生物化学名词解释
生物化学名词解释完整版
生物化学名词解释完整版生物化学名词解释完整版1. 蛋白质蛋白质是生物体内一类重要的高分子物质,由氨基酸构成,主要作用是构成细胞的结构和代谢物质的合成,也是细胞信号传递、能量传递和免疫防御的重要组成部分。
蛋白质的种类多样,包括酶、激素、抗体、细胞骨架、肌肉等。
2. 氨基酸氨基酸是蛋白质的组成单元,由一羧基和一氨基组成,此外还有一个侧链。
人体内有20种不同的氨基酸,其中9种是必需氨基酸,必须从食物中摄取。
氨基酸不仅是蛋白质的重要组成部分,还是细胞代谢和酶活性的调控物质。
3. 核酸核酸是一类生物体内的高分子物质,包括DNA和RNA两种,由核苷酸组成,主要作用是储存和传递遗传信息。
DNA存储了生物的遗传信息,RNA则参与了生物的蛋白质合成过程。
生物体内的核酸种类多样,包括单链RNA、双链RNA、转录因子、siRNA等。
4. 核苷酸核苷酸是核酸的组成单元,由糖、碱基和磷酸组成。
碱基分为嘌呤和嘧啶两类,糖分为脱氧核糖和核糖两类,磷酸则是核苷酸分子中的反式结构。
生物体内的核苷酸种类多样,包括腺苷酸、鸟苷酸、胞苷酸、尿苷酸等。
5. 酶酶是一类催化生物体代谢反应的蛋白质,由氨基酸构成,能够加速化学反应的速度,催化生成或者分解特定的分子。
酶在生物体内发挥了极为重要的作用,参与了代谢、能量转化、信号转导、免疫防御等生理活动。
6. 代谢代谢是生物体内所有化学反应的总称,包括能量代谢、物质代谢等。
代谢是维持生命所必需的过程,能够维持生物体内部环境的稳态。
代谢活动的主要物质是蛋白质、碳水化合物、脂类和核酸等。
7. 糖原糖原是动物体内储存能量的一种多糖物质,由许多葡萄糖分子组成。
糖原主要储存于肝脏和肌肉组织中,当身体需要能量时,肝脏和肌肉会将糖原分解成葡萄糖,通过血液输送到需要能量的器官。
8. 糖类糖类是生物体内的一类重要的有机化合物,主要由碳、氢和氧三种元素组成,包括单糖、双糖和多糖等多种类型。
糖类在生物体内发挥了极为重要的作用,参与能量代谢、合成酶和抗原等生理活动。
生物化学名词解释
结合水:是水在生物体和细胞内的存在状态之一,是吸附和结合在有机固体物质上的水,主要是依靠氢键与蛋白质的极性基(羧基和氨基)相结合形成的水胶体。
自由水:不被细胞内胶体颗粒或大分子所吸附、能自由移动、并起溶剂作用的水。
无机盐:无机化合物中盐类的统称。
大量元素:生物正常生长发育需要量较多的元素。
指含量占生物总重量万分之一以上的元素,微量元素:通常指生物有机体中含量小于0.01%的化学元素。
超微量元素:生物体里含量低于十万分之几的元素。
新陈代谢:生物体从环境摄取营养物转变为自身物质,同时将自身原有组成转变为废物排出到环境中的不断更新的过程。
异化:生物体在新陈代谢过程中,自身的组成物质发生分解,同时放出能量,这个过程叫做异化。
同化:是生物体代谢当中的一个重要过程,作用是把消化后的营养重新组合,形成有机物和贮存能量的过程。
底物:酶所作用和催化的化合物。
代谢途径:多种代谢反应相互连接起来,完成物质的分解或合成。
蛋白质系数:指蛋白质含量为氮含量的6.25倍。
必须氨基酸:体内合成的量不能满足机体需要,必须从食物中摄取的氨基酸。
蛋白质一级结构:指多肽中从N-端到C-端的氨基酸序列,包括二硫键的位置。
单体蛋白质:寡聚蛋白质:由两个以上、十个以下亚基或单体通过非共价连接缔合而成的蛋白质。
简单蛋白质:完全由氨基酸构成的蛋白质。
结构域:蛋白质或核酸分子中含有的、与特定功能相关的一些连续的或不连续的氨基酸或核苷酸残基。
蛋白原:蛋白质变性:是指蛋白质在某些物理和化学因素作用下其特定的空间构象被改变,从而导致其理化性质的改变和生物活性的丧失,这种现象称为蛋白质变性。
蛋白质激活:核酸熔点Tm值:就是DNA熔解温度,指把DNA的双螺旋结构降解一半时的温度。
不同序列的DNA,Tm值不同。
DNA中G-C含量越高,Tm值越高,成正比关系。
限制性内切酶:识别并切割特异的双链DNA序列的一种内切核酸酶。
核酸内切酶:在核酸水解酶中,为可水解分子链内部磷酸二酯键生成寡核苷酸的酶。
生物化学名词解释大全
学习必备欢迎下载【生物化学:名词解释大全】第一章蛋白质1.两性离子(dipolarion)2.必需氨基酸(essential amino acid)3.等电点(isoelectric point,pI)4.稀有氨基酸(rare amino acid)5.非蛋白质氨基酸(nonprotein amino acid) 6.构型(configuration)7.蛋白质的一级结构(protein primary structure)8.构象(conformation)9.蛋白质的二级结构(protein secondary structure)10.结构域(domain)11.蛋白质的三级结构(protein tertiary structure)12.氢键(hydrogen bond)13.蛋白质的四级结构(protein quaternary structure)14.离子键(ionic bond)15.超二级结构(super-secondary structure) 16.疏水键(hydrophobic bond)17.范德华力( van der Waals force) 18.盐析(salting out)19.盐溶(salting in)20.蛋白质的变性(denaturation)21.蛋白质的复性(renaturation)22.蛋白质的沉淀作用(precipitation) 23.凝胶电泳(gel electrophoresis)24.层析(chromatography)第二章核酸1.单核苷酸(mononucleotide)2.磷酸二酯键(phosphodiester bonds)3.不对称比率(dissymmetry ratio)4.碱基互补规律(complementary base pairing)5.反密码子(anticodon)6.顺反子(cistron)7.核酸的变性与复性(denaturation、renaturation)8.退火(annealing)9.增色效应(hyper chromic effect)10.减色效应(hypo chromic effect)11.噬菌体(phage)12.发夹结构(hairpin structure)13.DNA 的熔解温度(melting temperature T m)14.分子杂交(molecular hybridization)15.环化核苷酸(cyclic nucleotide)第三章酶与辅酶1.米氏常数(K m 值)2.底物专一性(substrate specificity)3.辅基(prosthetic group)4.单体酶(monomeric enzyme)5.寡聚酶(oligomeric enzyme)6.多酶体系(multienzyme system)7.激活剂(activator)8.抑制剂(inhibitor inhibiton)9.变构酶(allosteric enzyme)10.同工酶(isozyme)11.诱导酶(induced enzyme)12.酶原(zymogen)13.酶的比活力(enzymatic compare energy)14.活性中心(active center)第四章生物氧化与氧化磷酸化1.生物氧化(biological oxidation)2.呼吸链(respiratory chain)3.氧化磷酸化(oxidative phosphorylation)4.磷氧比P/O(P/O)5.底物水平磷酸化(substrate level phosphorylation)6.能荷(energy charg第五章糖代谢1.糖异生(glycogenolysis)2.Q 酶(Q-enzyme)3.乳酸循环(lactate cycle)4.发酵(fermentation)5.变构调节(allosteric regulation)6.糖酵解途径(glycolytic pathway)7.糖的有氧氧化(aerobic oxidation)8.肝糖原分解(glycogenolysis)9.磷酸戊糖途径(pentose phosphate pathway) 10.D-酶(D-enzyme)11.糖核苷酸(sugar-nucleotide)第六章脂类代谢1.必需脂肪酸(essential fatty acid)2.脂肪酸的α-氧化(α- oxidation)3.脂肪酸的β-氧化(β- oxidation)4.脂肪酸的ω-氧化(ω- oxidation)5.乙醛酸循环(glyoxylate cycle)6.柠檬酸穿梭(citriate shuttle)7.乙酰CoA 羧化酶系(acetyl-CoA carnoxylase)8.脂肪酸合成酶系统(fatty acid synthase system)第八章含氮化合物代谢1.蛋白酶(Proteinase)2.肽酶(Peptidase)3.氮平衡(Nitrogen balance)4.生物固氮(Biological nitrogen fixation)5.硝酸还原作用(Nitrate reduction)6.氨的同化(Incorporation of ammonium ions into organic molecules)7.转氨作用(Transamination)8.尿素循环(Urea cycle)9.生糖氨基酸(Glucogenic amino acid)10.生酮氨基酸(Ketogenic amino acid)11.核酸酶(Nuclease)12.限制性核酸内切酶(Restriction endonuclease)13.氨基蝶呤(Aminopterin)14.一碳单位(One carbon unit)第九章核酸的生物合成1.半保留复制(semiconservative replication)2.不对称转录(asymmetric trancription)3.逆转录(reverse transcription)4.冈崎片段(Okazaki fragment)5.复制叉(replication fork)6.领头链(leading strand)7.随后链(lagging strand)8.有意义链(sense strand)9.光复活(photoreactivation)10.重组修复(recombination repair)11.内含子(intron)12.外显子(exon)13.基因载体(genonic vector)14.质粒(plasmid)第十一章代谢调节1.诱导酶(Inducible enzyme)2.标兵酶(Pacemaker enzyme)3.操纵子(Operon)4.衰减子(Attenuator)5.阻遏物(Repressor)6.辅阻遏物(Corepressor)7.降解物基因活化蛋白(Catabolic gene activator protein)8.腺苷酸环化酶(Adenylate cyclase)9.共价修饰(Covalent modification)10.级联系统(Cascade system)11.反馈抑制(Feedback inhibition)12.交叉调节(Cross regulation)13.前馈激活(Feedforward activation)14.钙调蛋白(Calmodulin)第十二章蛋白质的生物合成1.密码子(codon)2.反义密码子(synonymous codon) 3.反密码子(anticodon)4.变偶假说(wobble hypothesis)5.移码突变(frameshift mutant)6.氨基酸同功受体(isoacceptor)7.反义RNA(antisense RNA)8.信号肽(signal peptide)9.简并密码(degenerate code)10.核糖体(ribosome)11.多核糖体(poly some)12.氨酰基部位(aminoacyl site)13.肽酰基部位(peptidy site)14.肽基转移酶(peptidyl transferase) 15.氨酰- tRNA 合成酶(amino acy-tRNA synthetase)16.蛋白质折叠(protein folding)17.核蛋白体循环(polyribosome) 18.锌指(zine finger)19.亮氨酸拉链(leucine zipper)20.顺式作用元件(cis-acting element) 21.反式作用因子(trans-acting factor) 22.螺旋-环-螺旋(helix-loop-helix)第一章蛋白质1.两性离子:指在同一氨基酸分子上含有等量的正负两种电荷,又称兼性离子或偶极离子。
生物化学名词解释全
名词解释1. 氨基酸的等电点:指氨基酸的正离子浓度和负离子浓度相等时的pH 值,用符号pI表示;2.构型:指在立体异构体中不对称碳原子上相连的各原子或取代基团的空间排布;构型的转变伴随着共价键的断裂和重新形成;3.构象:指有机分子中,不改变共价键结构,仅单键周围的原子旋转所产生的原子的空间排布;一种构象改变为另一种构象时,不涉及共价键的断裂和重新形成;构象改变不会改变分子的光学活性;4.结构域:指蛋白质多肽链在二级结构的基础上进一步卷曲折叠成几个相对独立的近似球形的组装体;5.盐析:在蛋白质溶液中加入一定量的高浓度中性盐如硫酸氨,使蛋白质溶解度降低并沉淀析出的现象称为盐析;6.蛋白质的复性:指在一定条件下,变性的蛋白质分子恢复其原有的天然构象并恢复生物活性的现象;7.蛋白质的沉淀作用:在外界因素影响下,蛋白质分子失去水化膜或被中和其所带电荷,导致溶解度降低从而使蛋白质变得不稳定而沉淀的现象称为蛋白质的沉淀作用; 8.凝胶电泳:以凝胶为介质,在电场作用下分离蛋白质或核酸等分子的分离纯化技术; 9.层析:按照在移动相可以是气体或液体和固定相可以是液体或固体之间的分配比例将混合成分分开的技术;10. 碱基互补规律:在形成双螺旋结构的过程中,由于各种碱基的大小与结构的不同,使得碱基之间的互补配对只能在或和或之间进行,这种碱基配对的规律就称为碱基配对规律;11. 反密码子:在tRNA 链上有三个特定的碱基,组成一个密码子,由这些反密码子按碱基配对原则识别mRNA 链上的密码子;反密码子与密码子的方向相反;12. 顺反子:基因功能的单位;一段染色体,它是一种多肽链的密码;一种结构基因;13. 核酸的变性、复性:当呈双螺旋结构的DNA 溶液缓慢加热时,其中的氢键便断开,双链DNA 便脱解为单链,这叫做核酸的“溶解”或变性;在适宜的温度下,分散开的两条DNA 链可以完全重新结合成和原来一样的双股螺旋;这个DNA 螺旋的重组过程称为“复性”;14. 退火:当将双股链呈分散状态的DNA 溶液缓慢冷却时,它们可以发生不同程度的重新结合而形成双链螺旋结构,这现象称为“退火”;15. 增色效应:当DNA 从双螺旋结构变为单链的无规则卷曲状态时,它在260nm 处的吸收便增加,这叫“增色效应”;16. 减色效应:DNA 在260nm 处的光密度比在DNA 分子中的各个碱基在260nm 处吸收的光密度的总和小得多约少35%~40%, 这现象称为“减色效应”;17. DNA 的熔解温度Tm 值:引起DNA 发生“熔解”的温度变化范围只不过几度,这个温度变化范围的中点称为熔解温度Tm;18. 分子杂交:不同的DNA 片段之间,DNA 片段与RNA 片段之间,如果彼此间的核苷酸排列顺序互补也可以复性,形成新的双螺旋结构;这种按照互补碱基配对而使不完全互补的两条多核苷酸相互结合的过程称为分子杂交;19.米氏常数Km 值:用Km 值表示,是酶的一个重要参数;Km 值是酶反应速度V达到最大反应速度Vmax一半时底物的浓度单位M 或mM;米氏常数是酶的特征常数,只与酶的性质有关,不受底物浓度和酶浓度的影响;20.同工酶:是指有机体内能够催化同一种化学反应,但其酶蛋白本身的分子结构组成却有所不同的一组酶;21.诱导酶:是指当细胞中加入特定诱导物后诱导产生的酶,它的含量在诱导物存在下显着增高,这种诱导物往往是该酶底物的类似物或底物本身;22.活性中心:酶分子中直接与底物结合,并催化底物发生化学反应的部位,称为酶的活性中心;23.呼吸链:有机物在生物体内氧化过程中所脱下的氢原子,经过一系列有严格排列顺序的传递体组成的传递体系进行传递,最终与氧结合生成水,这样的电子或氢原子的传递体系称为呼吸链或电子传递链;电子在逐步的传递过程中释放出能量被用于合成ATP,以作为生物体的能量来源;24.氧化磷酸化:在底物脱氢被氧化时,电子或氢原子在呼吸链上的传递过程中伴随ADP 磷酸化生成ATP 的作用,称为氧化磷酸化;氧化磷酸化是生物体内的糖、脂肪、蛋白质氧化分解合成ATP 的主要方式;25.底物水平磷酸化:在底物被氧化的过程中,底物分子内部能量重新分布产生高能磷酸键或高能硫酯键,由此高能键提供能量使ADP或GDP磷酸化生成ATP或GTP的过程称为底物水平磷酸化;此过程与呼吸链的作用无关,以底物水平磷酸化方式只产生少量ATP;26.能荷:能荷是细胞中高能磷酸状态的一种数量上的衡量,能荷大小可以说明生物体中ATP-ADP-AMP 系统的能量状态;能荷=ATP+12 ADPATP+ADP+AMP27.发酵:厌氧有机体把糖酵解生成NADH 中的氢交给丙酮酸脱羧后的产物乙醛,使之生成乙醇的过程称之为酒精发酵;如果将氢交给病酮酸丙生成乳酸则叫乳酸发酵; 28.磷酸戊糖途径:磷酸戊糖途径指机体某些组织如肝、脂肪组织等以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路;29. 脂肪酸的β-氧化:脂肪酸的β-氧化作用是脂肪酸在一系列酶的作用下,在α碳原子和β碳原子之间断裂,β碳原子氧化成羧基生成含2个碳原子的乙酰CoA 和比原来少2 个碳原子的脂肪酸;30. 乙醛酸循环:一种被修改的柠檬酸循环,在其异柠檬酸和苹果酸之间反应顺序有改变,以及乙酸是用作能量和中间物的一个来源;某些植物和微生物体内有此循环,他需要二分子乙酰辅酶A的参与;并导致一分子琥珀酸的合成;31.限制性核酸内切酶:能作用于核酸分子内部,并对某些碱基顺序有专一性的核酸内切酶,是基因工程中的重要工具酶;32.一碳单位:仅含一个碳原子的基团如甲基CH3-、亚甲基CH2=、次甲基CH≡、甲酰基O=CH-、亚氨甲基HN=CH-等,一碳单位可来源于甘氨酸、苏氨酸、丝氨酸、组氨酸等氨基酸,一碳单位的载体主要是四氢叶酸,功能是参与生物分子的修饰;33.半保留复制:双链DNA 的复制方式,其中亲代链分离,每一子代DNA 分子由一条亲代链和一条新合成的链组成;34.逆转录:Temin 和Baltimore 各自发现在RNA 肿瘤病毒中含有RNA 指导的DNA 聚合酶,才证明发生逆向转录,即以RNA 为模板合成DNA;35.冈崎片段:一组短的DNA 片段,是在DNA 复制的起始阶段产生的,随后又被连接酶连接形成较长的片段;在大肠杆菌生长期间,将细胞短时间地暴露在氚标记的胸腺嘧啶中,就可证明冈崎片段的存在;冈崎片段的发现为DNA 复制的科恩伯格机理提供了依据;36.复制叉:复制DNA 分子的Y 形区域;在此区域发生链的分离及新链的合成; 37.领头链:DNA 的双股链是反向平行的,一条链是5/→3/方向,另一条是3/→5/方向,上述的起点处合成的领头链,沿着亲代DNA 单链的3/→5/方向亦即新合成的DNA沿5/→3/方向不断延长;所以领头链是连续的;38.随后链:已知的DNA 聚合酶不能催化DNA 链朝3/→5/方向延长,在两条亲代链起点的3/ 端一侧的DNA 链复制是不连续的,而分为多个片段,每段是朝5/→3/方向进行,所以随后链是不连续的;39.有意义链:即华森链,华森..克里格型DNA 中,在体内被转录的那股DNA 链;简写为W strand;40.光复活:将受紫外线照射而引起损伤的细菌用可见光照射,大部分损伤细胞可以恢复,这种可见光引起的修复过程就是光复活作用;41.重组修复:这个过程是先进行复制,再进行修复,复制时,子代DNA 链损伤的对应部位出现缺口,这可通过分子重组从完整的母链上,将一段相应的多核苷酸片段移至子链的缺口处,然后再合成一段多核昔酸键来填补母链的缺口,这个过程称为重组修复; 42.内含子:真核生物的mRNA 前体中,除了贮存遗传序列外,还存在非编码序列,称为内含子;43.外显子:真核生物的mRNA 前体中,编码序列称为外显子;44.基因载体:外源DNA 片段目的基因要进入受体细胞,必须有一个适当的运载工具将带入细胞内,并载着外源DNA 一起进行复制与表达,这种运载工具称为载体;45.质粒:是一种在细菌染色体以外的遗传单元,一般由环形双链DNA 构成,其大小从; 46.密码子:存在于信使RNA 中的三个相邻的核苷酸顺序,是蛋白质合成中某一特定氨基酸的密码单位;密码子确定哪一种氨基酸叁入蛋白质多肽链的特定位置上;共有64 个密码子,其中61 个是氨基酸的密码,3 个是作为终止密码子;47.同义密码子:为同一种氨基酸编码的几个密码子之一,例如密码子UUU 和UUC 二者都为苯丙氨酸编码;48.反密码子:在转移RNA 反密码子环中的三个核苷酸的序列,在蛋白质合成中通过互补的碱基配对,这部分结合到信使RNA 的特殊密码上;49.变偶假说:克里克为解释tRNA 分子如何去识别不止一个密码子而提出的一种假说;据此假说,反密码子的前两个碱基3ˊ端按照碱基配对的一般规律与密码子的前两个5ˊ端碱基配对,然而tRNA 反密码子中的第三个碱基,在与密码子上3ˊ端的碱基形成氢键时,则可有某种程度的变动,使其有可能与几种不同的碱基配对;50.移码突变:一种突变,其结果为导致核酸的核苷酸顺序之间的正常关系发生改变;移码突变是由删去或插入一个核苷酸的点突变构成的,在这种情况下,突变点以前的密码子并不改变,并将决定正确的氨基酸顺序;但突变点以后的所有密码子都将改变;且将决定错误的氨基酸顺序;51.反义RNA:具有互补序列的RNA;反义RNA 可以通过互补序列与特定的mRNA 相结合,结合位置包括mRNA 结合核糖体的序列SD 序列和起始密码子AUG,从而抑制mRNA 的翻译;又称干扰mRNA 的互补RNA;52.信号肽: 信号肽假说认为,编码分泌蛋白的mRNA在翻译时首先合成的是N 末端带有疏水氨基酸残基的信号肽,它被内质网膜上的受体识别并与之相结合;信号肽经由膜中蛋白质形成的孔道到达内质网内腔,随即被位于腔表面的信号肽酶水解,由于它的引导,新生的多肽就能够通过内质网膜进入腔内,最终被分泌到胞外;翻译结束后,核糖体亚基解聚、孔道消失,内质网膜又恢复原先的脂双层结构;53. 简并密码:或称同义密码子,为同一种氨基酸编码几个密码子之一,例如密码子UUU 和UUC 二者都为苯丙氨酸编码;54.多核糖体:在信使核糖核酸链上附着两个或更多的核糖体;55. 诱导酶:由于诱导物的存在,使原来关闭的基因开放,从而引起某些酶的合成数量明显增加,这样的酶称为诱导酶56. 钙调蛋白:一种依赖于钙的蛋白激酶,酶蛋白与钙结合引起酶分子构象变化,调解酶的活性;如磷酸化酶激酶是一种依赖于钙的蛋白激酶;。
生物化学名词解释
绪论1.生物化学(biochemistry):从分子水平来研究生物体(包括人类、动物、植物和微生物内基本物质的化学组成、结构,以及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢(metabolism):生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):分子生物学是现代生物学的带头学科,它主要研究遗传的分子基础(分子遗传学),生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理与技术,及其在药物研究、药品生产、药物质量控制与药品临床中应用的基础学科。
第一章糖的化学1.糖基化工程:通过人为的操作(包括增加、删除或调整)蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2.单糖(monosaccharide):凡不能被水解成更小分子的糖称为单糖。
单糖是糖类中最简单的一种,是组成糖类物质的基本结构单位。
3.多糖(polysaccharide):由许多单糖分子缩合而成的长链结构,分子量都很大,在水中不能成真溶液,有的成胶体溶液,有的不溶于水,均无甜味,也无还原性。
4.寡糖(oligosaccharide):是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5.结合糖(glycoconjugate):也称糖复合物或复合糖,是指糖和蛋白质、脂质等非糖物质结合的复合分子。
6.同聚多糖(homopolysaccharide):也称为均一多糖,由一种单糖缩合而成,如淀粉、糖原、纤维素、戊糖胶、木糖胶、阿拉伯糖胶、几丁质等。
7.杂多糖(heteropolysaccharide):也称为不均一多糖,由不同类型的单糖缩合而成,如肝素、透明质酸和许多来源于植物中的多糖如波叶大黄多糖、当归多糖、茶叶多糖等。
生物化学名词解释大全
生物化学名词解释大全1. 生物化学(Biochemistry):研究生物体内化学成分、结构和功能之间的关系的学科。
2. 多肽(Polypeptide):由多个氨基酸残基通过肽键连接而成的聚合物,是蛋白质的组成部分。
3. 氨基酸(Amino Acid):生物体内构成蛋白质的基本单位,包含一个氨基(NH2)和一个羧基(COOH),以及一个特定的侧链。
4. 聚合酶链式反应(Polymerase Chain Reaction,PCR):一种体外复制DNA的技术,通过反复循环的酶催化,使得目标DNA序列在简单的反应体系中大量扩增。
5. 糖(Sugar):生物体内分子中含有羟基的有机化合物,是能源的重要来源,也是构成核酸和多糖的基本单元。
6. 代谢(Metabolism):生物体内发生的化学反应的总和,包括物质合成与分解、能量转化以及调节和控制这些反应的调节机制。
7. 酶(Enzyme):催化生物化学反应的蛋白质分子,可以促进反应速率,但本身在反应中不被消耗。
8. 核酸(Nucleic Acid):生物体内储存和传导遗传信息的分子,包括DNA和RNA,由核苷酸链组成。
9. 基因(Gene):DNA分子上的特定区域,编码了一种特定蛋白质的信息,是遗传信息的基本单位。
10. 代谢途径(Metabolic Pathway):由一系列相互作用的酶催化的反应组成的序列,用于维持生物体内能量和物质的平衡。
11. 脂质(Lipid):一类不溶于水的化合物,在生物体内发挥结构和能量储存的重要作用,常见的脂质包括脂肪酸、甘油和胆固醇等。
12. 细胞呼吸(Cellular Respiration):通过氧化分解有机物质以释放能量的过程,通常包括糖的氧化并产生二氧化碳和水。
13. 光合作用(Photosynthesis):将光能转化为化学能的过程,植物和一些微生物通过光合作用将二氧化碳和水转化为有机物质和氧气。
14. 激素(Hormone):由内分泌腺分泌并通过血液传递到细胞中起作用的化学物质,调节和控制生物体内的各种生理过程。
生物化学 名词解释
名词解释1 生物化学:即生命的化学,它是从分子的水平来研究生命体内的基本物质的化学组成,结构特征,理化性质,以及这些物质在生物体内进行化学变化的规律及其与生理功能之间的关系的一门学科。
2蛋白质等电点:蛋白质在溶液中解离成正负离子的趋势相等即静电荷为零时溶液的ph称为蛋白质的等电点。
3 蛋白质变性:在某些理化因素作用下,蛋白质的空间构象发生改变或破坏,导致其生物活性的丧失和一些理化性质的改变,这种现象称为蛋白质的变性作用。
4 酶原:无活性的酶的前体。
5 酶的活性中心:有些必需基因在一级结构上相距很远,但在形成特定空间结构时彼此靠近,形成具有特定空间构象的区域,该区域能与底物特异性结合并将底物转化为产物,称之为酶的活性中心。
6 米氏常数:Km值等于酶促反应速度为最大速度一半时的底物浓度。
7 维生素:机体维持正常生命活动不可缺少的一类小分子有机化合物。
8呼吸链:代谢物脱下的成对氢原子通过多种酶和辅酶所组成的连锁反应体系逐步传递最终与氧结合生成水的链式连锁反应体系。
9 生物氧化:物质在生物体内进行氧化分解称为生物氧化。
10 糖酵解:是指葡萄糖或糖原在无氧情况下,经过一系列中间代谢分解成乳酸的过程。
11 血浆脂蛋白:是脂类在血浆中的存在形式,也是脂类在血液中的运输形式。
12 B-氧化:脂酰Co A进入线粒体基质,从脂酰基的B-碳原子开始进行脱氢,加水,再脱氢,硫解的连续反应。
13 联合脱氨基:L-谷氨酸脱氢酶和转氨酶的联合,以及嘌呤核苷酸循环。
14 基因:染色体中携带有遗传信息的DNA片段,是遗传的功能单位。
15 半保留复制:DNA在复制时首先是两条链之间的氢键断裂两链分开,然后分别以每条链为模版各自合成一条新的DNA链,这样新合成的每个子代DNA分子中,一条链来自亲代DNA,另一条链是新合成的,这种复制方式为半保留复制。
16 必需氨基酸:必需氨基酸指的是人体自身不能合成或合成速度不能满足人体需要,必须从食物中摄取的氨基酸。
(完整)生物化学名词解释
生物化学名词解释第一章蛋白质的结构与功能1。
肽键:一分子氨基酸的氨基和另一分子氨基酸的羧基通过脱去水分子后所形成的酰胺键称为肽键。
2. 等电点:在某一pH溶液中,氨基酸或蛋白质解离成阳离子和阴离子的趋势或程度相等,成为兼性离子,成点中性,此时溶液的pH称为该氨基酸或蛋白质的等电点。
3. 模体:在蛋白质分子中,由两个或两个以上具有二级结构的肽段在空间上相互接近,形成一个特殊的空间构象,并发挥特殊的功能,称为模体。
4. 结构域:分子量较大的蛋白质三级结构常可分割成多个结构紧密的区域,并行使特定的功能,这些区域被称为结构域.5。
亚基:在蛋白质四级结构中每条肽链所形成的完整三级结构。
6. 肽单元:在多肽分子中,参与肽键的4个原子及其两侧的碳原子位于同一个平面内,称为肽单元。
7. 蛋白质变性:在某些理化因素影响下,蛋白质的空间构象破坏,从而改变蛋白质的理化性质和生物学活性,称之为蛋白质变性。
第二章核酸的结构与功能1。
DNA变性:在某些理化因素作用下,DNA分子稳定的双螺旋空间构象破环,双链解链变成两条单链,但其一级结构仍完整的现象称DNA变性.2。
Tm:即溶解温度,或解链温度,是指核酸在加热变性时,紫外吸收值达到最大值50%时的温度.在Tm时,核酸分子50%的双螺旋结构被破坏。
3. 增色效应:核酸加热变性时,由于大量碱基暴露,使260nm处紫外吸收增加的现象,称之为增色效应.4. HnRNA:核内不均一RNA。
在细胞核内合成的mRNA初级产物比成熟的mRNA分子大得多,称为核内不均一RNA。
hnRNA在细胞核内存在时间极短,经过剪切成为成熟的mRNA,并依靠特殊的机制转移到细胞质中.5。
核酶:也称为催化性RNA,一些RNA具有催化能力,可以催化自我拼接等反应,这种具有催化作用的RNA分子叫做核酶。
6. 核酸分子杂交:不同来源但具有互补序列的核酸分子按碱基互补配对原则,在适宜条件下形成杂化双链,这种现象称核酸分子杂交.第三章酶1. 酶:由活细胞产生的具有催化功能的一类特殊的蛋白质。
生物化学名词解释
生物化学名词解释生物化学是研究生物体内化学分子及其化学反应的学科,它紧密地与生物学、化学、医学等学科相交融,对揭示生物体的分子机制和解决应用问题具有重要意义。
以下是一些生物化学名词的解释:1. DNA(脱氧核糖核酸):是生命体遗传信息的载体,由四种碱基(腺嘌呤、鸟嘌呤、胸腺嘧啶、鳥嘌呤)组成的双螺旋结构。
DNA存在于细胞核中,并通过DNA复制和转录作用传递遗传信息。
2. RNA(核糖核酸):具有多种功能,包括信息传递、蛋白质合成和基因表达的调控等。
RNA分为mRNA、tRNA、rRNA 等多种类型,分别参与不同的生化反应过程。
3. 蛋白质:是生命体中重要的分子,由氨基酸以特定的序列组成。
蛋白质具有多种功能,包括酶催化、结构支撑、传递信息等。
4. 酶:是一种催化生物反应的蛋白质。
酶具有高专一性,可在体内大量催化反应,增加反应速度。
5. 代谢:是生命体内一系列化学反应的总称。
代谢可以分为合成代谢和分解代谢两种类型,分别用于形成生命体所需的物质和释放能量。
6. 能量:是生物体运行必需的物质。
能量可以由食物等物质转化而来,也可以由太阳能等自然能源供应。
7. 激素:是生命体内可以调节生理过程的化学物质。
激素可以通过神经系统或内分泌系统分泌,在体内具有广泛的作用。
8. 细胞膜:是包裹细胞的一层薄膜,由脂质双层和各种蛋白质组成。
细胞膜具有筛选性、稳定性和可透性等多种功能。
9. 光合作用:是植物利用太阳能转化二氧化碳和水为有机物质和氧气的过程。
光合作用是地球上大多数生物生存的基础。
10. 基因:是控制细胞生命活动和遗传特征的基本单位。
每个基因对应着一个蛋白质编码的序列,由DNA分子编码。
基因决定了生物性状和种群遗传。
以上是生物化学中比较基础的一些名词解释,生物化学还有很多研究内容,如蛋白质结构、酶催化机理、代谢途径等,这些内容都需要通过更深入的学习和实验研究来理解和掌握。
生物化学名词解释
生物化学名词解释零、绪论1.生物化学:从分子水平来研究生物体内基本物质的化学组成、结构,及在生命活动中这些物质所进行的化学变化(即代谢反应)的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢:生物体与外界环境进行有规律的物质交换,称为新陈代谢。
3.分子生物学:是现代生物学的带头学科,主要研究分子遗传学,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能。
4.药学生物化学:是研究与药学科学相关的生物化学理论、原理和技术,及其在药物研究、药品生产、药物质量监控与药品临床方面应用的基础学科。
一、糖的化学1、糖基化工程:通过增加、删除或调整蛋白质上的寡糖链,使之产生合适的糖型,从而达到有目的地改变糖蛋白的生物学功能。
2、单糖:凡不能被水解成更小分子的糖称为单糖。
3、多糖:由许多单糖分子缩合而成的长链结构。
4、寡糖:是由单糖缩合而成的短链结构(一般含2~6个单糖分子)。
5、结合糖:也称糖复合物或复合糖,是指糖和蛋白、脂质等非糖物质结合的复合分子。
6、同聚多糖:也称均一多糖,由同类型的单糖缩合而成。
7、杂多糖:也称不均一多糖,由不同类型的单糖缩合而成。
8、粘多糖:也称糖胺聚糖,是一类含氮的不均一多糖,其化学组成通常为糖醛酸及氨基己糖或其衍生物,有的还含有硫酸。
9、糖蛋白:是糖与蛋白质以共价键结合的复合分子。
10、肽聚糖:又称胞壁质,是构成细菌细胞壁基本骨架的主要成分,是一种多糖与氨基酸链相连的多糖复合物。
11、蛋白质聚糖:是一类由糖和蛋白质结合形成的非常复杂的大分子糖复合物,其中蛋白质含量一般少于多糖。
12、脂多糖:一般由外层低聚糖链、核心多糖及脂质三部分组成。
13、内切糖苷酶:可水解糖链内部的糖苷键,有的可将长的多糖链切为较短的寡糖片段。
14、外切糖苷酶:只能切下多糖非还原末端的一个单糖,并对单糖组成和糖苷键有专一性要求。
二、脂的化学1、必需脂肪酸:人体不能合成必须从食物获取的脂肪酸。
生物化学名词解释
第一部分绪论1.生物化学(Biochemistry):是生命的化学,是研究生物体的化学组成和生命过程中的化学变化规律的一门科学。
是从分子水平来研究生物体(人、动物、植物和微生物)内基本物质的化学组成、结构及在生命活动中这些物质所进行的化学变化的规律及其与生理功能的关系的一门科学,是一门生物学与化学相结合的基础学科。
2.新陈代谢:生物体内的各种基本物质在生命过程中不断进行着相互联系、相互制约、相互对立而又统一的、多样复杂的、又有规律的化学变化,其结果是生物体与外界环境进行有规律的物质交换,称为新陈代谢。
通过新陈代谢为生命活动提供所需的能量,更新体内基本物质的化学组成,这是生命现象的基本特征,是揭示生命现象本质的重要环节。
3.分子生物学(molecular biology):是现代生物学的带头学科,它主要研究遗传的分子基础,生物大分子的结构与功能和生物大分子的人工设计与合成,以及生物膜的结构与功能等。
第二部分维生素与微量元素1.维生素(vitamin):是维持人体生命活动必需的一类有机物质,也是保持人体健康的重要活性物质。
维生素在体内的含量很少,但在人体生长、代谢、发育过程中却发挥着重要的作用。
机体不能合成或合成量不足,不能满足机体的需要,必须经常通过食物中获得,人体对维生素的需要量很小。
2.微量元素(trace element):微量元素是指人体中每人每天需要量在100mg以下的元素,虽然所需甚微,但生理作用却十分重要,如铁、锌、铜、锰、铬、硒、钼、钴、氟等。
3.水溶性维生素(water-soluble vitamins):一类能溶于水的有机营养分子。
其中包括在酶的催化中起着重要作用的B族维生素以及抗坏血酸(维生素C)等。
4.脂溶性维生素(lipid soluble vitamin):由长的碳氢链或稠环组成的聚戊二烯化合物。
脂溶性维生素包括维生素A、D、E和K,这类维生素能被动物贮存。
5.维生素原(provitamin):某些物质本身不是维生素,但是可以在生物体内转化成维生素,这些物质称为维生素原。
生物化学名词解释
生物化学1. 蛋白质折叠:蛋白质由所含氨基酸残基的亲水性、疏水性、带正电、带负电等特性通过残基间的相互作用而折叠成一个立体的三级结构。
2. 锌指结构:许多转录因子所共有的DNA结合结构域,具有很强的保守性。
它由4个氨基酸(4个Cys残基,或2个Cys残基和2和His残基)和一个锌原子组成一个形似指状的三级结构。
3. 冈崎片段:复制叉上新合成的短的DNA片段,即DNA不连续合成的产物。
细菌的冈崎片段约为1000~2000个核苷酸,真核细胞的约为100~200个核苷酸。
4. 尿素循环:又称“鸟氨酸循环”。
机体对氨的一种解毒方式。
肝脏是鸟氨酸循环的重要器官。
包括三个阶段,①氨、二氧化碳和鸟氨酸缩合生成瓜氨酸;②瓜氨酸再与一分子氨结合脱去水,生成精氨酸;③精氨酸在肝脏精氨酸酶的催化下,水解生成尿素,并重新变为鸟氨酸。
5. 柠檬酸-丙酮酸穿梭系统:线粒体内产生的乙酰 CoA,与草酰乙酸缩合生成柠檬酸,穿过线粒体内膜进入胞液,裂解后重新生成乙酰 CoA,产生的草酰乙酸转变为丙酮酸后重新进入线粒体。
6. 别构效应:一种分子可以通过分子内某一部分的结构改变,而导致激活部分活性改变的现象,即别构效应,也可称为变构效应。
经常研究的例子是酶的别构效应,然而除了酶以外,如血红蛋白等也有别构效应。
7. 氧化磷酸化:指在代谢物脱氢氧化经呼吸链传递给氧生成水的过程中,既消耗了氧,消耗了无机磷酸,使ADP磷酸化生成ATP的过程,称为电子传递水平磷酸化,通常称之氧化磷酸化。
常发生在线粒体内膜上。
8. 分子杂交:不同来源或不同种类生物分子间相互特异识别而发生的结合。
如核酸(DNA、RNA)之间、蛋白质分子之间、核酸与蛋白质分子之间、以及自组装单分子膜之间的特异性结合。
9. 结构域:也指功能域,在较大的蛋白质分子或亚基中,多肽链往往由两个或两个以上相对独立的三维实体,缔合而成三级结构,三维实体之间靠松散的肽链连接,这种相对独立的三维实体称为结构域。
生物化学【名词解释】
一、糖类化学1.构象:在分子中由于共价单键的旋转所表现出的原子或基团的不同空间排布叫构象。
2.构型:在立体异构体中的原子或取代基团的空间排列关系叫构型。
(D-;L-)3.变旋作用:一个旋光体溶液放置后,其比旋光度改变的现象称变旋。
变旋的原因是在溶液中,糖的链状结构和环状结构(α、β)之间可以相互转变,最后达到一个动态平衡,变旋作用是可逆的,当两型互变达到平衡时,比旋光度即不再改变。
4.Fehling试剂:CuSO4+KOH+酒石酸钠或柠檬酸钠5.成脎作用:单糖的第1、2碳与苯肼结合后,成晶体糖脎,称成脎作用。
可用来鉴别除葡萄糖、甘露糖和果糖外的某些单糖。
6.糖脎:与醛、酮反应时,许多还原糖生成含有两个苯腙基(=N-NH-C6H5)的衍生物,称为糖的苯脎,即糖脎。
7.糖蛋白:短链寡糖与蛋白质以共价键连接而成的复合糖。
8.蛋白聚糖:蛋白质和糖胺聚糖通过共价键连接而成的大分子复合物9.对映体:一个不对称碳原子的取代基在空间里的两种取向是物体与镜像关系,并且两者不能重叠的两种旋光异构体。
10..糖苷:环状单糖的半缩醛(或半缩酮)羟基与另一化合物发生缩合形成的缩醛(或缩酮)称为糖苷。
11.糖苷键:糖基和配基之间的连键称为糖苷键。
12.磷酸戊糖途径:机体某些组织(如肝、脂肪组织等)以6-磷酸葡萄糖为起始物在6-磷酸葡萄糖脱氢酶催化下形成6-磷酸葡萄糖酸进而代谢生成磷酸戊糖为中间代谢物的过程,又称为磷酸已糖旁路二、脂质化学1.必需脂肪酸:机体生命活动必不可少,但机体自身又不能合成,必须由食物供给的多不饱和脂肪酸。
2.皂化值:皂化1g脂肪所需的KOH的毫克数。
平均相对分子质量=(3×56×1000)/皂化值3.碘值:100g脂质样品所能吸收的碘克数。
油脂的不饱和度用碘值价表示。
4.脂肪酸的β-氧化:指脂肪酸活化为脂酰CoA,脂肪酰CoA进入线粒体基质后,在脂肪酸β-氧化多酶复合体催化下,依次进行脱氢、水化、再脱氢和硫解四步连续反应,释放出一分子乙酰CoA和一分子比原来少两个碳原子的脂酰CoA。
生物化学名词解释完整版
生物化学名词解释第一章糖类1.单糖(monosaccharide)由3个或更多碳原子组成的具有经验公式(CH2O)n的简糖。
2.寡糖(oligoccharide)由2~20个单糖残基通过糖苷键连接形成的聚合物。
3.多糖(polysaccharide)20个以上的单糖通过糖苷键连接形成的聚合物。
多糖链可以是线形的或带有分支的。
4.构型(configuration)一个有机分子中各个原子特有的固定的空间排列。
在立体化学中,因分子中存在不对称中心而产生的异构体中的原子或取代基团的空间排列关系。
有D型和L 型两种。
构型的改变要有共价键的断裂和重新组成,从而导致光学活性的变化。
5.构象(conformation)分子中由于共价单键的旋转所表现出的原子或基团的不同空间排列。
指一组结构而不是指单个可分离的立体化学形式。
构象的改变不涉及共价键的断裂和重新组成,也无光学活性的变化。
6.醛糖(aldose)一类单糖,该单糖中氧化数最高的C原子(指定为C-1)是一个醛基。
7.酮糖(ketose)一类单糖,该单糖中氧化数最高的C原子(指定为C-2)是一个酮基。
8.对映体(enantiomer)互为实物与镜像而不可重叠的一对异构体。
如左旋乳酸与右旋乳酸是一对对映体。
9.差向异构体(epimer)同一不对称碳原子,各取代基取向不同,而产生两种差向同分异构体。
如α-D-吡喃葡萄糖与β-D-吡喃葡萄糖;与葡萄糖互为差向异构体的有:甘露糖(C2),阿洛糖(C3),半乳糖(C4)。
10.异头物(anomer)仅在氧化数最高的C原子(异头碳)上具有不同构形的糖分子的两种异构体。
11.异头碳(anomer carbon)环化单糖的氧化数最高的C原子,异头碳具有羰基的化学反应性。
12.变旋(mutarotation)吡喃糖,呋喃糖或糖苷伴随它们的α-和β-异构形式的平衡而发生的比旋度变化。
13.糖苷(dlycoside)单糖半缩醛羟基与别一个分子的羟基,胺基或巯基缩合形成的含糖衍生物。
生物化学名词解释完整版
生物化学名词解释完整版生物化学是研究生命活动中化学过程的分支学科,涉及了生命中各种分子的合成、代谢以及转运等方面。
本文将对生物化学中常用的名词进行详细解释。
1. 氨基酸氨基酸是生命体内的基本构建块之一,是合成蛋白质的单体分子。
氨基酸由氨基和羧基组成,一般含有一种特殊的侧链,侧链的不同决定了氨基酸的种类。
常用的氨基酸包括20种标准氨基酸和一些非标准氨基酸。
2. DNADNA是指脱氧核糖核酸,是生命体内遗传信息的存储分子。
DNA由四种核苷酸基组成,分别是adenine、guanine、cytosine、thymine。
DNA分子以螺旋结构存在,通过分子内的氢键结合成双螺旋的结构,通过不同的核苷酸组合形成不同的基因序列。
3. RNARNA是指核糖核酸,是DNA的衍生物,通过基因转录合成。
RNA分为mRNA、tRNA、rRNA等不同类型,具有传递遗传信息以及合成蛋白质等多种生物学功能。
4. 蛋白质蛋白质是由氨基酸聚合而成的大分子,是生物体内的重要构成部分,具有多种生物学功能,例如催化反应、传递信号、支持细胞结构等。
由于蛋白质分子三维结构的复杂性以及多种氨基酸侧链的存在,使得蛋白质具有高度的特异性和生物活性。
5. 酶酶是一种蛋白质,具有催化生物体内化学反应的作用,促进化学反应发生。
酶的活性受到多种因素的影响,如温度、pH、离子等。
6. 代谢代谢是指生物体内物质的合成、分解以及转化等生化过程。
代谢需要能量的参与,通常通过ATP这种能量分子来提供能量。
7. ATPATP是指三磷酸腺苷,是生物体内重要的能量分子。
ATP通过水解反应释放能量,并将ADP和Pi重新合成成ATP的形式,使能量得以循环使用。
8. 光合作用光合作用是指植物和一些微生物通过利用太阳能将二氧化碳和水转化为有机物质的过程。
该过程需要色素分子叶绿素等的参与。
9. 呼吸作用呼吸作用是指通过代谢有机物质来获取ATP能量的过程,该过程需要氧气参与。
包括有氧呼吸和无氧呼吸两种形式。
生物化学名词解释
生物化学名词解释1. 蛋白质:生物体内最重要的大分子之一,由氨基酸序列构成。
蛋白质具有多种生物学功能,如催化、结构支撑、运输等。
2.核酸:构成生命体系中一类非常重要的大分子,由核苷酸组成。
核酸分为脱氧核糖核酸(DNA)和核糖核酸(RNA)。
DNA带有遗传信息,RNA参与蛋白质合成。
3.酶:一种催化剂,加速生化反应。
酶可以分解分子,促进分子结合,或改变其化学结构。
4.代谢:生物体的一系列内部化学反应,通过消耗能量以及其他物质来维持生物体的生命活动。
5.细胞膜:生命体系中一个重要的组成部分,在细胞周围形成一个类似“皮肤”的物理屏障。
细胞膜通过选择性渗透控制物质在细胞内外之间的转移,从而维持细胞功能。
6.基因:遗传信息的基本单位,储存个体遗传信息,并控制细胞蛋白质的合成。
一个基因是由一段DNA序列编码的。
7.信号转导:一种细胞内转导机制,通过细胞内或细胞外的信号分子,传递一些特定的信息以及信号,最终影响不同生命活动。
8.代谢通路:一系列的生化反应,以特定的顺序和方式进行,从而将小分子代谢产物转化为化合物的过程。
9.生物分子:构成生命体系中的主要分子,包括蛋白质、核酸、碳水化合物和脂类等。
它们提供能量、储存能量、维持生命活动以及维持生物体的结构。
10.生物催化:生命体系中一种特定的催化过程,通过酶促进生化反应。
生物催化可以在较温和的条件下进行,从而节省能量和资源。
11.糖代谢:一系列生物化学反应,将葡萄糖和其他糖类分解为能够提供能量的产物,并在代谢通路中继续进行。
12.氧化还原反应:一个常见的生化反应类型,涉及原子或离子之间的电子转移。
在这种类型的反应中,被氧化物失去电子,而被还原物获得电子。
13.葡萄糖:一种重要的单糖,通过糖代谢的过程来提供能量。
葡萄糖是糖类的代表,也被广泛应用于生物工程和食品工业。
14.ATP:三磷酸腺苷,细胞内最常见的高能化合物之一,承担能量传递的重要功能。
15.脂质:一类极为重要的生物分子,参与许多生命活动。
《生物化学》名词解释大全
氨基酸(amino acids):是含有一个碱性氨基和一个酸性羧基的有机化合物,氨基一般连接在α-碳上。
氨基酸是肽和蛋白质的构件分子。
必需氨基酸(essential amino acids):指人(或其它脊椎动物)自己不能合成,需要从饮食中获得的氨基酸,例如赖氨酸、苏氨酸等氨基酸非必需氨基酸(nonessential amino acids):指人(或其它脊椎动物)自己能由简单的前体合成的,不需要由饮食供给的氨基酸,例如甘氨酸、丙氨酸等氨基酸。
等电点(pI,isoelectric point):使分子处于兼性分子状态,在电场中不迁移(分子的净电荷为零)的pH值。
茚三酮反应(ninhydrin reaction):在加热条件下,氨基酸或肽与茚三酮反应生成紫色(与脯氨酸反应生成黄色)化合物的反应。
肽键(peptide bond):一个氨基酸的羧基与另一个氨基酸的氨基缩合,除去一分子水形成的酰胺键。
肽(peptides):两个或两个以上氨基酸通过肽键共价连接形成的聚合物。
蛋白质一级结构(primary structure):指蛋白质中共价连接的氨基酸残基的排列顺序。
层析(chromatography):按照在移动相(可以是气体或液体)和固定相(可以是液体或固体)之间的分配比例将混合成分分开的技术。
离子交换层析(ion-exchange column chromatography):使用带有固定的带电基团的聚合树脂或凝胶层析柱分离离子化合物的层析方法。
透析(dialysis):通过小分子经半透膜扩散到水(或缓冲液)的原理将小分子与生物大分子分开的一种分离纯化技术。
凝胶过滤层析(gel filtration chromatography):也叫做分子排阻层析(molecular-exclusion chromatography)。
一种利用带孔凝胶珠作基质,按照分子大小分离蛋白质或其它分子混合物的层析技术。
《生物化学》名词解释
生物化学:用化学的理论和方法研究生物体组成、结构、功能和生命过程中物质及能量变化规律的学科。
转化作用:从一种细菌中得到DNA通过一定途径进入另一种细菌,从而引起后者遗传特性的改变。
核酸:是由几十个甚至几千万个核苷酸聚合而成的具有一定空间结构的大分子化合物。
超螺旋:双螺旋进一步扭曲形成的更高层次的空间结构,包括DNA扭曲、超螺旋、多重螺旋和连环等。
核酸的杂交:是指不同来源的单链核酸之间可通过碱基互补形成双螺旋结构。
寡聚蛋白质:某些蛋白质是由两个或更多个蛋白质亚基(多肽链)通过非共价结合而成,称寡聚蛋白质。
α-氨基酸:与羧基相邻的α-碳原子上都有一个氨基,因而称为α-氨基酸。
肽:一个氨基酸的羧基与另一个氨基酸的氨基脱去一分子水而形成酰胺键,这个键称为肽键,产生的化合物叫做肽。
蛋白质的一级结构:是指蛋白质肽链中氨基酸的排列顺序。
蛋白质的二级结构:是指蛋白质多肽链主链原子局部的空间结构,但不包括与其他肽段的相互关系及侧链构象的内容。
β-折叠:是由两条或多条伸展的多肽链靠氢键联结而成的锯齿状片状结构。
无规则卷曲:又称自由卷曲,是指没有一定规律的松散肽链结构。
酶的功能部位常常处于这种构象区域。
超二级结构:指蛋白质中相邻的二级结构单位组合在一起,形成有规则的在空间上能辩认的二级结构组合体。
结构域:指多肽链在二级结构或超二级结构的基础上形成三级结构的局部折叠区,它是相对独立的紧密球状实体,称为结构域(domain)或功能域。
蛋白质的三级结构:指的是多肽链在二级结构、超二级结构和结构域的基础上,主链构象和侧链构象相互作用,进一步盘曲折叠形成球状分子结构。
蛋白质的四级结构:由两条或两条以上具有三级结构的多肽链聚合而成、有特定三维结构的蛋白质构象。
每条多肽链又称为亚基。
同源蛋白质:在不同的生物体内行使相同或相似功能的蛋白质。
别构效应:是指含亚基的蛋白质分子由于一个亚基构象的改变而引起其余亚基以至整个分子构象、性质和功能发生变化。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.二面角 :一个多肽的主链为-[C-N-C-C-N]-,自左向右分别为C1,N1,C2,C3,N2 C1-N1-C2形成的平面与N1-C2-C3形成的平面之间因为N1-C2之间的化学键旋转而成一定的角度,叫做二面角φ。
同理N1-C2-C3形成的平面与C2-C3-N2形成的平面之间的角度是二面角ψ2.蛋白质一级结构 DNA的一级结构: 指4种核苷酸的链接及从N-端到C-端的氨基酸排列顺序。
3.DNA的二级结构: 是指蛋白质分子中某一段肽链的局部空间结构,4.超二级结构在蛋白质中,特别是球蛋白中,经常可以看到由若干相邻的二级结构单元组合在一起,彼此相互作用,形成的有规则、在空间上能辨认的二级结构组合体。
5. DNA的三级结构: 是指整条肽链中全部氨基酸残基的相对空间位置,也就是整条肽链所有原子在三维空间的排布位置。
6.DNA的四级结构: 蛋白质分子中各个亚基的空间排布及亚基接触部位的布局和相互作用,称为蛋白质的四级结构7.别构效应是寡聚蛋白与配基结合改变蛋白质的构象,导致蛋白质生物活性改变的现象。
8.同源蛋白质 :不同物种中具有相同或相似功能的蛋白质或具有明显序列同源性的蛋白质。
9.简单蛋白质:又称单纯蛋白质,这类氨基酸只含由α-氨基酸组成的肽链,不含其他成分.10.结合蛋白质 : 结合蛋白质是单纯蛋白质和其他化合物结合构成,12.蛋白质盐析作用:用中性盐类使蛋白质从溶液中沉淀析出的过程13.蛋白质分段盐析 : 调节盐浓度,可使混合蛋白质溶液中的几种蛋白质分段析出14.寡聚蛋白:四级结构的蛋白质中每个球状蛋白质称为亚基,亚基通常由一条多肽链组成,有时含两条以上的多肽链,单独存在时一般没有生物活性。
15.结构域 :结构域是生物大分子中具有特异结构和独立功能的区域,特别指蛋白质中这样的区域16.构象:构象指一个分子中,不改变共价键结构,仅单键周围的原子放臵所产生的空间排布。
17.构型 :分子中由于各原子或基团间特有的固定的空间排列方式不同而使它呈现出不同的较定的立体结构18.肽单位肽键的所有四个原子和与之相连的两个α-碳原子所组成的基团。
19.肽平面: 肽键具有一定程度的双键性质,参与肽键的六个原子不能自由转动,位于同一平面,此平面就是肽平面,也叫酰胺平面。
20.?—螺旋 : α螺旋是一种最常见的二级结构,①肽链骨架围绕一个轴以螺旋的方式伸展;②螺旋形成是自发的,肽链骨架上由n位氨基酸残基上的-C=O与n+4位残基上的-NH 之间形成的氢键起着稳定的作用;被氢键封闭的环含有13个原子,因此α螺旋也称为3.6/13螺旋;③每隔3.6个残基,螺旋上升一圈;每一个氨基酸残基环绕螺旋轴100°,螺距为0.54nm,即每个氨基酸残基沿轴上升0.15nm;螺旋的半径是0.23nm;Φ角和Ψ角分别为-57°和-48°;④α螺旋有左手和右手之分,但蛋白质中的α螺旋主要是右手螺旋;⑤氨基酸残基的R基团位于螺旋的外侧,并不参与螺旋的形成,但其大小、形状和带电状态却能影响螺旋的形成和稳定。
23.?—转角 : β-转角结构(β-turn)又称为β-弯曲(β-bend)、β-回折(β-reverse turn)、发夹结构(hairpin structure)和U型转折等。
蛋白质分子多肽链在形成空间构象的时候,经常会出现180°的回折(转折),回折处的结构就称为β-转角结构。
25.蛋白质的复性作用 :在适当条件下变性蛋白质可恢复其天然构象和生物活性,这种现象称为蛋白质的复性。
26.亚基:蛋白质的四级结构是指蛋白质分子中各亚基的空间排布及亚基接触部位的相互作用。
体内许多蛋白质分子含有两条或两条以上多肽链,每一条多肽链都有完整的三级结构,称为亚基(subunit)。
1.反密码子:tRNA分子的反密码子环上的三联体核苷酸残基序列。
2.Chargaff规则 :DNA的碱基组成特点——Chargaff定律(1)碱基当量定律:嘌呤碱总量=嘧啶碱总量,即A+G=T+C(2)不对称比率A+T/G+C因物种(亲缘关系远近)而异。
3.核酸的复性 : DNA的复性指变性DNA 在适当条件下,二条互补链全部或部分恢复到天然双螺旋结构的现象,它是变性的一种逆转过程。
DNA的复性不仅受温度影响,还受DNA自身特性等其它因素的影响。
4.退火 : 热变性DNA一般经缓慢冷却后即可复性,此过程称之为" 退火"(annealing)。
这一术语也用以描述杂交核酸分子的形成(见后)。
5.增色效应: 增色效应或高色效应 (hyperchromic effect)。
由于DNA变性引起的光吸收增加称增色效应,也就是变性后DNA 溶液的紫外吸收作用增强的效应。
6.减色效应 : 在生物化学中,是指:若变性DNA复性形成双螺旋结构后,其紫外吸收会降低,这种现象叫减色效应。
7.发夹结构: 发夹结构(hairpin structure):RNA是单链线形分子,只有局部区域为双链结构。
这些结构是由于RNA单链分子通过自身回折使得互补的碱基对相遇,形成氢键结合而成的,称为发夹结构。
8.分子杂交: 分子杂交(molecularhybridization)确定单链核酸碱基序列的技术。
9.DNA的解链(溶解)温度:DNA的四类碱基A,T,C,G.碱基之间由氢键连接的,AT之间有三个氢键相连,而CG之间只有两个.溶键温度是指使DNA双链断开形成单链时所需要的温度.氢键的断裂需要能量即给予热量,氢键越多,需要的热量越多,温度越高.故AT越多,所需温度越高.10.碱基堆积力 : 在DNA双螺旋结构中,碱基对平面垂直于中心轴,层叠于双螺旋的内侧,相邻疏水性碱基在旋进中彼此堆积在一起相互吸引形成的作用力。
这种力与氢键共同维系着DNA双螺旋结构的稳定性,而且相比之下比氢键更重要。
11.超螺旋DNA : 闭环DNA(closed circular DNA)没有断口的双链环状DNA,亦称为超螺旋DNA。
12.DNA的一级结构: 是指构成核酸的四种基本组成单位——脱氧核糖核苷酸(核苷酸),通过3',5'-磷酸二酯键彼此连接起来的线形多聚体,以及起基本单位-脱氧核糖核苷酸的排列顺序。
每一种脱氧核糖核苷酸由三个部分所组成:一分子含氮碱基+一分子五碳糖(脱氧核糖)+一分子磷酸根。
313. DNA的二级结构是指两条脱氧多核苷酸链反向平行盘绕所形成的双螺旋结构。
14. DNA的三级结构是指DNA中单链与双链、双链之间的相互作用形成的三链或四链结构。
如H-DNA或R-环等三级结构。
核酸以反式作用存在(如核糖体、剪接体),这可以看作是核算的四级水平的结构。
此外,DNA的拓扑结构也是DNA存在的一种形式。
DNA的拓扑结构是指在DNA双螺旋的基础上,进一步扭曲所形成的特定空间结构。
超螺旋结构是拓扑结构的主要形式,塔可以分为正超螺旋和负超螺旋两类,在相应条件下,它们可以相互转变。
1.酶的活性中心酶分子中氨基酸残基的侧链有不同的化学组成。
其中一些与酶的活性密切相关的化学基团称作酶的必需基团(essential group)。
这些必需基团在一级结构上可能相距很远,但在空间结构上彼此靠近,组成具有特定空间结构的区域,能和底物特异结合并将底物转化为产物。
这一区域称为酶的活性中心(active center)或活性部位(active site)2.酶的专一性酶对所作用的底物有严格的选择性。
一种酶仅能作用于一种物质,或一类分子结构相似的物质,促其进行一定的化学反应,产生一定的反应产物,这种选择性作用称为酶的专一性。
酶的专一性是指酶对底物及其催化反应的严格选择性。
通常酶只能催化一种化学反应或一类相似的反应,不同的酶具有不同程度的专一性,酶的专一性可分为三种类型:绝对专一性、相对专一性、立体专一性。
3.竞争性抑制作用通过增加底物浓度可以逆转的一种酶抑制类型。
一个竞争性抑制剂通常与正常的底物或配体竞争同一个酶的结合部位。
这种抑制使得Km增大,而Vmax不变。
4.非竞争性抑制作用抑制剂不仅与游离酶结合,也可以与酶-底物复合物结合的一种酶促反应抑制作用。
这种抑制使得Vmax变小,但Km不变非竞争性抑制作用:抑制剂不能与游离酶结合,但可与ES复合物结合并阻止产物生成,使酶的催化活性降低特点为:a.抑制剂与底物可同时与酶的不同部位结合;b.必须有底物存在,抑制剂才能对酶产生抑制作用;c.动力学参数。
5.别构酶一种其活性受到结合在活性部位以外部位的其它分子调节的酶。
又称为变构酶,是一类重要的调节酶。
在代谢反应中催化第一步反应的酶或交叉处反应的酶多为别构酶。
别构酶均受代谢终产物的反馈抑制。
6.别构效应别构效应,(allosteric effect),是某种不直接涉及蛋白质活性的物质,结合于蛋白质活性部位以外的其他部位(别构部位),引起蛋白质分子的构象变化,而导致蛋白质活性改变的现象。
受别构效应调节的蛋白质称为别构蛋白质,如果是酶,则称为别构酶。
7.同工酶同工酶(isozyme,isoenzyme)广义是指生物体内催化相同反应而分子结构不同的酶。
按照国际生化联合会(IUB)所属生化命名委员会的建议,则只把其中因编码基因不同而产生的多种分子结构的酶称为同工酶。
最典型的同工酶是乳酸脱氢酶(LDH)同工酶。
8.酶的比活力 1、在特定条件下,单位重量(mg)蛋白质或RNA所具有的酶活力单位数。
2、比活力(性)(Specific Activity)是酶纯度的量度,即指:单位重量的蛋白质中所具有酶的活力单位数,一般用IU/mg蛋白质来表示.一般来说,酶的比活力越高,酶越纯.。
1314 --核酸生物化学试题库3、比活力为每毫克蛋白质所具有的酶活力单位数,一般用酶活力单位/mg蛋白质表示。
9.酶原激活某些酶在细胞内合成或初分泌时没有活性,这些没有活性的酶的前身称为酶原(zymogen),使酶原转变为有活性酶的作用称为酶原激活(zymogen activation)。
10.寡聚酶寡聚酶由2个或多个相同或不相同亚基组成的酶,称为寡聚酶。
11.酶的转换数酶的转换数(turnover number )表示酶的催化中心的活性,它是指单位时间(如每秒)内每一催化中心(或活性中心)所能转化的底物分子数,或每摩尔酶活性中心单位时间转换底物的摩尔数。
12.辅酶和辅基辅酶(coenzyme)是一类可以将化学基团从一个酶转移到另一个酶上的有机小分子,与酶较为松散地结合,对于特定酶的活性发挥是必要的。
14.全酶具有催化活性的酶,包括所有的必需的亚基、辅基和其它的辅助因子。
序变模型(KNF模型)和齐变模型是为了了解酶作用机制提出的两种主要模型。
15 --核酸生物化学试题库一酶分子中另一亚基对底物的亲和力增加或减少。