北师大版七年级数学下册整式的加减法计算题精选 (300)
精品解析2021-2022学年北师大版七年级数学下册第一章整式的乘除综合训练练习题(无超纲)
北师大版七年级数学下册第一章整式的乘除综合训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。
第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式运算结果为9a 的是( )A .63a a +B .33a a ⋅C .()33aD .182÷a a2、下列各式中,计算结果为6a 的是( )A .()42aB .7a a ÷C .82a a -D .23a a ⋅ 3、下列运算正确的是( )A .2222x x x ⋅=B .()2326xy x y =C .632x x x ÷=D .23x x x +=4、下列运算正确的是( ).A .236a a a ⋅=B .()236a a -=C .()3339a a =D .623a a a ÷= 5、三个数02,23-,()13--中,负数的个数是( )A .0个B .1个C .2个D .3个6、据《央视网》 2021年10月26日报道,我国成功研制出超导量子计算原型机“祖冲之二号”.截至报道时,根据已公开的最优经典算法,在处理“量子随机线路取样”问题时,全球其他最快的超级计算机用时2.3秒的计算量,“祖冲之二号”用时大约为0.000 000 23秒,将数字0.000 000 23用科学记数法表示应为( )A .62.310-⨯B .72.310-⨯C .60.2310-⨯D .82310-⨯7、已知并排放置的正方形ABCD 和正方形BEFG 如图,其中点E 在直线AB 上,那么DEG ∆的面积1S 和正方形BEFG 的面积的2S 大小关系是( )A .1212=S SB .12S SC .122S S =D .1234S S = 8、已知(2x +3y )2=15,(2x ﹣3y )2=3,则3xy =( )A .1B .32 C .3 D .不能确定9、已知A =26x +,B 是多项式,在计算B -A 时,小海同学把B -A 错看成了B ÷A ,结果得x ,那么B -A 的正确结果为( )A .2246x x +-B .36+xC .226x x +D .2246x x ++10、下列运算中正确的是( )A .b 2•b 3=b 6B .(2x +y )2=4x 2+y 2C .(﹣3x 2y )3=﹣27x 6y 3D .x +x =x 2 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若a b 、满足224202410a a b b -+=-+=,且1ab ≠,则 1a b-=_____________ 2、用科学记数法表示0.00000012为________.3、已知225a a -=,则代数式()()2221a a -++的值为______.4、如果多项式2425a ma ++是完全平方式,那么m 的值是____________.5、若x 2+2(m ﹣3)x +16是完全平方式,则m 的值等于______.三、解答题(5小题,每小题10分,共计50分)1、计算:()()220220221 3.1433-⎛⎫-+--- ⎪⎝⎭π 2、先化简,再求值:()()()()224a b a b a b a a b ++-+--,其中2a =,12b =-.3、计算:()()()222x y x y x y x +++--4、计算(3a ﹣b )(a +b )+(2a +3b )(2a ﹣7b ).5、按照要求进行计算:(1)计算:()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦ (2)利用乘法公式进行计算:()()22x y z x y z ++---参考答案-一、单选题1、C【分析】根据同底数幂的乘除法及幂的乘方可直接进行排除选项.【详解】解:A 、6a 与3a 不是同类项,不能合并,故不符合题意;B 、336a a a ⋅=,计算结果不为9a ,故不符合题意;C 、()339a a =,故符合题意; D 、61821a a a ÷=,计算结果不为9a ,故不符合题意;故选C .【点睛】本题主要考查同底数幂的乘除法及幂的乘方,熟练掌握同底数幂的乘除法及幂的乘方是解题的关键.2、B【分析】根据幂的运算法则即可求解.【详解】A. ()42a =8a ,故错误; B. 7a a ÷=6a ,正确;C. 82a a -不能计算,故错误;D. 23a a ⋅=5a ,故错误;故选B .【点睛】此题主要考查幂的运算,解题的关键是熟知其运算法则.3、B【分析】同底数幂相乘,底数不变,指数相加;积的乘方等于乘方的积;同底数幂相除,底数不变,指数相减;整式加减合并同类项.【详解】解:A 中232·222x x x x =≠,错误,故不符合题意;B 中()2326xy x y =,正确,故符合题意;C 中6332x x x x ÷=≠,错误,故不符合题意;D 中23x x x +≠,错误,故不符合题意;故选B .【点睛】本题考查了幂的运算性质.解题的关键在于正确的理解幂的运算性质.4、B【分析】根据同底数幂相乘、幂的乘方、积的乘方、同底数幂相除逐项判断即可求解.【详解】解:A 、235a a a ⋅=,故本选项错误,不符合题意;B 、()236a a -=,故本选项正确,符合题意;C 、()33327a a =,故本选项错误,不符合题意;D 、624a a a ÷=,故本选项错误,不符合题意;故选:B【点睛】本题主要考查了同底数幂相乘、幂的乘方、积的乘方、同底数幂相除,熟练掌握同底数幂相乘、幂的乘方、积的乘方、同底数幂相除法则是解题的关键.5、B【分析】先计算各数,并与0比较大小,根据比0小的个数得出结论即可.【详解】解:021=>0,2211339-==>0,()111333--==--<0, 负数的个数是1个,故选:B .【点睛】本题考查有理数的幂运算,零指数幂,负指数幂,掌握有理数的幂运算,零指数幂,负指数幂,和比较大小是解题关键.6、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.000 000 23米,用科学记数法表示为2.3×10﹣7米.故选:B .【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10﹣n ,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.7、A设正方形ABCD 和正方形BEFG 的边长分别为m 、n ,利用面积和差求出面积即可判断.【详解】解:设正方形ABCD 和正方形BEFG 的边长分别为m 、n ,S 1=S 正方形ABCD +S 正方形BEFG ﹣(S △ADE +S △CDG +S △GEF )=m 2+n 2﹣[12m (m +n )+ 12m (m ﹣n )+ 12n 2] =12n 2;∴S 1=12S 2.故选:A .【点睛】本题主要考查整式的混合运算,解题的关键是熟练用面积和差求三角形面积,准确进行计算.8、B【分析】根据平方差公式即可求出答案.【详解】解:2(23)15x y +=,2(23)3x y -=,22(23)(23)12x y x y ∴+--=,(2323)(2323)12x y x y x y x y ∴+-+++-=,6412y x ∴⋅=, 332xy ∴=, 故选:B .本题考查平方差公式,解题的关键是熟练运用平方差公式,本题属于基础题型.9、A【分析】先根据题意得到B A x ÷=,从而求出B ,再根据整式的加减计算法则求出B -A 即可.【详解】解:由题意得:B A x ÷=,∴()22626B x A x x x x =⋅=+=+,∴222626246B A x x x x x -=+--=+-,故选A .【点睛】本题主要考查了单项式乘以多项式,整式的加减计算,熟知相关计算法则是解题的关键.10、C【分析】根据同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项进行解答.【详解】解:A 、b 2•b 3=b 5,不符合题意;B 、(2x +y )2=4x 2+4xy +y 2,不符合题意;C 、(﹣3x 2y )3=﹣27x 6y 3,符合题意;D 、x +x =2x ,不符合题意.故选:C .【点睛】本题主要考查了同底数幂的乘法,完全平方公式,幂的乘方与积的乘方以及合并同类项等知识点.二、填空题1、【分析】配方法解一元二次方程得2a =b =1ab ≠,可知有两种取值组合2a =+b =2a =b = 【详解】解:由2420a a -+=,解得2a =由22410b b -+=,解得22b =; 1ab ≠2a ∴=b =12a b -===2a ∴=b =12a b -==-=故答案为:【点睛】本题考查了配方法解一元二次方程,根式加减中分母有理化,绝对值等知识点.解题的关键在于正确的配方求值以及用平方差将分母有理化.2、71.210-⨯【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a ×10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n 由原数左边起第一个不为零的数字前面的0的个数所决定.【详解】解:0.00000012=1.2×10-7.故答案为:1.2×10-7.【点睛】本题考查用科学记数法表示较小的数,一般形式为a ×10-n,其中1≤|a |<10,n 为由原数左边起第一个不为零的数字前面的0的个数所决定.3、11【分析】先将原代数式化简,再将225a a -=代入,即可求解.【详解】解:()()2221a a -++ 24422a a a =-+++226a a =-+∵225a a -=,∴原式5611=+= .故答案为:11【点睛】本题主要考查了整式混合运算,熟练掌握整式混合运算法则是解题的关键.4、20±【分析】这里首末两项是2a 和5这两个数的平方,那么中间一项为加上或减去2a 和5积的2倍.【详解】解:222425(2)5++=++a ma a ma,252∴=±⨯⨯ma a,20∴=±m,故答案为:20±.【点睛】本题主要考查了完全平方公式的应用,解题的关键是两数的平方和,再加上或减去它们积的2倍,就构成了一个完全平方式,注意积的2倍的符号,避免漏解.5、7【分析】根据已知完全平方式得出2(m-3)x=±2•x•4,求出即可.【详解】解:∵x2+2(m-3)x+16是完全平方式,∴2(m-3)x=±2•x•4,解得:m=7或-1,故答案为:7或-1.【点睛】本题考查了完全平方式,能熟记完全平方式的内容是解此题的关键,注意:完全平方式有两个:a2+2ab+b2和a2-2ab+b2.三、解答题1、1 3【分析】先根据乘方,零指数幂,负整数指数幂化简,再进行加减运算,即可求解【详解】解:原式411199=+--13=. 【点睛】本题主要考查了乘方,零指数幂,负整数指数幂,熟练掌握乘方,零指数幂,负整数指数幂运算法则是解题的关键.2、28a ab +,-4【分析】用乘法公式及单项式乘多项式的法则计算,再合并同类项即可化简;再所给的值代入化简后的式子中即可求得值.【详解】原式22222244448a ab b a b a ab a ab =+++--+=+当2a =,12b =-时,原式2128242⎛⎫=+⨯⨯-=- ⎪⎝⎭【点睛】本题是化简求值题,考查了整式的乘法及求代数式的值,熟练运用乘法公式及单项式乘多项式是关键.3、2xy【分析】先根据完全平方公式计算,再合并同类项即可【详解】解:()()()222x y x y x y x +++-- =2222222x xy y x y x +++--=2xy .【点睛】本题考查了整式的混合运算,熟练掌握运算顺序及乘法公式是解答本题的关键.完全平方公式是(a ±b )2=a 2±2ab +b 2;平方差公式是(a +b )(a -b )=a 2-b 2.4、72a ﹣6ab ﹣222b【分析】根据多项式乘以多项式的法则计算.【详解】解:(3a ﹣b )(a +b )+(2a +3b )(2a ﹣7b )=32a +3ab ﹣ab ﹣2b +42a ﹣14ab +6ab ﹣212b=72a ﹣6ab ﹣222b .【点睛】本题考查了多项式乘以多项式,熟练掌握运算法则是解题的关键.5、(1)1133xy -(2)22242x y yz z ---【分析】(1)先计算中括号内的整式乘法,再运用多项式除以单项式的法则计算即可;(2)运用平方差公式计算即可.【详解】解:(1)()()()222223x x y xy xy y x xy xy ⎡⎤----÷⎣⎦ =()()22322322233x y x y x y x y x y xy xy ⎡⎤----+÷⎣⎦=22322322233x y x y x y x y x y xy xy ⎡⎤--++-÷⎣⎦=23223x y xy xy ⎡⎤-÷⎣⎦ =1133xy -(2)()()22x y z x y z ++-- =()()222x y z -+=()22242x y yz z -++ =22242x y yz z ---.【点睛】本题考查了整式的乘除和乘法公式,解题关键是熟练掌握整式运算法则,熟练运用乘法公式进行计算.。
北师大版七年级数学下册 第一章 整式的乘除 1.1~1.3 计算综合专项训练(word版含答案)
北师大版七年级数学下册第一章整式的乘除1.1~1.3计算综合专项训练1.计算:(1)a2•a3(2)(﹣a2)3(3)a10÷a9(4)(﹣bc)4÷(﹣bc)22.计算:(1)x2•x5﹣x3•x4;(2)m3•m3+m•m5;(3)a•a3•a2+a2•a4;(4)x2•x4+x3•x2•x.3.计算:(1)x3•x3;(2)m2•m3;(3)a3+a3;(4)x2•x2•x2;(5)102•10•105;(6)y3•y2•y4.4.计算:(1)(﹣x)3•x2•(﹣x)4;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b);(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5.5.计算:(1)a3•a2•a (2).6.计算:(﹣x)•(﹣x)2•(﹣x)3+(﹣x)•(﹣x)5.7.计算:(a﹣b)3•(b﹣a)3+[2(a﹣b)2]3.8.计算:y3•(﹣y)•(﹣y)5•(﹣y)2.9.计算:(1)(﹣8)2011•(﹣0.125)2012;(2)(a﹣b)5(b﹣a)3.10.计算:a3•a•a5+a4•a2•a3.11.计算;(1)x•x2•x3+(x2)3﹣2(x3)2;(2)[(x2)3]2﹣3(x2•x3•x)2;(3)(﹣2a n b3n)2+(a2b6)n;(4)(﹣3x3)2﹣(﹣x2)3+(﹣2x)2﹣(﹣x)3.12.计算:(1)59×0.28;(2)×(3)22×42×5613.计算:(1)(﹣8)12×83 (2)210×410 (3)(m4)2+m5•m3(4)﹣[(2a﹣b)4]2 (5)(3xy2)2 (6)(a﹣b)5(b﹣a)3(1)﹣12008×|﹣.(2).15.计算:(1)()﹣1+(﹣2)3×(π﹣2)0;(2)(﹣a2)3﹣a2•a4+(﹣2a4)2÷a2.16.计算:(1)(y2)3÷y6•y (2)y4+(y2)4÷y4﹣(﹣y2)217.计算:﹣()2×9﹣2×(﹣)÷+4×(﹣0.5)2(1)(﹣1)2019+(π﹣3.14)0﹣()﹣1.(2)(﹣2x2y)3﹣(﹣2x3y)2+6x6y3+2x6y219.计算(1)(m﹣n)2•(n﹣m)3•(n﹣m)4(2)(b2n)3(b3)4n÷(b5)n+1(3)(a2)3﹣a3•a3+(2a3)2;(4)(﹣4a m+1)3÷[2(2a m)2•a].20.计算:(1)(﹣2ab)•(﹣3ab)3(2)5x2•(3x3)2(4)(﹣0.16)•(﹣10b2)3(4)(2×10n)(×10n)21.计算:()100×(1)100×(0.5×3)2019×(﹣2×)2020.22.计算:(1)﹣2﹣17﹣(﹣27)+(﹣10);(2)﹣;(4)a2﹣2(a2﹣3ab)﹣ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3;(5)解方程:3(2x﹣1)=2x+3;(6)解方程:.答案提示1.解:(1)a2•a3=a5;(2)(﹣a2)3=﹣a6;(3)a10÷a9=a(a≠0);(4)(﹣bc)4÷(﹣bc)2=b2c2;2.解:(1)x2•x5﹣x3•x4=x7﹣x7=0;(2)m3•m3+m•m5=m6+m6=2m6;(3)a•a3•a2+a2•a4=a1+3+2+a2+4=a6+a6=2a6;(4)x2•x4+x3•x2•x=x6+x6=2x6.3.解:(1)x3•x3=x3+3=x6;(2)m2•m3=m2+3=m5;(3)a3+a3=2a3;(4)x2•x2•x2=x2+2+2=x6;(5)102•10•105=102+1+5=108;(6)y3•y2•y4=y3+2+4=y9.4.解:(1)(﹣x)3•x2•(﹣x)4=﹣x3•x2•x4=﹣x9;(2)﹣(﹣a)2•(﹣a)7•(﹣a)4=﹣a2•(﹣a7)•a4=a13;(3)(﹣b)4•(﹣b)2﹣(﹣b)5•(﹣b)=b4•b2﹣(﹣b5)•(﹣b)=b6﹣b6=0;(4)(﹣x)7•(﹣x)2﹣(﹣x)4•x5=(﹣x7)•x2﹣x4•x5=﹣x9﹣x9=﹣2x9.5.解:(1)原式=a3+2+1=a6;(2)原式=(﹣)2008×()2008×(﹣)=﹣.6.解:原式=﹣x•x2•(﹣x3)﹣x•(﹣x5)=x6+x6=2x6.7.解:原式=﹣(a﹣b)6+8(a﹣b)6=7(a﹣b)68.解:原式=y3•(﹣y)•(﹣y)5•y2=y3•(﹣y)•(﹣y5)•y2=y3•y•y5•y2=y3+1+5+2=y11.9.解:(1)原式=(﹣8)2011•(﹣)2011•(﹣),=[﹣8×(﹣)]2011×(﹣),=1×(﹣),=﹣;(2)原式=(a﹣b)5•[﹣(a﹣b)]3=﹣(a﹣b)8.10.解:a3•a•a5+a4•a2•a3=a9+a9=2a9.11.解:(1)原式=x6+x6﹣2x6=0;(2)原式=(x6)2﹣3(x6)2=x12﹣3x12=﹣2x12;(3)原式=4a2n b6n+a2n b6n=5a2n b6n;(4)原式=9x6﹣(﹣x6)+4x2﹣(﹣x3)=9x6+x6+4x2+x3=10x6+x3+4x2.12.解:(1)59×0.28=(5×0.2)8×5=1×5=5;(2)(﹣)9×()9=[(﹣)×]9=(﹣1)9=﹣1;(3)22×42×56=22×52×42×54=(2×5)2×42×252=102×(4×25)2=102×1002=102×104=106.13.解:(1)(﹣8)12×83=812×83=815;(2)210×410=210×(22)10=210×220=230;(3)(m4)2+m5•m3=m8+m8=2m8;(4)﹣[(2a﹣b)4]2=﹣(2a﹣b)8;(5)(3xy2)2=9x2y4;(6)(a﹣b)5(b﹣a)3=﹣(a﹣b)5(a﹣b)3=﹣(a﹣b)8.14.解:(1)原式=﹣1×+1﹣=﹣+=0;(2)原式=224×()8﹣()100×()100×=(2×)24﹣(×)100×=1﹣=﹣.15.解:(1)原式=3+(﹣8)×1=﹣5;(2)原式=﹣a6﹣a6+4a6=2a6.16.解:(1)(y2)3÷y6•y=y6÷y6•y=y;(2)y4+(y2)4÷y4﹣(﹣y2)2=y4+y8÷y4﹣y4=y4+y4﹣y4=y4.17.解:=×××+4×=+1=118.解:(1)原式=﹣1+1﹣3=﹣3;(2)原式=﹣8x6y3﹣4x6y2+6x6y3+2x6y2=﹣2x6y3﹣2x6y2.19.解:(1)(m﹣n)2•(n﹣m)3•(n﹣m)4=(n﹣m)2+3+4,=(n﹣m)9;(2)(b2n)3(b3)4n÷(b5)n+1=b6n•b12n÷b5n+5=b6n+12n﹣5n﹣5=b13n﹣5;(3)(a2)3﹣a3•a3+(2a3)2=a6﹣a6+4a6=4a6;(4)(﹣4a m+1)3÷[2(2a m)2•a]=﹣64a3m+3÷8a2m+1=﹣8a m+220.解:(1)(﹣2ab)•(﹣3ab)3=(﹣2ab)•(﹣27a3b3)=54a4b4;(2)5x2•(3x3)2=5x2•(9x6)=45x8;(3)(﹣0.16)•(﹣1000b6)=160b6;(4)(2×10n)(×10n)=102n.21.解:原式=×===.22.解:(1)﹣2﹣17﹣(﹣27)+(﹣10)=﹣19+27﹣10=﹣2;﹣(2)==;(3)a2﹣2(a2﹣3ab)﹣ab=a2﹣2a2+6ab﹣ab=﹣a2+5ab;(4)a•a5+(﹣2a3)2+(﹣3a2)3=a6+4a6﹣27a6=﹣22a6;(5)解方程:3(2x﹣1)=2x+3去括号,得6x﹣3=2x+3移项,得6x﹣2x=3+3合并同类项,得4x=6系数化为1,得;(6)解方程:去分母,得2(x+3)=4﹣(2x﹣1)去括号,得2x+6=4﹣2x+1移项,得2x+2x=4+1﹣6合并同类项,得4x=﹣1系数化为1,得.。
七(下)数学暑假能力天天练(1):整式的运算
北师大七年级数学下《暑假数学能力天天练》—整式的运算★★★(I)考点突破★★★考点1:幂的意义和性质 一、考点讲解:1、幂a m的意义: 2.幂的运算性质:(1)a m ·a n=(2)(a m )n=(3)(ab )n=(4)a m ÷a n= (a≠0,a ,n 均为正整数)3、特别规定:(1)a 0= (a≠0);(2)a -p=1(0,)pa p a ≠是正整数 4.幂的大小比较的常用方法:⑴求差比较法:如比较22221021313和的大小,可通过求差2222102-1313<0可知.2222102>1313⑵求商比较法:如999999999999999911999119与,可求=9909990999999999909999119111=91191199⨯⨯=⨯=999,方可知 ⑶乘方比较法:如a 3=2,b 3=3,比较a 、b 大小可算 a 15=(a 3)5= 25=32,b 15=(b 5)3=33=2 7,可得a 15>b 15,即a >b .⑷底数比较法:就是把所比较的幂的指数化为相同的数,然后通过比较底数的大小得出结果.⑸指数比较法:就是把所比较的幂的底数化为相同的数,然后通过比较指数的大小,得出结果. 二、经典考题剖析:【考题1-1】计算(-3a 3)2:a 2的结果是( ) A .-9a 2B 6a 2C 9a 2D 9a 4解:D 点拨:主要考查积的乘方与同底数幂的除法的运算知识.(-3a 3)2= 9a 6,9a 6:a 2= 9a 4【考题1-2】(2004、开福)计算:x 2x 3=_______.解:x 5点拨:考查学生同底数幂的乘法的知识x 2x 3= x 2+3=x 5三、针对性训练:(30 分钟) 1.下列计算正确的是( )A.1262624x x =x B.(-a)(-a)=-a ÷÷ C. 2n n 22n n n x x =x D.(-a)a =a ÷÷ 2.计算:0.299×5101=________3、已知a=8131,b=2741,c=961,则a 、b 、c 的大小关系是( ) A .a >b >c B .a >c >bC .a <b <cD .b >c >a4、已知m -1n -13m+2n 1x =6x =(),x 3,求的值。
北师大版七年级数学下册第一章整式的乘除。计算题专项练习题(无答案)
北师大版七年级数学下册第一章整式的乘除。
计算题专项练习题(无答案)北师大七年级下册数学第一章计算题专项练(无答案)1.(2ab2c)2÷(-2ab3c2)(an-2)2•[-(a3)2n+1](-2.5x3)2(-4x3)(-a2b3c4)(-xa2b)32a5-a2•a3+(2a4)2÷a3(-a2)3+(-a3)2-a2•a3(-x)3•x2n-1+x2n•(-x)2.2.(a3)2-(a2)33.[(a+2b)4]3•(-a-2b)(-a2b)3•(-ab)2•[-2(ab2)2]3;4.2[(x-y)3]2•3(y-x)3•2[(x-y)2]5.5.(-a)6÷a2( x2)3÷( x2)2( a-2b)7( a-2b)2÷(2b-a)66.(3a2b3c)÷(2a3b3)7.(-a3)2•(-a2)38.(x-y)2•(y-x)39.(-8)2009•(8)201010.(5a2b2c3)4÷(-5a3bc)211.(2a2b)4•3ab2c÷3ab2•4b.12.(2x-3)(2x+3)-(2x-1)213.(2m+5)(3m-1)(2x-5y)(3x-y)(x+y)(x2-2x-3)(x+1)2+x(x-2)(-2m+n)2(-2m-n)2:14.(2a+b)2-(2a-b)2xm+15•xm-1(m是大于1的整数)15.(-x)•(-x)6;16.(-m3)•m4.17.(4a-3b)2(-x2+3y2)2;18.(-a2-2b)2(0.2x+0.5y)2(x-y+4)(x+y+4)(2x-3y)2-(y+3x)(3x-y)(a-2b+3)(a+2b-3)19.(-2aa+1b2)2÷(-2anb2)2•(-5ambn)2[5a4(a2-4)+(-2a2)5÷(-a)2]÷(-2a2)220.(a-b)m+3•(b-a)2•(a-b)m•(b-a)5a(a-3b)+(a+b)2-a(a-b)a(a-3)-(-a+7)(-a-7)(2m+n)(2m-n)-(-m+2n)(-m-2n)(2m+n-p)(2m-n+p)21.2a2b•(-3b2c)÷(4ab3)(2x+y-3z)222.5ab5(-a3b)•(-ab3c)(-2x2yz2)2•xy2z•(-xyz2)2.23.(p-q)4÷(q-p)3•(p-q)224.(4x+3y)(3y-4x)-(4x+3y)21.计算:(2ab2c)2÷(-2ab3c2)(an-2)2•[-(a3)2n+1](-2.5x3)2(-4x3)(-a2b3c4)(-xa2b)32a5-a2•a3+(2a4)2÷a3(-a2)3+(-a3)2-a2•a3(-x)3•x2n-1+x2n•(-x)2.2.计算:(a3)2-(a2)3.3.计算:[(a+2b)4]3•(-a-2b)(-a2b)3•(-ab)2•[-2(ab2)2]3.4.计算:2[(x-y)3]2•3(y-x)3•2[(x-y)2]5.5.计算:(-a)6÷a2( x2)3÷( x2)2( a-2b)7( a-2b)2÷(2b-a)6.6.计算:(3a2b3c)÷(2a3b3)。
整式加减(7种题型)-2023年新七年级数学核心知识点与常见题型通关讲解练(北师大版)(解析版)
整式加减(7种题型)【知识梳理】一、去括号法则如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同; 如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反. 要点诠释:(1)去括号法则实际上是根据乘法分配律推出的:当括号前为“+”号时,可以看作+1与括号内的各项相乘;当括号前为“-”号时,可以看作-1与括号内的各项相乘.(2)去括号时,首先要弄清括号前面是“+”号,还是“-”号,然后再根据法则去掉括号及前面的符号. (3)对于多重括号,去括号时可以先去小括号,再去中括号,也可以先去中括号.再去小括号.但是一定要注意括号前的符号.(4)去括号只是改变式子形式,但不改变式子的值,它属于多项式的恒等变形. 二、添括号法则添括号后,括号前面是“+”号,括到括号里的各项都不变符号; 添括号后,括号前面是“-”号,括到括号里的各项都要改变符号. 要点诠释:(1)添括号是添上括号和括号前面的符号,也就是说,添括号时,括号前面的“+”号或“-”号也是新添的,不是原多项式某一项的符号“移”出来得到的.(2)去括号和添括号是两种相反的变形,因此可以相互检验正误:如:()a b ca b c +−+−添括号去括号, ()a b ca b c −+−−添括号去括号三、整式的加减运算法则一般地,几个整式相加减,如果有括号就先去括号,然后再合并同类项. 要点诠释:(1)整式加减的一般步骤是:①先去括号;②再合并同类项. (2)两个整式相加减时,减数一定先要用括号括起来.(3)整式加减的最后结果中:①不能含有同类项,即要合并到不能再合并为止;②一般按照某一字母的降幂或升幂排列;③不能出现带分数,带分数要化成假分数.【考点剖析】 题型一、去括号例1.去括号:(1)d -2(3a -2b+3c ); (2)-(-xy -1)+(-x+y ). 【答案与解析】(1)d-2(3a-2b+3c)=d-(6a-4b+6c)=d-6a+4b-6c ; (2)-(-xy-1)+(-x+y)=xy+1-x+y . 【变式1】去掉下列各式中的括号:(1). 8m -(3n+5); (2). n -4(3-2m ); (3). 2(a -2b )-3(2m -n ). 【答案】(1). 8m-(3n+5)=8m-3n-5.(2). n-4(3-2m)=n-(12-8m)=n-12+8m. (3). 2(a-2b)-3(2m-n)=2a-4b-(6m-3n)=2a-4b-6m+3n. 【变式2】先去括号,再合并同类项:(1)()()33121x x −−+;(2)()()2232212x x −+−;(3)()()223323b a a b −+−;(4)()()22223222x xy y x xy y −−−+−.【答案】(1)32x −−;(2)24x −−;(3)5b −;(4)2232x xy y −+.【解析】(1)原式=3331212x x x −−−−;原式=22236244x x x −+−=−−;(3)原式=46695b a a b b −+−=−;(4)原式=2222223222432x xy y x xy y x xy y −−−−+=−+.【变式3】计算:()()23145x x y y ++−−−. 【答案】34x y −+ 【详解】解:()()23145x x y y ++−−−23145x x y y =++−−+34x y =−+.题型二、添括号例2.在各式的括号中填上适当的项,使等式成立.(1). 2345()()x y z t +−+=−=+2()x =−23()x y =+−; (2). 23452()2()x y z t x x −+−=+=−23()45()x y z t =−−=−−.【答案】(1). 2345x y z t −−+−,2345x y z t +−+,345y z t −+−,45z t −. (2). 345y z t −+−,345y z t −+,45z t −+,23x y −+.【解析】(1)2345x y z t +−+ (2345)x y z t =−−−+−(2345)x y z t =++−+ 2(345)x y z t =−−+−23(45)x y z t =+−−;(2)2345x y z t −+−2(345)x y z t =+−+−2(345)x y z t =−−+23(45)x y z t =−−−+45(23)z t x y =−−−+.【变式1】()()1 a b c d a −+−=−;()()22 ;x y z +−=−()()()()()22222223 ;4 a b a b a b a b a b a a −+−=−+−−−=−−.【答案】b c d −+;2x y z −−+;a b −;2b b +.【变式2】按要求把多项式321a b c −+−添上括号:(1)把含a 、b 的项放到前面带有“+”号的括号里,不含a 、b 的项放到前面带有“-”号的括号里; (2)把项的符号为正的放到前面带有“+”号的括号里,项的符号为负的放到前面带有“-”号的括号里. 【答案与解析】解:(1)321(32)(1)a b c a b c −+−=−−−+; (2)321(3)(21)a b c a c b −+−=+−+. 【变式3】添括号:(1)22()101025()10()25x y x y x y +−−+=+−+.(2)()()[(_______)][(_______)]a b c d a b c d a a −+−+−+=−+. 【答案】(1)x y +; (2),b c d b c d −+−+ .题型三、化简求值例3.化简:()22212123(2)2232x x x x x x ⎛⎫−−++−−−−+ ⎪⎝⎭.【答案】2111562x x +−. 【解析】原式=22221211112322523262x x x x x x x x −+−+−++−=+−. 【变式1】先化简,再求各式的值:22131222,2,;22333x x y x y x y ⎛⎫⎛⎫+−+−−=−= ⎪ ⎪⎝⎭⎝⎭其中 【答案与解析】原式=2221312232233x x y x y x y −+−+=−+, 当22,3x y =−=时,原式=22443(2)()66399−⨯−+=+=.【变式2】先化简再求值:(-x 2+5x+4)+(5x -4+2x 2),其中x =-2. 【答案】 (-x2+5x+4)+(5x-4+2x2)=-x2+5x+4+5x-4+2x2=x2+10x. 当x =-2,原式=(-2)2+10×(-2)=-16. 【变式3】先化简,再求各式的值:(){}123225,,12x y x x y x y x y −−+−++==−⎡⎤⎣⎦其中. 【答案与解析】解:原式[2(3245)][2(3)]x y x x y x y x y x x y =−−+−−+=−−+−+(23)(43)43444().x y x x y x y x x y x x y x y =−−−+=−−=−+=−=− 将1,12x y ==−代入,得:134[(1)]4622−−=⨯=.题型四:“无关”与“不含”型问题例4. 如果关于x 的多项式22(8614)(865)x ax x x ++−++的值与x 无关.你知道a 应该取什么值吗?试试看.(8x2+6ax+14)-(8x2+6x+5) =8x2+6ax+14-8x2-6x-5 =6ax-6x+9 =(6a-6)x+9由于多项式(8x2+6ax+14)-(8x2+6x+5)的值与x 无关,可知x 的系数6a-6=0. 解得a =1.【变式1】代数式22111221352x ax y x y bx ⎛⎫⎛⎫+−+−−+− ⎪ ⎪⎝⎭⎝⎭的值与字母x 取值无关,求25a b −的值.【答案】11.【解析】原式=()2221111542212352235x ax y x y bx b x a x y ⎛⎫+−+−+−+=++−+− ⎪⎝⎭, 代数式取值与字母x 无关,则有20b +=,102a −=,可求得12a =,2b =−, 代入可得:()125252112a b −=⨯−⨯−=.【变式2】已知多项式2x ax y b +−+与2363bx x y −+−的差的值与字母x 无关,求代数式:22223(2)(4)a ab b a ab b −−−++的值.【答案与解析】解:222(363)(1)(3)7(3)x ax y b bx x y b x a x y b +−+−−+−=−++−++. 由于多项式2x ax y b +−+与2363bx x y −+−的差的值与字母x 无关,可知: 10b −=,30a +=,即有1,3b a ==−.又2222223(2)(4)74a ab b a ab b a ab b −−−++=−−−,将1,3b a ==−代入可得:22(3)7(3)1418−−−⨯−⨯−⨯=.【变式3】已知关于a 的多项式323253a ma a −−++,2835a a −+相加后,不含二次项,求m 的值.【答案】4m =.【解析】()()()32232325383538228ama a a a a m a a −−+++−+=−+−++,多项式相加后不含二次项,即820m −=,可得4m =.题型五:整体思想的应用例5.已知2xy =−,3x y +=,求整式(310)[5(223)]xy y x xy y x ++−+−的值. 原式310(5223)xy y x xy y x =++−−+3105223xy y x xy y x =++−−+ 5310232x x y y xy xy =++−+− 88x y xy =++ 8()x y xy =++.把2xy =−,3x y +=代入得,原式83(2)24222=⨯+−=−=.【变式1】先化简,再求值:3(2)[3()]2y x x x y x +−−−−,其中,x y 化为相反数. 【答案】3(2)[3()]236322()y x x x y x y x x x y x x y +−−−−=+−+−−=+ 因为,x y 互为相反数,所以0x y +=所以3(2)[3()]22()200y x x x y x x y +−−−−=+=⨯=【变式2】已知3a 2-4b 2=5,2a 2+3b 2=10.求:(1)-15a 2+3b 2的值;(2)2a 2-14b 2的值. 解:(1)-15a2+3b2=-3(5a2-b2)=-3[(3a2+2a2)+(-4b2+3b2)] =-3[(3a2-4b2)+(2a2+3b2)]=-3×(5+10)=-45; (2)2a2-14b2=2(a2-7b2)=2[(3a2-2a2)+(-4b2-3b2)] =2×[(3a2-4b2)-(2a2+3b2)]=2×(5-10)=-10.【变式3】当2m π=时,多项式31am bm ++的值是0,则多项式3145_____2a b ππ++=. 【答案】∵ 3(2)210a b ππ++=, ∴ 338212(4)10a b a b ππππ++=++=,即3142a b ππ+=−.∴31114555222a b ππ++=−+=.题型六:求两个整式的和与差 例6.计算:(1)求整式231a b +−与322a b −+的和.(2)求代数式242x x −−−与32534x x x ++−的和与差. (3)求整式253x x −−与2232x x −+−的差. 【答案】(1)51a b ++;两式和为3246x x x +−−,两式差为32672x x x −−−+;2381x x −−.【解析】()()23132223132251a b a b a b a b a b +−+−+=+−+−+=++;()()23223232425344253446xx x x x x x x x x x x x −−−+++−=−−−+++−=+−−,()()232232324253442534672xx x x x x x x x x x x x −−−−++−=−−−−−−+=−−−+;(3)()()222225323253232381x x x x x x x x x x −−−−+−=−−+−+=−−.【变式1】.已知21A x =−−,3225A B x x −=−+− (1)求B ; (2)当12x =时,求A B +的值. 【答案】(1)3234x x −+;(2)3243A B x x +=−+,178(2)由(1)可先求A+B ,然后再代值求解即可. 【详解】解:(1)21A x =−−,3225A B x x −=−+−,()2323212534B x x x x x ∴=−−−−+−=−+;(2)由(1)得:23232+13443A B x x x x x =−−+−+=−+,把12x =代入得:原式=32111743=228⎛⎫⎛⎫−⨯+ ⎪ ⎪⎝⎭⎝⎭. 【变式2】列式计算:如果22(2)x x −+减去某个多项式的差是122x −,求这个多项式. 【答案】25262x x −+;【解析】解:根据题意,得212(2)(2)2x x x −+−−,化简得:212(2)(2)2x x x −+−−=2122422x x x −+−+=25262x x −+. 所以这个多项式是25262x x −+.【变式3】已知A -B=7a 2-7ab ,且B=-4a 2+5ab +8.求A 等于多少. 【答案】A=3a2-2ab+8【解析】解:∵A-B=7a2-7ab ,且B=-4a2+5ab+8,∴A-(-4a2+5ab+8)=7a2-7ab ,∴A=7a2-7ab +(-4a2+5ab+8)=3a2-2ab+8.【变式4】已知2244A x xy y =−+,225B x xy y =+−.求2A B −.【答案】222611−+x xy y【分析】将两个多项式用括号括起来,列出代数式,然后去括号,合并同类项即可. 【详解】解:2A B −=()()22224425−+−+−x xy y x xy y=2222442210−+−−+x xy y x xy y =222611−+x xy y【变式5】已知2322A b ab =+−,2112B a ab =−+−. 求:A -2B. 【答案】223b a +.【解析】A -2B =2213222(1)2b ab a ab +−−−+−=2222322223b ab a ab b a +−+−+=+.【变式6】已知:432231,2A x x x x B x x =−+−+=−−+,求2[()]A B B A −−−.【答案】43231x x x x −+−+;【解析】解:原式=2A B B A A −+−=,因为43231A x x x x =−+−+,所以原式=43231x x x x −+−+. 【变式7】一个多项式,当减去2237x x −+时,因把“减去”误认为“加上”,得2524x x −+,试问这道题的正确答案是什么?【答案】2410x x +−【解析】多项式=2524x x −+-(2237x x −+)=2524x x −+2237x x −+−=233x x +−,233x x +−-(2237x x −+)=233x x +−2237x x −+−=2410x x +−.多项式加减在列式过程中要注意适当运用括号!【变式8】一个多项式A 减去多项式2253x x +−,马虎同学将减号抄成了加号,运算结果是32457x x −+,求多项式A .【答案】3247510x x x −−+.【解析】()232253457A x x x x ++−=−+,()()3223245725347510A x x x x x x x =−+−+−=−−+.题型七、整式加减运算的应用例7.有一种石棉瓦(如图所示),每块宽60厘米,用于铺盖屋顶时,每相邻两块重叠部分的宽都为10厘米,那么n (n 为正整数)块石棉瓦覆盖的宽度为 ( ) .A .60n 厘米 B .50n 厘米 C .(50n+10)厘米 D .(60n -10)厘米【答案】C.【解析】观察上图,可知n 块石棉瓦重叠的部分有(n-1)处,则n 块石棉瓦覆盖的宽度为:60n-10(n-1)=(50n+10)厘米.【变式1】如图所示,长方形内有两个相邻的正方形,面积分别为9和a 2(a >0).那么阴影部分的面积为________.【答案】3a-a2【变式2】如果长方形周长为8a ,一边长为a +b ,则另一边长为__________. 【答案】3a -b ;【解析】由已知82()3.2a a b a b −+=−【变式3】已知a 、b 表示两个有理数,规定一种新运算“*”为:a*b =2(a -b ),那么 5*(-2)的值为 . 【答案】14;【解析】5*(-2)=2(5(2))2714⨯−−=⨯=.【变式4】有一个两位数,它的十位数字是个位数字的8倍,则这个两位数一定是9的倍数,试说明理由. 【答案】设个位数字为a ,则十位数字为8a ,则这个两位数为80a+a=81a ,故是9的倍数.【解析】解题的关键是如何表示这个两位数!设个位数字为a ,则十位数字为8a ,则这个两位数为80a+a=81a ,故是9的倍数.【变式5】在3×3的方格中,每行、每列及对角线上的3个代数式的和都相等,我们把这样的方格图叫做“等和格”. 如图1的“等和格”中,每行、每列及对角线上的3个代数式的和都等于15.(1)在图2的“等和格”方格图中,可得a= .(用含b 的代数式表示); (2)在图3的“等和格”方格图中,可得a= ,b= ; (3)在图4的“等和格”方格图中,可得b = . 【答案】(1)b −;(2)-2, 2; (3)- 9 .【解析】解:(1)根据图2可知:223a a a b −+=+,得223a a a b −+−=,所以a b =−;(2)在图3中,2232283a a a b a a b b −+=+⎧⎨−+=−+⎩,解之得22a b =−⎧⎨=⎩; (3)在图4中,222222222323322a a a a a a a a a a b a a a a ⎧++−=++−⎪⎨++−=++++⎪⎩,解得22302230a a a a b ⎧+−=⎪⎨+++=⎪⎩,所以2309a a b ⎧+−=⎨=−⎩,即9b =−.【过关检测】一.选择题(共10小题)1.(2023•柯桥区校级模拟)将整式﹣[a ﹣(b +c )]去括号,得( ) A .﹣a +b +cB .﹣a +b ﹣cC .﹣a ﹣b +cD .﹣a ﹣b ﹣c【分析】根据去括号法则,先去小括号,再去中括号,有时可简化计算. 【解答】解:根据去括号法则:﹣[a ﹣(b+c )]=﹣(a ﹣b ﹣c )=﹣a+b+c . 故选:A .【点评】本题考查去括号的方法:去括号时,运用乘法的分配律,先把括号前的数字与括号里各项相乘,再运用括号前是”+“,去括号后,括号里的各项都不改变符号;括号前是”﹣“,去括号后,括号里的各项都改变符号.图4图3图2图1a -3a 2+2a b+3a 2+2aa-2a 22a 2+a b - 8-2a a3b 2a2a3b a-2a 6817532942.(2023•宁波模拟)﹣[a﹣(b﹣c)]去括号应得()A.﹣a+b﹣c B.﹣a﹣b+c C.﹣a﹣b﹣c D.﹣a+b+c【分析】先去小括号,再去中括号,即可得出答案.【解答】解:﹣[a﹣(b﹣c)]=﹣[a﹣b+c]=﹣a+b﹣c.故选:A.【点评】本题考查了去括号法则的应用,注意:括号前面是“+”,把括号和它前面的“+”去掉,括号内的各项的符号都不变,括号前面是“﹣”,把括号和它前面的“﹣”去掉,括号内的各项的符号都改变.3.(2022秋•宁明县期末)已知A=2a2﹣3a,B=2a2﹣a﹣1,当a=﹣4时,A﹣B=()A.8B.9C.﹣9D.﹣7【分析】根据整式的加减,可化简整式,根据代数求值,可得答案.【解答】解:A﹣B=2a2﹣3a﹣(2a2﹣a﹣1)=2a2﹣3a﹣2a2+a+1=﹣2a+1,把a=﹣4代入原式,得﹣2a+1=﹣2×(﹣4)+1=9,故选:B.【点评】本题考查了整式的化简求值,先化简再求值,注意减法时要先添括号.4.(2022秋•零陵区期末)下列各项中,去括号正确的是()A.﹣(2x﹣y)=﹣2x﹣y B.﹣3(m+n)=﹣3m﹣nC.3(a2﹣2a+1)=3a2﹣6a D.2(a﹣2b)=2a﹣4b【解答】解:A、﹣(2x﹣y)=﹣2x+y,选项错误,不符合题意;B、﹣3(m+n)=﹣3m﹣3n,选项错误,不符合题意;C、3(a2﹣2a+1)=3a2﹣6a+3,选项错误,不符合题意;D、2(a﹣2b)=2a﹣4b,选项正确,符合题意.故选:D.【点评】本题考查去括号.熟练掌握去括号法则:括号前为“+”,括号里面的每一项符号不变,括号前为“﹣”,括号里面的每一项的符号都要发生改变,是解题的关键.5.(2022秋•河池期末)若A=2x2+x+1,B=x2+x,则A、B的大小关系()A.A>B B.A<B C.A=B D.不能确定【分析】利用作差法比较A与B的大小即可.【解答】解:∵A=2x2+x+1,B=x2+x,∴A﹣B=(2x2+x+1)﹣(x2+x)=2x2+x+1﹣x2﹣x=x2+1,∵x2≥0,∴x2+1>0,∴A﹣B>0,即A>B,故选:A.【点评】本题考查了整式的加减,以及非负数的性质,熟练掌握运算法则是解答本题的关键.6.(2022秋•南充期末)若m,n互为相反数,则2(2m﹣n﹣5)﹣9(m+n)的值为()A.﹣5B.﹣10C.5D.10【分析】先去括号,再合并同类项,然后把m+n=0代入化简后的式子,进行计算即可解答;【解答】解:2(2m﹣n﹣5)﹣9(m+n)=4m﹣2n﹣10﹣9m﹣3n=﹣5m﹣5n﹣10,∵m,n互为相反数,∴m+n=0,∴当m+n=0时,原式=﹣5(m+n)﹣10=﹣5×0﹣10=0﹣10=﹣10,故选:B.【点评】本题考查了整式的加减﹣化简求值,相反数,准确熟练地进行计算是解题的关键.7.(2022秋•磴口县校级期末)已知整式6x﹣1的值是2,y2的值是4,则(5x2y+5xy﹣7x)﹣(4x2y+5xy﹣7x)=()A.﹣B.C.或﹣D.2或﹣【分析】原式去括号合并得到最简结果,求出x与y的值,代入计算即可求出值.【解答】解:由题意得:x=,y=2或﹣2,原式=5x2y+5xy﹣7x﹣4x2y﹣5xy+7x=x2y,当x=,y=2时,原式=;当x=,y=﹣2时,原式=﹣,故选:C.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.8.(2022秋•东明县校级期末)把(2a+b)看成一个整体,则3(2a+b)﹣4(2a+b)+(2a+b)的化简结果A.(2a+b)B.2(2a+b)C.﹣(2a+b)D.0【分析】根据同类项的合并法则进行计算即可.【解答】解:3(2a+b)﹣4(2a+b)+(2a+b)=(3﹣4+1)(2a+b)=0×(2a+b)=0.故选:D.【点评】本题考查了同类项的合并,掌握同类项的合并法则是解题的关键.9.(2022秋•垫江县期末)已知2x﹣y=1,则式子(y2﹣4x﹣3)﹣(y2﹣2y)的值为()A.﹣1B.1C.﹣5D.5【分析】先化简代数式,再将y﹣2x=﹣1整体代入进行计算.【解答】解:∵(y2﹣4x﹣3)﹣(y2﹣2y)=y2﹣4x﹣3﹣y2+2y=﹣4x+2y﹣3=2(﹣2x+y)﹣3,∴当2x﹣y=1时,即﹣2x+y=﹣1,∴原式=2×(﹣1)﹣3=﹣2﹣3=﹣5,故选:C.【点评】此题考查了求代数式值的能力,关键是能进行准确化简和利用整体思想进行代入计算.10.(2022秋•鼓楼区校级期末)将两边长分别为a和b(a>b)的正方形纸片按图1、图2两种方式置于长方形ABCD中,(图1、图2中两张正方形纸片均有部分重叠),长方形中未被这两张正方形纸片覆盖的部分用阴影表示,设图1C1,图2中阴影部分的周长为C2,则C1﹣C2的值()A.0B.a﹣b C.2a﹣2b D.2b﹣2a【分析】根据周长的计算公式,列式子计算解答.【解答】解:由题意知:C1=AD+CD﹣b+AD﹣a+a﹣b+a+AB﹣a,因为四边形ABCD是长方形,所以AB=CD∴C1=AD+CD﹣b+AD﹣a+a﹣b+a+AB﹣a=2AD+2AB﹣2b,同理,C2=AD﹣b+AB﹣a+a﹣b+a+BC﹣a+AB=2AD+2AB﹣2b,故C1﹣C2=0.【点评】此题主要考查了整式的加减,掌握整式的加减的法则是解题的关键.二.填空题(共8小题)11.(2022秋•揭西县期末)化简:x﹣[y+2x﹣(x+y)]=.【分析】根据去括号的方法计算即可,注意先去小括号,再去中括号.【解答】解:x﹣[y+2x﹣(x+y)]=x﹣(y+2x﹣x﹣y)=x﹣y﹣2x+x+y=0.【点评】本题考查去括号的方法:去括号时,若括号前是“+”,去括号后,括号里的各项都不改变符号;若括号前是“﹣”,去括号后,括号里的各项都改变符号.12.(2022秋•洛阳期末)如图,有两个矩形的纸片,面积分别为26和9,其中有一部分重叠,剩余空白部分的面积分别为m和n(m>n),则m﹣n=.【分析】设阴影部分面积为x,根据空白部分面积表示出两个矩形的面积,相减即可求出所求.【解答】解:设阴影部分面积为x,根据题意得:m+x=26,n+x=9,∴m﹣n=17,故答案为:17【点评】此题考查了整式的加减,熟练掌握运算法则是解本题的关键.13.(2022秋•叙州区期末)已知ab=﹣3,a+b=4,则3(ab﹣2a)﹣2(3b+2ab)的值为.【分析】根据整式的加减运算法则进行化简,然后将ab=﹣3,a+b=4代入原式即可求出答案.【解答】解:原式=3ab﹣6a﹣6b﹣4ab=﹣ab﹣6a﹣6b,=﹣ab﹣6(a+b),当ab=﹣3,a+b=4时,原式=3﹣6×4=3﹣24=﹣21,故答案为:﹣21.【点评】本题考查整式的加减运算,解题的关键是熟练运用整式的加减运算法则,本题属于基础题型.14.(2023•红谷滩区校级一模)若关于x,y的多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x 的取值无关,则a=.【分析】先算(2x2+abxy﹣y+6)﹣(2bx2+3xy+5y﹣1),然后根据多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x的取值无关,即可求得a、b的值.【解答】解:(2x2+abxy﹣y+6)﹣(2bx2+3xy+5y﹣1)=2x2+abxy﹣y+6﹣2bx2﹣3xy﹣5y+1=(2﹣2b)x+(ab﹣3)xy﹣6y+7,∵多项式2x2+abxy﹣y+6与2bx2+3xy+5y﹣1的差的值与字母x的取值无关,∴2﹣2b=0,ab﹣3=0,解得a=3,b=1,故答案为;3.【点评】本题考查整式的加减、代数式求值,解答本题的关键是明确多项式2x2+abxy﹣y+6与2bx2+3xy+5y ﹣1的差的值与字母x的取值无关,也就是关于x的项的系数为0.15.(2022秋•连云港期末)长方形的一边长为a﹣2b,另一边比该边大2a+b,则长方形的周长为.【分析】根据题意先求出长方形的另一边长,然后根据长方形的周长=(长+宽)×2计算即可.【解答】解:根据题意知:矩形的另一边为a﹣2b+2a+b=3a﹣b,所以这个长方形的周长为2(a﹣2b+3a﹣b)=2a﹣4b+6a﹣2b=8a﹣6b,故答案为:8a﹣6b.【点评】本题整式的加减、列代数式,解题的关键是求出长方形的另一边长.16.(2022秋•泗阳县期末)已知5a+3b=﹣4,则2(a+b)+4(2a+b)=.【分析】由于5a+3b=﹣45a+3b的形式,代入求值即可.【解答】解:∵5a+3b=﹣4,∴2(a+b)+4(2a+b)=2a+2b+8a+4b=10a+6b=2(5a+3b)=2×(﹣4)=﹣8.故答案为:﹣8.【点评】本题考查了代数式求值,掌握整体代入法是解本题的关键.17.(2022秋•高邑县期末)“整体思想”是中学数学解题中一种重要的思想方法,它在多项式的化简与求值中应用极为广泛.如:已知m+n=﹣2,mn=﹣4,则2(mn﹣3m)﹣3(2n﹣mn)的值为.【分析】原式去括号合并后,将已知等式代入计算即可求出值.【解答】解:∵m+n=﹣2,mn=﹣4,∴原式=2mn﹣6m﹣6n+3mn=5mn﹣6(m+n)=﹣20+12=﹣8.故答案为:﹣8.【点评】此题考查了整式的加减﹣化简求值,熟练掌握运算法则是解本题的关键.18.(2022秋•硚口区期末)已知M=2a2﹣ab+b﹣1,M﹣3N=a2+3ab+2b+1.若计算M﹣[2N﹣(M﹣N)]的结果与字母b无关,则a的值是.【分析】利用去括号的法则去掉括号后,合并同类项,将M,M﹣3N的值代入,再利用去括号的法则去掉括号后,合并同类项,令b的系数为0,得到关于a的方程,解方程即可得出结论.【解答】解:原式=M﹣(2N﹣M+N)=M﹣2N+M﹣N=2M﹣3N,∵M=2a2﹣ab+b﹣1,M﹣3N=a2+3ab+2b+1,∴原式=M+M﹣3N=2a2﹣ab+b﹣1+a2+3ab+2b+1=3a2+2ab+3b,=3a2+(2a+3)b,∵计算M﹣[2N﹣(M﹣N)]的结果与字母b无关,∴2a+3=0,∴a=﹣.故答案为:﹣.【点评】本题主要考查了整式的加减与化简求值,利用去括号的法则去掉括号是解题的关键.三.解答题(共9小题)19.(2022秋•沙坪坝区期末)化简:(1);(2)﹣2(a2+b)+2(a2﹣b).【分析】(1(2)先去括号,然后合并同类项即可.【解答】解:(1)=(﹣2+3)x2y+(2﹣3)xy2=x2y﹣xy2;(2)﹣2(a2+b)+2(a2﹣b)=﹣2a2﹣2b+2a2﹣2b=﹣4b.【点评】本题考查整式的加减,解答本题的关键是明确去括号法则和合并同类项的方法.20.(2023春•南岗区校级期中)先化简,再求值:5(3a2b﹣ab2)﹣(ab2+3a2b),其中a=,b=.【分析】根据整式的加减混合运算法则把原式化简,代入计算即可.【解答】解:5(3a2b﹣ab2)﹣(ab2+3a2b)=15a2b﹣5ab2﹣ab2﹣3a2b=12a2b﹣6ab2当a=,b=时,原式=12××﹣6××=1﹣=.【点评】本题考查的是整式的加减混合运算,掌握整式的加减混合运算法则是解题的关键.21.(2023春•平谷区期末)已知x2﹣5x﹣4=0,求的值.【分析】将已知等式化成x2﹣5x=4,将所求整式去括号合并同类项,最后整体代入即可.【解答】解:∵x2﹣5x﹣4=0,∴x2﹣5x=4,∴=2x2﹣3x2+6﹣3x﹣2x+2x2﹣1=x2﹣5x+5=4+5=9.【点评】本题考查了整式的化简,去括号和合并同类项是本题考查的重点,在化简过程中注意正负号的变化.22.(2022秋•零陵区期末)已知多项式A=2x﹣my﹣3,B=nx﹣3y+1.(1)若(m﹣4)2+|n+3|=0,化简A﹣B;(2)若A+B的结果中不含有x项以及y项,求mn的值.【分析】(1)根据非负性求出m,n的值,代入多项式,合并同类项进行化简即可;(2)先合并同类项,令x,y的系数为0,求出m,n的值,再求出mn的值即可.【解答】解:(1)∵(m﹣4)2+|n+3|=0,∴(m﹣4)2≥0,|n+3|≥0,∴m﹣4=0,n+3=0,∴m=4,n=﹣3,∴A=2x﹣4y﹣3,B=﹣3x﹣3y+1,∴A﹣B=2x﹣4y﹣3﹣(﹣3x﹣3y+1)=2x﹣4y﹣3+3x+3y﹣1=5x﹣y﹣4;(2)A+B=2x﹣my﹣3+(nx﹣3y+1)=2x﹣my﹣3+nx﹣3y+1=(2+n)x﹣(m+3)y﹣2;∵A+B的结果中不含有x项以及y项,∴2+n=0,m+3=0,∴n=﹣2,m=﹣3,∴mn=6.【点评】本题考查非负性,整式的加减运算.熟练掌握非负性的和为0,每一个非负数均为0,以及合并同类项法则,是解题的关键.23.(2022秋•寻乌县期末)理解与思考:整体代换是数学的一种思想方法,例如:x2+x=0,则x2+x+1186=;我们将x2+x作为一个整体代入,则原式=0+1186=1186.仿照上面的解题方法,完成下面的问题:(1)若x2+x﹣1=0,则x2+x+2022=;(2)如果a+b=5,求2(a+b)﹣4a﹣4b+21的值;(3)若a2+2ab=20,b2+2ab=8,求2a2﹣3b2﹣2ab的值.【分析】理解与思考:将x2+x=0整体代入原式进行计算;(1)把已知等式代入原式计算即可得到结果;(2)原式变形后,把a+b=5代入计算即可求出值;(3)已知第一个等式两边乘以2,减去第二个等式两边乘以3求出原式的值即可.【解答】解:理解与思考:∵x2+x=0,∴x2+x+1186=0+1186=1186,故答案为:1186;(1)∵x2+x﹣1=0,∴x2+x=1,∴x2+x+2022=1+2022=2023,故答案为:2023;(2)∵a+b=5,∴2(a+b)﹣4a﹣4b+21=2(a+b)﹣4(a+b)+21=﹣2(a+b)+21=﹣10+21=11;(3)∵a2+2ab=20,b2+2ab=8∴2a2+4ab=40,3b2+6ab=24,∴2a2﹣3b2﹣2ab=2a2+4ab﹣3b2﹣6ab=40﹣24=16.【点评】本题考查了整式的加减−化简求值,掌握整式的加减−化简运算法则、运用整体思想是关键.24.(2021秋•临潼区期中)小明在计算3(x2+2x﹣3)﹣A时,将A前面的“﹣”抄成了“+”,化简结果为﹣x2+8x﹣7.(1)求整式A;(2)计算3(x2+2x﹣3)﹣A的正确结果.【分析】(1)由3(x2+2x﹣3)+A=﹣x2+8x﹣7,即可求出整式A,(2)通过去括号,合并同类项,即可计算正确结果.【解答】解:(1)由题意得:3(x2+2x﹣3)+A=﹣x2+8x﹣7,∴A=﹣x2+8x﹣7﹣3(x2+2x﹣3)=﹣x2+8x﹣7﹣3x2﹣6x+9=﹣4x2+2x+2;(2)3(x2+2x﹣3)﹣A=3x2+6x﹣9﹣(﹣4x2+2x+2)=3x2+6x﹣9+4x2﹣2x﹣2=7x2+4x﹣11.【点评】本题考查整式的加减,去括号添括号,关键是由题意求出整式A.25.(2021秋•浏阳市期中)如果关于x的多项式2x2﹣(2y n+1﹣mx2)﹣3的值与x的取值无关,且该多项式的次数是三次,求m,n的值.【分析】先合并同类项,再根据题意得到2+m=0,n+1=3,进而解决此题.【解答】解:2x2﹣(2yn+1﹣mx2)﹣3=2x2﹣2yn+1+mx2﹣3=(2+m)x2﹣2yn+1﹣3.∵(2+m)x2﹣2yn+1﹣3的值与x的取值无关且该多项式的次数为三次,∴2+m=0,n+1=3.∴m=﹣2,n=2.【点评】本题主要考查合并同类项,熟练掌握合并同类项法则是解决本题的关键.26.(2023•滨湖区一模)已知多项A=3x2﹣x+1,B=kx2﹣(2x2+x﹣2).(1)当x=﹣1时,求A的值;(2)小华认为无论k取何值,A﹣B的值都无法确定.小明认为k可以找到适当的数,使代数式A﹣B的值是常数.你认为谁的说法正确?请说明理由.【分析】(1)直接把x的值代入得出答案;(2)直接利用整式的加减运算法则化简,进而得出k的值.【解答】解:(1)∵A=3x2﹣x+1,当x=﹣1时,∴原式=3×(﹣1)2﹣(﹣1)3×1+1+1=5;(2)小明说法对;A﹣B=3x2﹣x+1﹣kx2+(2x2+x﹣2)=3x2﹣x+1﹣kx2+2x2+x﹣2=(5﹣k)x2﹣1,当5﹣k=0,即k=5时,A﹣B=﹣1.【点评】此题主要考查了整式的加减,正确合并同类项是解题关键.27.(2023•桃城区校级二模)在七年级活动课上,有三位同学各拿一张卡片,卡片上分别为A,B,C三个代数式,三张卡片如下,其中C的代数式是未知的.(1)若A为二次二项式,则k的值为;(2)若A﹣B的结果为常数,则这个常数是,此时k的值为;(3)当k=﹣1时,C+2A=B,求C.【分析】(1)根据A为二次二项式,可以得到k﹣1=0,然后即可求得k的值;(2)根据A﹣B的结果为常数,可以计算出这个常数和k的值;(3)根据k=﹣1和C+2A=B,可以计算出C.【解答】解:(1)∵A=﹣2x2﹣(k﹣1)x+1,A为二次二项式,∴k﹣1=0,解得k=1,故答案为:1;(2)∵A=﹣2x2﹣(k﹣1)x+1,B=﹣2(x2﹣x+2),∴A﹣B=﹣2x2﹣(k﹣1)x+1﹣[﹣2(x2﹣x+2)]=﹣2x2﹣(k﹣1)x+1+2x2﹣2x+4=﹣(k+1)x+5,∵A﹣B的结果为常数,∴k+1=0,解得k=﹣1,即若A﹣B的结果为常数,则这个常数是5,此时k的值为﹣1,故答案为:5,﹣1;(3)当k=﹣1时,A=﹣B=﹣2(x2﹣x+2),∵C+2A=B,∴C=B﹣2A=﹣2(x2﹣x+2)﹣2(﹣2x2+2x+1)=﹣2x2+2x﹣4+4x2﹣4x﹣2=2x2﹣2x﹣6.【点评】本题考查整式的加减、正数和负数,解答本题的关键是明确题意,列出相应的算式.。
七年级下册北师大版数学计算题
七年级下册北师大版数学计算题一、有理数混合运算(1 - 5题)1. 计算:( - 2)+3 - ( - 5)- 解析:- 首先去括号,根据去括号法则,-(-5)=5。
- 则原式变为-2 + 3+5。
- 按照从左到右的顺序计算,-2+3 = 1,1 + 5=6。
2. 计算:- 3×( - 4)+( - 28)÷7- 解析:- 先计算乘除运算。
- 根据乘法法则,-3×(-4)=12;根据除法法则,-28÷7=-4。
- 再计算加法,12+( - 4)=12 - 4 = 8。
3. 计算:( - 2)^3+(-3)×[(-4)^2 - 2]- 解析:- 先计算指数运算。
- (-2)^3=-8,(-4)^2 = 16。
- 则原式变为-8+( - 3)×(16 - 2)。
- 先算括号里的16-2 = 14。
- 再计算乘法-3×14=-42。
- 最后计算加法-8+( - 42)=-8-42=-50。
4. 计算:(1)/(2)×( - 4)+( - (2)/(3))×( - 6)- 解析:- 先计算乘法运算。
- (1)/(2)×(-4)=-2,(-(2)/(3))×(-6)=4。
- 再计算加法-2 + 4=2。
5. 计算:0 - 2^3÷( - 4)^3-(1)/(8)- 解析:- 先计算指数运算,2^3 = 8,( - 4)^3=-64。
- 则原式变为0-8÷(-64)-(1)/(8)。
- 计算除法8÷(-64)=-(1)/(8)。
- 再计算0-(-(1)/(8))-(1)/(8)=0+(1)/(8)-(1)/(8)=0。
二、整式的加减(6 - 10题)6. 化简:3a + 2b - 5a - b- 解析:- 合并同类项,3a-5a=(3 - 5)a=-2a,2b - b=(2 - 1)b=b。
最新北师大版七年级下册第一章整式的乘除计算题专项训练
第一章 整式的乘除计算题专项练习(北师大版数学 七年级下册)1、4(a+b)+2(a+b)-5(a+b)2、(3mn +1)(3mn-1)-8m 2n 23、()02313721182⨯⎪⎭⎫ ⎝⎛-⨯-⨯+----4、[(xy-2)(xy+2)-2x 2y 2+4]÷(xy)5、化简求值:)4)(12()12(2+-+-a a a ,其中2-=a6、222)2()41(ab b a -⋅ 7、)312(6)5(222x xy xy x --+ 8、()()()()2132-+--+x x x x9、⎪⎭⎫⎝⎛-÷⎪⎭⎫ ⎝⎛+-xy xy xy 41412210、化简求值))(()2(2y x y x y x -+-+,其中21,2=-=y x 11.计算:2)())((y x y x y x ++---12.先化简再求值:)4)(12()2(2+-+-a a a ,其中2-=a 13、)2)(2(2-+-x x x 14、3223)2()3(x x --- 15、24)2()2(b a b a +÷+16、1232-124×122(利用乘法公式计算) 17、[])(2)2)(1(x x x -÷-++ 18、(2x 2y)3·(-7xy 2)÷(14x 4y 3)19、化简求值:当2=x ,25=y 时,求()()()()x xy y x y x y x 2]4222[2-÷--+++的值 20、)43(22b a a --21、)2)(2(b a b a -+ 22、()()321+-x x23、+--229)3(b b a (—3.14)024、先化简,再求值()()2226543xy xy xy y x -⋅+-⋅,其中21,2==y x 25、3-2+(31)-1+(-2)3+(892-890)026、(9a 4b 3c )÷(2a 2b 3)·(-43a 3bc 2) 27、(15x 2y 2-12x 2y 3-3x 2)÷(-3x)228、()4(23)(32)a b a b a b +--+-29、23628374)21()412143(ab b a b a b a -÷-+30、()()()1122+--+x x x31、3-2+(31)-1+(-2)3+(892-890)032、先化简再求值:()()()3222a ab b b ab a b a -++++-,其中2,41=-=b a33、()4(23)(32)a b a b a b +--+-。
北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练 【含答案】
北师大版七年级数学下册第一章:整式的乘除—计算专题培优训练一、计算题1.计算:(1)(a 3)3·(a 4)3;(2)(-a 2)3·(b 3)2·(ab)4.(3)(3x -1)(2x -1);(4)5x(x +1)2-(2x +3)(2x -3).2.计算:(1)(﹣2a 2b )3+8(a 2)2•(﹣a )2•(﹣b )3;(2)(x﹣3)0﹣()﹣2+(﹣1)2021+|﹣5|.123.计算:(1)x 3y 2··.23(32xy 2)2(23x )(2);[(−a 5)4÷a 12]2⋅(−2a 4)4.要求:利用乘法公式计算(1)2023×2021−20222(2)(2x−y +3)(2x−y−3)5.计算:(1);(−2022)0−(12)−2+(−2)3(2).(3a−b)2−(a−3b)(a +3b)6.计算:(1);(π−2)0−(12)−2+32(2).(−2x 2)2+x 3⋅x−x 5÷x 7.计算:(1)(π−3)0+(12)−2×2−1(2)2x 2⋅x 4+(−2x 2)3−x 7÷x8.计算:(1);(3−π)0+(−13)−3+(−3)3÷(−3)2(2) .(x−2)2−(x−1)(x +3)9.计算:(1)(12)−1+(π−3.14)0−(−1)2022(2)(−2x 2)3+x 2⋅x 4+(−3x 3)210.计算:(1);(2022−π)0−32+(12)−3(2).m 2⋅m 6−(2m 2)4+m 9÷m 11.计算(1).15x 5(y 4z)2÷(−3x 4y 5z 2)(2).(x +1)(x−1)+x(2−x)12.计算:(1)(−2a 2bc 4)3(2)3x 2−x 6÷x 4(3)[−8a 2b 3+6ab 2−(−2ab)]÷(−2ab)(4)6x 2−2(2x−3)(4x +1)(5)(a +2b)2−(a−2b)2+(a +b)(a−b)13.计算:(1);−42⋅(−12)3−(−1)202(2).[(3xy +1)(3xy−1)+(xy−1)2]÷2xy 14.化简:.[(2a +b)(2a−b)−4(a−b)2−b 2]÷(−2b )15.化简:.[(x−y)(x +y)+(3x−y)2]÷2x 16.计算:(1) .(2m 3)⋅(3m 2p)÷(2mp)(2) .(a +1)2+(a +3)(a−3)17.计算:(1)(﹣x 2y 5)•(xy )3;(2)(a 2﹣b 2)2+2a (ab﹣1).18.计算:(1)a 5·(﹣a )4﹣(﹣a 3)3;(2)20210+()﹣1;13(3)(15x 2y﹣10xy 2)÷5xy .(4)x (x﹣3)﹣(x﹣1)(x+2).(1)已知:=5,=3,计算的值.4m 8n 22m +3n (2)已知:3x+5y =8,求的值.8x ⋅32y 20.计算:(1);|−2|−(2−π)0+(13)−1(2);(3x 2)2⋅(−4y 3)÷(6xy)2(3)(简便运算);1032−102×104(4).[(2x−y)(2x +y)+y(y−6x)]÷2x 21.计算:(1);(x−3)(x +2)(2);(3+a )(3−a )(3);a 3⋅a 4⋅a +(a 2)4+(−2a 4)2(4).(a +b )2−b (2a +b )22.计算题:(1)(−13)−1+(−2)2+(π−2015)0(2)(4x 3y−6x 2y 2+2xy )÷(−2xy )(3)(2a 2b )3⋅(−7ab 2)÷14a 4b 3(4)(用简便方法计算)20152−2014×2016(5)(x +2)2−(x +1)(x−1)(6)(2a-b+3)(2a+b-3)(1)2-3÷+(﹣)2;1212(2)(﹣2x 3y )2·(﹣3xy 2)÷(6x 4y 3);(3)(2x +1)(2x﹣1)+(x +2)2;(4)20212﹣2020×202224.计算或化简:(1)(−x 2)3⋅x 4(2)(13)2022×(−3)2021(3)(m +1)2−(m +1)(m−1)+2m(m−1)(4)(a 4−8a 2+16)÷(a 2+4a +4)25.计算(1)x 5•(-2x )3+x 9÷x 2•x-(3x 4)2(2)(2a-3b )2-4a (a-2b )(3)(3x-y )2(3x+y )2(4)(2a-b+5)(2a+b-5)26.计算:(1)4mn 2 (2m+3n -n 2);(2)(3m + 4n ) 2-(3m -4n )2;(3)(6a 3b 2-3a 2b 2+9a 2b )(-3a 2b );÷(4)(-8)2020 ×(-0.125)2021.(1)3x(2x−3)(2)(a+b )(3a-2b )(3)(4a 2-6ab+2a )÷2a(4)20192-2017×2021(用乘法公式)28.计算:(1);(−34)2021×(−43)2022(2);(−2a 2)3⋅a 2−3a 11÷a 3(3).(x +2y−3)(x−2y−3)29.计算:(1)2a (3a +2);(2)(4m 3﹣2m 2)÷(﹣2m );(3)(x +2)(x﹣2)﹣(x﹣2)2;(4).(π−3)0+(−12)−2−21+(−1)202130.算一算:(1)3m 2⋅m 8−(m 2)2⋅(m 3)2(2)[(a 5)3⋅(b 3)2]5(3)−t 3⋅(−t)4⋅(−t)5(4)已知,求的值.2x +3y−3=09x ⋅27y (5)已知,求x 的值.2×8x ×16=223(1)a 2⋅a 4+(−a 2)3(2)(a 2)3⋅(a 2)4⋅(−a 2)5(3)(−2a 2b 3)4+(−a)8⋅(2b 4)3(4)−t 3⋅(−t)4⋅(−t)5(5)(p−q)4⋅(q−p)3⋅(p−q)2(6)(−3a)3−(−a)⋅(−3a)232.化简:(1);(x 2)3⋅x 3−(−x)2⋅x 9÷x 2(2)(m﹣n )(m+n )﹣m (m﹣n );(3);(3a +2b)2−(2a−3b)2(4).[(2x +y)2−(3x−y)(3x +y)−2y 2]÷(−12x)33.计算:(1)35×(−3)3×(−3)2(2)−x 11÷(−x)6⋅(−x)5(3)y 3⋅y 3+(−2y 3)2(4)(3x 2y−xy 2+2xy)÷xy34.计算:(1)(−x)(−x)5+(x 2)3;(2) ;2x 3(−x)2−(−x 2)2×(−3x)(3) ;(−4x−3y 2)(3y 2−4x)(4) .(2x−y)2⋅(2x +y)235.计算.(1)(-)9÷(-)5;1313(2)(-a )10÷(-a )3;(3)(2a )7÷(2a )4;(4)a 19÷(a 12÷a 3);(5)(-)6÷(-)2;1414(6)(-x-y )6÷(x+y )4.36.计算.(1)a 2·(ab )3;(2)(ab )3·(ac )4;(3)a 5·(-a )3+(-2a 2)4;(4)(-2x 2)3+x 2·x 4-(-3x 3)237.逆用积的乘方公式计算.(1)()2022·(-1.25)2022;45(2)(-4)3×(-)3×(-)33413(3)(3)12×()11x (-2)318825(4)()100×(1)100x ()2021x4202223121438.计算.(1)(-5a 2b 3)(-3a )(2)6a 2x 5·(-3a 3b 2x 2)(3)(-a 2b )3·(-3ab 3)413(4)(-3a n+2b )3·(-4ab n+3)2(5)(ab 2-2ab )·ab2312(6)-2x·(x 2y+3y-1)1239.计算.(1)20170+2-2-()2+2017;12(2)(-2ab )(3a 2-2ab-b 2);(3)(2a+3b )2-(2a-b )(2a+b );(4)(9x 2y-6xy 2+3xy )÷()40.计算.(1)x 3·(2x 3)2÷(x 4)2;(2)(a 4)3÷a 6÷(-a )3;(3)(-x )3÷x·(-x )2;(4)-102n ×100÷(-10)2n-1.41.计算(1)(−x 2y)3÷(−13xy 3)(2)(−14x−3y)(−14x+3y)(3)(3x−1)(x+2)+(x−3)2(4)(a−b)3÷(a−b)+2ab 42.计算.(1)102×105(2)x·x5x7·(3)a2·(-a)4(4)x2m+1·x m43.计算(1)a2⋅a3(2)(y2)3⋅y2(3)(−15x2y3)3−x6y4(4) .(x−y)8÷(y−x)5⋅(y−x)2二、解答题44.已知,,求代数式的值.(a+b)2=5ab=−2(a−b)245.计算:已知(x+y)2=1,(x-y)2=49,求x2+y2和xy的值.46.已知:,求2xy的值.x2+y2=25, x+y=747.已知(a+b)2=25,(a﹣b)2=9.求a2﹣6ab+b2.48.已知a+b=3,ab=2,求①;②的值a2+b2a2+b2−ab 49.①已知a m=2,a n=3,求a m+2n的值。
(完整word版)北师大版七年级下册整式的运算(基本概念及法则)无答案
整式的运算——基本运算法则【基础知识】知识点一、整式1、单项式:都是数字与字母的乘积的代数式叫做单项式。
(1)单项式的数字因数叫做单项式的系数。
(2)单项式中所有字母的指数和叫做单项式的次数。
注意:①单项式的系数包括它前面的符号。
②单项式的系数是带分数时,应化成假分数。
(3)单独一个数或一个字母也是单项式。
(4)只含有字母因式的单项式的系数是1或―1,通常省略数字“1”。
(5)单独的一个数字是单项式,它的系数是它本身;非零常数的次数是0。
2、多项式:几个单项式的和叫做多项式。
(1)多项式中的每一个单项式叫做多项式的项。
(2)多项式中不含字母的项叫做常数项。
(3)一个多项式有几项,就叫做几项式。
(4)多项式的每一项都包括项前面的符号。
(5)多项式中次数最高的项的次数,叫做这个多项式的次数。
整式:单项式和多项式统称为整式。
注意:分母中含有字母的代数式不是整式。
知识点二、整式的加减理论根据是:去括号法则,合并同类项法则。
去括号法则:如果括号前是“十”号,把括号和它前面的“+”号去掉,括号里各项都不变符号;如果括号前是“一”号,把括号和它前面的“一”号去掉,括号里各项都改变符号。
合并同类项的法则:同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
合并同类项时注意:a.如果两个同类项的系数互为相反数,合并同类项后,结果为0.b.不要漏掉不能合并的项。
c.只要不再有同类项,就是结果。
知识点三、同底数幂的乘法(1)n个相同因式(或因数)a相乘,记作a n,读作a的n次方(幂),其中a为底数,n为指数,a n的结果叫做幂。
(2)底数相同的幂叫做同底数幂。
(3)同底数幂乘法的运算法则:同底数幂相乘,底数不变,指数相加。
即:a m﹒a n=a m+n。
(4)此法则也可以逆用,即:a m+n = a m﹒a n。
(5)开始底数不相同的幂的乘法,如果可以化成底数相同的幂的乘法,先化成同底数幂再运用法则。
知识点四、幂的乘方(1)幂的乘方是指几个相同的幂相乘。
北师大版七年级下册数学整式的乘除测试试题以及答案
七年级下册整式的乘除测试试卷一、单选题。
1、﹣20220的相反数是()。
A、﹣2022B、2022C、1D、﹣12、一个数是0.000 0003,这个数用科学记数法表示为()。
A、3×10﹣5B、3×10﹣6C、3×10﹣7D、3×10﹣83、下列各式中,负数是()。
A、|﹣5|B、(﹣1)2021C、﹣(﹣5)D、(﹣1)04、下列计算正确的是()A、m0=0B、b2▪b2▪b=b6C、(6a3b2)÷(3a)=2a2b2D、(﹣3a)2=6a25、下列能用平方差公式计算的是()A、(a-b)(a-b)B、(a-b)(﹣a-b)C、(a+b)(﹣a-b)D、(﹣a+b)(a-b)6、如果多项式x2+mx+4是完全平方式的展开式,则m等于()。
A、2B、﹣2C、±2D、±47、对于数30、3﹣1、﹣|﹣3|、(13)﹣1大小比较中,下列正确的是()。
A、30<3﹣1<﹣|﹣3|<(13)﹣1B、﹣|﹣3|<3﹣1<30<(13)﹣1C、3﹣1<﹣|﹣3|<30<(13)﹣1D、(13)﹣1<30<3﹣1<﹣|﹣3|8、对于等式(2x+ □)2=4x2+12xy+ △中,△代表是()。
A、3yB、9yC、9y2D、36y29、若(x-1)(x-m)=x2-4x+m,则m的值为()。
A、﹣3B、3C、﹣5D、510、若x+y=3,xy=1,则(1-2x)(1-2y)的值是()。
A、1B、﹣1C、2D、﹣211、若a=2022,b=12022,则代数式a2022▪b2022的值是()A、1B、2022C、12022D、202312、利用图①所示的长为a,宽为b的长方形卡片4张,拼成如图②所示的图形,则根据图②的面积关系能验证的等式为()。
A、(a-b)2+4ab=(a+b)2B、(a+b)(a-b)=a2-b2C、(a+b)2=a2+2ab+b2D、(a-b)2=a2-2ab+b2二、填空题。
北师大版数学七年级整式的加减代数式经典题型
暑假补习第一讲(代数式)一、用字母代替数1.用代数式表示:(1)比m 多1的数______. (2)比n 少2的数______. (3)3与y 的差的相反数______. (4)a 与b 的和的倒数______.(5)x 与4的差的32______。
(6)a 与b 和的平方______.(7)a 与b 平方的和______。
(8)被5除商m 余1的数______. (9)5除以x 与2和的商______。
(10)除以a 2+b 的商是5x 的数______.(11)与b +3的和是5x 的数______。
(12)与6y 2的差是x +3的数______.(13)与3x 2-1的积是5y 2+7的数______.2.某工厂第一年的产量是a ,以每年x %的速度增加,第二年的产量是______,第三年的产量是_________. 3.一个两位数,个位数字是a ,十位数字是b ,如果把它的十位与个位数字交换,则新两位数与原两位数的差是________.4.一种商品的成本价m 元,按成本增加25%出售时的售价为__________元. 5.某商品每件成本a 元,按高于成本20%的定价销售后滞销,因此又按售价的九折出售,则这件商品还可盈利________元. 6.下图中阴影部分的面积为________.7.下列各式中,符合代数式书写格式的有( ).,5)(,322,,3,3÷+⨯⨯y x x b a a a a +b 厘米.(A )1个 (B )2个 (C)3个 (D )4个8.甲、乙两地距离是m 千米,一汽车从甲地开往乙地,汽车速度为a 千米/时,现走了一半路程,它所行的时间是( ). (A )ma 21(B)am 2 (C)am2 (D)a m +219.一个长方形的周长为c 米,若该长方形的长为a 米),2(c a <求这个长方形的面积.10.当x =-3,31=y 时,求代数式x 2y 2+2x +|y -x |的值.二、单项式和多项式1。
最新北师大版七年级数学下册各章经典练习题汇总
北师大版七年级数学下册各章经典练习题汇总第一章 整式的乘除1.下列计算错误的是( B ) A .(-b )3·(-b )5=b 8B .(-a )4·(-a )=a 5C .(a -b )3·(b -a )2=(a -b )5D .(-m )5·(-m 2)=m 72.计算(2a 2)3的结果是( C ) A .2a 6B .6a 6C .8a 6D .8a 53.计算(x -2y )4÷(x -2y )2÷(2y -x )的结果是( D ) A .x -2y B .-x -2y C .x +2yD .-x +2y4.若x m=9,x n=6,x k=4,则x m -2n +2k的值为( C )A .0B .1C .4D .85.将⎝ ⎛⎭⎪⎫16-1,(-2 019)0,(-3)2按从小到大的顺序排列: (-2 019)0<⎝ ⎛⎭⎪⎫16-1<(-3)2.6.已知两个单项式13a m +2n b 与-2a 4b k 是同类项,则2m ×22n ×23k的值是 128 .7.计算:(1)[(x +y )2]6= (x +y )12. (2)a 8+(a 2)4= 2a 8. 8.计算:(1)(-a 3b 6)2-(-a 2b 4)3; (2)2(a n b n )2+(a 2b 2)n.解:(1)原式=a 6b 12-(-a 6b 12)=a 6b 12+a 6b 12=2a 6b 12. (2)原式=2a 2n b 2n+a 2n b 2n=3a 2n b 2n.9.一种微粒的半径是0.000 04米,这个数据用科学记数法表示为( C ) A .4×106B .4×10-6C .4×10-5D .4×10510.将5.18×10-4化为小数是( A ) A .0.000 518 B .0.005 18 C .0.051 8D .0.51811.下列计算中,错误的有( C ) ①(3a +4)(3a -4)=9a 2-4; ②(2a 2-b )(2a 2+b )=4a 4-b 2;③(x +3)(3-x )=x 2-9;④(-x +y )(x +y )=-(x -y )(x +y )=-x 2-y 2. A .1个 B .2个 C .3个 D .4个12.已知a +b =3,则a 2-b 2+6b 的值为( B ) A .6 B .9 C .12 D .1513.方程(4x +5)2-(4x +5)(4x -5)=0的解是( A ) A .x =-54B .x =-45C .x =-1D .x =114.为了运用乘法公式计算(x +3y -z )(x -3y +z ),下列变形正确的是( C ) A .[x -(3y +z )]2B .[(x -3y )+z ][(x -3y )-z ]C .[x -(3y -z )][x +(3y -z )]D .[(x +3y )-z ][(x +3y )+z ]15.若⎝ ⎛⎭⎪⎫x +1x 2=9,则⎝ ⎛⎭⎪⎫x -1x 2的值为 5 . 16.观察下列各式,探索发现规律: 1×3=1=22-1;3×5=15=42-1; 5×7=35=62-1;7×9=63=82-1; 9×11=99=102-1;….用含正整数n 的等式表示你所发现的规律为 (2n -1)(2n +1)=(2n )2-1 . 17.计算:(1)⎝ ⎛⎭⎪⎫-2x 2+14⎝ ⎛⎭⎪⎫-2x 2-14;(2)⎝ ⎛⎭⎪⎫13a -b ⎝⎛⎭⎪⎫-b -13a ;(3)⎝ ⎛⎭⎪⎫-xy 4+y ⎝ ⎛⎭⎪⎫xy4+y ;(4)(2a -b )(2a +b )(4a 2+b 2); (5)(a +3)(a -3)+a (4-a ).解:(1)原式=(-2x 2)2-⎝ ⎛⎭⎪⎫142=4x 4-116.(2)原式=⎝ ⎛⎭⎪⎫-b +13a ⎝ ⎛⎭⎪⎫-b -13a =(-b )-19a 2.(3)原式=⎝ ⎛⎭⎪⎫y +14xy ⎝ ⎛⎭⎪⎫y -14xy =y 2-⎝ ⎛⎭⎪⎫14xy 2=y 2-116x 2y 2.(4)原式=(4a 2-b 2)(4a 2+b 2)=16a 4-b 4. (5)原式=a 2-9+4a -a 2=4a -9.18.如果(2m +3n +1)(2m +3n -1)=48,求2m +3n 的值. 解:因为(2m +3n +1)(2m +3n -1)=48, 所以[(2m +3n )+1][(2m +3n )-1]=48, 所以(2m +3n )2-1=48, 所以(2m +3n )2=49, 所以2m +3n =±7.19.下列计算正确的是( B ) A .3x 3·2x 2y =6x 5 B .2a 2·3a 3=6a 5C .(2x )3·(-5x 2y )=-10x 5y D .(-2xy )·(-3x 2y )=6x 3y20.当m =25时,代数式m 2(m +4)+2m (m 2-1)-3m ·(m 2+m -1)的值为 1425 .21.要使多项式(x 2+px +2)(x -q )不含关于x 的二次项,则p 与q 的关系是 p =q . 22.计算:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3;(2)(-2a 2)(3ab 2-5ab 3); (3)xy (-x 2y +xy 5-x 3y 2). 解:(1)(-2x 2y )2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=4x 4y 2·⎝ ⎛⎭⎪⎫-12xyz ·35x 3z 3=⎣⎢⎡⎦⎥⎤4×⎝ ⎛⎭⎪⎫-12×35(x 4·x ·x 3)(y 2·y )(z ·z 3) =-65x 8y 3z 4.(2)(-2a 2)(3ab 2-5ab 3)=(-2a 2)·3ab 2+(-2a 2)·(-5ab 3) =-6a 3b 2+10a 3b 3.(3)xy (-x 2y +xy 5-x 3y 2)=xy ·(-x 2y )+xy ·xy 5+xy ·(-x 3y 2) =-x 3y 2+x 2y 6-x 4y 3.23.化简求值:[4(xy -1)2-(xy +2)(2-xy )]÷14xy ,其中x =-2,y =15.解:原式=[4(x 2y 2-2xy +1)-(4-x 2y 2)]÷14xy=(4x 2y 2-8xy +4-4+x 2y 2)÷14xy=(5x 2y 2-8xy )÷14xy =20xy -32.把x =-2,y =15代入上式,得原式=20×(-2)×15-32=-40.24.若a ,b ,k 均为整数且满足等式(x +a )(x +b )=x 2+kx +36,写出符合条件的k 的值. 解:因为(x +a )(x +b )=x 2+kx +36, 所以x 2+(a +b )x +ab =x 2+kx +36,根据等式的对应项的系数相等,得⎩⎪⎨⎪⎧k =a +b ,ab =36.又因为a ,b ,k 均为整数,36=1×36=2×18=3×12=4×9=6×6=(-1)×(-36)=(-2)×(-18)=(-3)×(-12)=(-4)×(-9)=(-6)×(-6),所以a ,b 对应的值共有10对,从而求出a +b 的值,即k 的值有10个,分别为±37,±20,±15,±13,±12.第二章 相交线与平行线1.(2018·湖南益阳中考)如图,直线AB ,CD 相交于点O ,EO ⊥CD .下列说法错误的是( C )A .∠AOD =∠BOCB .∠AOE +∠BOD =90°C .∠AOC =∠AOED .∠AOD +∠BOD =180°2.(2019 ·湖南株洲荷塘区期末)如图,在三角形ABC 中,∠ACB =90°,AB =5 cm ,AC =4 cm ,BC =3 cm ,则点C 到AB 的距离为( C )A .4 cmB .3 cmC .2.4 cmD .2.5 cm3.如图所示,直线AB ,CD ,EF 两两相交,若∠1=30°,∠2=60°,则∠3= 30° ,∠4= 60° ,∠5= 150° ,∠6= 120° . 4.(2019·广东二模)若∠1与∠2是对顶角,∠2的邻补角(有一条公共边且互补的角)是∠3,∠3=45°,则∠1的度数为 135° .5.(2019·江苏泰州月考)若∠A 和∠B 的两边分别垂直,且∠A 比∠B 的两倍少30°,则∠B 的度数是 30°或70° .6.(2019·辽宁大连甘井子区期中)如图,直线AB 与CD 相交于点O ,OP 是∠BOC 的平分线,OF ⊥CD ,∠AOD =50°,求∠DOP 的度数.解:因为∠AOD =∠BOC ,∠AOD =50°,所以∠BOC =50°.因为OP 平分∠BOC ,所以∠POB =∠POC =12∠BOC =12×50°=25°,所以∠DOP =180°-∠POC =180°-25°=155°.7.如图,直线AB ,CD 相交于点O ,OE 平分∠BOD ,OF 平分∠COE ,∠AOD ∶∠BOD =2∶1.(1)求∠DOE 的度数; (2)求∠AOF 的度数.解:(1)因为∠AOD ∶∠BOD =2∶1,∠AOD +∠BOD =180°,所以∠BOD =13×180°=60°.因为OE 平分∠BOD ,所以∠DOE =12∠BOD =12×60°=30°.(2)∠COE =180°-∠DOE =180°-30°=150°.因为OF 平分∠COE ,所以∠COF =12∠COE =12×150°=75°.因为∠AOC =∠BOD =60°,所以∠AOF =∠AOC +∠COF =60°+75°=135°.8.如图,直线EF ,CD 相交于点O ,OA ⊥OB ,且OC 平分∠AOF . (1)若∠AOE =40°,求∠BOD 的度数;(2)若∠AOE =α,求∠BOD 的度数;(用含α的式子表示) (3)从(1)(2)的结果中能看出∠AOE 和∠BOD 有何关系?解:(1)因为∠AOE +∠AOF =180°,∠AOE =40°,所以∠AOF =140°. 又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =70°.所以∠EOD =∠FOC =70°(对顶角相等). 又∠BOE =∠AOB -∠AOE =50°, 所以∠BOD =∠EOD -∠BOE =20°.(2)因为∠AOE +∠AOF =180°,∠AOE =α, 所以∠AOF =180°-α.又因为OC 平分∠AOF , 所以∠FOC =12∠AOF =90°-12α.所以∠EOD =∠FOC =90°-12α(对顶角相等).又∠BOE =∠AOB -∠AOE =90°-α, 所以∠BOD =∠EOD -∠BOE =12α.(3)从(1)(2)的结果中能看出∠AOE =2∠BOD .9.(2019·陕西中考)如图,OC 是∠AOB 的平分线,l ∥OB ,若∠1=52°,则∠2的度数为( C )A.52° B.54° C.64° D.69°10.(2019·贵州安顺中考)如图,三角尺的直角顶点落在长方形纸片的一边上.若∠1=35°,则∠2的度数是( C )A.35° B.45° C.55° D.65°11.(2019·山东菏泽中考)如图,AD∥CE,∠ABC=100°,则∠2-∠1的度数是80° .12.(2019·广东惠州惠阳区期末)如图,EF∥AD,EF∥BC,CE平分∠BCF,∠DAC=120°.(1)求∠ACB的度数;(2)若∠ACF=20°,求∠FEC的度数.解:(1)因为EF∥AD,EF∥BC,所以AD∥BC,所以∠ACB+∠DAC=180°.因为∠DAC=120°,所以∠ACB=60°.(2)因为∠ACF=20°,所以∠BCF=∠ACB-∠ACF=40°.因为CE平分∠BCF,所以∠BCE=20°.因为EF∥BC,所以∠FEC=∠BCE=20°.13.(2019 ·广西贵港覃塘区期末)如图,BE平分∠ABC,∠ABC=2∠E,∠ADE+∠BCF=180°.(1)请说明AB∥EF;(2)若AF平分∠BAD,判断AF与BE的位置关系,并说明理由.解:(1)因为BE 平分∠ABC ,所以∠ABE =12∠ABC .又因为∠ABC =2∠E ,所以∠E =12∠ABC ,所以∠E =∠ABE ,所以AB ∥EF .(2)结论:AF ⊥BE .理由如下:因为∠ADE +∠ADF =180°,∠ADE +∠BCF =180°, 所以∠ADF =∠BCF ,所以AD ∥BC , 所以∠DAB +∠CBA =180°. 因为AF 平分∠BAD ,BE 平分∠ABC , 所以∠OAB =12∠DAB ,∠OBA =12∠CBA ,所以∠OAB +∠OBA =90°,所以∠AOB =90°, 所以AF ⊥BE .14.(2019·四川成都郫都区期中)如图,直线a ∥b ,直线c 和直线a ,b 分别交于点C 和D ,在C ,D 之间有一点P .(1)判断图中∠PAC ,∠APB ,∠PBD 之间有什么关系,并说明理由;(2)如果点P 在C ,D 之间运动,∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化?(3)若点P 在直线c 上C ,D 两点的外侧运动(点P 与点C ,D 不重合),试探究∠PAC ,∠APB ,∠PBD 之间的关系又是如何?分别画出图形并说明理由. 解:(1)∠APB =∠PAC +∠PBD .理由如下:如图1,过点P 作PE ∥a .因为a ∥b ,所以PE ∥b ∥a , 所以∠PAC =∠1,∠PBD =∠2, 所以∠APB =∠1+∠2=∠PAC +∠PBD .(2)当点P在C,D之间运动时,仍为∠APB=∠PAC+∠PBD.(3)如图2,当点P在C,D两点的外侧运动,且在直线a的上方时,∠PBD=∠PAC+∠APB.理由如下:因为a∥b,所以∠PEC=∠PBD.因为∠PEC+∠PEA=180°,∠PAC+∠APB+∠PEA=180°,所以∠PEC=∠PAE+∠APB,所以∠PBD=∠PAC+∠APB.如图3,当点P在C,D两点的外侧运动,且在直线b的下方时,∠PAC=∠PBD+∠APB.理由如下:因为a∥b,所以∠PED=∠PAC.因为∠PED+∠BEP=180°,∠EBP+∠BPA+∠BEP=180°,所以∠PED=∠PBD+∠APB,所以∠PAC=∠PBD+∠APB.第三章变量之间的关系1.圆柱的高h为10 cm,当圆柱的底面半径r由小到大变化时,圆柱的体积V也发生了变化,在这个变化过程中( B )A.r是因变量,V是自变量B.r是自变量,V是因变量C.r是自变量,h是因变量D.h是自变量,V是因变量2.某公司销售部门发现,该公司的销售收入随销售量的变化而变化,其中销售量是自变量,销售收入是因变量.3.某公司产品的销售收入与销售量的关系如下表:销售量/吨1234…万元时,销售量为 5 吨.4.(2019·四川成都期末)声音在空气中传播的速度简称音速,实验测得音速与气温的一些数据如下表:(1)此表反映的是变量 音速 随 气温 变化的情况;(2)请直接写出y 与x 的关系式: y =0.6x +331 ;(3)当气温为22 ℃时,某人看到烟花燃放5 s 后才听到声响,求此人与烟花燃放所在地的距离.解:(3)因为当x =22时,y =0.6×22+331=344.2, 所以距离为344.2×5=1 721(m), 即此人与烟花燃放所在地的距离为1 721 m.5.设W =当月的500克猪肉价格当月的500克玉米价格.如果W <6,则下个月要采取措施防止“猪贱伤农”.已知2~5月玉米、猪肉价格统计表如下:(1)若33月的猪肉价格m ;(2)若6月及以后月份,玉米价格增长的规律不变,而每月的猪肉价格按照5月的猪肉价格比上月下降的百分数继续下降,请你预测6月是否要采取措施防止“猪贱伤农”. 解:(1)由题意,得7.5-m 7.5=6.25-66.25,解得m =7.2.(2)从2~5月玉米的价格变化知,后一个月总是比前一个月价格每500克增长0.1元,所以6月玉米的价格是1.1元/500克.因为5月猪肉价格的下降率为6.25-66.25=125,所以6月的猪肉价格为6×⎝ ⎛⎭⎪⎫1-125=5.76(元/500克). 所以W =5.761.1≈5.24<6,要采取措施防止“猪贱伤农”.6.变量x 与y 之间的关系式是y =12x 2-1,当自变量x =2时,因变量y 的值是( C )A .-2B .-1C .1D .27.(2019·四川宜宾期末)如图,在长方形ABCD 中,AB =4,BC =2,P 为BC 上的一点,设BP =x (0<x <2),则三角形APC 的面积S 与x 之间的关系式是( D )A .S =12x 2B .S =2xC .S =2(x -2)D .S =2(2-x )8.某厂2019年1月份新产品的研发资金为a 元,以后每月新产品的研发资金与上月相比增长率都是x ,则该厂2019年3月份新产品的研发资金y (元)关于x 的关系式为y = a (1+x )2 .9.“十一”黄金周期间,欢欢一家随团到某风景区旅游,集体门票的收费标准是20人以内(含20人),每人25元;超过20人的,超过的部分每人10元. (1)写出应收门票费y (元)与游览人数x (人)(x ≥20)之间的关系式;(2)利用(1)中的关系式计算:若欢欢一家所在的旅游团共54人,那么他们为购门票花了多少钱?解:(1)由题意,得y =25×20+10(x -20)=10x +300(x 为整数,且x ≥20). (2)当x =54时,y =10×54+300=840,即他们为购门票花了840元.10.正常人的体温一般在37 ℃左右,但一天中的不同时刻不尽相同.下图反映了一天(24小时)内小明体温的变化情况,下列说法错误的是( D )A .清晨5时体温最低B .下午5时体温最高C .这一天中小明体温的范围是36.5≤T ≤37.5D .从5时至24时,小明体温一直是升高的11.上周周末放学,小华的妈妈来学校门口接他回家,小华离开教室后不远便发现把文具盒遗忘在了教室里,于是以相同的速度折返回去拿,到了教室后碰到班主任,并与班主任交流了一下周末学习计划才离开,为了不让妈妈久等,小华快步跑到学校门口,则小华离学校门口的距离y 与时间t 之间的大致图象是( B )12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,有下列结论:①火车的长度为120米;②火车的速度为30米/秒;③火车整体都在隧道内的时间为25秒;④隧道的长度为750米.其中正确的结论是②③ .(把你认为正确结论的序号都填上)13.2019年夏天,某省由于持续高温和连日无雨,水库蓄水量普遍下降.某水库的蓄水量V(万立方米)与干旱持续时间t(天)之间的关系图如图所示,请根据此图,回答下列问题:(1)该水库原蓄水量为多少万立方米?持续干旱10天后,水库蓄水量为多少万米?(2)当水库的蓄水量小于400万立方米时,将发出严重干旱警报,请问:持续干旱多少天后,将发出严重干旱警报?(3)按此规律,持续干旱多少天时,水库将干涸?解:(1)当t=0时,V=1 000,所以水库原蓄水量为1 000万立方米;当t=10时,V=800,所以持续干旱10天后蓄水量为800万立方米.(2)当V=400时,t=30,所以持续干旱30天后将发出严重干旱警报.(3)从第10天到第30天,水库蓄水量下降了800-400=400(万立方米),一天下降40030-10=20(万立方米),根据此规律可求出30+40020=50(天),故持续干旱50天水库将干涸.三角形1.如图所示,一个60°角的三角形纸片,剪去这个60°角后,得到一个四边形,则∠1+∠2的度数为( C )A .120° B.180° C.240° D.300°2.如图,在△ABC 中,∠1=∠2,G 为AD 的中点,延长BG 交AC 于点E .F 为AB 上的一点,CF ⊥AD 于点H .下列判断正确的有( A )(1)AD 是△ABE 的角平分线. (2)BE 是△ABD 边AD 上的中线. (3)CH 为△ACD 边AD 上的高. A .1个 B .2个 C .3个 D .0个3.如图,图中有 5 个三角形,把它们用符号分别表示为 △ABD ,△CED ,△BCD ,△ABC ,△EBC .4.当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 30° .5.如图,在△ABC 中,∠B =60°,∠C =20°,AD 为△ABC 的高,AE 为△ABC 的角平分线. (1)求∠EAD 的度数;(2)试确定∠DAE 与∠B ,∠C 的关系并说明理由.解:(1)因为AD 为△ABC 的高,所以∠ADB =∠ADC =90°.因为∠B =60°,所以∠BAD =30°.在△ABC 中,∠CAB +∠B +∠C =180°,所以∠CAB =100°.又因为AE 是△ABC 的角平分线,所以∠BAE =∠CAE =12∠CAB =50°,所以∠DAE =∠BAE -∠BAD =20°.(2)由(1)得∠DAE =∠BAE -∠BAD =12∠BAC -(90°-∠B )=12(180°-∠B -∠C )-(90°-∠B )=90°-12∠B -12∠C -90°+∠B =12∠B -12∠C ,所以2∠DAE =∠B -∠C .6.长为9,6,5,4的四根木条,选其中三根组成三角形,选法有( C ) A .1种 B .2种 C .3种D .4种7.△ABC 的边长均为整数,且最大边的边长为7,那么这样的三角形共有 16 个. 8.一个等腰三角形的周长为30 cm ,它有一条边长是另一条边长的一半,它的底边长为 6 cm ,一腰长为 12 cm.9.如图所示,△ABC ≌△CDA ,并且AB =CD ,小胡同学写了四个结论,其中有一个不正确,这个结论是( D )A .∠1=∠2B .AD ∥BC C .∠D =∠BD .AC =BC10.如图,△ADF ≌△BDF ,△BDE ≌△CDE ,AC =10 cm ,那么AD =( D )A.2 cm B.3 cmC.4 cm D.5 cm11.已知△ABC≌△DEF,且△ABC的周长为12,AB=5,BC=4,则DF= 3 .12.△ABC与△A′B′C′是一对全等的三角形,其中△ABC中,AB=6,AB边上的高为5,则△A′B′C′的面积为 15 .13.如图,OA=OB,∠A=∠B,有下列3个结论:①△AOD≌△BOC;②△ACE≌△BDE;③点E在∠O的平分线上.其中正确结论的个数是( D )A.0 B.1C.2 D.314.如图所示,AB=DB,∠ABD=∠CBE,请你添加一个适当的条件∠BDE=∠BAC(答案不唯一) ,使△ABC≌△DBE.(只需添加一个即可)15.如图所示,赵刚站在楼顶B处看一烟囱,当看到烟囱顶A时,视线与水平方向成的角是45°;当看到烟囱底部D时,视线与水平方向成的角也是45°.如果楼高15米,那么烟囱大约高 30 米.16.要测量圆形工件的外径,工人师傅设计了如图所示的卡钳,O 为卡钳两柄交点,且有OA =OB =OC =OD ,如果圆形工件恰好通过卡钳AB ,则此工件的外径必是CD 的长,你能说明其中的道理吗?解:由OA =OD ,OB =OC ,∠AOB =∠DOC ,可知△AOB ≌△DOC ,从而AB =CD .17.(2019·辽宁鞍山月考)在△ABC 中,D 是AB 的中点,E 是CD 的中点.过点C 作CF ∥AB 交AE 的延长线于点F ,连接BF .试说明DB =CF .解:因为E 为 CD 的中点,所以CE =DE .因为∠AED 和∠CEF 是对顶角,所以∠AED =∠CEF . 因为CF ∥AB ,所以∠EDA =∠ECF . 在△EDA 和△ECF 中,⎩⎪⎨⎪⎧∠EDA =∠ECF ,ED =EC ,∠AED =∠CEF ,所以△EDA ≌△ECF (ASA),所以AD =FC . 因为D 为AB 的中点,所以AD =BD .所以DB =CF .18.如图,AB =DC ,∠A =∠D ,点M 和点N 分别是BC ,AD 的中点.试说明∠ABC =∠DCB .解:点M 和点N 分别是BC ,AD 的中点,所以AN =DN ,BM =CM .在△ABN 和△DCN 中,⎩⎪⎨⎪⎧AN =DN ,∠A =∠D ,AB =DC ,所以△ABN ≌△DCN (SAS),所以BN =CN ,∠ABN =∠DCN .在△BMN 和△CMN 中,⎩⎪⎨⎪⎧BN =CN ,MN =MN ,BM =CM ,所以△BMN ≌△CMN (SSS), 所以∠MBN =∠MCN ,所以∠ABN +∠MBN =∠DCN +∠MCN , 即∠ABC =∠DCB .19.如图,在Rt△ABC 中,∠ACB =90°,点D ,F 分别在AB ,AC 上,CF =CB .连接CD ,将线段CD 绕点C 按顺时针方向旋转90°后得CE ,连接EF . (1)试说明△BCD ≌△FCE ; (2)若EF ∥CD ,求∠BDC 的度数.解:(1)因为CD 绕点C 顺时针方向旋转90°得CE ,所以CD =CE ,∠DCE =90°.因为∠ACB =90°,所以∠BCD =90°-∠ACD =∠FCE .在△BCD 和△FCE 中,⎩⎪⎨⎪⎧CB =CF ,∠BCD =∠FCE ,CD =CE ,所以△BCD ≌△FCE .(2)由△BCD ≌△FCE 得∠BDC =∠E . 因为EF ∥CD ,所以∠E =180°-∠DCE =90°.所以∠BDC =90°.20.在△ABC 中,AB =AC ,点E ,F 分别在AB ,AC 上,AE =AF ,BF 与CE 相交于点P .试说明PB =PC ,并直接写出图中其他相等的线段.解:在△ABF 和△ACE 中,⎩⎪⎨⎪⎧AB =AC ,∠BAF =∠CAE ,AF =AE ,所以△ABF ≌△ACE (SAS),所以∠ABF =∠ACE (全等三角形的对应角相等), 所以BF =CE (全等三角形的对应边相等). 因为AB =AC ,AE =AF ,所以BE =CF . 在△BEP 和△CFP 中,⎩⎪⎨⎪⎧∠BPE =∠CPF ,∠PBE =∠PCF ,BE =CF ,所以△BEP ≌△CFP (AAS),所以PB =PC . 因为BF =CE ,所以PE =PF .所以图中其他相等的线段为PE =PF ,BE =CF ,BF =CE .21.如图,小勇要测量家门前河中浅滩B 到对岸A 的距离,他先在岸边定出C 点,使C ,A ,B 在同一直线上,再沿AC 的垂直方向在岸边画线段CD ,取它的中点O ,又画DF ⊥CD ,观测到E ,O ,B 在同一直线上,F ,O ,A 也在同一直线上,那么EF 的长就是浅滩B 到对岸A 的距离,你能说出这是为什么吗?解:因为DF ⊥CD ,AC ⊥CD ,所以∠D =∠C =90°. 又因为OC =OD ,∠COA =∠DOF , 所以△AOC ≌△FOD (ASA), 所以∠A =∠F ,OA =OF . 又因为∠AOB =∠FOE , 所以△AOB ≌△FOE (ASA),所以AB =EF ,所以EF 的长就是浅滩B 到对岸A 的距离.22.如图,AB ∥CD ,以点A 为圆心,小于AC 的长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 的长为半径作圆弧,两条圆弧交于点P ,作射线AP ,交CD 于点M .(1)若∠ACD =114°,求∠MAB 的度数; (2)若CN ⊥AM ,垂足为N ,试说明△ACN ≌△MCN .解:(1)因为AB ∥CD ,所以∠ACD +∠CAB =180°.又因为∠ACD =114°,所以∠CAB =66°.由作法,知AM 是∠CAB 的平分线,所以∠MAB =12∠CAB =33°.(2)因为AM 平分∠CAB ,所以∠CAM =∠MAB . 因为AB ∥CD ,所以∠MAB =∠CMA , 所以∠CAM =∠CMA .又因为CN ⊥AM ,所以∠ANC =∠MNC .在△ACN 和△MCN 中,因为∠ANC =∠MNC ,∠CAM =∠CMA ,CN =CN ,所以△ACN ≌△MCN . 23.已知线段a ,b ,∠α,如图所示.求作:△ABC ,使其有一个内角等于∠α,且∠α的对边等于a ,另一边等于b .解:作法:(1)作∠MBH =∠α. (2)在边BM 上截取AB =b .(3)以点A 为圆心,a 的长为半径作弧,交BC 于点C (或C ′). (4)连接AC (或AC ′).则△ABC 或△ABC ′就是所求作的三角形,如图所示.生活中的轴对称1.下列四个图形中,是轴对称图形,且对称轴的条数为2的图形的个数是( C )A.1 B.2 C.3 D.42.下列标志中,可以看作是轴对称图形的是( D )3.下列图形中,所有轴对称图形的对称轴条数之和为( B )A.13 B.11 C.10 D.84.图中的六边形ABCDEF是轴对称图形,CF所在的直线是对称轴,若∠AFC+∠BCF=150°,则∠AFE+∠BCD的大小为( B )A.150° B.300° C.210° D.330°5.如图,把长方形中的∠A沿某条直线对折,使点A与BC上的点A′重合,折痕交AB于点E,若∠CDA′=70°,则∠AED的度数为( D )A.70° B.20° C.35° D.80°6.如图,△ABC中,∠A=60°,将△ABC沿DE翻折后,点A落在BC边上的点A′处,如果∠A′EC=70°,那么∠A′DE的度数为65° .7.如图,直线l是四边形ABCD的对称轴,且AD∥BC.(1)试写出图中三组相等的线段;(2)试写出图中三组相等的角;(3)欢欢认为从图中还能得到以下结论:AB∥CD,AB=CD,AB⊥BC,OA=OC,你认为这些结论都正确吗?说明你的理由.解:(1)AB=AD,BC=DC,OB=OD.(答案不唯一)(2)∠BAC=∠DAC,∠BCA=∠DCA,∠ABC=∠ADC.(答案不唯一)(3)AB∥CD,AB=CD,OA=OC正确,但AB⊥BC不正确.因为直线l是四边形ABCD的对称轴,所以OB=OD.因为AD∥BC,所以∠BCA=∠DAC,∠ADO =∠CBO,所以△ADO≌△CBO,所以OA=OC.因为∠AOB=∠COD,所以△ABO≌△CDO,所以AB=CD,∠BAC=∠ACD,所以AB∥CD.8.点P在∠AOB内部,点P1与点P关于OA对称,点P2与点P关于OB对称,点P1,O,P2正好在同一条直线上,请求出∠AOB的大小.解:因为OA和OB分别是点P和点P1,点P2和点P的对称轴,所以∠1=∠2,∠3=∠4.又因为点P1,O,P2在同一条直线上,所以∠AOB=180°÷2=90°.9.如图,在△ABC中,点D在BC上,AB=AD=DC,∠B=80°,则∠C的度数为( B )A.30° B.40° C.45° D.60°10.如图,在△ABC中,AB=AC,CD平分∠ACB交AB于D点,AE∥DC交BC的延长线于点E,已知∠E=36°,则∠B= 72 度.11.如图,在△ABC中,AB=AC,BC=BD,AD=DE=BE,求∠A的度数.解:因为AB=AC,所以∠ABC=∠C.因为BC=BD,所以∠BDC=∠C.所以∠ABC=∠BDC=∠C.又因为AD=DE=BE,所以∠A=∠DEA,∠EBD=∠EDB.设∠EBD=∠EDB=x,则∠A=∠DEA=2x,∠ABC=∠BDC=∠C=3x.在△ABC中,∠A+∠ABC +∠C=180°,即2x+3x+3x=180°,解得x=22.5°.所以2x =45°,即∠A 的度数是45°.12.如图,四边形ABCD 中,AC 垂直平分BD ,垂足为E ,下列结论不一定成立的是( C )A .AB =AD B .AC 平分∠BCD C .AB =BDD .△BEC ≌△DEC13.在△ABC 中,按以下步骤作图:①分别以B ,C 为圆心,以大于12BC 的长为半径作弧,两弧相交于两点M ,N ;②作直线MN 交AB 于点D ,连接CD ,若CD =AC ,∠B =25°,则∠ACB 的度数为 105° .14.如图,AD ⊥BC 于点D ,D 为BC 的中点,连接AB ,∠ABC 的平分线交AD 于点O ,连接OC ,若∠AOC =125°,则∠ABC = 70 °.15.如图,在△ABC 中,AB =AC ,∠BAC =120°,D ,F 分别为AB ,AC 的中点,DE ⊥AB ,GF ⊥AC ,点E ,G 均在BC 上,BC =15 cm ,求EG 的长.解:如图,连接AE ,AG ,则AE =BE ,AG =CG . 因为AB =AC ,∠BAC =120°,所以∠B =∠C =30°.所以∠AEG =∠AGE =60°.所以△AEG 为等边三角形.所以AE =EG =AG =BE =CG .所以EG =13BC =5 cm.16.如图,在Rt△ABC 中,∠C =90°,BD 平分∠ABC 交AC 于点D ,若CD =m ,AB =n ,则△ABD 的面积是( B )A .mm B.12mm C.13mm D .2mm17.如图,AD ∥BC ,∠ABC 的平分线BP 与∠BAD 的平分线AP 相交于点P ,作PE ⊥AB 于点E .若PE =2,则两平行线AD 与BC 间的距离为 4 .18.如图,AD 是∠BAC 的平分线,DE ⊥AB 于点E ,DF ⊥AC 于点F ,DF ⊥BD ,且BD =CD ,那么BE 与CF 相等吗?说明理由.解:相等.理由如下:因为AD 是∠BAC 的平分线,DE ⊥AB ,DF ⊥AC , 所以DE =DF ,∠DEB =∠DFC =90°. 因为DF ⊥BD ,所以∠BDE +∠FDC =90°. 又因为∠BDE +∠DBE =90°, 所以∠FDC =∠DBE .又因为BD =CD ,所以△BED ≌△DFC , 所以BE =CF .19.李老师布置了一道题:在田字格中涂上几个阴影,要求整个图形必须是轴对称图形,下图各种作法中,符合要求的是( C )20.要在一块长方形的空地上修建一个花坛,要求花坛图案为轴对称图形,下图中的设计符合要求的有( A )A.4个 B.3个 C.2个 D.1个21.在4×4的方格中有五个同样大小的正方形如图摆放,移动其中一个正方形到空白方格中,与其余四个正方形组成的新图形是一个轴对称图形,这样的移法共有 13 种.22.如图,在2×2的正方形方格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且也以格点为顶点的三角形,这样的三角形共有 5 个.第六章概率初步1.下列事件中,是不可能事件的是( D )A.买一张电影票,座位号是奇数B.射击运动员射击一次,命中9环C.明天会下雨D.度量三角形的内角和,结果是360°2.“368人中一定有2人的生日是相同的”是( B )A.随机事件B.必然事件C.不可能事件D.以上都不对3.下列事件:①随意翻到一本书的某页,这页的页码是奇数;②测得某天的最高气温是100 ℃;③掷一次骰子,向上一面的点数是2.其中是随机事件的是 ①③ .(填序号)4.袋中有红球4个,白球若干个,它们只有颜色上的区别.从袋中随机地取出一个球,如果取到白球的可能性较大,那么袋中白球的个数可能是( D ) A .3个 B .不足3个 C .4个D .5个或5个以上5.七年级(6)班共有学生54人,其中男生有30人,女生有24人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性 大 (填“大”或“小”).6.给出以下四个事件:①电灯通电时“发热”;②某人射击一次“中靶”;③掷一枚硬币“出现正面”;④在常温下“铁熔化”. 你认为可能性最大的是 ① ,最小的是 ④ .7.下表记录了一名球员在罚球线上投篮的结果,这名球员投篮一次,投中的概率约是( C )8.某人在做掷硬币试验时,抛掷m 次,正面朝上有n 次⎝⎛⎭⎪⎫即正面朝上的频率是P =n m ,则下列说法中正确的是( D ) A .P 一定等于12B .P 一定不等于12C .多投一次,P 更接近12D .随着抛掷次数逐渐增加,P 稳定在12附近9.在一个不透明的布袋中有除颜色外其他都相同的红、黄、蓝球共200个,某位同学经过多次摸球试验后发现,其中摸到红球和蓝球的频率分别稳定在35%和55%,则口袋中可能有黄球 20 个.10.某地区林业局要考察一种树苗移植的成活率,对该地区这种树苗移植成活情况进行调查统计,并绘制了如图所示的统计图,根据统计图提供的信息解决下列问题: (1)这种树苗成活的频率稳定在 0.9 ,成活的概率估计值为 0.9 . (2)该地区已经移植这种树苗5万棵. ①估计这种树苗成活 4.5 万棵;②如果该地区计划成活18万棵这种树苗,那么还需移植这种树苗约多少万棵?解:(2)②18÷0.9-5=15(万棵). 答:该地区还需移植这种树苗约15万棵.11.一个不透明的盒子里装有只有颜色不同的黑、白两种颜色的球共40个,某学习小组做摸球试验,将球搅匀后从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复,活动进行中的一组统计数据如下所示:摸球的次数n 200 300 400 500 800 1 000 摸到白球的次数m 116 192 232 295 484 601 摸到白球的频率m n0.580.640.580.590.6050.601(1)(2)如果你从盒子中任意摸出一球,那么摸到白球的概率约是多少? (3)试估算盒子中黑、白两种颜色的球各有多少个?(4)请你应用上面频率与概率的关系的思想解决下面的问题:一个不透明的口袋里装有若干个白球,在不允许将球倒出来数的情况下,如何估计口袋中白球的个数(可以借助其他工具及用品)?请写出解决这个问题的主要步骤及估算方法. 解:(1)0.60. (2)0.60.(3)盒子中白球的个数约为40×0.60=24(个), 则黑球的个数为40-24=16(个).(4)①添加:向口袋中添加一定数目的黑球,并充分搅匀;②试验:进行次数很多的摸球试验(有放回),记录摸到黑球和白球的次数,分别计算频率,由频率估计概率;③估算:黑球个数摸到黑球的概率=球的总个数,球的总个数×摸到白球的概率=白球的个数(答案不唯一).12.小军旅行箱的密码是一个六位数,但他忘记了密码的末位数字,则小军能一次打开该旅行箱的概率是( A )A.110B.19C.16D.1513.如图,某农民在A ,B ,C ,D 四块田里插秧时,不慎将手表丢入田里,直到收工时才发现,则手表丢在哪一块田里的可能性大些( D )A .AB .BC .CD .D14.向如图所示的正三角形区域扔沙包(区域中每一个小正三角形除颜色外完全相同),假设沙包击中每一个小正三角形是等可能的,扔沙包一次,击中阴影区域的概率等于( C )A.16B.14C.38D.5815.5张分别写有-1,2,0,-4,5的卡片(除数字不同以外其余都相同),现从中任意取出1张卡片,则该卡片上的数字是负数的概率是 25.16.小兰和小青两人做游戏,有一个质量分布均匀的正六面体骰子,骰子的六面分别标有1,2,3,4,5,6.如果掷出的骰子的点数是质数,则小兰赢;如果掷出的骰子的点数是3的倍数,则小青赢.该游戏规则对 小兰 有利.17.掷一个骰子,观察向上一面的点数,求下列事件的概率: (1)点数为偶数; (2)点数大于2且小于5.解:掷一个骰子,向上一面的点数可能为1,2,3,4,5,6,共6种情况,这些点数出现的可能性相等.(1)点数为偶数有3种可能,即点数为2,4,6, 所以P (点数为偶数)=36=12.(2)点数大于2且小于5有2种可能,即点数为3,4, 所以P (点数大于2且小于5)=26=13.18.如图,小明家里的阳台地面铺设着黑、白两种颜色的18块方砖(除颜色不同外其余都相同),他从房间里向阳台抛小皮球,小皮球最终随机停留在某块方砖上. (1)求小皮球分别停留在黑色方砖与白色方砖上的概率;(2)上述哪个概率较大?要使这两个概率相等,应改变第几行第几列的哪块方砖的颜色?怎样改变?解:(1)由图可知,阳台地面共铺有18块方砖,其中白色方砖8块,黑色方砖10块,故小皮球停留在黑色方砖上的概率是59,停留在白色方砖上的概率是49.(2)因为59>49,所以小皮球停留在黑色方砖上的概率大于停留在白色方砖上的概率.要使这两个概率相等,可将任意一块黑色方砖改为白色方砖.。
2019-2020学年第一学期北师大版七年级数学3.4整式加减计算专题(含答案)
2019-2020整式加减计算专题(含答案)1.先化简,再求值(1)2229x 6x 3x x 3⎛⎫+--⎪⎝⎭,其中x 2=-;(2)()()()22222a b ab2a b 12ab1+---+,其中a 2=-,b 2=.2.化简求值:5xy 2-[2x 2y -(2x 2y -3xy 2)],其中(x -2)2+|y +1|=0.3.计算题(1)()()22223y x 2x y x 3y-+--+ ()()()32322x y xy 2x y 2xy +--4.化简(1)5x 2+x+3+4x ﹣8x 2﹣2(2)(2x 3﹣3x 2﹣3)﹣(﹣x 3+4x 2)(3)3(x 2﹣5x+1)﹣2(3x ﹣6+x 2)5.已知32253A x xy y =-+,322247B x y xy =+-,求1233A A A B ⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦的值,其中2x =,1y =-.6.先去括号,再合并同类项(1)(4x 2y ﹣3xy 2)﹣(1+4x 2y ﹣3xy 2)(2)4y 2﹣[3y ﹣(3﹣2y )+2y 2].7.(1)计算:(﹣1)2018﹣8÷(﹣2)3+4×(﹣12)3; (2)先化简,再求值:3(a 2b ﹣2ab 2)﹣(3a 2b ﹣2ab 2),其中|a ﹣1|+(b+12)2=0.8.化简:﹣(3a 2﹣4ab )+[a 2﹣2(2a 2+2ab )].9.化简①3x-4x 2+7-3x+2x 2+1; ②22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦.10.已知(x+2)2+|y ﹣12|=0,求5x 2y ﹣[2x 2y ﹣(xy 2﹣2x 2y )﹣4]﹣2xy 2的值.11.先化简,再求值:(1)4a +3a 2-3-3a 3-(-a +4a 3),其中a =-2;(2)2x 2y -2xy 2-[(-3x 2y 2+3x 2y)+(3x 2y 2-3xy 2)],其中x =-1,y =2.12.课堂上老师给大家出了这样一道题,“当x 2016=时,求代数式的值”,小明一看()()()322323323 2x 3x y 2xy x 2xy y 2017x 3x y y ----+-+-++“x 的值太大了,又没有y 的值,怎么算呢?”你能帮小明解决这个问题吗?请写出具体过程.13.在对多项式(23x 2y+5xy 2+5)﹣[(3x 2y 2+23x 2y )﹣(3x 2y 2﹣5xy 2﹣2)]代入计算时,小明发现不论将x 、y 任意取值代入时,结果总是同一个定值,为什么?14.先化简,再求值:2211312[(2)()]2323x x x y x y --++-+,其中(2x +4)2+|4﹣6y |=0.15.化简:(1)2a -(5a -3b)+3(2a -b); (2)2a -[a +2(a -b)]+b.16.先化简,再求值:2(3a 2b ﹣2ab 2)﹣3(﹣ab 2+3a 2b ),其中|a ﹣1|+(b+2)2=0.17.先化简,再求值:(1) 224263(25)a a a a -----,其中1a =-.(2)(﹣x 2+5x+6)﹣(3x+4﹣2x 2)+2(4x ﹣1),其中x=﹣2.18.先化简,再求值()22252322x y x y xy x y xy ⎡⎤----+⎣⎦其中1x =-,2y =-;19.先化简,再求值:4a 2b-[9ab 2-(-2ab 2+5a 2b)]-2(3a 2b-ab 2),其中a=-1,b=-23.20.若|a+2|+(b ﹣3)2=0,求5a 2b ﹣[3ab 2﹣2(ab ﹣2.5a 2b )+ab]+4ab 2的值. 21.已知()2210m n -++=,求()22225322mn m n mn m n ⎡⎤---⎣⎦的值.参考答案1.(1)26x 8x +;20;(2)0;0; 【解析】 【分析】(1)把所给的整式去括号后合并同类项化为最简后,再代入求值即可;(2)把所给的整式去括号后合并同类项化为最简后,再代入求值即可. 【详解】()1原式229x 6x 3x 2x =+-+26x 8x =+,当x 2=-时,原式()2628(2)=⨯-+⨯-1232=-+ 20=;()2解:原式22222a b 2ab 2a b 22ab 2=+-+--()()()22222a b 2a b 2ab 2ab 22=-+-+-0=,当a 2=-,b 2=时,原式0=. 【点睛】本题考查了整式的化简求值,利用整式的加减运算法则把整式化为最简是解决问题的关键. 2.4. 【解析】原式利用去括号后去括号法则,合并同类项得到最简结果,由非负数之和为0两非负数分别为0求出x 与y 的值,代入计算即可求出值. 【详解】原式=2222252232.xy x y x y xy xy -+-=2(2)1021x y x y ∴-++=,=,=-,则原式=4.【点睛】本题考查的知识点是整式的加减-化简求值,解题的关键是注意合并同类项. 3.(1)22x 2x y -+-;(2)235xy x y -; 【解析】 【分析】(1)去括号后合并同类项即可求解;(2)去括号后合并同类项即可求解. 【详解】()1原式22223y x 2x y x 3y =-+---22223y 3y x x 2x y =---+- 22x 2x y =-+-;()2原式3232x y xy 2x y 4xy =+-+3322x y 2x y xy 4xy =-++ 235xy x y =-.本题考查了整式的加减运算,熟练运用去括号法则及合并同类项法则是解决问题的关键. 4.(1)﹣3x2+5x+1;(2)3x3﹣7x2﹣3;(3)x2﹣21x+15.【解析】试题分析:(1)根据整式的加减法,合并同类项即可;(2)根据整式的加减法,先去括号,再合并同类项即可;(3)根据整式的加减法,先根据乘法分配律去括号,再合并同类项即可.试题解析:(1)5x2+x+3+4x﹣8x2﹣2=(5-8)x2+(1+4)x+(3-2)=-3x2+5x+1(2)(2x3﹣3x2﹣3)﹣(﹣x3+4x2)= 2x3﹣3x2﹣3+x3-4x2=3 x3﹣7x2-3(3)3 (x2﹣5x+1)﹣2 (3x﹣6+x2)=3x2﹣15x+3-6x+12-2x2=x2-21x+155.-4.【解析】分析:先把式子1233A A A B⎡⎤⎛⎫---⎪⎢⎥⎝⎭⎣⎦化为最简,再把32253A x xy y=-+,322247B x y xy=+-代入后,去括号合并同类项化为最简,最后把x=2,y=-1代入求值即可. 详解:1233A A A B ⎡⎤⎛⎫--- ⎪⎢⎥⎝⎭⎣⎦[]A A B =--+,2A B =-,32253A x xy y =-+,322247B x y xy =+-,∴原式()3223222106247x xy y x y xy =-+-+-,2232xy y =-+,把2x =,1y =-代入得:321214-⨯⨯+⨯=-.点睛:本题考查了整式的加减-化简求值,化简求值是课程标准中所规定的一个基本内容,它涉及对运算的理解以及运算技能的掌握两个方面,也是一个常考的题材. 6.(1)﹣1;(2) 2y 2﹣5y+3. 【解析】 【分析】(1)先去括号,合并同类项即可. (2)先去括号,合并同类项即可. 【详解】解:(1)原式222243143 1.x y xy x y xy =---+=(2)原式()2243322,y y y y=--++224532,y y y =-+-2253y y =-+.【点睛】考核知识点:整式运算. 去括号,合并同类项是关键.7.(1)32;(2)﹣1.【解析】【分析】(1)先乘方,再计算有理数乘除,最后计算有理数加减法,根据有理数乘方,乘除法和加减法法则进行依次计算即可,(2)先去括号,再去括号时注意两点:括号外的因数要与括号里的每个式子相乘,去括号,括号前是减号,去括号要变号.【详解】(1)(﹣1)2018﹣8÷(﹣2)3+4×(﹣)3,=1﹣8÷(﹣8)+4×(﹣18),=1+1﹣1 2 ,=3 2 ,(2)3(a2b﹣2ab2)﹣(3a2b﹣2ab2), =3a2b﹣6ab2﹣3a2b+2ab2,=﹣4ab2,∵|a﹣1|+(b+)2=0,∴a=1,b=1 2 ,原式=﹣4×1×(12 -)2,=﹣1.【点睛】本题主要考查有理数加减乘除乘方混合运算和整式的化简求值,解决本题的关键是要熟练掌握有理数相关运算法则和整式运算法则.8.﹣6a2【解析】【分析】根据整式的加减即可求出答案.【详解】原式=﹣3a2+4ab+a2﹣4 a2﹣4ab=﹣6a2【点睛】本题考查了整式的加减,注意去括号的顺序.9.(1)-2x2+8;(2)8a2b+2ab-2ab2.【解析】【分析】根据去括号的方法进行计算即可,合并同类项时,把同类项的系数相加,所得结果作为系数,字母和字母的指数不变.【详解】(1)22347321x x x x-+-++=()()()2233427+1x x x x -+-++ 2028x =-+228x =-+(2)22244323a b ab ab a b ab ⎡⎤⎛⎫--++ ⎪⎢⎥⎝⎭⎣⎦ 22244323a b ab ab a b ab ⎛⎫=-++- ⎪⎝⎭2224342a b ab ab a b ab =-++-22822.a b ab ab =+-【点睛】本题考查的知识点是整式的加减,解题关键是注意合并同类项.10.162【解析】分析:原式去括号合并得到最简结果,利用非负数的性质求出x 与y 的值,代入计算即可求出值.详解:原式=5x 2y ﹣2x 2y +xy 2﹣2x 2y +4﹣2xy 2=x 2y ﹣xy 2+4.∵(x +2)2+|y ﹣12|=0,∴x =﹣2,y =12, 当x =﹣2,y =12时,原式=2+12+4=612. 点睛:本题考查了整式的加减﹣化简求值,以及非负数的性质,熟练掌握运算法则是解答本题的关键.11.【答案1)55;(2)-6;【分析】(1)根据去括号法则、合并同类项法则先化简,再将a=-2代入化简之后的代数式,计算即可得出答案.(2)根据去括号法则、合并同类项法则先化简,再将x=-1,y=2代入化简之后的代数式,计算即可得出答案.【详解】(1)解:原式=4a+3a2-3-3a3+a-4a3,=-7a3+3a2+5a-3,∵a=-2,∴原式=-7×(-2)3+3×(-2)2+5×(-2)-3=56+12-10-3,=55.(2)解:原式=2x2y-2xy2-(-3x2y2+3x2y+3x2y2-3xy2),=xy2-x2y,∵x=-1,y=2,∴原式=(-1)×22-(-1)2×2,=-4-2,=-6.【点睛】考查整式的化简求值,掌握合并同类项法则和去括号法则是解题的关键.12.见解析;【分析】根据去括号法则去掉括号,再合并同类项,将整式化为最简,然后再求值即可.【详解】原式3223233232x 3x y 2xy x 2xy y 2017x 3x y y =---+-+-++3332222332x x x 3x y 3x y 2xy 2xy y y 2017=--+--++-+2017=所以原式与x 、y 的值无关.【点睛】本题考查了整式的化简.整式的加减运算实际上就是去括号、合并同类项,熟知整式加减的实质是解决问题的关键.13.结果是定值,与x 、y 取值无关.【解析】【分析】原式去括号、合并同类项得出其结果,从而得出结论.【详解】 (23x 2y+5xy 2+5)-[(3x 2y 2+23x 2y )-(3x 2y 2-5xy 2-2)] =23x 2y+5xy 2+5-(3x 2y 2+23x 2y-3x 2y 2+5xy 2+2) =23x 2y+5xy 2+5-3x 2y 2-23x 2y+3x 2y 2-5xy 2-2 =(23x 2y-23x 2y )+(5xy 2-5xy 2)+(-3x 2y 2+3x 2y 2)+(5-2) =3,∴结果是定值,与x、y取值无关.【点睛】本题主要考查整式的加减-化简求值,解题的关键是掌握整式的加减运算顺序和运算法则.14.x+y2,11.【解析】【详解】试题分析:先去括号,然后再合并同类项,再根据非负数的性质求出x、y的值代入进行计算即可.试题解析:原式=12x﹣2x+4x+23y2+3x-23y2=112x,∵(2x+4)2+|4﹣6y|=0,∴x=﹣2,y=23,则原式=-11.【点睛】本题考查了整式的加减运算、非负数的性质等,熟练掌握运算法则是解题的关键. 15.(1) 3a;(2)-a+3b.【解析】【分析】先去括号,然后找出同类项即可.【详解】(1)原式=2a-5a+3b+6a-3b=2a-5a+6a+3b-3b=3a.(2)原式=2a-(a+2a-2b)+b=2a-3a+2b+b=-a+3b.【点睛】解答本题时,要注意去括号的时候,括号内各项符号的变化,并且不要漏乘.有多个括号时要注意去括号的顺序.16.2【解析】【分析】原式去括号合并得到最简结果,利用非负数的性质求出a 与b 的值,代入原式计算即可求出值.【详解】原式=6a 2b ﹣4ab 2+3ab 2﹣9a 2b=﹣ab 2﹣3a 2b ,由题意得:a=1,b=﹣2,则原式=﹣4+6=2.【点睛】本题考查了整式的加减﹣化简求值及非负数的性质,熟练掌握整式加减的运算法则是解本题的关键 17.(1)6;(2)-16【解析】【分析】(1)原式去括号合并同类项可得最简多项式,将1a =-代入计算即可得出结论.(2)原式去括号合并同类项可得最简多项式,将2x =﹣代入计算即可得出结论.【详解】(1)原式=224266315a a a a ---++=229a a -++当1a =-时,原式=229a a -++=()22119---+=6(2)原式=225634282x x x x x -++--++- =210x x +当2x =-时,原式=210x x +=420-=16-【点睛】本题考查了整式的加减化简求值,关键是熟练掌握去括号及合并同类项的运算技巧.18.36【解析】【分析】先化简,再将x 、y 的值代入求值.【详解】原式=-5x 2y -[2x 2y -3xy +6x 2y ]+2xy =-13x 2y +5xy ,当x =-1,y =﹣2时,原式=36,故答案为36.【点睛】本题主要考查了整式的加减,化简求值,解本题的要点在于熟练掌握运算法则.19.3a2b-9ab2,2【解析】【分析】先拆开后合并同类项,带入所给数值即可得出答案. 【详解】4a2b-[9ab2-(-2ab2+5a2b)]-2(3a2b-ab2)=4a2b-[9ab2+2ab2-5a2b]-(6a2b-2ab2)=4 a2b-11ab2+5a2b-6a2b+2ab2=3a2b-9ab2把a=-1,b=-23代入得原式=-2-(-4)=2【点睛】本题考查了合并同类项,熟悉掌握概念是解决本题的关键.20.ab2+ab,-24【解析】试题分析:先将原式去括号、合并同类项化成最简式,再根据非负数的性质得出a、b的值,最后代入计算可得.试题解析:解:原式=5a2b﹣3ab2+2(ab﹣2.5a2b)﹣ab+4ab2=5a2b﹣3ab2+2ab﹣5a2b﹣ab+4ab2=ab2+ab∵|a+2|+(b﹣3)2=0,∴a+2=0、b﹣3=0,即a=﹣2、b=3∴原式=(﹣2)×32+(﹣2)×3=﹣2×9﹣6=﹣18﹣6=﹣24.点睛:本题主要考查整式的化简求值,解题的关键是熟练掌握整式的混合运算顺序和法则及非负数的性质.21.38.【解析】【分析】由非负数的性质,求出a 、b 的值.把式子进行化简,然后把m 和n 的值代入计算即可.【详解】∵|m ﹣2|+(n +1)2=0,∴m ﹣2=0,n +1=0,解得:m =2,n =﹣1.原式=22225[342]mn m n mn m n --+=22225342mn m n mn m n -+-=2295mn m n -.当m =2,n =﹣1时,原式=2292(1)52(1)⨯⨯--⨯⨯-=18+20=38.【点睛】本题考查了整式的加减-化简求值,并考查了非负数的性质,综合能力较强.。
(完整版)北师大版七年级下数学第一单元试题汇总
第一章 整式的运算班级____________ 座号____________ 姓名_______________ 一. 填空题1.一个多项式与,1x 2x 32x x 222+-+-的和是则这个多项式是______________________。
2.若多项式(m+2)1m 2x-y 2-3xy 3是五次二项式,则m=___________.3.写出一个关于x 的二次三项式,使得它的二次项系数为21-,则这个二次三项式是__________4.若2b 1a -=-=,时,代数式a ab2-的值是________。
5.(-2m+3)(_________)=4m 2-9 (-2ab+3)2=_____________2)b a (-- =____________, 2)b a (+- =_____________。
)a 31)(a 31(--+-=______________, )1x 4)(1x 4(--- =______________6.计算:①_______________)a (23=-- ②________________)y x 3(y x 522=---。
③-3xy ·2x 2y= ; ④-2a 3b 4÷12a 3b 2 = 。
⑤___;__________1n 5·35·n 5=--)( ⑥_____________)ab ()ab (1m 3m =÷+-。
⑦ (8xy 2-6x 2y)÷(-2x)=__________________; ⑧.____________)22.0(201=π++--⑨(-3x -4y) ·(-3x+4y)=________________; ⑩(-x-4y)·(-x-4y)=_____________ 7..______________a _,__________a ,4a ,3an 4m 2n m n m====--已知n33282=⋅,则n =_______________._________________2,72,323-y x y x =则+==8.如果x +y =6, xy =7, 那么x 2+y 2= 。
初中数学北师大版《七年级下》《第一章整式的运算》同步课后测试【34】(含答案考点及解析)(最新整理)
初中数学北师大版《七年级下》《第一章整式的运算》同步课后测试【34】(含答案考点及解析)班级:___________ 姓名:___________ 分数:___________1.有些大数值问题可以通过用字母代替数,转化成整式问题来解决,请先阅读下面的解题过程,再解答后面的问题.例:若x=123456789×123456786,y=123456788×123456787,试比较x、y的大小.解:设123456788=a,那么x=(a+1)(a-2)=a2-a-2,y=a(a-1)=a2-a,∵x-y=(a2-a-2)-(a2-a)=-2<0,∴x<y.看完后,你学到这种方法了吗?再亲自试一试吧,你准行!问题:计算1.35×0.35×2.7-1.353-1.35×0.352.【答案】-1.35.【考点】初中数学知识点》数与式》整式【解析】试题分析:本题中0.35和2.7都与1.35有关系,可设1.35=x,那么0.35=x-1,2.7=2x,然后进行计算.设1.35=x,那么0.35=x-1,2.7=2x,原式=x(x-1)•2x-x3-x(x-1)2,=(2x3-2x2)-x3-x(x2-2x+1),=2x3-2x2-x3-x3+2x2-x,=-x=-1.35.考点:整式的混合运算.2.直角三角形三边长分别为2,3,m,则m= .【答案】或.【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:本题利用了勾股定理求解,因为不明确直角三角形的斜边长,所以解答本题的关键是注意要区分边长为m线段为直角边和斜边两种情况讨论.①当m为斜边时,;②当m为直角边时,.故填或.考点:勾股定理.3.一个多边形,除了一个内角外,其余各内角的和为2750°,则这一内角为.【答案】130°.【考点】初中数学知识点》图形与证明》三角形【解析】试题分析:设这个多边形的边数为x,由题意得,解得,因而多边形的边数是18,则这一内角为(18-2)×180-2750=130度.考点:多边形的内角和定理.4.若代数式2+3-7的值为8,则代数式4+6+10的值为()A.40B. 30C.15D.25【答案】A【考点】初中数学知识点》数与式》整式【解析】解:由题意得,,,则,故选A。
【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)
【精选】北师大版七年级下册数学第一章《整式的运算》综合测试卷(含答案)一、选择题(每题3分,共30分)1.计算(-a 2)3的结果是( )A .a 5B .a 6C .-a 5D .-a 62.计算:20·2-3等于( )A .-18 B.18 C .0 D .83.斑叶兰的一粒种子重约0.000 000 5 g ,将0.000 000 5用科学记数法表示为( )A .5×107B .5×10-7C .0.5×10-6D .5×10-64.【2022·长沙】下列计算正确的是( )A .a 7÷a 5=a 2B .5a -4a =1C .3a 2·2a 3=6a 6D .(a -b )2=a 2-b 25.【教材P 32习题T 3变式】已知一个计算程序:n →平方→+n →÷n →-n →?若输入n =-3,则输出的“?”为( )A .1B .-1C .7D .-76.下列四个算式:① 5x 2y 4÷15xy =xy 3; ② 16a 6b 4c ÷8a 3b 2=2a 3b 2c ; ③ 9x 8y 2÷3x 2y =3x 4y ; ④(12m 3-6m 2-4m )÷(-2m )=-6m 2+3m +2.其中正确的有( )A .0个B .1个C .2个D .3个7.如图,将一块边长为x (x >7)的正方形木块的一边截去7,另一边截去6,则剩余部分(图中阴影部分)的面积是( )A .x 2-13x -42B .x 2+13x +42C .x 2+13x -42D .x 2-13x +428.【2022·上海交大附中闵行分校模拟】若(a +2b )2=(a -2b )2+A ,则A 等于( )A .8abB .-8abC .8b 2D .4ab 9.若a =-0.32,b =-3-2,c =⎝ ⎛⎭⎪⎫-13-2,d =⎝ ⎛⎭⎪⎫-130,则a ,b ,c ,d 的大小关系是( ) A .a <b <c <d B .b <a <d <c C .a <d <c <b D .c <a <d <b10.【直观想象】如图,在边长为2a 的正方形中央剪去一个边长为a +2的小正方形(a >2),将剩余部分沿虚线剪开密铺成一个平行四边形,则该平行四边形的面积为( )A .a 2+4B .2a 2+4aC .3a 2-4a -4D .4a 2-a -2二、填空题(每题3分,共24分)11.【2022·甘肃】计算:3a 3·a 2=________.12.【2022·遵义】已知a +b =4,a -b =2,则a 2-b 2的值为________.13.【2022·大庆】已知代数式a 2+(2t -1)ab +4b 2是一个完全平方式,则t 的值为__________.14.计算:(-13xy 2)2·[xy (2x -y )+xy 2]=__________. 15.计算:(7x 2y 3z +8x 3y 2)÷4x 2y 2=______________.16.若x +y -3=0,则2y ×2x 的值为________.17.【教材P 35复习题T 12变式】如图,一个长方形花园ABCD ,AB =a ,AD =b ,该花园中建有一条长方形小路L MPQ 和一条平行四边形小路RSTK ,若L M =RS =c ,则该花园中可绿化部分(即除去小路后剩余部分)的面积为________________.18.【传统文化】《数书九章》中的秦九韶算法是我国南宋时期的数学家秦九韶提出的一种多项式简化算法.在现代,利用计算机解决多项式的求值问题时,秦九韶算法依然是最优的算法.例如,计算“当x =8时,多项式3x 3-4x 2-35x +8的值”,按照秦九韶算法,可先将多项式3x 3-4x 2-35x +8一步步地进行改写:3x 3-4x 2-35x +8=x (3x 2-4x -35)+8=x [x (3x -4)-35]+8.按改写后的方式计算,它一共做了3次乘法,3次加法,与直接计算相比节省了乘法次数,使计算量减少.计算当x =8时,多项式的值为1 008.请参考上述方法,将多项式x 3+2x 2+x -1改写为________________;当x =8时,多项式的值为________.三、解答题(19,23,24题每题12分,其余每题10分,共66分)19.计算:(1)(-12ab )(23ab 2-2ab +43b );(2)(a +b )(a -b )+4ab 3÷4ab ;(3)(2x -y -z )(y -2x -z );(4)(2x +y )(2x -y )+(x +y )2-2(2x 2-xy ).20.【教材P 34复习题T 8变式】用简便方法计算:(1)102×98;(2)112×92.21.先化简,再求值:(1)(x +y )(x -y )-(4x 3y -8xy 3)÷2xy ,其中x =-1,y =1;(2)(x -1)2-x (x -3)+(x +2)(x -2),其中x 2+x -5=0.22.有这样一道题:计算⎣⎢⎡⎦⎥⎤3x (2xy +1)-26x 2y 2÷2y +⎝ ⎛⎭⎪⎫72xy 2·47y -1÷3x 的值,其中x =2 022,y=-2 023,甲同学把x=2 022,y=-2 023错抄成x=2 002,y=-2 013,但他的计算结果也是正确的.请你解释一下这是为什么.23.【教材P17习题T2变式】如图,一块半圆形钢板,从中挖去直径分别为x,y的两个半圆形.(1)求剩下钢板的面积;(2)当x=2,y=4时,剩下钢板的面积是多少?(π取3.14)24.【新考法题】【2022·河北】发现两个已知正整数之和与这两个正整数之差的平方和一定是偶数,且该偶数的一半也可以表示为两个正整数的平方和.验证如,(2+1)2+(2-1)2=10为偶数,请把10的一半表示为两个正整数的平方和;探究设“发现”中的两个已知正整数为m,n,请说明“发现”中的结论正确.。
北师大版七年级数学下册第一章整式的运算复习及其整理(带练习)
第一章 整式的运算第一节 整式1.整式的有关概念:(1)单项式的定义:像1.5V ,28n π,h r 231π等,都是数与字母的乘积,这样的代数式叫做单项式.(2)单项式的次数:一个单项式中,所有字母的指数和叫做这个单项式的次数.(3)多项式的概念:几个单项式的和叫做多项式.(4)多项式的次数:一个多项式中,次数最高项的次数,叫做这个多项式的次数.(5)整式的概念:单项式和多项式统称为整式.2.定义的补充: (1)单项式的系数:单项式中的数字因数叫做单项式的系数.(2)多项式的项数:多项式中单项式的个数叫做多项式的项数.(3)区别是否是整式:关键:分母中是否含有字母?分母有字母的为分式,如a 分之3是分式。
3.例题讲解:例1:下列代数式中,哪些是整式?单项式?多项式?并指出它们的系数和次数? (!)ab +c (2)ax 2+bx +c (3)-5(4)π.2y x - (5)12-x x 例2:求多项式363222+--b ab a 的各项系数之和?第二节 整式的加减一、 知识点复习:1、填空:整式包括单项式和多项式.2、整式的加减实质上就是去括号后,合并同类项,运算结果是一个多项式或是单项式.3、所含字母相同,并且相同字母的指数也分别相同的项叫做同类项。
4、括号前面是“-”号,去括号时,括号内各项要变号,一个数与多项式相乘时,这个数与括号内各项都要相乘。
二、练习: 例1:下列各式,是同类项的一组是( ) (A )y x 222与231yx (B )n m 22与22m n 例2、计算:(1))134()73(22+-++k k k k (2))2()2123(22x xy x x xy x +---+例3:先化简,再求值:()[],673235222x x x x x x +++--其中x=21 例4、已知:A=x 3-x 2-1,B=x 2-2,计算:(1)B -A (2)A -3B第三节 同底数幂的乘法一、复习提问2.指出下列各式的底数与指数:(1)34;(2)a 3;(3)(a+b)2;(4)(-2)3;(5)-23.3、同底数幂的乘法法则: m n m n a a a += (,m n 都是正数)是幂的运算中最基本的法则,在应用法则运算时,要注意以下几点:①法则使用的前提条件是:幂的底数相同而且是相乘时,底数a 可以是一个具体的数字式字母,也可以是一个单项或多项式;②指数是1时,不要误以为没有指数;③不要将同底数幂的乘法与整式的加法相混淆,对乘法,只要底数相同指数就可以相加;而对于加法,不仅底数相同,还要求指数相同才能相加;④当三个或三个以上同底数幂相乘时,法则可推广为 m n p m n p a a a a++=(其中m 、n 、p 均为正数);⑤公式还可以逆用: m n m n aa a +=(m 、n 均为正整数)二、巩固练习(1)107×104; (2)x 2·x 5;(3)10·102·104;(4)-a ·(-a)3;(5)(-a)2·(-a)3三、小结1.同底数幂相乘,底数不变,指数相加,对这个法则要注重理解“同底、相乘、不变、相加”这八个字.2.解题时要注意a 的指数是1.3.解题时,是什么运算就应用什么法则.同底数幂相乘,就应用同底数幂的乘法法则;整式加减就要合并同类项,不能混淆.4.-a 2的底数a ,不是-a .计算-a 2·a 2的结果是-(a 2·a 2)=-a 4,而不是(-a)2+2=a 4.5.若底数是多项式时,要把底数看成一个整体进行计算第四节 幂的乘方与积的乘方一、知识点复习:1. 幂的乘方法则:()m n mn a a =(,m n 都是正整数)幂的乘方,底数不变,指数相乘。
北师大版七年级数学下册第一章整式的乘除单元测试题含答案
北师大版七年级数学下册第一章整式的乘除单元测试题一.选择题(共10小题,每小题3分,共30分)1.计算:x3•x2等于()A.2 B.x5C.2x5D.2x62.下列运算止确的是()A.x2•x3=a6B.(x3)2=x6C.(﹣3x)3=27x3D.x4+x5=x93.下列计算结果为a6的是()A.a8﹣a2 B.a12÷a2 C.a3•a2 D.(a2)34.若(x+2m)(x﹣8)中不含有x的一次项,则m的值为()A.4 B.﹣4 C.0 D.4或者﹣45.如果一个正整数能表示为两个连续偶数的平方差,那么称这个正整数为“神秘数”.如4=22﹣02,12=42﹣22,20=62﹣42,因此4,12,20都是“神秘数”,则下面哪个数是“神秘数”()A.56 B.66 C.76 D.866.下列各式,能用平方差公式计算的是()A.(2a+b)(2b﹣a)B.()(﹣)C.(2a﹣3b)(﹣2a+3b)D.(﹣a﹣2b)(﹣a+2b)7.若x2+(m﹣3)x+16是完全平方式,则m的值是()A.﹣5 B.11 C.﹣5或11 D.﹣11或58.已知a+b=2,ab=﹣2,则a2+b2=()A.0 B.﹣4 C.4 D.89.下列运算中,正确的是()A.a2+a2=2a4B.(a﹣b)2=a2﹣b2C.(﹣x6)•(﹣x)2=x8D.(﹣2a2b)3÷4a5=﹣2ab310.在长方形ABCD内,将两张边长分别为a和b(a≥b)的正方形纸片图1、图2两种放置(图1,图2中两张正方形纸片均有部分重叠),长方形未被这两张正形纸片覆盖的部分用阴影表示,若图1中阴影部分的面积为S1图2中阴影部分的面积和为S2,则关S1,S2的大小关系表述正确的是()A.S1<S2B.S1>S2C.S1=S2D.无法确定二.填空题(共8小题,每小题3分,共24分)11.若53•5m•52m+1=525,则(6﹣m)2019的值为.12.已知2x=3,6x=12,则3x=.13.已知x=3m+1,y=2+9m,则用x的代数式表示y,结果为.14.已知x m=3,x n=2,则x m﹣n=.15.已知a+b=3,ab=4,则(a﹣2)(b﹣2)=.16.计算(1﹣)(1﹣)(1﹣)…(1﹣)=.17.已知:x2+y2=5,xy=﹣3,则(x﹣y)2=.18.4个数a、b、c、d排列,我们称之为二阶行列式,规定它的运算法则为=ad﹣bc,若=17,则x=.三.解答题(共7小题,共66分)19.计算:(1)(2x﹣3)2﹣6x(x﹣2);(2)(a+2b)(a﹣2b)+(6a3b﹣15ab3)÷3ab,其中a=2,b=﹣1.20.先化简,再求值:[(x+y)(x﹣y)﹣(x﹣y)2+2y(x﹣y)]÷4y,其中x=1,y=﹣1.21.计算:(1)(﹣+﹣)×(﹣24)(2)已知a m=5,a n=25(其中m,n都是正整数),求a m+n?22.求值(1)已知2x+5y+3=0,求4x•32y的值;(2)已知2×8x×16=223,求x的值.23.数学课上老师出了一题用简便方法计算2962的值,喜欢数学的小亮手做出了这道题,他的解题过程如下2962=(300﹣4)2第一步=3002﹣2×300×(﹣4)+42第二步=90000+2400+16第三步=92416第四步老师表扬小亮积极发言的同时,也指出了解题中的错误.(1)你认为小亮的解题过程中,从第步开始出错.(2)请你写出正确的解题过程.24.[问题1]在学完平方差公式后,小滨出示了一串呈“数字”链的计算题:(2+1)(22+1)(24+1)(28+1)小梅根据算式的特点,结合平方差公式,发现:只要在算式最前面添上一个“引线”一一数字1,就可用平方差公式,像点鞭炮一样依次“点燃”整个“数字”链.(1)请根据小梅的思路,求出这个算式的值.(2)计算:+(3+1)(32+1)(34+1)(38+1)(316+1).25.阅读学习:数学中有很多恒等式可以用图形的面积来得到.如图1,可以求出阴影部分的面积是a2﹣b2;如图2,若将阴影部分裁剪下来,重新拼成一个矩形,它的长是a+b,宽是a﹣b,比较图1,图2阴影部分的面积,可以得到恒等式(a+b)(a ﹣b)=a2﹣b2.(1)观察图3,请你写出(a+b)2,(a﹣b)2,ab之间的一个恒等式(a﹣b)2=;(2)根据(1)的结论若(m+n)2=9,(m﹣n)2=1,求出下列各式的值:①mn;②m2+n2;(3)观察图4,请写出图4所表示的代数恒等式:.参考答案与试题解析一.选择题1.解:x3•x2=x5故选:B.2.解:∵x2•x3≠a6,∴选项A不符合题意;∵(x3)2=x6,∴选项B符合题意;∵(﹣3x)3=﹣27x3,∴选项C不符合题意;∵x4+x5≠x9,∴选项D不符合题意.故选:B.3.解:A、a8﹣a2不能再化简,此选项不符合题意;B、a12÷a2=a10,此选项不符合题意;C、a3•a2=a5,此选项不符合题意;D(a2)3=a6,此选项符合题意;故选:D.4.解:原式=2x2+(2m﹣8)x﹣16m,由结果不含x的一次项,得到2m﹣8=0,解得:m=4,故选:A.5.解:∵76=202﹣182,∴76是“神秘数”,故选:C.6.解:A、该代数式中既不含有相同项,也不含有相反项,不能用平方差公式计算,故本选项错误;B、该代数式中只含有相同项和1,不含有相反项,不能用平方差公式计算,故本选项错误;C、该代数式中只含有相同项2a和﹣3b,不含有相反项,不能用平方差公式计算,故本选项错误;D、该代数式中既含有相同项﹣a,也含有相反项2b,能用平方差公式计算,故本选项正确;故选:D.7.解:∵x2+(m﹣3)x+16是完全平方式,∴m﹣3=±8,解得:m=11或﹣5,故选:C.8.解:∵a+b=2,ab=﹣2,∴原式=(a+b)2﹣2ab=4+4=8,故选:D.9.解:A、原式=2a2,不符合题意;B、原式=a2﹣2ab+b2,不符合题意;C、原式=﹣x8,不符合题意;D、原式=﹣8a6b3÷4a5=﹣2ab3,符合题意,故选:D.10.解:S1=(AB﹣a)⋅a+(CD﹣b)(AD﹣a)=(AB﹣a)⋅a+(AB﹣b)(AD﹣a),S2=(AB﹣a)(AD﹣b)+(AD﹣a)(AB﹣b),∴S2﹣S1=(AB﹣a)(AD﹣b)﹣(AB﹣a)a=(AB﹣a)(AD﹣b﹣a)<0,即S1>S2,故选:B.二.填空题11.解:∵53•5m•52m+1=525,∴3+m+2m+1=25,解得:m=7,故(6﹣m)2019的值为:(﹣1)2019=﹣1.故答案为:﹣1.12.解:因为6x=12,所以(2×3)x=12,即2x×3x=12,因为2x=3,所以3x=12÷3=4.故答案为:4.13.解:∵x=2m+1,y=2+9m=2+32m,∴y=2+(x﹣1)2=x2﹣2x+3.故答案为:y=x2﹣2x+3.14.解:∵x m=3,x n=2,∴x m﹣n=x m÷x n=.故答案为:.15.解:∵a+b=3,ab=4,∴(a﹣2)(b﹣2)==ab﹣2b﹣2a+4=ab﹣2(a+b)+4=4﹣2×3+4=2,故答案为:2.16.解:原式=(1+)(1﹣)(1+)(1﹣)…(1+)(1﹣)=××…××××…×=×=,故答案为:17.解:∵x2+y2=5,xy=﹣3∴原式=x2+y2﹣2xy=5+6=11,故答案为:1118.解:根据题意得(x﹣2)2﹣(x+1)(x+3)=17,整理得,﹣8x+1=17,解得x=﹣2.故答案为﹣2.三.解答题19.解:(1)原式=4x2﹣12x+9﹣6x2+12x=﹣2x2+9;(2)原式=a2﹣4b2+2a2﹣5b2=3a2﹣9b2,∵a=2,b=﹣1,∴原式=12﹣9=3.20.解:原式=(x2﹣y2﹣x2+2xy﹣y2+2xy﹣2y2)÷4y=(﹣4y2+4xy)÷4y=﹣y+x,当x=1,y=﹣1时,原式=1+1=2.21.解:(1)原式=﹣×(﹣24)+×(﹣24)﹣×(﹣24)=12﹣2+3=13;(2)当a m=5,a n=25时,a m+n=a m•a n=5×25=125.22.解:(1)∵2x+5y+3=0,∴2x+5y=﹣3,∴4x•32y=22x•25y=22x+5y=2﹣3=;(2)∵2×8x×16=223,∴2×23x×24=223,∴1+3x+4=23,解得:x=6.23.解:(1)从第二步开始出错;故答案为:二;(2)正确的解题过程是:2962=(300﹣4)2=3002﹣2×300×4+42=90000﹣2400+16=87616.24.解:(1)原式=(2﹣1)(2+1)(22+1)(24+1)(28+1)=(22﹣1)(22+1)(24+1)(28+1)=(24﹣1)(24+1)(28+1)=(28﹣1)(28+1)=216﹣1;(2)原式=+(3﹣1)(3+1)(32+1)(34+1)(38+1)(316+1)=+(32﹣1)(32+1)(34+1)(38+1)(316+1)…=+(332﹣1)=×332.25.解:(1)由图3得:(a﹣b)2=(a+b)2﹣4ab,故答案为:(a+b)2﹣4ab;(2)解:①根据(1)的结论,可得(m﹣n)2=(m+n)2﹣4mn,∵(m+n)2=9,(m﹣n)2=1,即1=9﹣4mn,解得mn=2;②由(m+n)2=m2+2mn+n2,可得,9=m2+2×2+n2,所以m2+n2=9﹣4=5;(3)由图4得:(2a+b)(a+b)=2a2+3ab+b2.故答案为:(2a+b)(a+b)=2a2+3ab+b2.(注:等式2a2+3ab+b2=(2a+b)(a+b)也可得分)。