n S T ,且21nn S n T n =+,则66ab =()A.113B.1123C.1011D.2【答案】B【解析】∵数列{}n a 与{}n b 均为等差数列,则11611611,11T S a b ==,∴6611116611211121113111a a T b b S ====⨯+,即661123ab=.故选:B.4.(2022·安徽省宿州市苐三中学高二期末)已知数列{}n a 的前n 项和为n S ,23a =,且122n n a S +=+N n *∈(),则下列说法中错误..的是()A.112a =B.4792S =C.{}n a 是等比数列D.{}1n S +是等比数列【答案】C【解析】由题意数列{}n a 的前n 项和为n S ,23a =,且122n n a S +=+,则2122a S =+,即11322,12a a =+∴=,即选项A 正确;∵122n n a S +=+①,∴当2n ≥时,122n n a S -=+②,①-②可得,12n n n a a a +-=,即13n n a a +=,2113,2a a ==,不满足213a a =,故数列{}n a 不是等比数列,故C 错误,由2n ≥时,13n n a a +=可得,21333n n n a --=⨯=,则349,27a a ==,故4139272792S ==+++,故B 正确;由122n n a S +=+得:1122,32n n n n n S S S S S ++=+∴=+-,则113(1)n n S S ++=+,即1131n nS S ++=+,故{}1n S +是首项为113112S a +=+=,公比为3的等比数列,D 正确,故选︰C.5.(2022·陕西·延安市第一中学高二阶段练习(文))数列{}n a 满足111n na a +=-,且12a =,则2020a 的值为()A.12B.1-C.2D.1【答案】C【解析】由题意,数列{}n a 满足+11=1(N )n na n a *-∈,且1=2a ,可得234511,1,2,,22a a a a ==-==,可得数列{}n a 是以12,,12-三项为周期的周期数列,所以20206733112a a a ⨯+===.故选:C.6.(2022·安徽省宿州市苐三中学高二期末)已知等比数列{}n a 的前2项和为2,前4项和为8,则它的前6项和为()A.12B.22C.26D.32【答案】C【解析】设等比数列{}n a 的前n 项和为n S ,公比为q ,则212412342,8S a a S a a a a =+==+++=,则346a a +=,而2223412(),62,3a a a a q q q +=+∴=∴=,故25634()6318a a a a q +=+=⨯=,所以数列前6项和为12345681826a a a a a a +++++=+=,故选:C.7.(2022·安徽省宿州市苐三中学高二期末)已知数列{}n a 满足12a =,12(N )n n a a n *+=∈,设()()*N n n b n a n λ=-⋅∈,且数列{}n b 是单调递增数列,则实数λ的取值范围是()A.()3-∞,B.()3+∞,C.(]3-∞,D.[)3+∞,【答案】A【解析】由题意数列{}n a 满足12a =,12(N )n n a a n *+=∈可知,{}n a 是以2为首项,2为公比的等比数列,所以2nna =,所以()()2nn n b n a n λλ⋅==--⋅,因为数列{}n b 是递增数列,所以1n n b b +>,对于任意的N n *∈恒成立,即()()1122n nn n λλ++-⋅>-⋅,即2n λ<+恒成立,因为1n =时,2n +取得最小值3,故3λ<,即实数λ的取值范围是()3-∞,,故选:A,8.(2022·黑龙江·哈师大附中高二期中)已知数列{}n a 的前n 项和为n S ,且12a =,()142n n a a n n +++=+∈N ,则数列1n S ⎧⎫⎨⎬⎩⎭的前2021项的和为()A.20212022B.20202021C.20192020D.10101011【答案】A【解析】∵12a =,()142n n a a n n +++=+∈N (*),∴216a a +=,解得24a =.142n n a a n ++=+,∴2146n n a a n +++=+,两式相减,得24n n a a +-=,∴数列{}n a 的奇数项与偶数项均为公差为4的等差数列,∴当n 为偶数时,2(1)422n n a a n =+-⨯=.当n 为奇数时,1n +为偶数,∴根据上式和(*)知1422n n a n a n +=+-=,∴数列{}n a 的通项公式是2n a n =,易知{}n a 是以2为首项,2为公差的等差数列,故()()2212n n n S n n +==+,()111111nSn n n n ==-++,设1n S ⎧⎫⎨⎬⎩⎭的前n 项和为n T ,则20211111112021112232021202220222022T =-+-++-=-=.故选:A.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·重庆市广益中学校高二阶段练习)下列说法中,正确的有()A.数列{}n a 的通项212n a n n=+,则{}n a 中最大项为第2项;B.已知数列{}n a 中,1(2)n a n n =+,那么1120是这个数列的第10项;C.已知等差数列{}n a 的前n 项和为n S ,24S =,410S =,则618S =;D.已知13n n a a +=+,则数列{}n a 是递增数列.【答案】BCD【解析】对于A,因为11=3a ,218a =,故{}n a 中最大项不是第2项,故错误;对于B,令()112120n n =+,解得10n =,故1120是{}n a 的第10项,故正确;对于C,已知等差数列{}n a 的前n 项和为n S ,则24264,,S S S S S --成等差数列,所以()422642S S S S S -=+-,即612410S =+-,解得618S =,故正确;对于D,由13n n a a +=+可得130n n a a +-=>,即1n n a a +>,所以数列为递增数列,故正确,故选:BCD10.(2022·全国·高二单元测试)已知数列{}n a 满足11a =,()123nn naa n a ++=∈+N ,则()A.13n a ⎧⎫+⎨⎬⎩⎭为等比数列B.{}n a 的通项公式为1123n n a -=-C.{}n a 为递增数列D.1n a ⎧⎫⎨⎬⎩⎭的前n 项和2234n n T n +=--【答案】AD 【解析】因为112323n n n n a aa a ++==+,所以111323n n a a +⎛⎫+=+ ⎪⎝⎭,又11340a +=≠,所以13n a ⎧⎫+⎨⎬⎩⎭是以4为首项,2为公比的等比数列,即11342n na -+=⨯,所以1231n n a +=-,所以1123n n a +=-,所以{}n a 为递减数列,1n a ⎧⎫⎨⎬⎩⎭的前n 项和()()()231232323n n T +=-+-+⋅⋅⋅+-()122222n =++⋅⋅⋅+-212322323412nn n n n +-=⨯⨯-=---.故选:AD.11.(2022·黑龙江·富锦市第一中学高二阶段练习)已知数列{}n a ,n S 为{}n a 的前n 项和,其中11010a =-,13,1,n n n a n a a n ++⎧=⎨-⎩为奇数为偶数,则下列结论正确的是()A.{}1n n a a ++是等差数列B.{}21n a -是等差数列C.20212021S =D.20223033S =【答案】ABD【解析】设n 为奇数,则1n +是偶数,2n +是奇数,则13n n a a +=+,①211n n a a ++=-,②①+②得:1212n n n n a a a a +++=+++,即22n n a a +=+,所以{}n a 的奇数项是首项为11010a =-,公差为2的等差数列,同理{}n a 的偶数项是首项为21007a =-,公差为2的等差数列,故A,B 正确;所以()()202113520212462020S a a a a a a a a =+++⋅⋅⋅+++++⋅⋅⋅+()()()101110111101010101101010112100710102202022⨯-⨯-=-⨯+⨯+-⨯+⨯=,故C 错误;又2022220222110132a a ⎛⎫=+-=⎪⎝⎭,∴202220212022202010133033S S a =+=+=,故D 正确.故选:ABD.12.(2022·江苏·苏州中学高二阶段练习)设数列{}n a 的前n 项和为n S ,若存在实数A 使得对任意*n N ∈,都有n S A <,则称数列{}n a 为“T 数列”,则以下结论正确的是()A.若{}n a 是等差数列,且10a >,公差0d <,则数列{}n a 是“T 数列”B.若{}n a 是等比数列,且公比q 满足1q <,则数列{}n a 是“T 数列”C.若12(1)2n n n a n n -+=+,则数列{}n a 是“T 数列”D.若2241n n a n =-,则数列{}n a 是“T 数列”【答案】BC【解析】对于A,若{}n a 是等差数列,且10a >,公差0d <,则2122n d d S n a n ⎛⎫=+- ⎪⎝⎭,当n 无穷大时,n S 也无穷大,所以数列{}n a 不是“T 数列”,故A 选项错误;对于B,若{}n a 是等比数列,且公比q 满足1q <,所以()11111112111111n n n n a q a a q a a q aS qq q q q q-==-≤+<------,所以数列{}n a 是“T 数列”,故B 正确;对于C,若()121211(1)2212n n n n n a n n n n ---+==-+⋅+⋅,所以()()12110011111111221222222312212n n n n n n n S ----=-+++=<⨯⨯⨯--⋅+⋅+⋅⨯,所以数列{}n a 是“T 数列”,故C 选项正确;对于D,若22211141441n n a n n ⎛⎫==+ ⎪--⎝⎭,所以222211111441142143141n S n n ⎛⎫=+++++⎪⨯-⨯-⨯--⎝⎭,当n 无穷大时,n S 也无穷大,所以数列{}n a 不是“T 数列”,故D 选项错误.故选:BC.三、填空题:本题共4小题,每小题5分,共20分13.(2022·陕西·西安市西光中学高二阶段练习)数列{}n a 中,()110,(21),2n n a a a n n -==+-≥,则n a =________【答案】21n -【解析】由()1(21),2n n a a n n -=+-≥,可得()1(21),2n n a a n n --=--≥,∴()()()112211n n n n n a a a a a a a a ---=-+-++-+,∴()()()()2321121233012n n n a n n n+--=------+=-=-,当1n =时,10a =显然符合上式,所以21n a n =-.故答案为:21n -14.(2022·江苏·常熟市王淦昌高级中学高二阶段练习)已知数列{}n a 满足10()13nn a n =,则数列{}n a 的最大项为第________项.【答案】4【解析】由题意,10()013nn a n =>,故1110(1)()101131013()13n n n n n a n a n n +++⨯+==⨯⨯,令1101113n n a n a n ++=⨯≥,解得103n ≤;令1101113n na n a n ++=⨯<,解得103n >;故3n ≤时,+1n n a a >;4n ≥时,1n n a a +<,故数列{}n a 的最大项为第4项.故答案为:415.(2022·宁夏·石嘴山市第三中学高二阶段练习(理))已知等比数列{}n a 的公比为q ,且1202001,1a a <<=,能使不等式12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立最大正整数=m ________.【答案】4039【解析】由已知201911201911a q a q =⇒=,结合101a <<知2019101q <<,解得1q >,由于{}n a 是等比数列,所以1n a ⎧⎫⎨⎬⎩⎭是首项为11a ,公比为1q 的等比数列.要使12121110m m a a a a a a ⎛⎫⎛⎫⎛⎫-+-++-≤ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭成立则1212111m m a a a a a a +++≤+++,即()111111111mm a q a q q q⎛⎫- ⎪-⎝⎭≤--,将120191a q=代入整理得:4039m q q ≤又1q >,可知4039m ≤,故最大正整数4039m =.故答案为:403916.(2022·甘肃·天水市第一中学高二阶段练习)如果数列1,6,15,28,45,中的每一项都可用如图所示的六边形表示出来,故称它们为六边形数,那么第9个六边形数为______.【答案】153【解析】因为:1,615=+,15159=++,2815913=+++,451591317=++++;即这些六边形数是由首项为1,公差为4的等差数列的和组成的;所以:2(1)1422n n n c n n n -=⋅+⨯=-;∴第9个六边形数为:2299153⨯-=.故答案为:153.四、解答题:本小题共6小题,共70分。

2021-2022学年高二数学阶段性复习测试 数列 章末检测1(易)(解析版)

2021-2022学年高二数学阶段性复习测试  数列 章末检测1(易)(解析版)

专题 4.1 数列 章末检测1(易)第I 卷(选择题)一、单选题(每小题5分,共40分)1.(2021·江苏泉山·徐州一中高二月考)在等差数列{}n a 中,26a =-,公差2d =,则12a =( ) A .12 B .14 C .16 D .1【答案】B【分析】根据等差数列的通项公式计算可得;【详解】解:因为26a =-,公差2d =,所以()122122610214a a d =+-=-+⨯=故选:B 2.(2020·山东高考真题)在等比数列{}n a 中,11a =,22a =-,则9a 等于( ) A .256 B .-256 C .512 D .-512【答案】A【分析】求出等比数列的公比,再由等比数列的通项公式即可求解. 【详解】设等比数列{}n a 的公比为q ,因为11a =,22a =-,所以212a q a ==-, 所以()198812256a q a ==⨯-=,故选:A.3.(2020·江苏高二课前预习)设S n 是等差数列{a n }的前n 项和,若53a a =59,则95S S 等于( )A .1B .-1C .2D .12【答案】A【分析】利用等差数列的求和公式计算即可. 【详解】95S S =19159()25()2a a a a ++=5395a a =1. 故选:A. 4.(2021·江苏省震泽中学高二月考)北京天坛的圆丘坛为古代祭天的场所,分上、中、下三层.上层中心有一块圆形石板(称为天心石),环绕天心石砌9块扇面形石板构成第一环,向外每环依次增加9块.下一层的第一环比上一层的最后一环多9块,向外每环依次也增加9块.已知每层环数相同,且下比中层多729块,则第三层(即下层)共有扇面形石板( )A .1539块B .1863块C .3402块D .3339块 【答案】C【分析】首先,根据题意转化为已知等差数列232,,n n n n n S S S S S --的公差求n ,再求3n S 的值.【详解】由题意可知,从上到下,从内到外,每环的扇面形石板数构成以9为首项,9为公差的等差数列,设为{}n a ,设上层有n 环,则上层扇面形石板总数为n S ,中层扇面形石板总数为2n n S S -,下层扇面形石板总数为32n n S S -,三层扇面形石板总数为3n S ,因为{}n a 是等差数列,所以232,,n n n n n S S S S S --构成等差数列,公差为29n ,因为下层比中层多729块,所以29729n =,解得:9n =,所以3272726279934022n S S ⨯==⨯+⨯=. 故选:C5.(2021·江苏姑苏·苏州中学高二月考)已知数列{}n a 的前n 项和为n S ,若()21n S n =+,则13a a 的值为( )A .8B .9C .10D .11【答案】D【分析】根据给定条件求出1a ,再利用当2n ≥时,1n n n a S S -=-求出3a 即可得解.【详解】数列{}n a 的前n 项和为n S ,因()21n S n =+,则21124a S ===,22332437a S S =-=-=,所以1311a a +=.故选:D6.(2020·海安市曲塘中学高二月考)已知等比数列{a n }中,a 2·a 4·a 6·a 8=16,则a 3·a 7等于( ) A .±4 B .4 C .±8 D .8【答案】B【分析】利用等比数列的中项性质可求得374a a ⋅=±,进而结合通项公式可得370a a ⋅>,进而可求出结果.【详解】因为a 2·a 4·a 6·a 8=16,所以()23716a a ⋅=,即374a a ⋅=±,又因为2628371110a a a q a q a q ⋅=⋅⋅⋅=⋅>,所以374a a ⋅=,故选:B.7.(2021·江苏省震泽中学高二月考)在数列{}n a 中,()*1111,12,4n n a a n n N a -=-=-≥∈,则2021a 的值为( )A .14-B .5C .45D .54【答案】B【分析】根据递推关系可判断数列为周期数列,从而可求2021a . 【详解】因为在数列{}n a 中,1111,14n n a a a -=-=-,所以+21+1111111111111111n n n n n n n n a a a a a a a a ----=-=-=-===-----, 故{}n a 是周期数列且周期为3,故202167332211514a a a ⨯+===-=-.故选:B. 8.(2020·铜山启星中学高二月考)数列{a n }的前n 项和为332n n S a =-,则其通项公式n a =( ) A .63n ⨯ B .23n ⨯C .36n ⨯D .32n ⨯【答案】B【分析】利用,n n a S 的关系求数列通项n a 即可,注意讨论1n =、2n ≥求1a 及1,n n a a -的关系. 【详解】由题设,1n =时,111332a S a ==-,则16a =, 2n ≥时,113()2n n n n n a S S a a --=-=-,则13n n a a -=,∴16323n nn a -=⨯=⨯.故选:B二、多选题(每小题5分,共20分)9.(2021·宁德市第九中学高二月考)设等差数列{}n a 的前n 项和为n S .若560,9S a ==,则( ) A .39n a n =- B .33n a n =-+C .231522n S n n =- D .23922n S n n =- 【答案】AC【分析】由已知,结合等差数列前n 项和公式、通项公式列方程求等差数列基本量,写出通项公式及前n 项和公式即可.【详解】由题设,51615100{59S a d a a d =+==+=,解得163a d =-⎧⎨=⎩,∴63(1)39n a n n =-+-=-,()2313156222n n n S n n n -=-+=-.故选:AC 10.(2021·宁德市第九中学高二月考)若数列{}n a 满足113,33(2),nn n a a a n -==+≥则( )A .{}3nn a 是等差数列 B .{}3nn a 是等比数列 C .数列{}n a 的通项公式3nn a n =⋅D .数列{}n a 的通项公式3n nn a =【答案】AC【分析】变形给定的递推公式即可判断选项A ,B ;求出数列{}3nn a 的通项即可判断选项C ,D 作答. 【详解】在数列{}n a 中,当2n ≥时,133nn n a a -=+,即11133n n nn a a --=+,而13a =,即113a=,则{}3n na 是首项为1,公差为1的等差数列,因此,1(1)13nn a n n =+-⨯=,3n n a n =⋅, 所以A 正确,B 不正确,C 正确,D 不正确.故选:AC11.(2021·江苏泉山·徐州一中高二月考)在公比q 为整数的等比数列{}n a 中,n S 是数列{}n a 的前n 项和,若1418a a +=,2312a a +=,则下列说法正确的是( )A .2qB .数列{2}n S +是等比数列C .8510S =D .数列{lg }n a 是公差为2的等差数列【答案】ABC【分析】由1418a a +=,2312a a +=,31(1)18a q +=,21()12a q q +=,公比q 为整数.解得1a ,q .可得n a ,n S ,进而判断出结论.【详解】解:1418a a +=,2312a a +=,31(1)18a q +=,21()12a q q +=,公比q 为整数.解得12a q ==.2nn a ∴=,12(21)2221nn n S +-==--.122n n S +∴+=,∴数列{2}n S +是公比为2的等比数列.9822510S =-=.lg lg 2n a n .数列{lg }n a 是公差为lg 2的等差数列.综上可得:只有ABC 正确.故选:ABC .12.(2021·全国高三专题练习)若数列{}n a 满足1112,012,1321,12n n n n n a a a a a a +⎧⎪⎪==⎨⎪-<<⎪⎩,则数列{}n a 中的项的值可能为( ) A .13B .2C .23D .45【答案】AC【分析】求出数列{}n a 的前四项的值,可得出数列{}n a 是以2为周期的周期数列,由此可得出合适的选项. 【详解】由题意可得21223a a ==,321213a a =-=,43223a a ==,⋯⋯ 所以数列{}n a 是周期为2的数列,所以数列{}n a 中的项的值可能为13,23.故选:AC .第II 卷(非选择题)三、填空题(每小题5分,共20分)13.(2021·抚顺县高级中学校高三月考)设等差数列{}n a 的前n 项和为n S ,若25815a a a ++=,则9S =___________. 【答案】45【分析】根据等差数列的性质及前n 项和公式即可求解. 【详解】解:因为数列{}n a 为等差数列,所以2852a a a +=, 又25815a a a ++=,所以55a =,所以()199599452a a S a +===,故答案为:45.14.(2021·广西南宁·高三模拟预测)已知各项均为正项的等比数列{}n a ,公比2425q a a =⋅=,则7a =_______. 【答案】20【分析】由条件结合等比下标性质可得2243a a a ⋅=,再利用通项公式可得结果.【详解】由{}n a 是等比数列,得224325a a a ⋅==,解得35a =或35a =-(舍),所以47320a a q ==.故答案为:2015.(2021·江苏泉山·徐州一中高二月考)两个数列{}n a 、{}n b 满足12a =,11b =,1537n n n a a b +=++,135n n n b a b +=+(其中*n N ∈),则{}n a 的通项公式为n a =___________.【答案】132224n n +-+-【分析】依题意可得21110628n n n a a a ++-=-,即()()214416410n n n a a a +++=+-+,即可得到{}4n a +的特征方程为26101x x =-,求出方程的根,则设数列{}4n a +的通项公式为428n n nq a p +=⋅+⋅,根据1a 、2a 得到方程组,求出,p q ,即可得到{}n a 的通项公式; 【详解】解:因为1537n n n a a b +=++,135n n n b a b +=+, 所以()12117391595557n n n n n n n n b a b a a a a a ++++=+=⇒--+--,所以21110628n n n a a a ++-=-,即()()214416410n n n a a a +++=+-+,所以{}4n a +的特征方程为26101x x =-,解得特征根2x =或8x =,所以可设数列{}4n a +的通项公式为428n n nq a p +=⋅+⋅,因为12a =,11b =,所以21153720a a b =++=,所以22242820428p q p q +=⋅+⋅⎧⎨+=⋅+⋅⎩,解得214p q =⎧⎪⎨=⎪⎩, 所以132422n n n a +-+=+,所以132224n n n a +-=+-;故答案为:132224n n +-+-16.(2019·北京高考真题)设等差数列{a n }的前n 项和为S n ,若a 2=−3,S 5=−10,则a 5=__________,S n 的最小值为__________. 【答案】0. -10.【分析】首先确定公差,然后由通项公式可得5a 的值,进一步研究数列中正项、负项的变化规律,得到和的最小值.【详解】等差数列{}n a 中,53510S a ==-,得322,3a a =-=-,公差321d a a =-=,5320a a d =+=, 由等差数列{}n a 的性质得5n ≤时,0n a ≤,6n ≥时,n a 大于0,所以n S 的最小值为4S 或5S ,即为10-.【点睛】本题考查等差数列的通项公式、求和公式、等差数列的性质,难度不大,注重重要知识、基础知识、基本运算能力的考查.四、解答题(第17题10分,18-22题每题12分,共70分)17.(2021·苏州市苏州高新区第一中学高二开学考试)在等差数列{}n a 中,(1)若515a =,1739a =,试判断91是否为此数列中的项.(2)若211a =,85a =,求10a . 【答案】(1)是;(3)3.【分析】(1)设等差数列{}n a 的公差d ,根据515a =,1739a =,先求得公差,再利用通项公式求解; (2)根据211a =,85a =,先求得公差,再利用通项公式求解; 【详解】(1)设等差数列{}n a 的公差d , 因为515a =,1739a =,所以1752175a a d -==-,所以()()55152525n a a n d n n =+-=+-=+, 令2591n +=,解得43n =,所以91是此数列中的项. (2)因为211a =,85a =,所以82182a a d -==--, 所以()()10210211813a a d =+-=+⨯-=.18.(2021·江苏省苏州第十中学校高二月考)已知等差数列{}n a 满足53a =,前3项和392S =. (1)求{}n a 的通项公式;(2)设等比数列{}n b 满足23b a =,663b a =,数列{}n b 的通项公式.【答案】(1)()112n a n =+;(2)12n n b -=或()12n n b -=-- 【分析】(1)设等差数列{}n a 的公差为d ,根据已知条件列关于1a 和d 的方程组,解方程求得1a 和d 的值,即可求解;(2)等比数列{}n b 的公比为q ,由等比数列的通项公式列方程组,解方程求得1b 和q 的值,即可求解;【详解】(1)设等差数列{}n a 的公差为d ,由题意可得:1143329322a d a d +=⎧⎪⎨⨯+=⎪⎩,解得:1121d a ⎧=⎪⎨⎪=⎩,所以()()1111122n a n n =+-=+; (2)等比数列{}n b 的公比为q ,由题意可得:()()151131216312b q b q ⎧=+⎪⎪⎨⎪=+⎪⎩,解得112b q =⎧⎨=⎩或112b q =-⎧⎨=-⎩,所以11122n n n b --=⨯=或()()11122n n n b --=-⨯-=--,所以数列{}n b 的通项公式为:12n n b -=或()12n n b -=--.19.(2021·江苏姑苏·苏州中学高二月考)已知数列{}n a 是递增的等比数列,且22a =,11a -,2a ,3a 成等差数列,数列{}n b 满足()1122121n n n a b a b a b n +++=-⋅+.(1)求数列{}n a 的通项公式;(2)求证:数列{}n b 是等差数列. 【答案】(1)12n na ;(2)证明见解析.【分析】(1)根据给定条件列式求出等比数列{}n a 的公比q 即可; (2)由给定等式结合(1)的结论求出数列{}n b 的通公式即可得解.【详解】(1)设等比数列{}n a 的公比为q ,其中1q >,则通项公式为22n n a a q -=,因11a -,2a ,3a 成等差数列,则132(1)2a a a -+=,即2124q q-+=,解得2q ,从而12n n a ,所以数列{}n a 的通项公式是12n na ;(2)因()1122121n n n a b a b a b n ++⋅⋅⋅+=-⋅+,即()11222121n nn b b b n -++⋅⋅⋅+=-⋅+,当2n ≥时,()2112122221n n n b b b n ---++⋅⋅⋅+=-⋅+,于是得()()1112121[221]2n n n n n b n n n ---=-⋅+--⋅+=⋅,则有n b n =,当1n =时,11b =满足上式,因此数列{}n b 的通项公式是n b n =,显然对正整数n 恒有:11n n b b +-=, 所以数列{}n b 是等差数列.20.(2021·江苏鼓楼·金陵中学高三开学考试)已知数列{}n a 的前n 项和为n S ,且12a =,且12n n S a +=-. (1)求数列{}n a 的通项公式;(2)求数列(){}21n n a +⋅的前n 项和n T .【答案】(1)2n n a =;(2)12(21)2n n T n +=+-⋅.【分析】(1)利用11n n n S S a ++-=化简已知条件,证得数列{}n a 是等比数列,进而求得数列{}n a 的通项公式. (2)利用错位相减求和法求得n T .【详解】(1)因为12n n S a +=-,所以122n n S a ++=-,两式相减得12(2)n n a a n +=≥, 又2112420a a a =+==≠,所以12n na a +=,所以数列{}n a 是以2为首项,2为公比的等比数列, 故数列{}n a 的通项公式为2n n a =.(2)据(1)可得(21)(21)2nn n a n +⋅=+⋅,所以123325272(21)2n n T n =⨯+⨯+⨯+++⋅,23123252(21)2(21)2n n n T n n +=⨯+⨯++-⋅++⋅,两式相减得()23162222(21)2n n n T n +-=+⨯+++-+⋅()21121262(21)212n n n -+-=+⨯-+⋅⨯-,化简得12(21)2n n T n +=+-⋅.21.(2021·江苏省前黄高级中学高三月考)已知正项等差数列{}n a 中,12a =,且123,1,a a a -成等比数列,数列{}n b 的前n 项和为n S ,111,222n n n b S S b +==+.(1)求数列{}n a 和{}n b 的通项公式;(2)若11n n n n c b a a +=+,求数列{}n c 的前n 项和n T 的取值范围.【答案】(1)31n a n =-,1()2n n b =;(2)76n T <.【分析】(1)设公差d ,结合等差数列中项的表示和等比数列的性质,解得d ,即得{}n a 的通项公式;利用11n n n S S b ++-=判断{}n b 是等比数列,即得其通项公式;(2)代入计算111111233132nn n n n c b a a n n +⎛⎫⎛⎫=+=+- ⎪ ⎪-+⎝⎭⎝⎭,结合公式法和裂项相消法,进行分组求和,再判断值的情况即可.【详解】解:(1)设正项等差数列{}n a 的公差为d ,则0d >,∵12a =,且123,1,a a a -成等比数列,∴22(22)(21)d d +=+-,解得3d =,∴23(1)31n a n n =+-=-,由122n n n S S b +=+得112()2n n n n S S b b ++-==,即{}n b 是等比数列, 又112b =,∴1()2nn b =; (2)111111112(31)(32)233132nnn n n n c b a a n n n n +⎛⎫⎛⎫⎛⎫=+=+=+- ⎪ ⎪ ⎪-+-+⎝⎭⎝⎭⎝⎭ ∴121111111111222325583132nn T n n ⎡⎤⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=++++-+-++- ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎢⎥-+⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎣⎦1112211171113232623(32)12nn n n ⎡⎤⎛⎫-⎢⎥ ⎪⎡⎤⎝⎭⎢⎥⎛⎫⎛⎫⎣⎦=+-=-+⎢⎥ ⎪ ⎪++⎝⎭⎝⎭⎢⎥⎣⎦-∵11023(32)n n ⎛⎫+> ⎪+⎝⎭,∴76n T <. 22.(2021·江苏姑苏·苏州中学高二月考)已知数列{}n a 的各项均为正数,记数列{}n a 的前n 项和为n S ,数列{}2n a 的前n 项和为n T ,且232n n n T S S =+,*n ∈N .(1)求1a 的值;(2)求数列{}n a 的通项公式;(3)若*,N k t ∈,且1S ,1k S S -,t k S S -成等比数列,求k 和t 的值. 【答案】(1)11a =;(2)12n na ;(3)2k =,3t =.【分析】(1)由给定等式可得2211132a a a =+,解方程即得;(2)将等式232n n n T S S =+与n 换成n +1时的等式相减得1132n n n a S S ++=++,再利用11n n n a S S ++=-化成1n a +与n a 的关系即可推理作答; (3)求出n S ,再由条件列式并整理得222222321t k k ---=-⋅+,对k 分类讨论即可得解.【详解】(1)依题意,211132T S S =+,即2211132a a a =+,211a a =,而10a >,解得11a =,所以11a =;(2)因232n n n T S S =+,则有211132n n n T S S +++=+,两式相减得:()22211111322n n n n n n n a S S a a S S +++++=-+=++,而10n a +>,于是得1132n n n a S S ++=++,必有22132n n n a S S +++=++,两式相减得:212133n n n n a a a a ++++-=+, 即有212n n a a ++=,则当2n ≥时,有12n n a a +=,由222232T S S =+得:222223(1)(1)2(1)a a a +=+++,即2222a a =,而20a >,则2122a a ==,于是得*n ∈N ,12n n a a +=,从而得:数列{}n a 是首项为1,公比为2的等比数列, 所以数列{}n a 的通项公式是12n na ;(3)由(2)得21n n S =-,由1S ,1k S S -,t k S S -成等比数列得:211()()k t k S S S S S -=-,即2(2222)k t k -=-,整理得222222321t k k ---=-⋅+,显然10k S S -≠,数列{S n }单调,则1k ≠,必有2k ≥,当2k =时,3t =, 当2k >时,2222321k k ---⋅+为奇数,又t k S S -必为正,即t k S S >,而数列{}n S 是递增的,则2t k >>,22t -必为偶数,因此,在2k >时,等式222222321t k k ---=-⋅+不成立,所以2k =,3t =.。

人教版高中数学选择性必修第二册第四章-数列-章末测试卷A(含答案)

人教版高中数学选择性必修第二册第四章-数列-章末测试卷A(含答案)

第四章数列章末测试卷(A)【原卷版】[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n}:-2,0,2,…的第15项为()A.112B.122C.132D.1422.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.83.等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6=()A.12B.18C.24D.424.若等差数列{a n}满足a n>0,且a3+a4+a5+a6=8,则a2a7的最大值为()A.4B.6C.8D.105.《九章算术》是我国古代的一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为()A.176升 B.72升C.11366升 D.109 33升6.已知等比数列{a n}的前n项和为S n,若S2n=4(a1+a3+…+a2n-1),a1·a2·a3=27,则a6=()A.27B.81C.243D.7297.数列{a n}中,a1=1,对所有n≥2,都有a1a2a3…a n=n2,则a3+a5=()A.61 16B.25 9C.25 16D.31 158.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为p ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,则每年应还()A.M10万元 B.Mp (1+p )10(1+p )10-1万元C.p (1+p )1010万元D.Mp (1+p )9(1+p )9-1万元二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题不正确的是()A .若数列{a n }的前n 项和为S n =n 2+2n -1,则数列{a n }是等差数列B .若等差数列{a n }的公差d >0,则{a n }是递增数列C .常数列{a n }既是等差数列,又是等比数列D .若等比数列{a n }是递增数列,则{a n }的公比q <110.将等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则()A .d <0B .a 16<0C .S n ≤S 15D .当且仅当n ≥32时,S n <011.设数列{a n }的前n 项和为S n ,已知S n =2a n -1,则下列结论正确的是()A .S 2=2B .数列{a n }为等比数列C .a n =2nD .若b n =1log 2a n +1log 2a n +2,则数列{b n }的前10项和为101112.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则()A .a n =-12n -1B .a n n =1,-1n,n ≥2,n ∈N *C D.1S 1+1S 2+…+1S 100=-5050三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.14.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.15.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.16.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则an n的最小值为________.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)在等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .18.(12分)在新城大道一侧A 处,运来20棵新树苗.一名工人从A 处起沿大道一侧路边每隔10m 栽一棵树苗,这名工人每次只能运一棵.要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?19.(12分)已知{a n }是公比为q 的无穷等比数列,其前n 项和为S n ,满足a 3=12,________.是否存在正整数k ,使得S k >2020?若存在,求k 的最小值;若不存在,说明理由.从①q =2;②q =12;③q =-2这三个条件中任选一个,补充在上面问题中并作答.20.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项公式;(2)求{nS n }的前n 项和T n .21.(12分)已知数列{a n }的首项a 1=53,且3a n +1=a n +2,n ∈N *.(1)求证:数列{a n -1}为等比数列;(2)若a 1+a 2+…+a n <100,求最大的正整数n .22.(12分)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前4n +3项和T 4n +3.第四章数列章末测试卷(A)【解析版】[时间:120分钟满分:150分]一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.等差数列{a n}:-2,0,2,…的第15项为()A.112B.122C.132D.142答案C解析∵a1=-2,d=2,∴a n=-2+(n-1)×2=2n-22.∴a15=152-22=132.2.公比为2的等比数列{a n}的各项都是正数,且a3a11=16,则a5=()A.1B.2C.4D.8答案A解析因为a3a11=a72=16,又数列{a n}的各项都是正数,所以解得a7=4,由a7=a5·22=4a5,得a5=1.故选A.3.等差数列{a n}的前n项和为S n,若S2=2,S4=10,则S6=()A.12B.18C.24D.42答案C解析方法一:设数列{a n}的公差为d a1+d=2,a1+6d=10,解得a1=14,d=32.则S6=6a1+15d=24.方法二:S2,S4-S2,S6-S4也成等差数列,则2(S4-S2)=S6-S4+S2,所以S6=3S4-3S2=24.故选C.4.若等差数列{a n}满足a n>0,且a3+a4+a5+a6=8,则a2a7的最大值为()A.4B.6C.8D.10答案A解析已知等差数列{a n}满足a n>0,且a3+a4+a5+a6=2(a2+a7)=8,所以a2+a7=4.又因为a2+a7≥2a2a7,所以a2a7≤4,当且仅当a2=a7=2时,等号成立.故选A.5.《九章算术》是我国古代的一部数学专著,全书收集了246个问题及其解法,其中一个问题为“现有一根九节的竹子,自上而下各节的容积成等差数列,上面四节容积之和为3升,下面三节的容积之和为4升,求中间两节的容积各为多少?”该问题中第2节、第3节、第8节竹子的容积之和为()A.176升 B.72升C.11366升 D.10933升答案A解析设自上而下各节竹子的容积依次为a 1,a 2,…,a 91+a 2+a 3+a 4=3,7+a 8+a 9=4,因为a 2+a 3=a 1+a 4,a 7+a 9=2a 8,所以a 2+a 3+a 8=32+43=176.故选A.6.已知等比数列{a n }的前n 项和为S n ,若S 2n =4(a 1+a 3+…+a 2n -1),a 1·a 2·a 3=27,则a 6=()A .27B .81C .243D .729答案C解析∵数列{a n }为等比数列,∴a 1a 2a 3=a 23=27,∴a 2=3.又∵S 2=4a 1,∴a 1+a 2=4a 1,∴3a 1=a 2,∴a 1=1,即公比q =3,首项a 1=1,∴a 6=a 1·q 6-1=1×35=35=243.故选C.7.数列{a n }中,a 1=1,对所有n ≥2,都有a 1a 2a 3…a n =n 2,则a 3+a 5=()A.6116B.259C.2516D.3115答案A解析a 1a 2a 3…a n =n 2,则a 1a 2a 3…a n -1=(n -1)2,n ≥3,∴a n =n 2(n -1)2,n ≥3,∴a 3=94,a 5=2516,∴a 3+a 5=6116.故选A.8.小李年初向银行贷款M 万元用于购房,购房贷款的年利率为p ,按复利计算,并从借款后次年年初开始归还,分10次等额还清,每年1次,则每年应还()A.M10万元 B.Mp (1+p )10(1+p )10-1万元C.p (1+p )1010万元D.Mp (1+p )9(1+p )9-1万元答案B二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项是符合题目要求的,全部选对的得5分,部分选对的得3分,有选错的得0分)9.下列命题不正确的是()A .若数列{a n }的前n 项和为S n =n 2+2n -1,则数列{a n }是等差数列B .若等差数列{a n }的公差d >0,则{a n }是递增数列C .常数列{a n }既是等差数列,又是等比数列D .若等比数列{a n }是递增数列,则{a n }的公比q <1答案ACD解析对于A ,等差数列{a n }的前n 项和S n =An 2+Bn ,故错误;对于B ,若d >0,则a n +1>a n ,故正确;对于C ,当a n =0时,该常数列不是等比数列,故错误;对于D ,若等比数列{a n }是递增数列,则当a 1>0时,q >1,故错误.故选ACD.10.将等差数列{a n }的前n 项和记为S n ,若a 1>0,S 10=S 20,则()A .d <0B .a 16<0C .S n ≤S 15D .当且仅当n ≥32时,S n <0答案ABC解析由题意得,S 10=S 20,则a 11+a 12+…+a 20=0,即a 15+a 16=0,也即2a 1+29d =0(d为公差),因为a 1>0,所以d <0,所以a 16<0,S n ≤S 15.所以A 、B 、C 正确.由于S 2n =n (a n +a n +1),S 2n -1=(2n -1)a n ,故S 30=15(a 15+a 16)=0,S 31=31a 16<0,所以D 不正确.11.设数列{a n }的前n 项和为S n ,已知S n =2a n -1,则下列结论正确的是()A .S 2=2B .数列{a n }为等比数列C .a n =2nD .若b n =1log 2a n +1log 2a n +2,则数列{b n }的前10项和为1011答案BD解析因为S n =2a n -1,①所以当n =1时,a 1=S 1=2a 1-1,得a 1=1;当n ≥2时,S n -1=2a n -1-1,②①②两式相减得a n =2a n -2a n -1,所以a na n -1=2(n ≥2),所以数列{a n }是以a 1=1为首项,q =2为公比的等比数列.所以a n =a 1q n -1=1×2n -1=2n -1,a 2=2,所以S 2=3,所以A 、C 错误,B 正确;因为b n =1log 2a n +1log 2a n +2=1n (n +1)=1n -1n +1,设T n 为{b n }的前n 项和,则T 10…=1011,故D 正确.故选BD.12.设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则()A .a n =-12n-1B .a n n =1,-1n,n ≥2,n ∈N *C D.1S 1+1S 2+…+1S 100=-5050答案BCD解析由S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,得S n +1-S n =S n S n +1,又a 1=-1,∴S 1=a 1=-1,从而S 2-S 1=S 1S 2,即S 2+1=-S 2,得S 2=-12,∴S 1S 2≠0,从而S n S n +1≠0,∴S n +1-S n S n S n +1=1,整理得1S n +1-1S n =-1(常数),所以数是以1S 1=-1为首项,-1为公差的等差数列,故C 正确;所以1S n =-1-(n -1)=-n ,所以1S 1+1S 2+…+1S 100=-(1+2+3+…+100)=-5050,故D正确;由1S n =-n 得S n =-1n .所以当n ≥2时,a n =S n -S n -1=1n -1-1n(首项不符合此式),故a n n =1,-1n,n ≥2,n ∈N *,故B 正确,A 错误.故选BCD.三、填空题(本大题共4小题,每小题5分,共20分.把答案填在题中的横线上)13.已知数列{a n }为等比数列,若a 1+a 3=5,a 2+a 4=10,则公比q =________.答案2解析因为数列{a n }为等比数列,且a 1+a 3=5,a 2+a 4=10,所以由等比数列的通项公式可得a 2+a 4=(a 1+a 3)q ,即10=5q ,∴q =2.14.(2019·江苏)已知数列{a n }(n ∈N *)是等差数列,S n 是其前n 项和.若a 2a 5+a 8=0,S 9=27,则S 8的值是________.答案16解析方法一:设等差数列{a n }的公差为d ,则a 2a 5+a 8=(a 1+d )(a 1+4d )+a 1+7d =a 12+4d 2+5a 1d +a 1+7d =0,S 9=9a 1+36d =27,将以上两式联立,解得a 1=-5,d =2,则S 8=8a 1+28d =-40+56=16.方法二:设等差数列{a n }的公差为d .由S 9=9(a 1+a 9)2=9a 5=27,得a 5=3,又a 2a 5+a 8=0,则3(3-3d )+3+3d =0,得d =2,a 4=1,则S 8=8(a 1+a 8)2=4(a 4+a 5)=4×(1+3)=16.15.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -3=k (x -6)上,则数列{a n }的前11项和S 11=________.答案33解析∵点(n ,a n )在直线y -3=k (x -6)上,∴a n =3+k (n -6).∴a n +a 12-n =[3+k (n -6)]+[3+k (6-n )]=6,n =1,2,3,…,6,∴S 11=a 1+a 2+…+a 11=5(a 1+a 11)+a 6=5×6+3=33.16.已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________.答案212解析在a n +1-a n =2n 中,令n =1,得a 2-a 1=2;令n =2,得a 3-a 2=4,…,a n -a n -1=2(n -1).把上面n -1个式子相加,得a n -a 1=2+4+6+…+2(n -1)=(2+2n -2)(n -1)2=n 2-n ,∴a n =n 2-n +33.∴a n n =n 2-n +33n =n +33n -1≥233-1,当且仅当n =33n ,即n =33时取等号,而n ∈N *,∴“=”取不到.∵5<33<6,∴当n =5时,a n n =5-1+335=535,当n=6时,a n n =6-1+336=636=212,∵535>212,∴a n n 的最小值是212.四、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(10分)在等比数列{a n }中,已知a 1=2,a 4=16.(1)求数列{a n }的通项公式;(2)若a 3,a 5分别为等差数列{b n }的第3项和第5项,试求数列{b n }的通项公式及前n 项和S n .解析(1)设数列{a n }的公比为q ,由已知得16=2q 3,解得q =2,所以a n =2×2n -1=2n ,n ∈N *.(2)由(1)得a 3=8,a 5=32,则b 3=8,b 5=32.设数列{b n }的公差为d ,1+2d =8,1+4d =32,1=-16,=12,所以b n =-16+12(n -1)=12n -28,n ∈N *.所以数列{b n }的前n 项和S n =n (-16+12n -28)2=6n 2-22n ,n ∈N *.18.(12分)在新城大道一侧A 处,运来20棵新树苗.一名工人从A 处起沿大道一侧路边每隔10m 栽一棵树苗,这名工人每次只能运一棵.要栽完这20棵树苗,并返回A 处,植树工人共走了多少路程?解析植树工人每种一棵树并返回A 处所要走的路程(单位:m)组成了一个数列0,20,40,60, (380)这是首项a 1=0,公差d =20,项数n =20的等差数列,其和S 20=20a 1+20×(20-1)2d =0+20×(20-1)2×20=3800(m).因此,植树工人共走了3800m 的路程.19.(12分)已知{a n }是公比为q 的无穷等比数列,其前n 项和为S n ,满足a 3=12,________.是否存在正整数k ,使得S k >2020?若存在,求k 的最小值;若不存在,说明理由.从①q =2;②q =12;③q =-2这三个条件中任选一个,补充在上面问题中并作答.注:如果选择多个条件分别解答,则按第一个解答评分.解析若选①,因为a 3=12,q =2,所以a 1=3.所以S n =3(1-2n )1-2=3(2n -1).S k >2020,即3(2k -1)>2020,即2k >20233.当k =9时,29=512<20233,当k =10时,210=1024>20233,所以存在正整数k ,使得S k >2020,k 的最小值为10.若选②,因为a 3=12,q =12,所以a 1=48.所以S n1-12因为S n <96<2020,所以不存在满足条件的正整数k .若选③,因为a 3=12,q =-2,所以a 1=3.所以S n =3×[1-(-2)n ]1-(-2)=1-(-2)n .S k >2020,即1-(-2)k >2020,整理得(-2)k <-2019.当k 为偶数时,原不等式无解;当k 为奇数时,原不等式等价于2k >2019,当k =9时,29=512<2019,当k =11时,211=2048>2019,所以存在正整数k ,使得S k >2020,k 的最小值为11.20.(12分)设正项等比数列{a n }的首项a 1=12,前n 项和为S n ,且210S 30-(210+1)S 20+S 10=0.(1)求{a n }的通项公式;(2)求{nS n }的前n 项和T n .解析(1)设数列{a n }的公比为q .由210S 30-(210+1)S 20+S 10=0,得210(S 30-S 20)=S 20-S 10.∵S 10,S 20-S 10,S 30-S 20成等比数列,∴S 30-S 20S 20-S 10=q 10.∵a n >0,∴q =12,∴a n =a 1q n -1=12n (n ∈N *).(2)∵{a n }是首项a 1=12,公比q =12的等比数列,∴S n =12×1-12=1-12n ,nS n =n -n 2n .则数列{nS n }的前n 项和为T n =(1+2+…+n )+222+…①则T n 2=12(1+2+…+n )+223+…+n -12n +①-②,得T n 2=12(1+2+…+n )+122+…+n 2n +1=n (n +1)4-21-12+n 2n +1,即T n =n (n +1)2+12n -1+n 2n -2.21.(12分)已知数列{a n }的首项a 1=53,且3a n +1=a n +2,n ∈N *.(1)求证:数列{a n -1}为等比数列;(2)若a 1+a 2+…+a n <100,求最大的正整数n .解析(1)证明:∵3a n +1=a n +2,∴a n +1-1=13(a n -1),又a 1-1=23,∴数列{a n -1}是以23为首项,13为公比的等比数列.(2)由(1)可得a n -1=23×-1,∴a n =2+1.则a 1+a 2+…+a n =n ++132+…n +2×13-13n +11-13=n +1-13n ,若n +1-13n <100,n ∈N *,则n max =99.22.(12分)由整数构成的等差数列{a n }满足a 3=5,a 1a 2=2a 4.(1)求数列{a n }的通项公式;(2)若数列{b n }的通项公式为b n =2n ,将数列{a n },{b n }的所有项按照“当n 为奇数时,b n 放在前面;当n 为偶数时,a n 放在前面”的要求进行“交叉排列”,得到一个新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,求数列{c n }的前4n +3项和T 4n +3.解析(1)由题意,设数列{a n }的公差为d ,由a 3=5,a 1a 2=2a 4,1+2d =5,1·(a 1+d )=2(a 1+3d ),整理得(5-2d )(5-d )=2(5+d ),即2d 2-17d +15=0,解得d =152或d =1,因为{a n }为整数数列,所以d =1,又a 1+2d =5,所以a 1=3,所以数列{a n }的通项公式为a n =n +2.(2)由(1)知,数列{a n }的通项公式为a n =n +2,又数列{b n }的通项公式为b n =2n ,根据题意,新数列{c n }:b 1,a 1,a 2,b 2,b 3,a 3,a 4,b 4,…,则T 4n +3=b 1+a 1+a 2+b 2+b 3+a 3+a 4+b 4+…+b 2n -1+a 2n -1+a 2n +b 2n +b 2n +1+a 2n +1+a 2n +2=(b 1+b 2+b 3+b 4+…+b 2n +1)+(a 1+a 2+a 3+a 4+…+a 2n +2)=2×(1-22n +1)1-2+(a 1+a 2n +2)(2n +2)2=4n +1+2n 2+9n +5.。

广东省揭阳市第三中学2017-2018学年人教A版高中数学必修5第二章数列单元测试题(含精品解析)

广东省揭阳市第三中学2017-2018学年人教A版高中数学必修5第二章数列单元测试题(含精品解析)

第二章章末检测一、选择题(本大题共10小题,每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.1.一个首项为23,公差为整数的等差数列中,前6项均为正数,从第7项起为负数,则公差d为( )A. -2B. -3C. -4D. -5【答案】C【解析】【分析】先写出数列的通项a n=23+(n-1)d,再解不等式组即得d的值.【详解】设通项公式为a n=23+(n-1)d,由题意列不等式组解得-<d<-.∵d是整数,∴d=-4.故答案为:C【点睛】本题主要考查等差数列的通项和性质,意在考查学生对这些知识的掌握水平和分析推理计算能力.2.2.若等比数列{a n}满足a n a n+1=16n,则公比为( )A. 2B. 4C. 8D. 16【答案】B【解析】当n=1时,a1a2=16①;当n=2时,a2a3=256②,②÷①得:=16,即q2=16,解得q=4或q=﹣4,当q=﹣4时,由①得:a12×(﹣4)=16,即a12=﹣4,无解,所以q=﹣4舍去,则公比q=4.故选B3.3.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,则a20等于( )A. -1B. 1C. 3D. 7【答案】B【解析】【分析】先根据已知求出,d,再利用等差数列的通项求a20.【详解】∵a1+a3+a5=3a3=105,∴a3=35,∴a2+a4+a6=3a4=99,∴a4=33,∴d=a4-a3=33-35=-2,∴a20=a3+17d=35+17×(-2)=1.故答案为:B【点睛】(1)本题主要考查等差数列的性质和通项,意在考查学生对这些知识的掌握水平和分析推理计算能力.(2)等差数列中,如果,则,特殊地,时,则,是的等差中项.4.4.在等差数列{a n}中,前n项和为S n,S10=90,a5=8,则a4=( )A. 16B. 12C. 8D. 6【答案】D【解析】【分析】根据已知得到关于a1,d的方程组,解方程组得a1,d,即得a4的值.【详解】设等差数列{a n}的首项为a1,公差为d,则解得∴a4=a1+3d=0+3×2=6.故答案为:D【点睛】(1)本题主要考查等差数列的前n项和和通项,意在考查学生对这些知识的掌握水平和计算能力.(2)等差数列的前项和公式:一般已知时,用公式,已知时,用公式5.5.在等比数列{a n}中,若a n>0,且a2=1-a1,a4=9-a3,则a4+a5的值为( )A. 16B. 81C. 36D. 27【答案】D【解析】【分析】根据已知条件得到关于的方程组,解方程组即得,即得a4+a5的值.【详解】设等比数列{a n}的公比为q且q>0,由已知得⇒q2=9⇒q=3,所以a1=,所以a4+a5=×33+×34==27.故答案为:D【点睛】(1)本题主要考查等比数列的通项,意在考查学生对该知识的掌握水平和计算推理能力.(2)等比数列的通项公式:.6.6.一个蜂巢里有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第6天所有的蜜蜂都归巢后,蜂巢中一共有蜜蜂( )A. 55 986只B. 46 656只C. 216只D. 36只【答案】B【解析】【分析】先由题得到{a n}是公比为6的等比数列,再利用等比数列的通项求出a6得解.【详解】设第n天所有的蜜蜂都归巢后共有a n只蜜蜂,则有a n+1=6a n,a1=6,则{a n}是公比为6的等比数列,则a6=a1q5=6×65=46656.故答案为:B【点睛】本题主要考查等比数列性质的判定和等比数列的通项,意在考查学生对这些知识的掌握水平和计算推理能力.7.7.等差数列{a n}的首项为a1,公差为d,S n为前n项和,则数列{}是( )A. 首项为a1,公差为d的等差数列B. 首项为a1,公比为d的等比数列C. 首项为a1,公差为的等差数列D. 首项为a1,公比为的等比数列【答案】C【解析】【分析】先计算出,再判断该是数列的性质得解.【详解】∵S n=na1+d,∴=a1+(n-1)·,∴{}是以a1为首项,为公差的等差数列.故答案为:C【点睛】(1)本题主要考查数列性质的判定,意在考查学生对该知识的掌握水平和分析推理能力.(2)数列性质的证明一般有两种方法,方法一:利用等差数列等比数列的定义来证明.是等差数列,数列是等比数列.8.8.已知S n=1-2+3-4+…+(-1)n-1n,则S17+S33+S50等于( )A. 0B. 1C. -1D. 2【答案】B【解析】【分析】先分别求S17,S33,S50,再求S17+S33+S50的值.【详解】S17=1-2+3-4+…+17=-8+17=9,S33=1-2+3-4+…+33=-16+33=17,S50=1-2+3-4+…-50=-25,∴S17+S33+S50=9+17-25=1.故答案为:B【点睛】(1)本题主要考查数列求和,意在考查学生对该知识的掌握水平和分析推理能力.(2)本题利用的是并项求和.9.9.已知{a n}为等差数列,a1+a3+a5=105,a2+a4+a6=99,以S n表示{a n}的前n项和,则使得S n达到最大值的n是( )A. 21B. 20C. 19D. 18【答案】B【解析】试题分析:由a1+a3+a5=105,a2+a4+a6=99,得,令得,所以S n达到最大值的n是20考点:等差数列性质及求和10.10.数列{a n}的通项公式a n=n cos,其前n项和为S n,则S2 012等于( )A. 1 006B. 2 012C. 503D. 0【答案】A【解析】【分析】先计算出a1+a2+a3+a4=2,a5+a6+a7+a8=2,…,a4k+1+a4k+2+a4k+3+a4k+4=2,再利用数列和的周期性求S2 012.【详解】由题意知,a1+a2+a3+a4=2,a5+a6+a7+a8=2,…,a4k+1+a4k+2+a4k+3+a4k+4=2,k∈N,故S2 012=503×2=1006.故答案为:A【点睛】(1)本题主要考查数列的求和,意在考查学生对该知识的掌握水平和分析推理能力.(2)本题发现归纳出数列和的周期性是解题的关键.二、填空题(本大题共5小题,每小题4分,共20分.把答案填在题中的横线上)11.11.-1与+1的等比中项是________.【答案】±1【解析】【分析】直接利用等比中项的定义求解.【详解】设-1与+1的等比中项为G,则G2=(-1)(+1)=1,∴G=±1.故答案为:±1【点睛】(1)本题主要考查等比中项,意在考查学生对该知识的掌握水平.(2)等比数列中,如果,则,特殊地,时,则,是的等比中项.12.12.等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,则{a n}的公比为.【答案】【解析】试题分析:先根据等差中项可知4S2=S1+3S3,利用等比数列的求和公式用a1和q分别表示出S1,S2和S3,代入即可求得q.解:∵等比数列{a n}的前n项和为S n,已知S1,2S2,3S3成等差数列,∴a n=a1q n﹣1,又4S2=S1+3S3,即4(a1+a1q)=a1+3(a1+a1q+a1q2),解.故答案为考点:等比数列的性质.13.13.已知数列{a n}为等比数列,S n是它的前n项和.若a2·a3=2a1,且a4与2a7的等差中项为,则S5等于________.【答案】31【解析】【分析】根据两个已知条件求出的值,再利用等比数列的前n项和求S5.【详解】设数列{a n}的公比为q,则a2·a3=a·q3=a1·a4=2a1⇒a4=2,a4+2a7=a4+2a4q3=2+4q3=2×⇒q=.故a1==16,S5==31.故答案为:31【点睛】(1)本题主要考查等比数列的通项和求和,意在考查学生对这些知识的掌握水平和计算分析推理能力.(2)等比数列的前项和公式:.14.14.在数列{a n}和{b n}中,b n是a n与a n+1的等差中项,a1=2,且对任意n∈N*都有3a n+1-a n=0,则数列{b n}的通项公式b n=________.【答案】【解析】由,得,又因为,所以,故填. 15.15.某房地产开发商在销售一幢23层的商品楼之前按下列方法确定房价:由于首层与顶层均为复式结构,因此首层价格为a1元/m2,顶层由于景观好价格为a2元/m2,第二层价格为a元/m2,从第三层开始每层在前一层价格上加价元/m2,则该商品房各层的平均价格为________元/m2.【答案】 (a1+a2+23.1a)【解析】【分析】先求出S21,再求平均价格得解.【详解】设第二层到第22层的价格构成数列{b n},则{b n}是等差数列,b1=a,公差d=,共21项,所以其和为S21=21a+·=23.1a,故平均价格为 (a1+a2+23.1a)元/m2.故答案为: (a1+a2+23.1a)【点睛】本题主要考查等比数列的前n项和,意在考查学生对该知识的掌握水平和分析推理能力.三、解答题(本大题共5小题,共50分.解答应写出必要的文字说明、证明过程或演算步骤)16.16.数列{a n}的前n项和记为S n,点(n,S n)在曲线f(x)=x2-4x(x∈N*)上.求数列{a n}的通项公式.【答案】a n=2n-5.【解析】【分析】先由题得到S n=n2-4n,再由项和公式求数列{a n}的通项公式.【详解】解:由点(n,S n)在曲线f(x)=x2-4x(x∈N*)上知,S n=n2-4n,当n≥2时a n=S n-S n-1=n2-4n-[(n-1)2-4(n-1)]=2n-5;当n=1时,a1=S1=-3,满足上式;∴数列{a n}的通项公式为a n=2n-5.【点睛】(1)本题主要考查项和公式求数列的通项,意在考查学生对该知识的掌握水平和分析推理能力.(2)若在已知数列中存在:的关系,可以利用项和公式,求数列的通项.17.17.已知数列{log2(a n-1)}(n∈N*)为等差数列,且a1=3,a3=9.(1)求数列{a n}的通项公式;(2)证明:<1.【答案】(1)a n=2n+1.(2)见解析【解析】【分析】(1)先求出数列{log2(a n-1)}的公差d,再利用等差数列的通项求出a n.(2)先求出==,再利用等比数列求和公式求和证明不等式.【详解】解:(1)设等差数列{log2(a n-1)}的公差为d.由a1=3,a3=9,得log2(9-1)=log2(3-1)+2d,则d=1.所以log2(a n-1)=1+(n-1)×1=n,即a n=2n+1.(2)证明:因为==,所以++…+=+++…+=1-<1.【点睛】本题主要考查等差数列的通项,考查等比数列的前n项和,意在考查学生对这些知识的掌握水平和计算推理能力.18.18.等比数列{a n}的前n项和为S n,已知S1,S3,S2成等差数列.(1)求{a n}的公比q;(2)若a1-a3=3,求S n.【答案】(1)(2)【解析】(1)∵S1,S3,S2成等差数列,∴2S3=S1+S2,即2(a1+a2+a3)=a1+a1+a2,∴2a3=-a2,∴q=.(2)a3=a1q2=a1,∴a1-a1=3,∴a1=4,∴S n=19.19.已知数列{a n}的前n项和为S n,且a1=1,a n+1=S n(n=1,2,3,…).(1)求数列{a n}的通项公式;(2)当b n=(3a n+1)时,求证:数列的前n项和T n=.【答案】(1)(2)见解析【解析】【分析】(1)由项和公式得到a n+1=a n(n≥2),得到数列{a n}是以a2为首项,以为公比的等比数列,再写出数列{a n}的通项公式.(2)利用裂项相消法求数列的前n项和T n=.【详解】解:(1)由已知 (n≥2),得a n+1=a n(n≥2).∴数列{a n}是以a2为首项,以为公比的等比数列.又a2=S1=a1=,∴a n=a2× (n≥2).∴a n=(2)证明:b n=log (3a n+1)=log=n.∴==-,∴T n=+++…+=+++…+=1-=.【点睛】(1)本题主要考查项和公式和等比数列的通项的求法,考查裂项相消法求和,意在考查学生对这些知识的掌握水平和计算推理能力.(2)类似(其中是各项不为零的等差数列,为常数)的数列、部分无理数列等.用裂项相消法求和.20.20.甲、乙两超市同时开业,第一年的全年销售额为a万元,由于经营方式不同,甲超市前n年的总销售额为 (n2-n+2)万元,乙超市第n年的销售额比前一年销售额多a万元.(1)求甲、乙两超市第n年销售额的表达式;(2)若其中某一超市的年销售额不足另一超市的年销售额的50%,则该超市将被另一超市收购,判断哪一超市有可能被收购?如果有这种情况,将会出现在第几年?【答案】(1)见解析(2)第7年【解析】【分析】(1)利用a n= (n2-n+2)- [(n-1)2-(n-1)+2]求甲超市第n年销售额的表达式,利用累加法求乙超市第n年销售额的表达式.(2) 由b n<a n得 a< (n-1)a,解不等式即得第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.【详解】解:(1)设甲、乙两超市第n年的销售额分别为a n,b n.则有a1=a,当n≥2时,a n= (n2-n+2)- [(n-1)2-(n-1)+2]=(n-1)a,∴a n=b n=b1+(b2-b1)+(b3-b2)+…+(b n-b n-1)=a(n∈N*).(2)易知b n<3a,所以乙超市将被甲超市收购,由b n<a n得: a< (n-1)a.∴n+>7,∴n≥7,即第7年乙超市的年销售额不足甲超市的一半,乙超市将被甲超市收购.【点睛】(1)本题主要考查项和公式和累加法求通项,考查不等关系,意在考查学生对这些知识的掌握水平和分析推理能力.(2)解答本题的关键是读懂已知,求出甲、乙两超市第n年销售额的表达式.。

高中数学:《数列》章末检测(含答案)

高中数学:《数列》章末检测(含答案)

章末检测一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知数列{}n a 是等差数列,若12a =,432a a =,则公差d = A .0B .2C .1-D .2-2.在等比数列{}n a 中,若12a =,416a =,则数列{}n a 的前5项和5S = A .30B .31C .62D .643.设等差数列{}n a 的前n 项和为n S ,若58a =,36S =,则9a = A .8B .12C .16D .244.设等比数列{}n a 的前n 项和为n S ,若12a =,36S =,则4S = A .10或8B .10-或8C .10-D .10-或8-5.设等差数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,若对任意的n ∈*N ,都有231n n S n T n =+A .23B .914 C .2031D .11176.已知数列{}n a 是等比数列,11a =,且14a ,22a ,3a 成等差数列,则234a a a ++= A .7B .12C .14D .647.已知数列{}n a 是各项均为正数的等比数列,12a =,设其前n 项和为n S ,若1a ,24a +,3a 成等差数列,则6S = A .728B .729C .730D .7318.已知等差数列{}n a 的前n 项和为n S ,若80S >且90S <,则当n S 最大时n = A .8B .5C .4D .39.在等差数列{}n a 中,已知22383829a a a a ++=,且0n a <,则数列{}n a 的前10项和10S =A .9-B .11-C .13-D .15-10.在等差数列{}n a 中,已知3576a a a ++=,118a =n 项和n S =A .12n n ++ B .2n n + C .1nn + D .21nn + 11.已知数列{}n a 满足11a =-,1|121|n n n a a a +=-++,其前n 项和为n S ,则下列说法正确的个数为①数列{}n a 是等差数列;②数列{}n a 是等比数列;③23n n a -=;④1332n n S --=.A .0B .1C .2D .312.已知数列{}n a 满足112a =12100k a a a +++<成立的最大正整数k的值为 A .198B .199C .200D .201二、填空题:请将答案填在题中横线上.13.在等差数列{}n a 中,已知12a =,3510a a +=,则7a =________________.14.已知数列{}n a 的前n 项和21nn S =-,则数列{}n a 的通项公式n a =________________.15.设等差数列{}n a 的前n 项和为n S .若10m a =,21110m S -=,则正整数m =________________. 16.用[]x 表示不超过x 的最大整数,例如[3]3=,[1.2]1=,[ 1.3]2-=-.已知数列{}n a 满足11a =,21n nn a a a +=+,则122018111[]111a a a +++=+++________________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.若数列{}n a 满足11a =,21a =,且21n n n a a a ++=+,则称数列{}n a 为M 数列.小明同学在研究该数列时发现许多有趣的性质,如:由21n n n a a a ++=+可得21n n n a a a ++=-,所以12n a a a +++=324321222()()()1n n n n a a a a a a a a a ++++-+-+-==+--,另外小明还发现下面两条性质,请你给出证明. (1)2462211n n a a a a a +++++=-; (2)22221231n n n a a a a a a +++++=.18.已知等差数列{}n a 的前n 项和为nS ,且11a =,452S a =.(1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T .19.设等差数列{}n a 的前n 项和为nS ,等比数列{}n b 的前n 项和为nT ,已知11a =-,11b =,223a b +=.(1)若337a b +=,求数列{}n b 的通项公式; (2)若313T =,且0n b >,求n S .20.已知数列{}n a 的前n 项和为nS ,点(,)n n S 在抛物线23122y x x =+上,各项都为正数的等比数列{}nb4116b =.(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n a a C a b =+,求数列{}n C 的前n 项和n T .21.已知等比数列{}n a 的前n 项和312n n S -=,等差数列{}n b 的前5项和为30,且714b =. (1)求数列{}n a ,{}n b 的通项公式; (2)求数列{}n n a b 的前n 项和n T .22.已知公差大于零的等差数列{}n a 的前n 项和为nS ,且34117a a =,2522a a +=.(1)求数列{}n a 的通项公式; (2)若数列{}n b 是等差数列,且nn S b n c=+,求非零常数c 的值. (3)设11n n n C a a +=,n T 为数列{}n C 的前n 项和,是否存在正整数M ,使得8n M T >对任意的n ∈*N 均成立?若存在,求出M 的最小值;若不存在,请说明理由.【章末检测A 参考答案】1.D2.C3.C4.B5.B6.C7.A8.C9.D10.C 【解析】设数列{}n a 的公差为d ,因为3576a a a ++=,所以536a =,即52a =,又118a =,所以1151115a a d -==-,所以5(5)3n a a n d n =+-=-,因此数列n 11n n++-+C . 11.B12.C )∈*N ,所以2121a =-=-,3112a =+=5121a =-=-,6112a =+=……故数列{}n a 是周期为3的周期数列,且每个周期内的三个数的和为3,所以当198366k ==⨯时,12319836699100a a a a +++⋅⋅⋅+=⨯=<, 故使12100k a a a +++<成立的最大正整数k 的值为200,故选C . 13.8 14.12n - 15.616.0【解析】因为21n nn a a a +=+,所以21111(1)n n n n n a a a a a +===++111n n a a -+,即11111n n n a a a +=-+; 所以23201820192011220189121111111111[][()()()][1]111a a a a a a a a a a +++=-+-++-=-+++;因为11a =,210n n n a a a +=+>,所以数列{}n a 单调递增,所以20191a >,所以2019101a <<,所以20191011a <-<,所以12201820191111[][1]0111a a a a +++=-=+++.17.【解析】(1)由21n n n a a a ++=+,可得12n n n a a a ++=-,所以24623153752121()()()()n n n a a a a a a a a a a a a +-++++=-+-+-++-211n a a +-=211n a +=-.(2)由(1)得12n n n a a a ++=-,所以21121n n n n n a a a a a ++++=-,所以2222212312312342311()()()n n n n n a a a a a a a a a a a a a a a a a +-++++=+-+-++-21112n n a a a a a +=+- 21111n n a a +=+-⨯1n n a a +=.18.【答案】(1)n a n =;(2)1)12(nn T n -+=.19.【答案】(1)12n n b -=;(220.【答案】(1)31n a n =-,(2【解析】(1)因为点(,)n n S 在抛物线2y x x =+上,所以2122n S n n =+,当2n ≥,所以131n n n a S S n -=-=-,当1n =时,112a S ==,也符合上式; 所以31n a n =-.设等比数列{}n b 的公比为q ,4116b =,所以14q 2=, 又数列{}n b 的各项均为正数,所以12q =,112a =(2)由(1)可得3(31)194n a a n n =--=-,311()2n n a b -=,所以31194()n n n n a a C a b n -=+=-+,21.【答案】(1)13n n a -=,2n b n =;(2)11()322n n T n =-⋅+.【解析】(1)当1n =时,1113112a S -===;当2n ≥时,111313()132n n n n n n a S S ------=-==,综上可得13n n a -=.设数列{}n b 的公差为d ,由题意可得1161451030b d b d +=⎧⎨+=⎩,解得12b =,2d =,故2n b n =.(2)由(1)可得123n n n a b n -=⋅,所以01221234363(22)323n n n T n n --=⨯+⨯+⨯++-⨯+⨯ ①,12313234363(22)323n n n T n n -+=⨯+⨯+⨯+-⨯+⨯ ②,①-②得,1212(13)222323232323(12)3113n n nn n n T n n n ---=+⨯+⨯++⨯-⋅=-⨯=-⨯--,所以11()322nn T n =-⋅+. 22.【答案】(1)43n a n =-;(2)12-;(3)存在,M 的最小值为2.强化训练一、选择题:在每小题给出的四个选项中,只有一项是符合题目要求的. 1.已知数列{}n a 是等差数列,若12a =,432a a =,则公差d = A .0B .2C .1-D .2-2.在等比数列{}n a 中,若12a =,416a =,则数列{}n a 的前5项和5S = A .30B .31C .62D .643.设等差数列{}n a 的前n 项和为n S ,若58a =,36S =,则9a = A .8B .12C .16D .244.设等比数列{}n a 的前n 项和为n S ,若12a =,36S =,则4S = A .10或8B .10-或8C .10-D .10-或8-5.设等差数列{}n a 和{}n b 的前n 项和分别为n S ,n T ,若对任意的n ∈*N ,都有231n n S n T n =+A .23B .914 C .2031D .11176.已知数列{}n a 是等比数列,11a =,且14a ,22a ,3a 成等差数列,则234a a a ++= A .7B .12C .14D .647.已知数列{}n a 是各项均为正数的等比数列,12a =,设其前n 项和为n S ,若1a ,24a +,3a 成等差数列,则6S = A .728B .729C .730D .7318.已知等差数列{}n a 的前n 项和为n S ,若80S >且90S <,则当n S 最大时n = A .8B .5C .4D .39.在等差数列{}n a 中,已知22383829a a a a ++=,且0n a <,则数列{}n a 的前10项和10S =A .9-B .11-C .13-D .15-10.在等差数列{}n a 中,已知3576a a a ++=,118a =n 项和n S =A .12n n ++ B .2n n + C .1nn + D .21nn +11.已知数列{}n a 满足11a =-,1|121|n n n a a a +=-++,其前n 项和为n S ,则下列说法正确的个数为①数列{}n a 是等差数列;②数列{}n a 是等比数列;③23n n a -=;④1332n n S --=.A .0B .1C .2D .312.已知数列{}n a 满足112a =12100k a a a +++<成立的最大正整数k的值为 A .198B .199C .200D .201二、填空题:请将答案填在题中横线上.13.在等差数列{}n a 中,已知12a =,3510a a +=,则7a =________________.14.已知数列{}n a 的前n 项和21nn S =-,则数列{}n a 的通项公式n a =________________.15.设等差数列{}n a 的前n 项和为n S .若10m a =,21110m S -=,则正整数m =________________. 16.用[]x 表示不超过x 的最大整数,例如[3]3=,[1.2]1=,[ 1.3]2-=-.已知数列{}n a 满足11a =,21n n n a a a +=+,则122018111[]111a a a +++=+++________________.三、解答题:解答应写出文字说明、证明过程或演算步骤.17.若数列{}n a 满足11a =,21a =,且21n n n a a a ++=+,则称数列{}n a 为M 数列.小明同学在研究该数列时发现许多有趣的性质,如:由21n n n a a a ++=+可得21n n n a a a ++=-,所以12n a a a +++=324321222()()()1n n n n a a a a a a a a a ++++-+-+-==+--,另外小明还发现下面两条性质,请你给出证明. (1)2462211n n a a a a a +++++=-; (2)22221231n n n a a a a a a +++++=.18.已知等差数列{}n a 的前n 项和为nS ,且11a =,452S a =.(1)求数列{}n a 的通项公式;(2)设12n n n b a -=,求数列{}n b 的前n 项和n T .19.设等差数列{}n a 的前n 项和为nS ,等比数列{}n b 的前n 项和为nT ,已知11a =-,11b =,223a b +=.(1)若337a b +=,求数列{}n b 的通项公式; (2)若313T =,且0n b >,求n S .20.已知数列{}n a 的前n 项和为nS ,点(,)n n S 在抛物线23122y x x =+上,各项都为正数的等比数列{}nb4116b =.(1)求数列{}n a ,{}n b 的通项公式;(2)记n n n a a C a b =+,求数列{}n C 的前n 项和n T .21.已知等比数列{}n a 的前n 项和312n n S -=,等差数列{}n b 的前5项和为30,且714b =. (1)求数列{}n a ,{}n b 的通项公式;(2)求数列{}n n a b 的前n 项和n T .22.已知公差大于零的等差数列{}n a 的前n 项和为n S ,且34117a a =,2522a a +=.(1)求数列{}n a 的通项公式;(2)若数列{}n b 是等差数列,且n n S b n c =+,求非零常数c 的值. (3)设11n n n C a a +=,n T 为数列{}n C 的前n 项和,是否存在正整数M ,使得8n M T >对任意的n ∈*N 均成立?若存在,求出M 的最小值;若不存在,请说明理由.。

2020-2021学年新教材高中数学 章末质量检测(一)数列(含解析)新人教A版选择性必修第二册

2020-2021学年新教材高中数学 章末质量检测(一)数列(含解析)新人教A版选择性必修第二册

章末质量检测(一) 数列一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知等差数列{a n }的前n 项和为S n ,且a 5+a 9=50,a 4=13,则S 10=( ) A .170 B .190 C .180 D .1892.设等比数列{a n }的前n 项和为S n ,若S 10:S 5=1:2,则S 15:S 5=( ) A .3:4 B .2:3 C .1:2 D .1:33.已知数列{a n }的前n 项和为S n ,且S n =2a n +1,则数列{a n }的通项公式为( )A .a n =-2n -1B .a n =2n -1C .a n =2n -3D .a n =2n -1-24.在正项等比数列{a n }中,若3a 1,12a 3,2a 2成等差数列,则a 2018-a 2019a 2016-a 2017=( )A .3或-1B .9或1C .3D .95.我国古代著名的《周髀算经》中提到:凡八节二十四气,气损益九寸九分六分分之一;冬至晷(ɡuǐ )长一丈三尺五寸,夏至晷长一尺六寸.意思是:一年有二十四个节气,每相邻两个节气之间的日影长度差为9916分;且“冬至”时日影长度最大,为1 350分;“夏至”时日影长度最小,为160分.则“立春”时日影长度为( )A .95313分B .1 05212分C .1 15123分D .1 25056分6.按照下列图形中的规律排下去,第6个图形中包含的点的个数为( )A .108B .128C .148D .1687.数列{a n }中,a 1=2,a m +n =a m a n .若a k +1+a k +2+…+a k +10=215-25,则k =( ) A. 2 B. 3 C. 4 D. 58.定义“等积数列”:在一个数列中,如果每一项与它的后一项的积都为同一个常数,那么这个数列叫做等积数列,这个常数叫做该数列的公积,已知数列{a n }是等积数列且a 1=3,前41项的和为103,则这个数列的公积为( )A .2B .3C .6D .8二、多项选择题(本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分)9.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 3+a 8+a 13是一个定值,则下列各数也为定值的有( )A .a 7B .a 8C .S 15D .S 1610.在递增的等比数列{a n }中,S n 是数列{a n }的前n 项和,若a 1a 4=32,a 2+a 3=12,则下列说法正确的是( )A .q =1B .数列{S n +2}是等比数列C .S 8=510D .数列{lg a n }是公差为2的等差数列11.已知数列{a n }满足a 1=1,a n +1=a n2+3a n(n ∈N *),则下列结论正确的有( )A.⎩⎨⎧⎭⎬⎫1a n +3为等比数列 B .{a n }的通项公式为a n =12n +1-3C .{a n }为递增数列 D.⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =2n +2-3n -4 12.意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一列数:1,1,2,3,5,…,其中从第三项起,每个数等于它前面两个数的和,后来人们把这样的一列数组成的数列{a n }称为“斐波那契数列”,记S n 为数列{a n }的前n 项和,则下列结论正确的是( )A .a 6=8B .S 7=33C .a 1+a 3+a 5+…+a 2019=a 2020D.a 21+a 22+……+a 22019a 2019=a 2020三、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上) 13.某单位某年十二月份的产值是同年一月份产值的m 倍,那么该单位此年的月平均增长率是________.14.已知-7,a 1,a 2,-1四个实数成等差数列,-4,b 1,b 2,b 3,-1五个实数成等比数列,则a 2-a 1b 2=________.15.设S n 是数列{a n }的前n 项和且a 1=2,a n +1=S n ·S n +1,则S n =________.16.设等差数列{a n }的前n 项和为S n .若a 2=-3,S 5=-10,则a 5=________,S n 的最小值为________.四、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)已知等差数列{a n }中,a 1=-7,S 3=-15. (1)求数列{a n }的通项公式; (2)求数列{a n }的前n 项和S n .18.(本小题满分12分)等比数列{a n }中,a 1=1,a 5=4a 3. (1)求{a n }的通项公式;(2)记S n 为{a n }的前n 项和.若S m =63,求m .19.(本小题满分12分)已知数列{a n }为等差数列,a 7-a 2=10,且a 1,a 6,a 21依次成等比数列.(1)求数列{a n }的通项公式;(2)设b n =1a n a n +1,数列{b n }的前n 项和为S n ,若S n =225,求n 的值.20.(本小题满分12分)已知在等比数列{a n }中,a 1=2,且a 1,a 2,a 3-2成等差数列. (1)求数列{a n }的通项公式;(2)若数列{b n }满足b n =1a n+2log 2a n -1,求数列{b n }的前n 项和S n .21.(本小题满分12分)在①b 1+b 3=a 2,②a 4=b 4,③S 5=-25这三个条件中任选一个,补充在下面问题中,若问题中的k 存在,求k 的值;若k 不存在,说明理由.设等差数列{a n }的前n 项和为S n ,{b n }是等比数列,________,b 1=a 5,b 2=3,b 5=-81,是否存在k ,使得S k >S k +1且S k +1<S k +2?注:如果选择多个条件分别解答,按第一个解答计分.22.(本小题满分12分)已知数列{a n }前n 项和为S n ,a 1=2,且满足S n =12a n +1+n ,(n ∈N *).(1)证明:n ≥2,n 是整数时,数列{a n -1}是等比数列,并求{a n }的通项公式; (2)设b n =(4n -2)a n +1,求数列{b n }的前n 项和T n .章末质量检测(一) 数列1.解析:设等差数列的首项为a 1,公差为d , ∵a 5+a 9=50,a 4=13,∴⎩⎪⎨⎪⎧ 2a 1+12d =50a 1+3d =13,解得⎩⎪⎨⎪⎧a 1=1d =4.∴S 10=10×1+10×(10-1)2×4=190,故选B 项.答案:B2.解析:在等比数列{a n }中,S 5,S 10-S 5,S 15-S 10,…成等比数列,因为S 10S 5=12,所以S 5=2S 10,S 15=34S 5,得S 15S 5=34,故选A. 答案:A3.解析:∵S n =2a n +1,∴n ≥2时,a n =S n -S n -1=2a n +1-(2a n -1+1),化为:a n =2a n -1. n =1时,a 1=2a 1+1,解得a 1=-1. ∴数列{a n }为等比数列,公比为2 ∴a n =-2n -1,故选A. 答案:A4.解析:设等比数列{a n }的公比为q >0,因为3a 1,12a 3,2a 2成等差数列,故a 3=3a 1+2a 2⇒a 1q 2=3a 1+2a 1q ⇒q 2-2q -3=0⇒(q -3)(q +1)=0.因为q >0故q =3.故(a 2016-a 2017)q 2a 2016-a 2017=q 2=9.故选D. 答案:D5.解析:一年有二十四个节气,每相邻两个节气之间的日影长度差为9916分,且“冬至”时日影长度最大,为1 350分;“夏至”时日影长度最小,为160分.∴1 350+12d =160,解得d =-119012,∴“立春”时日影长度为:1350+⎝⎛⎭⎫-1 19012×3=1 05212(分). 故选B.答案:B6.解析:观察图形可知第1个图形中包含点的个数为:3=3×1=3×12, 第2个图形中包含点的个数为:12=3×(1+3)=3×22, 第3个图形中包含点的个数为:27=3×(1+3+5)=3×32, 第4个图形中包含点的个数为:48=3×(1+3+5+7)=3×42, …第6个图形中包含点的个数为:48=3×(1+3+5+7+9+11)=3×62=108. 故选A. 答案:A7.解析:由a m +n =a m a n ,令m =1可得a n +1=a 1a n =2a n ,∴数列{a n }是公比为2的等比数列,∴a n =2×2n -1=2n .则a k +1+a k +2+…+a k +10=2k +1+2k +2+…+2k +10=2k +1(1-210)1-2=2k +11-2k +1=215-25,∴k =4.故选C.答案:C8.解析:由题可知等积数列的各项以2为一个周期循环出现,每相邻两项的和相等,前41项的和为103,则(a 1+a 2)+(a 3+a 4)+…+(a 39+a 40)+a 41=103,即20(a 1+a 2)+a 1=103,解得a 2=2 所以公积是2×3=6故选C. 答案:C9.解析:由等差中项的性质可得a 3+a 8+a 13=3a 8为定值,则a 8为定值,S 15=15(a 1+a 15)2=15a 8为定值,但S 16=16(a 1+a 16)2=8(a 8+a 9)不是定值.故选BC. 答案:BC10.解析:设等比数列{a n }的公比为q ,因为a 1a 4=32,a 2+a 3=12,所以⎩⎪⎨⎪⎧ a 2a 3=32a 2+a 3=12,解得:⎩⎪⎨⎪⎧ a 2=4a 3=8或⎩⎪⎨⎪⎧a 2=8a 3=4,因为{a n }递增,所以⎩⎪⎨⎪⎧a 2=4a 3=8,因此q =2,故A 错;所以a 1=a 2q=2,因此a n =2n,S n =2×(1-2n )1-2=2n +1-2,所以S 8=29-2=510,S n +2=2n +1,所以数列{S n +2}是等比数列,故BC 正确; 又lg a n =lg 2n =n ·lg 2,因此数列{lg a n }是公差为lg 2的等差数列,故D 错;故选BC. 答案:BC 11.解析:因为1a n +1=2+3a n a n =2a n +3,所以1a n +1+3=2⎝⎛⎭⎫1a n +3,又1a 1+3=4≠0, 所以⎩⎨⎧⎭⎬⎫1a n+3是以4为首项,2为公比的等比数列,1a n +3=4×2n -1即a n =12n +1-3,{a n }为递减数列, ⎩⎨⎧⎭⎬⎫1a n 的前n 项和T n =(22-3)+(23-3)+…+(2n +1-3)=2(21+22+…+2n )-3n =2×2×(1-2n )1-2-3n =2n +2-3n -4.故选ABD. 答案:ABD12.解析:对A ,写出数列的前6项为1,1,2,3,5,8,故A 正确; 对B ,S 7=1+1+2+3+5+8+13=33,故B 正确;对C ,由a 1=a 2,a 3=a 4-a 2,a 5=a 6-a 4,……,a 2019=a 2020-a 2018,可得:a 1+a 3+a 5+…+a 2019=a 2020.故a 1+a 3+a 5+…+a 2019是斐波那契数列中的第2020项,故C 项正确;对D ,斐波那契数列总有a n +2=a n +1+a n ,则a 21=a 2a 1,a 22=a 2(a 3-a 1)=a 2a 3-a 2a 1,a 23=a 3(a 4-a 2)=a 3a 4-a 2a 3,……,a 22018=a 2018(a 2019-a 2017)=a 2018a 2019-a 2017a 2018, a 22019=a 2019a 2020-a 2019a 2018.a 21+a 22+a 23+……+a 22019=a 2019a 2020,故D 正确;故选ABCD. 答案:ABCD13.解析:由题意可知,这一年中的每一个月的产值成等比数列,求月平均增长率只需利用a 12a 1=m ,所以月平均增长率为11m -1.答案:11m -114.解析:由题意,知a 2-a 1=-1-(-7)3=2,b 22=(-4)×(-1)=4.又因为b 2是等比数列中的第三项,所以b 2与第一项同号,即b 2=-2,所以a 2-a 1b 2=2-2=-1.答案:-115.解析:由已知可知S n +1-S n =S n ·S n +1,两边同时除以S n ·S n +1,可得1S n -1S n +1=1⇒1S n +1-1S n =-1,所以⎩⎨⎧⎭⎬⎫1S n 是以1S 1=12为首项,-1为公差的等差数列,所以1S n =12+(n -1)×(-1)=32-n ,整理为S n =23-2n.答案:23-2n16.解析:设等差数列{a n }的公差为d ,因为S 5=5(a 1+a 5)2=5a 3=-10,所以a 3=-2,又因为a 2=-3,所以d =a 3-a 2=1,所以a 1=a 2-d =-4, a 5=a 3+2d =0,S n =-4n +12n (n -1)=12n 2-92n=12⎝⎛⎭⎫n -922-818, 又n ∈N *,故当n =4或5时,S n 取得最小值-10. 答案:0 -1017.解析:(1)依题意,设等差数列{a n }的公差为d , 因为S 3=3a 2=-15,所以a 2=-5,又a 1=-7, 所以公差d =2,所以a n =a 1+(n -1)d =-7+2(n -1)=2n -9. (2)由(1)知a 1=-7,d =2,所以S n =na 1+n (n -1)2d =-7n +n (n -1)2×2=n (n -8).18.解析:(1)设{a n }的公比为q , 由题设得a n =q n -1. 由已知得q 4=4q 2,解得q =0(舍去),q =-2或q =2. 故a n =(-2)n -1或a n =2n -1.(2)若a n =(-2)n -1,则S n =1-(-2)n3.由S m =63得(-2)m =-188,此方程没有正整数解.若a n =2n -1,则S n =2n -1.由S m =63得2m =64,解得m =6.综上,m =6.19.解析:(1)设数列{a n }的公差为d ,,因为a 7-a 2=10,所以5d =10,解得d =2.因为a 1,a 6,a 21依次成等比数列,所以a 26=a 1a 21,即(a 1+5×2)2=a 1(a 1+20×2),解得a 1=5.所以a n =2n +3.(2)由(1)知b n =1a n a n +1=1(2n +3)(2n +5), 所以b n =12⎝ ⎛⎭⎪⎫12n +3-12n +5,所以S n =12⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫15-17+⎝⎛⎭⎫17-19+…+⎝ ⎛⎭⎪⎫12n +3-12n +5=n 5(2n +5),由n 5(2n +5)=225,得n =10. 20.解析:(1)设等比数列{a n }的公比为q . ∵a 1,a 2,a 3-2成等差数列,a 1=2, ∴2a 2=a 1+(a 3-2)=2+(a 3-2)=a 3,∴q =a 3a 2=2,∴a n =a 1q n -1=2n (n ∈N *)(2)b n =1a n +2log 2a n -1=⎝⎛⎭⎫12n+2log 22n-1 =⎝⎛⎭⎫12n +2n -1则S n =⎝⎛⎭⎫12+1+⎣⎡⎦⎤⎝⎛⎭⎫122+3+⎣⎡⎦⎤⎝⎛⎭⎫123+5+…+⎣⎡⎦⎤⎝⎛⎭⎫12n +(2n -1) =⎣⎡⎦⎤12+⎝⎛⎭⎫122+⎝⎛⎭⎫123+…+⎝⎛⎭⎫12n +[1+3+5+…+(2n -1)] =12⎣⎡⎦⎤1-⎝⎛⎭⎫12n 1-12+n [1+(2n -1)]2=n 2-⎝⎛⎭⎫12n +1(n ∈N *)21.解析:方案一:选条件①.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3.所以b n =-(-3)n -1.从而a 5=b 1=-1,a 2=b 1+b 3=-10,由于{a n }是等差数列,所以a n =3n -16. 因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0,所以满足题意的k 存在当且仅当⎩⎪⎨⎪⎧3(k +1)-16<03(k +2)-16>0,即k =4.方案二:选条件②.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,所以b n =-(-3)n -1.从而a 5=b 1=-1,a 4=b 4=27, 所以{a n }的公差d =-28.因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0, 此时d =a k +2-a k +1>0,与d =-28矛盾, 所以满足题意的k 不存在. 方案三:选条件③.设{b n }的公比为q ,则q 3=b 5b 2=-27,即q =-3,所以b n =-(-3)n -1从而a 5=b 1=-1,由{a n }是等差数列得S 5=5(a 1+a 5)2,由S 5=-25得a 1=-9. 所以a n =2n -11.因为S k >S k +1且S k +1<S k +2等价于a k +1<0且a k +2>0, 所以满足题意的k 存在当且仅当⎩⎪⎨⎪⎧2(k +1)-11<02(k +2)-11>0,即k =4. 22.解析:(1)⎩⎨⎧S n =12a n +1+nSn -1=12a n+(n -1)(n ≥2),a n =12a n +1-12a n +1,即a n +1=3a n -2(n ≥2),即(a n +1-1)=3(a n -1), 当a 1=2时,a 2=2,a 2-1a 1-1=1≠3,{a n -1}是以a 2-1=1为首项,3为公比的等比数列, ∴a n -1=1·3n -2,即a n =3n -2+1,∴a n =⎩⎪⎨⎪⎧2, n =13n -2+1,n ≥2.(2)b n =(4n -2)a n +1=(4n -2)·(3n -1+1)=(4n -2)3n -1+(4n -2), 记S n =2·30+6·31+10·32+…+(4n -2)3n -1,① 3S n =2·31+6·32+…+(4n -6)3n -1+(4n -2)3n ② ①-②得-2S n =2+4(31+32+33+…+3n -1)-(4n -2)3n ∴S n =2+(2n -2)·3n∴T n =2+(2n -2)·3n+n (2+4n -2)2=2+(2n -2)·3n +2n 2.。

(完整版)数列章末检测卷(含答案)

(完整版)数列章末检测卷(含答案)

数列章末检测卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A.667B.668C.669D.672答案 D解析 由2 014=1+3(n -1),解得n =672.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.4答案 B解析 ∵a 1+a 5=2a 3=10,∴a 3=5,∴d =a 4-a 3=7-5=2.3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( )A.1B.2C.4D.8答案 A解析 ∵a 3·a 11=a 27=16,∴a 7=4,∴a 5=a 7q 2=422=1. 4.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( )A.S 7B.S 8C.S 13D.S 15答案 C解析 ∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数, ∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数. 5.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A.58B.88C.143D.176答案 B解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. 6.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A.81B.120C.168D.192答案 B解析 由a 5=a 2q 3得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.7.数列{(-1)n ·n }的前2 015项的和S 2 015为( )A.-2 013B.-1 008C.2 013D.1 008答案 B解析 S 2 015=-1+2-3+4-5+…+2 014-2 015=(-1)+(2-3)+(4-5)+…+(2 014-2 015)=(-1)+(-1)×1 007=-1 008.8.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A.1或2B.1或-2C.-1或2D.-1或-2答案 C解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2.9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是( )A.-2B.-3C.-4D.-6答案 C解析 由题意,知a 6≥0,a 7<0.∴⎩⎪⎨⎪⎧ a 1+5d =23+5d ≥0,a 1+6d =23+6d <0,∴-235≤d <-236.∵d ∈Z ,∴d =-4.10.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是() A.d <0B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值答案 C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5.11.在等比数列{a n }中,a 1=1,9S 3=S 6,则数列{1a n }的前5项和为( )A.158和5 B.3116和5 C.3116D.158答案 C解析 若q =1,则9S 3=27a 1,S 6=6a 1,∵a 1≠0,∴9S 3≠S 6,矛盾,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q, 解得q =2,故a n =a 1q n -1=2n -1.∴1a n =(12)n -1. ∴{1a n }的前5项和S 5=1-(12)51-12=3116. 12.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A.qB.12qC.(1+q )12D.(1+q )12-1答案 D解析 设第一年第1个月的生产总值为1,公比为1+q ,该厂第一年的生产总值为 S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,∴该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1 =(1+q )12-1.二、填空题(本大题共4小题,每小题5分,共20分)13.{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案 2解析 设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=____________.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________.答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1),∴a n =2a n -1,经检测n =1也符合,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.答案 5-12 解析 设三边为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 三、解答题(本大题共6小题,共70分)17.(10分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .解 设{a n }的公差为d ,则⎩⎪⎨⎪⎧ (a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2. 因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).18.(12分)已知等差数列{a n }的前n 项和为S n ,n ∈N *,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =5,10a 1+10×92d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =2n -1.(2)因为b n =2a n +2n =12×4n +2n , 所以T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23×4n +n 2+n -23. 19.(12分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n <1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12-12n ×121-12=1-12n <1. 20.(12分)某商店采用分期付款的方式促销一款价格为每台6 000元的电脑.商店规定,购买时先支付货款的13,剩余部分在三年内按每月底等额还款的方式支付欠款,且结算欠款的利息.已知欠款的月利率为0.5%,到第一个月底,货主在第一次还款之前,他欠商店多少元?假设货主每月还商店a 元,写出在第i (i =1,2,…,36)个月末还款后,货主对商店欠款数的表达式.解 (1)因为购买电脑时,货主欠商店23的货款,即6 000×23=4 000(元), 又按月利率0.5%,到第一个月底的欠款数应为4 000(1+0.5%)=4 020(元).(2)设第i 个月底还款后的欠款数为y i ,则有y 1=4 000(1+0.5%)-a ,y 2=y 1(1+0.5%)-a=4 000(1+0.5 %)2-a (1+0.5%)-a ,y 3=y 2(1+0.5%)-a=4 000(1+0.5%)3-a (1+0.5%)2-a (1+0.5%)-a , …y i =y i -1(1+0.5%)-a =4 000(1+0.5%)i -a (1+0.5%)i -1-a (1+0.5%)i -2-…-a , 由等比数列的求和公式,得y i =4 000(1+0.5%)i -a (1+0.5%)i -10.5%(i =1,2,…,36). 21.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n .∴a n =n ·2n -1. ∴S n =1+2·21+3·22+…+n ·2n -1,两边同时乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n -1-n ·2n =(1-n )2n -1,∴S n =(n -1)·2n +1.22.(12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m ≥1?若存在,求m 的最小值;若不存在,请说明理由.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10, 解得⎩⎪⎨⎪⎧ a 1=53,q =3或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1或a n =-5·(-1)n -1. (2)若a n =53·3n -1,则1a n =35(13)n -1, 则数列{1a n }是首项为35,公比为13的等比数列. 从而∑n =1m 1a n =35[1-(13)m ]1-13=910·[1-(13)m ]<910<1. 若a n =-5·(-1)n -1,则1a n =-15(-1)n -1, 故数列{1a n }是首项为-15,公比为-1的等比数列, 从而∑n =1m 1a n =⎩⎪⎨⎪⎧ -15,m =2k -1(k ∈N *),0,m =2k (k ∈N *),故∑n =1m 1a n <1. 综上,对任何正整数m ,总有∑n =1m 1a n <1. 故不存在正整数m ,使得1a 1+1a 2+…+1a m ≥1成立.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列章末检测卷(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分)1.{a n }是首项为1,公差为3的等差数列,如果a n =2 014,则序号n 等于( )A.667B.668C.669D.672答案 D解析 由2 014=1+3(n -1),解得n =672.2.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( )A.1B.2C.3D.4答案 B解析 ∵a 1+a 5=2a 3=10,∴a 3=5,∴d =a 4-a 3=7-5=2.3.公比为2的等比数列{a n }的各项都是正数,且a 3·a 11=16,则a 5等于( )A.1B.2C.4D.8答案 A解析 ∵a 3·a 11=a 27=16,∴a 7=4,∴a 5=a 7q 2=422=1. 4.等差数列{a n }的公差为d ,前n 项和为S n ,当首项a 1和d 变化时,a 2+a 8+a 11是一个定值,则下列各数也为定值的是( )A.S 7B.S 8C.S 13D.S 15答案 C解析 ∵a 2+a 8+a 11=(a 1+d )+(a 1+7d )+(a 1+10d )=3a 1+18d =3(a 1+6d )为常数, ∴a 1+6d 为常数.∴S 13=13a 1+13×122d =13(a 1+6d )也为常数. 5.在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11等于( )A.58B.88C.143D.176答案 B解析 S 11=11(a 1+a 11)2=11(a 4+a 8)2=11×162=88. 6.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( )A.81B.120C.168D.192答案 B解析 由a 5=a 2q 3得q =3.∴a 1=a 2q =3,S 4=a 1(1-q 4)1-q =3(1-34)1-3=120.7.数列{(-1)n ·n }的前2 015项的和S 2 015为( )A.-2 013B.-1 008C.2 013D.1 008答案 B解析 S 2 015=-1+2-3+4-5+…+2 014-2 015=(-1)+(2-3)+(4-5)+…+(2 014-2 015)=(-1)+(-1)×1 007=-1 008.8.若{a n }是等比数列,其公比是q ,且-a 5,a 4,a 6成等差数列,则q 等于( )A.1或2B.1或-2C.-1或2D.-1或-2答案 C解析 依题意有2a 4=a 6-a 5,即2a 4=a 4q 2-a 4q ,而a 4≠0,∴q 2-q -2=0,(q -2)(q +1)=0.∴q =-1或q =2.9.一个首项为23,公差为整数的等差数列,第7项开始为负数,则它的公差是( )A.-2B.-3C.-4D.-6答案 C解析 由题意,知a 6≥0,a 7<0.∴⎩⎪⎨⎪⎧ a 1+5d =23+5d ≥0,a 1+6d =23+6d <0,∴-235≤d <-236.∵d ∈Z ,∴d =-4.10.设{a n }是等差数列,S n 是其前n 项和,且S 5<S 6,S 6=S 7>S 8,则下列结论错误的是() A.d <0B.a 7=0C.S 9>S 5D.S 6与S 7均为S n 的最大值答案 C解析 由S 5<S 6,得a 6=S 6-S 5>0.又S 6=S 7⇒a 7=0,所以d <0.由S 7>S 8⇒a 8<0,因此,S 9-S 5=a 6+a 7+a 8+a 9=2(a 7+a 8)<0即S 9<S 5.11.在等比数列{a n }中,a 1=1,9S 3=S 6,则数列{1a n }的前5项和为( )A.158和5 B.3116和5 C.3116D.158答案 C解析 若q =1,则9S 3=27a 1,S 6=6a 1,∵a 1≠0,∴9S 3≠S 6,矛盾,故q ≠1.由9S 3=S 6得9×a 1(1-q 3)1-q =a 1(1-q 6)1-q, 解得q =2,故a n =a 1q n -1=2n -1.∴1a n =(12)n -1. ∴{1a n }的前5项和S 5=1-(12)51-12=3116. 12.某工厂月生产总值的平均增长率为q ,则该工厂的年平均增长率为( )A.qB.12qC.(1+q )12D.(1+q )12-1答案 D解析 设第一年第1个月的生产总值为1,公比为1+q ,该厂第一年的生产总值为 S 1=1+(1+q )+(1+q )2+…+(1+q )11.则第2年第1个月的生产总值为(1+q )12,第2年全年生产总值S 2=(1+q )12+(1+q )13+…+(1+q )23=(1+q )12S 1,∴该厂生产总值的年平均增长率为S 2-S 1S 1=S 2S 1-1 =(1+q )12-1.二、填空题(本大题共4小题,每小题5分,共20分)13.{a n }是递增等差数列,前三项的和为12,前三项的积为48,则它的首项是________. 答案 2解析 设前三项分别为a -d ,a ,a +d ,则a -d +a +a +d =12且a (a -d )(a +d )=48,解得a =4且d =±2,又{a n }递增,∴d >0,即d =2,∴a 1=2.14.已知等比数列{a n }是递增数列,S n 是{a n }的前n 项和.若a 1,a 3是方程x 2-5x +4=0的两个根,则S 6=____________.答案 63解析 ∵a 1,a 3是方程x 2-5x +4=0的两根,且q >1,∴a 1=1,a 3=4,则公比q =2,因此S 6=1×(1-26)1-2=63. 15.如果数列{a n }的前n 项和S n =2a n -1,则此数列的通项公式a n =________.答案 2n -1解析 当n =1时,S 1=2a 1-1,∴a 1=2a 1-1,∴a 1=1.当n ≥2时,a n =S n -S n -1=(2a n -1)-(2a n -1-1),∴a n =2a n -1,经检测n =1也符合,∴{a n }是等比数列,∴a n =2n -1,n ∈N *.16.一个直角三角形的三边成等比数列,则较小锐角的正弦值是________.答案 5-12 解析 设三边为a ,aq ,aq 2(q >1),则(aq 2)2=(aq )2+a 2,∴q 2=5+12. 较小锐角记为θ,则sin θ=1q 2=5-12. 三、解答题(本大题共6小题,共70分)17.(10分)已知等差数列{a n }中,a 3a 7=-16,a 4+a 6=0,求{a n }的前n 项和S n .解 设{a n }的公差为d ,则⎩⎪⎨⎪⎧ (a 1+2d )(a 1+6d )=-16,a 1+3d +a 1+5d =0, 即⎩⎪⎨⎪⎧ a 21+8da 1+12d 2=-16,a 1=-4d . 解得⎩⎪⎨⎪⎧ a 1=-8,d =2,或⎩⎪⎨⎪⎧a 1=8,d =-2. 因此S n =-8n +n (n -1)=n (n -9),或S n =8n -n (n -1)=-n (n -9).18.(12分)已知等差数列{a n }的前n 项和为S n ,n ∈N *,a 3=5,S 10=100.(1)求数列{a n }的通项公式;(2)设b n =2a n +2n ,求数列{b n }的前n 项和T n .解 (1)设等差数列{a n }的公差为d ,由题意,得⎩⎪⎨⎪⎧ a 1+2d =5,10a 1+10×92d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2, 所以a n =2n -1.(2)因为b n =2a n +2n =12×4n +2n , 所以T n =b 1+b 2+…+b n=12(4+42+…+4n )+2(1+2+…+n ) =4n +1-46+n 2+n =23×4n +n 2+n -23. 19.(12分)已知数列{log 2(a n -1)}(n ∈N *)为等差数列,且a 1=3,a 3=9.(1)求数列{a n }的通项公式;(2)证明:1a 2-a 1+1a 3-a 2+…+1a n +1-a n <1. (1)解 设等差数列{log 2(a n -1)}的公差为d .由a 1=3,a 3=9,得log 2(9-1)=log 2(3-1)+2d ,则d =1.所以log 2(a n -1)=1+(n -1)×1=n ,即a n =2n +1.(2)证明 因为1a n +1-a n =12n +1-2n =12n , 所以1a 2-a 1+1a 3-a 2+…+1a n +1-a n=121+122+123+…+12n =12-12n ×121-12=1-12n <1. 20.(12分)某商店采用分期付款的方式促销一款价格为每台6 000元的电脑.商店规定,购买时先支付货款的13,剩余部分在三年内按每月底等额还款的方式支付欠款,且结算欠款的利息.已知欠款的月利率为0.5%,到第一个月底,货主在第一次还款之前,他欠商店多少元?假设货主每月还商店a 元,写出在第i (i =1,2,…,36)个月末还款后,货主对商店欠款数的表达式.解 (1)因为购买电脑时,货主欠商店23的货款,即6 000×23=4 000(元), 又按月利率0.5%,到第一个月底的欠款数应为4 000(1+0.5%)=4 020(元).(2)设第i 个月底还款后的欠款数为y i ,则有y 1=4 000(1+0.5%)-a ,y 2=y 1(1+0.5%)-a=4 000(1+0.5 %)2-a (1+0.5%)-a ,y 3=y 2(1+0.5%)-a=4 000(1+0.5%)3-a (1+0.5%)2-a (1+0.5%)-a , …y i =y i -1(1+0.5%)-a =4 000(1+0.5%)i -a (1+0.5%)i -1-a (1+0.5%)i -2-…-a , 由等比数列的求和公式,得y i =4 000(1+0.5%)i -a (1+0.5%)i -10.5%(i =1,2,…,36). 21.(12分)在数列{a n }中,a 1=1,a n +1=2a n +2n .(1)设b n =a n 2n -1.证明:数列{b n }是等差数列; (2)求数列{a n }的前n 项和S n .(1)证明 由已知a n +1=2a n +2n ,得b n +1=a n +12n =2a n +2n 2n =a n 2n -1+1=b n +1. ∴b n +1-b n =1,又b 1=a 1=1.∴{b n }是首项为1,公差为1的等差数列.(2)解 由(1)知,b n =n ,a n 2n -1=b n =n .∴a n =n ·2n -1. ∴S n =1+2·21+3·22+…+n ·2n -1,两边同时乘以2得:2S n =1·21+2·22+…+(n -1)·2n -1+n ·2n ,两式相减得:-S n =1+21+22+…+2n -1-n ·2n=2n -1-n ·2n =(1-n )2n -1,∴S n =(n -1)·2n +1.22.(12分)已知等比数列{a n }满足:|a 2-a 3|=10,a 1a 2a 3=125.(1)求数列{a n }的通项公式;(2)是否存在正整数m ,使得1a 1+1a 2+…+1a m ≥1?若存在,求m 的最小值;若不存在,请说明理由.解 (1)设等比数列{a n }的公比为q ,则由已知可得⎩⎪⎨⎪⎧a 31q 3=125,|a 1q -a 1q 2|=10, 解得⎩⎪⎨⎪⎧ a 1=53,q =3或⎩⎪⎨⎪⎧a 1=-5,q =-1. 故a n =53·3n -1或a n =-5·(-1)n -1. (2)若a n =53·3n -1,则1a n =35(13)n -1, 则数列{1a n }是首项为35,公比为13的等比数列. 从而∑n =1m 1a n =35[1-(13)m ]1-13=910·[1-(13)m ]<910<1. 若a n =-5·(-1)n -1,则1a n =-15(-1)n -1, 故数列{1a n }是首项为-15,公比为-1的等比数列, 从而∑n =1m 1a n =⎩⎪⎨⎪⎧ -15,m =2k -1(k ∈N *),0,m =2k (k ∈N *),故∑n =1m 1a n <1. 综上,对任何正整数m ,总有∑n =1m 1a n <1. 故不存在正整数m ,使得1a 1+1a 2+…+1a m ≥1成立.。

相关文档
最新文档