非线性电阻伏安特性曲线实验
非线性元件伏安特性实验报告
使用公式
eU =
hc λ
计算光的波长。
1
【实验数据记录、实验结果计算】
1、整流二极管 正向:
表一 测量整流二极管的正向伏安特性数据
编号
1
2
3
4
5
U(V)
0.000
0.118
0.211
0.359
0.518
I(mA) 0.000
0.000
0.000
0.000
0.257
编号
8
9
10
11
12
U(V)
0.587
最后得到:整流二极管的开启电压 U =
−A =
B
0.619(V)
2
负向:
编号 U(V) I(μA)
1 -1.41 -0.13
表二 测量整流二极管的负向伏安特性数据
2
3
4
5
6
7
8
9
-3.59 -5.93 -7.71 -9.85 -11.05 -12.71 -14.94 -16.75
-0.35 -0.58 -0.76 -0.97 - 1.09 -1.26 -1.48 -1.66
稳压二极管:工作在第三象限,起初通过电流较小时,电压变化较大,当电压到达 工作电压后,电压变化开始趋于平缓。
发光二极管:其工作原理与检波二极管正向伏安特性相似,当电压超过其开启电压
最后得到:
稳压二极管的工作电压 U =
−A =
B
-5.10(V)
4
3、发光二极管
编号 U(V) I(mA)
1 1.730 10.59
表三 发光二极管的伏安特性数据(红光)
2
3
实验六非线性伏安特性曲线的研究
实验六非线性伏安特性曲线的研究一、实验目的1. 掌握非线性元件的基本特性2. 学习并掌握二极管、稳压二极管的特性及应用3. 学习使用数字万用表与模拟万用表进行电路测试二、实验仪器数字万用表、模拟万用表、双踪示波器、直流电源、稳压电源、干电池、二极管、稳压二极管、电阻器、半导体二极管特性试验板。
三、实验步骤1. 对于一个二极管,连接一个三级的线性电路,设置恒流源,并连接一个数字万用表测量电压沿着源和负载电阻的变化,然后将数据绘制在电容电路上的U-I曲线。
增加负载电阻的阻值,绘制更多的点,然后分析和绘制反向特性曲线。
2. 将恒流源与单稳压二极管特性试验板连接,此时的数据为平均输出功率与稳定电压之间的变化,绘制到输出功率与稳定电压之间的曲线中。
3. 为单个稳压电阻连接定电源,测试数据来绘制器件的特性曲线,然后在负载线路中,计算出绘图的值。
4. 对于一个稳压二极管连接一个电路中,测量电流随着电压的变化,从而得到稳压二极管的Zener特性曲线。
四、实验结果与分析1. 实验第一部分得到的二极管的I-V特性曲线可以用于设计电路,特别是在微波和高速数字电路中。
2. 稳压二极管的特点是在一定电压范围内可维持相对稳定的电压值,因此可以被用于稳压电源,防止诸如过流和过电压等情况下对其他元件造成损害。
3. 由于稳压二极管具有稳压功能,因此可以被用于电子系统中,例如用于抵消噪声,或在输出中稳定地维持电压水平。
五、实验总结本实验通过研究非线性伏安特性曲线,主要了解了二极管、稳压二极管的特性及应用,同时也学会了使用数字万用表与模拟万用表进行电路测试,更好地了解电子元件的工作原理与应用。
[理科实验报告精品]非线性元件伏安特性的测量 实验报告
实验报告姓名:班级:学号:实验成绩:同组姓名:实验日期:2010-4-12 指导老师:助教02 批阅日期:非线性元件伏安特性的测量【实验目的】1.学习测量非线性元件的伏安特性,针对所给各种非线性元件的特点,选择一定的实验方法,援用配套的实验仪器,测绘出它们的伏安特性曲线。
2. 学习从实验曲线获取有关信息的方法。
【实验原理】1、非线性元件的阻值用微分电阻表示,定义为 R = dU/dI。
2、如下图所示,为一般二极管伏安特性曲线3、测量检波和整流二极管,稳压二极管,发光二极管的伏安特性曲线,电路示意图如下(1)检波和整流二极管检波二极管和整流二极管都具有单向导电作用,他们的差别在于允许通过电流的大小和使用频率范围的高低。
(2)稳压二极管稳压二极管的特点是反向击穿具有可逆性,反向击穿后,稳压二极管两端的电压保持恒定,这个电压叫稳压二极管的工作电压。
(3)发光二极管发光二极管当两端的电压小于开启电压时不会发光,也没有电流流过。
电压一旦超过开启电压,电流急剧上升,二极管发光,电流与电压呈线性关系,直线与电压坐标的交点可以认为是开启电压.使用公式计算光的波长。
【实验数据记录、实验结果计算】1、整流二极管正向:编号 1 2 3 4 5 6 7 8 9 10 U测0.380.410.440.480.510.540.560.620.630.65 (V)I(mA) 0.0080.0210.0360.0990.2100.4250.660 1.076 2.142 2.866编号11 12 13 14 15 16 17 18 19 20 U(V) 0.670.680.700.730.740.780.800.830.860.89 I(mA) 3.691 4.004 5.224 6.5277.0029.90211.10413.32315.71018.169根据图像去掉了几个异常点得到图像如下:图1整流二极管正向伏安特性曲线及线形拟合直线拟合直线方程:I = 72.56604 * U —46.6435令I = 0,得U0 = 0.642 (V)则整流二极管的开启电压U0 = 0.642(V)反向:表二测量整流二极管的反向伏安特性数据编号 1 2 3 4 5 6 7 8 9 10 U(V) -1.00-3.00-5.00-7.00-9.00-11.00-13.00-15.00-17.00-19.00 I(A) 0.0000.0000.0000.0000.0000.0000.0000.0000.0000.000根据数据得到图像如下:图2 整流二极管反向伏安特性曲线及线性拟合直线在测量范围(I≤20mA)内,电压恒为0。
伏安特性实验报告结论(3篇)
第1篇一、实验概述伏安特性实验是电学基础实验之一,旨在通过测量电学元件在电压与电流作用下的关系,绘制出伏安特性曲线,从而分析元件的电阻特性。
本实验采用逐点测试法,对线性电阻、非线性电阻元件的伏安特性进行了测量和绘制。
二、实验目的1. 理解伏安特性曲线的概念,掌握伏安特性曲线的绘制方法。
2. 通过实验验证欧姆定律,了解电阻元件的伏安特性。
3. 分析非线性电阻元件的特性,掌握其应用领域。
三、实验原理1. 伏安特性曲线:在电阻元件两端施加电压,通过电阻元件的电流与电压之间的关系称为伏安特性曲线。
根据伏安特性的不同,电阻元件分为线性电阻和非线性电阻。
2. 线性电阻:线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,斜率代表电阻值。
其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关。
3. 非线性电阻:非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
四、实验步骤1. 准备实验仪器:直流稳压电源、直流电压表、直流电流表、电阻元件、导线等。
2. 连接实验电路:将电阻元件与直流稳压电源、直流电压表、直流电流表连接成闭合回路。
3. 测量电压与电流:逐步调节直流稳压电源的输出电压,记录对应的电流值。
4. 绘制伏安特性曲线:以电压为横坐标,电流为纵坐标,将实验数据绘制成曲线。
五、实验结果与分析1. 线性电阻伏安特性曲线:实验结果表明,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线。
斜率代表电阻值,与实验理论相符。
2. 非线性电阻伏安特性曲线:实验结果表明,非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线。
在低电压下,电阻值较小,随着电压的增大,电阻值逐渐增大,直至趋于饱和。
这与实验理论相符。
3. 伏安特性曲线的应用:通过伏安特性曲线,可以分析电阻元件在不同电压下的电阻值,从而了解电阻元件的电阻特性。
在工程实践中,伏安特性曲线对于设计电路、选择电阻元件具有重要意义。
非线性元件伏安特性的测量实验报告
非线性元件伏安特性的测量实验报告一、实验目的1、了解非线性元件的伏安特性曲线。
2、掌握测量非线性元件伏安特性的基本方法。
3、学会使用相关仪器,如电压表、电流表、电源等。
4、通过实验数据的处理和分析,加深对非线性元件电学特性的理解。
二、实验原理非线性元件的电阻值不是一个恒定值,而是随着电压或电流的变化而变化。
常见的非线性元件有二极管、三极管、热敏电阻等。
在本次实验中,我们以二极管为例来测量其伏安特性。
当给二极管加上正向电压时,在电压较低时,电流很小,几乎为零。
当电压超过一定值(称为开启电压)后,电流迅速增加。
而当给二极管加上反向电压时,在一定的反向电压范围内,反向电流很小,且基本不随反向电压的变化而变化。
当反向电压超过某一值(称为反向击穿电压)时,反向电流急剧增加。
通过测量二极管在不同电压下的电流值,就可以得到其伏安特性曲线。
三、实验仪器1、直流电源:提供稳定的电压输出。
2、电压表:测量二极管两端的电压。
3、电流表:测量通过二极管的电流。
4、电阻箱:用于调节电路中的电阻值。
5、二极管:实验对象。
6、导线若干:连接电路。
四、实验步骤1、按照电路图连接实验电路,将电源、电阻箱、二极管、电压表和电流表依次连接。
2、调节电阻箱,使电路中的初始电阻较大,以保护电流表和二极管。
3、接通电源,缓慢调节电源的输出电压,从 0 开始逐渐增加。
在每个电压值下,记录电压表和电流表的读数。
4、测量正向伏安特性时,电压逐渐增加到一定值,注意观察电流的变化。
当电流急剧增加时,停止增加电压。
5、测量反向伏安特性时,将电源极性反转,同样从 0 开始逐渐增加反向电压,记录相应的电压和电流值。
6、重复测量多次,以减小误差。
五、实验数据记录与处理|电压(V)|正向电流(mA)|反向电流(μA)|||||| 00 | 00 | 00 || 02 | 00 | 00 || 04 | 00 | 00 || 06 | 10 | 00 || 08 | 50 | 00 || 10 | 100 | 00 || 12 | 200 | 00 || 14 | 400 | 00 || 16 | 800 | 00 || 18 | 1200 | 00 || 20 | 1600 | 00 || 22 | 2000 | 00 ||-05 | 00 | 00 ||-10 | 00 | 00 ||-15 | 00 | 00 ||-20 | 00 | 00 ||-25 | 00 | 00 ||-30 | 00 | 00 ||-35 | 00 | 00 ||-40 | 00 | 00 |根据上述实验数据,以电压为横坐标,电流为纵坐标,分别绘制出二极管的正向伏安特性曲线和反向伏安特性曲线。
电阻伏安特性实验报告
一、实验目的1. 学习测量电阻元件伏安特性的方法;2. 掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3. 掌握直流稳压电源、直流电压表、直流电流表的使用方法;4. 通过实验加深对欧姆定律和伏安特性曲线的理解。
二、实验原理电阻元件的伏安特性曲线反映了电阻元件两端的电压U与通过电阻的电流I之间的函数关系。
根据欧姆定律,线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,其斜率等于电阻值R。
而非线性电阻元件的伏安特性曲线不是一条直线,其阻值R随电压U的变化而变化。
三、实验仪器1. 直流稳压电源2. 直流电压表3. 直流电流表4. 电阻元件(线性电阻、非线性电阻)5. 导线6. 电路连接器四、实验步骤1. 连接电路:根据实验要求,将直流稳压电源、直流电压表、直流电流表、电阻元件和导线连接成电路。
2. 设置初始参数:将直流稳压电源的输出电压调至一定值,记录下此时的电压值。
3. 测量伏安特性:改变直流稳压电源的输出电压,分别测量线性电阻和非线性电阻的电流和电压值,记录数据。
4. 数据处理:将测得的电压和电流值绘制成伏安特性曲线,分析电阻元件的伏安特性。
五、实验结果与分析1. 线性电阻伏安特性:通过实验测量,线性电阻的伏安特性曲线是一条通过坐标原点的直线,斜率等于电阻值R。
这与欧姆定律的理论预期相符。
2. 非线性电阻伏安特性:通过实验测量,非线性电阻的伏安特性曲线不是一条直线,其阻值R随电压U的变化而变化。
这与非线性电阻元件的特性相符。
六、实验讨论1. 在实验过程中,应注意测量数据的准确性,尽量减小实验误差。
2. 在连接电路时,应注意电路的连接顺序,避免因连接错误导致实验失败。
3. 在实验过程中,要注意安全操作,避免因误操作导致设备损坏或人身伤害。
七、实验结论1. 通过实验,我们掌握了测量电阻元件伏安特性的方法。
2. 通过实验,我们加深了对欧姆定律和伏安特性曲线的理解。
3. 通过实验,我们学会了如何分析电阻元件的伏安特性。
非线性电阻的伏安特性曲线实验
线性电阻和非线性电阻的伏安特性曲线【教学目的】1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。
2、了解晶体二极管的单向导电特性。
【教学重点】1、测绘电阻的伏安特性曲线;2、了解二极管的单向导电特性。
【教学难点】非线性电阻的导电性质。
【课程讲授】提问:1.如何测绘伏安特性曲线?2.二极管导电有何特点?一、实验原理常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
下面对它的结构和电学性能作一简单介绍。
图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。
晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。
它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。
p-n结具有单向导电的特性,常用图2(b)所示的符号表示。
关于p-n结的形成和导电性能可作如下解释。
图3 p-n结的形成和单向导电特性如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。
随着扩散的进行,p区空穴减少,出现了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。
结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。
这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。
实验六非线性伏安特性曲线的研究
实验六非线性伏安特性曲线的研究【实验目的】1、熟悉电学基本仪器使用方法,电路的连接,仪器的选择;2、通过电阻元件、半导体二极管、钨丝灯泡等电学元件的伏安特性测量。
学会合理配接电压表和电流表,才能使测量误差最小,初步学习实验方案设计。
3、掌握电子元件非线性特点,熟悉掌握电子元件伏安特性的测试技巧;4、学会用作图法处理实验数据。
【实验仪器】DH6102型伏安特性实验仪【实验原理】当一个元件两端加上电压,元件内有电流通过时,若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,这类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
(a) 内接法 (b) 外接法图3-6-2 测电阻的线路但是,由于电表有内阻,无论采用内接法还是外接法,均会给测量带来系统误差。
当R >V A R R 时,用内接法系统误差小。
当R <V A R R 时,用外接法系统误差小。
当R=V A R R 时,两种接法可任意选用。
因此,通常只在对电阻值的测量精确度要求不高时,才使用伏安法,并且还要根据电表的内阻R A 、R V 和待测电阻值的大小来合理选择测量线路。
测定元件的伏安特性曲线与测量元件的电阻一样,也存在着用电流表内接还是外接的问题,我们也应根据待测元件电阻的大小,适当地选择电表和接法,减小系统误差,使测出的伏安特性曲线尽可能符合实际。
1、半导体二极管半导体二极管是一种常用的非线性元件,由P 型、N 型半导体材料制成PN 结,经欧姆接触引出电极,封装而成。
在电路中用图3-6-3(a)符号表示,两个电极分别为正极、负极。
二极管的主要特点是单向导电性,其伏安特性曲线如图3-6-3(b)所示,其特点是:在正向电流和反向电压较小时,电流较小,当正向电压加大到某一数值U D 时,正向电流明显增大,将此段直线反向延长与横轴向交,交点U D 称为正向导通阈值电压。
非线性电阻的伏安特性
Id(mA) 0
1
3
5 10 15 20
正向
连接 Vd(V) 0
反向 连接
Vd(V) Id(uA)
表 2-4-2
0 -1 -3 0
-5 -10
上页 目录
下页
实验步骤
发光二极管测量电路
图2-4-2(a) 发光二极管 正向测量电路
图2-4-2(b) 发光二极管 反向测量电路
上页 目录
下页
上页 目录
下页
实验原理
图2-4-1 稳压管正、反向连接
上页 目录
下页
非线性电阻的伏安特性
实验步骤
一、测发光二极管伏安特性
(1)按图2-4-2(a)电路接线,按表2-4-1 给定的电流值测量发光二极管的正向特性,电 压值记录于表2-4-1中。
上页 目录
下页
实验步骤
(2)按图2-4-2(b)电路接线,按表2-4-2给 定的电压值测量发光二极管的反向特性,电流值 记录于表2-4-2中。
上页 目录
下页
非线性电阻的伏安特性
实验仪器
直流稳压电源 万用表 电路信号与系统实验箱
上页 目录
下页
实验仪器
直流稳压电源
实验室所用直流电压源为 双通道直流稳压电源。
电压显示值仅为参考,实 际输出以万用表测量为准
应避免电压源短路!
上页 目录
下页
实验箱
实验仪器
发光二极管 和稳压管
上页 目录
下页
非线性电阻的伏安特性
(3)按图2-4-3(b)电路接线,先按表2-4-4给 定的电压值,测量稳压管的反向电流,然后按给定 的电流值测量反向电压记录于表2-4-4中。
实验八非线性电阻伏安特性的测试
非线性电阻的特点是伏安特性曲线为非线性, 其阻值随所加电压的变化而变化。
03
实验步骤
实验设备介绍
01
02
03
04
电源
提供稳定的直流或交流电源。
非线性电阻器
用于测试不同电压下的电流特 性。
电流表和电压表
用于测量电阻器上的电流和电 压。
导线
连接电源、电阻器和测量仪表 。
实验操作流程
01 连接电源、电阻器和测量仪表,确保线路 连接正确无误。
实验八 非线性电阻伏安 特性的测试
• 实验目的 • 实验原理 • 实验步骤 • 实验结果分析 • 实验总结与思考
01
实验目的
掌握非线性电阻伏安特性的概念
总结词
理解非线性电阻的基本概念和特性,包括伏安特性曲线和电阻值随电压变化的规律。
详细描述
非线性电阻的伏安特性是指电流与电压之间的关系,这种关系不是线性的,即电阻值会随着电压的变 化而变化。在实验中,需要观察非线性电阻的伏安特性曲线,了解其电阻值随电压变化的规律。
学习非线性电阻的测试方法
总结词
掌握非线性电阻的测试方法,包括测量电路的设计、测量步骤和数据处理。
详细描述
在实验中,需要设计合适的测量电路,根据电路图搭建实验装置,并按照规定的 步骤进行测量。在测量过程中,需要注意电压和电流的读数,并记录数据。最后 ,需要对实验数据进行处理和分析,得出非线性电阻的伏安特性曲线。
加深对非线性电阻的理解
通过实验数据的分析,我进一步理解了非线性电阻的工作原理和特性,对其在实际电路中 的应用有了更深入的认识。
提高实验技能和操作能力
在实验过程中,我学会了正确操作实验设备、处理实验数据和绘制伏安特性曲线,提高了 自己的实验技能和操作能力。
伏安特性曲线的测量实验报告
伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
伏安特性曲线的测量实验报告
伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
伏安特性曲线的测量实验报告
伏安特性曲线的测量实验报告篇一:电路元件伏安特性的测量实验一电路元件伏安特性的测量一、实验目的1.学习测量电阻元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性的逐点测试法;3.掌握直流稳压电源和直流电压表、直流电流表的使用方法。
二、实验原理在任何时刻,线性电阻元件两端的电压与电流的关系,符合欧姆定律。
任何一个二端电阻元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系式I=f来表示,即用I-U 平面上的一条曲线来表征,这条曲线称为电阻元件的伏安特性曲线。
根据伏安特性的不同,电阻元件分为两大类:线性电阻和非线性电阻。
线性电阻元件的伏安特性曲线是一条通过坐标原点的直线,如图1-1(a)所示。
该直线的斜率只由电阻元件的电阻值R决定,其阻值R为常数,与元件两端的电压U和通过该元件的电流I无关;非线性电阻元件的伏安特性曲线不是一条经过坐标原点的直线,其阻值R不是常数,即在不同的电压作用下,电阻值是不同的。
常见的非线性电阻如白炽灯丝、普通二极管、稳压二极管等,它们的伏安特性曲线如图1-1(b)、(c)、(d)所示。
在图1-1中,U >0的部分为正向特性,U<0的部分为反向特性。
线性电阻白炽灯丝绘制伏安特性曲线通常采用逐点测试法,电阻元件在不同的端电压U作用下,测量出相应的电流I,然后逐点绘制出伏安特性曲线I=f,根据伏安特性曲线便可计算出电阻元件的阻值。
三、实验设备与器件1.直流稳压电源1 台2.直流电压表1 块3.直流电流表1 块4.万用表 1 块5.白炽灯泡 1 只6. 二极管1 只7.稳压二极管1 只8.电阻元件 2 只四、实验内容1.测定线性电阻的伏安特性按图1-2接线。
调节直流稳压电源的输出电压U,从0伏开始缓慢地增加(不得超过10V),在表1-1中记下相应的电压表和电流表的读数。
2将图1-2中的1kΩ线性电阻R换成一只12V,的灯泡,重复1的步骤,在表1-2中记下相应的电压表和电流表的读数。
非线性电阻的伏安特性实验报告
非线性电阻的伏安特性实验报告非线性电阻的伏安特性实验报告引言电阻是电路中常见的基本元件之一,它对电流的流动产生一定的阻碍作用。
根据欧姆定律,电阻的伏安特性是线性的,即电阻值与电流成正比。
然而,在某些特殊情况下,电阻的伏安特性并非线性,这就是非线性电阻。
本实验旨在通过测量非线性电阻的伏安特性曲线,探究其特点和应用。
实验原理非线性电阻是指其电阻值与电流之间呈非线性关系的电阻元件。
一般情况下,非线性电阻的电阻值会随着电流的增大而减小,或者随着电流的增大而增大。
这种非线性关系可以通过绘制伏安特性曲线来展示。
实验步骤1. 准备实验所需材料和设备,包括非线性电阻元件、电流表、电压表和电源等。
2. 搭建电路,将非线性电阻元件连接到电流表和电压表之间,电流表和电压表分别连接到电源的正负极。
3. 逐渐调节电源的电压,记录下电流表和电压表的读数。
4. 根据记录的数据,绘制伏安特性曲线。
实验结果与分析根据实验记录的数据,我们绘制出了非线性电阻的伏安特性曲线。
从曲线可以看出,随着电流的增大,电阻的值呈现出递减的趋势。
这与非线性电阻的特性相符合。
此外,曲线上还存在一些异常点,这可能是由于测量误差或电路中其他因素的影响所致。
非线性电阻的应用非线性电阻在实际应用中具有广泛的用途。
以下是几个常见的应用领域:1. 电子器件:非线性电阻常用于电子器件中,如变阻器、热敏电阻等。
通过调节电阻的值,可以实现对电路的控制和调节。
2. 光电子学:非线性电阻在光电子学中也有重要应用。
例如,光敏电阻的电阻值会随着光照强度的变化而发生变化,从而实现对光信号的检测和测量。
3. 功率控制:非线性电阻可以用于功率控制电路中,通过调节电阻的值来实现对电路功率的调节,保护电路和设备的安全运行。
实验总结通过本次实验,我们了解了非线性电阻的伏安特性及其应用。
非线性电阻的伏安特性曲线呈现出非线性关系,电阻值随电流的变化而变化。
非线性电阻在电子器件、光电子学和功率控制等领域具有广泛的应用前景。
电路元件的伏安特性曲线测量实验报告
电路基础实验报告第一次实验实验报告一、实验内容电路元件的伏安特性曲线测量二、实验目的1.学习并测量电路元件伏安特性的方法;2.掌握线性电阻、非线性电阻元件伏安特性曲线的逐点测试法,了解非线性元件的伏安特性曲线;3.掌握使用直流稳压电源和直流电压表的、直流电源表的方法.三、实验原理任何一个二端元件的特性可用该元件上的端电压U与通过该元件的电流I之间的函数关系I=f(U)来表示,即用I-U平面上的一条曲线来表征,该曲线称为该元件的伏安特性曲线.线性电阻器是理想元件,在任何时刻它两端的电压与其电流的关系服从欧姆定律;非线性元件的伏安特性曲线不是一条通过原点的直线,它在I-U平面上的特性曲线各不相同. 四、实验仪器电阻箱,直流稳压电源,导线五、实验内容(一)测定电阻的伏安特性曲线1.实验电路图如下:2.按照电路图连接电路,检查无误后接通电源;3.调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;4.数据记录及处理U/V 0.275 0.381 0.411 0.453 0.540 0.641 0.702 0.775 0.878 0.927 I/mA 2.7 3.7 4.0 4.5 5.3 6.3 7.0 7.7 8.7 9.2根据所得数据做出电阻伏安特性曲线如下图所示(MATLAB绘制):计算得到定值电阻的阻值为99.80Ω(二)测量二极管的伏安特性曲线1.正向电压条件下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源;(3) 调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数;(注:正向电流不超过25mA,电压在0~0.75V内调节;在二极管阻值变化明显的区域(0.5~0.75V),应取较多的测量点);(4)二极管正向电阻数据记录U/V 0.182 0.225 0.346 0.367 0.383 0.416 0.437 0.461 0.479 0.486 I/mA 0.002 0.003 0.004 0.005 0.006 0.012 0.020 0.036 0.054 0.065 U/V 0.500 0.505 0.515 0.530 0.541 0.550 0.565 0.569 0.575 0.584 I/mA 0.089 0.100 0.126 0.179 0.229 0.278 0.388 0.424 0.475 0.579 U/V 0.589 0.595 0.598 0.601 0.605 0.612 0.613 0.621 0.626 0.628 I/mA 0.652 0.733 0.785 0.837 0.900 1.050 1.082 1.286 1.427 1.524 U/V 0.632 0.639 0.642 0.647 0.652 0.658 0.660 0.664 0.668 0.672 I/mA 1.640 1.947 2.15 2.34 2.62 2.96 3.14 3.40 3.72 4.05 2.反向电压条件下实验注意要点:测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源,从0V开始缓慢地增大负向电压最大不超过30V.实验数据记录如下(由于电流表精度不足,数据测量较少且猜测误差较大):U/V 19.32 13.20 7.52 1.94I/mA 0.006 0.005 0.004 0.003(三)测量稳压二极管的伏安特性曲线1.正向情况下(1)实验电路图如下:(2)按照电路图连接电路,检查无误后接通电源(3)调节输出细调旋钮,调节输出电压,并记录电压表和电流表示数(4)稳压二极管正向电阻数据记录:U/V 0.003 0.007 0.011 0.016 0.021 0.025 0.028 0.034 0.037 0.040 I/mA 0.59 1.00 1.41 1.99 2.50 2.98 3.27 3.97 4.28 4.69 U/V 0.046 0.049 0.053 0.054 0.058 0.063 0.067 0.069 0.074 0.080 I/mA 5.27 5.68 6.06 6.17 6.61 7.23 7.66 7.81 8.35 9.04 U/V 0.084 0.089 0.095 0.100 0.108 0.118 0.132 0.141 0.153 0.163 I/mA 9.48 10.03 10.71 11.31 12.19 13.22 14.84 15.81 17.19 18.34 U/V 0.169 0.178I/mA 19.03 19.95正向曲线如下:2.反向情况下(1)测定反向特性时,互换稳压电源的输出端正、负连线,调节直流稳压电源注:正反向电流不超过20mA(2)稳压二极管反向电阻数据记录:U/V -0.009 -0.013 -0.021 -0.024 -0.030 -0.032 -0.037 -0.046 -0.052 -0.062 I/mA -1.27 -1.68 -2.53 -2.91 -3.51 -3.74 -4.32 -5.27 -6.00 -7.09 U/V -0.066 -0.074 -0.082 -0.088 -0.094 -0.104 -0.109 -0.112 -0.120 -0.128 I/mA -7.58 -8.46 -9.36 -10.04 -10.73 -11.82 -12.41 -12.67 -13.57 -14.46 U/V -0.134 -0.139 -0.144 -0.152 -0.158 -0.165 -0.173 -0.176I/mA -15.15 -15.75 -16.31 -17.23 -17.97 -18.69 -19.60 -19.96反向曲线如下:将正向反向图画到一张图中:注:曲线使用了拟合程度更高的自然对数二次方回归.六、注意事项1.测量时,直流稳压电源输出电压应该从0V开始缓慢增大,应时刻关注电流表和电压表示数,随时记录实验数据;2.进行不同实验时,应先估算电压和电流值,合理选择仪表的量程,及时更换量程;仪表的极性也不可接错;3.理解区分二极管正向和反向特性曲线.七、思考1.如何计算线性电阻和非线性电阻的电阻值对于线性电阻,可以利用伏安法多次测量后作出伏安特性曲线,利用伏安特性曲线求出电阻;对于非线性电阻,同样可以通过实验绘制它的伏安特性曲线,然后在曲线上读出在某一电压电流条件下该非线性电阻的电阻值.2.分析常见元件的伏安特性曲线a.线性电阻的伏安特性曲线:由图中可以看出,线性电阻在加正向和反向压时,其伏安特性曲线都是一条直线,这说明线性电阻的阻值始终是一定值,其数值为伏安特性曲线斜率的倒数.b.钨丝电阻的伏安特性曲线:由图中看出,钨丝电阻在电压较小所加电压的的情况下电阻呈线性变化,随着所加电压增大,伏安特性曲线上点的切线斜率逐渐减小,电阻逐渐增大,在加反向电压时情况相似.c.普通二极管的伏安特性曲线:二极管在正向反向所表现出的电阻特性不同:二极管两端加正向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.二极管两端加反向电压时,随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递减,说明二极管在所加电压为反向的情况下,随着电压的增大,二极管电阻慢慢增大.d.稳压二极管的伏安特性曲线:稳压二极管在正向反向所表现出的电阻特性也有所不同:在稳压二极管两端加正向电压时,二极管电流随电压增大变化明显,并且随着所加电压的增大,二极管伏安特性曲线切线斜率变化趋势为逐渐递增,说明二极管在所加电压为正向的情况下,随着电压的增大,二极管电阻慢慢减小.在稳压二极管两端加反向电压时,在电压逐渐增大的过程中,在某一范围内电压增大过程中,电流变化微小;当电压到一定值时,电流变化较大,且随电压的增大,电阻减小.3.如果误将电流表并联到电路中,会出现什么后果由于电流表电阻比较小,会导致短路,可能会损坏仪器.4.假如在测量二极管的伏安特性曲线的实验中,漏接限流电阻R,会出现什么后果测量过程中,由于所加电压的不断增大,二极管电阻会不断减小. 如果漏接限流电阻,会导致电路中电流过大,可能损坏实验仪器,造成危险.5.本实验中,用伏安法测量电阻元件的伏安特性的电路模型采用如下图(a)所示。
线性与非线性元件伏安特性的测定实验报告
线性与非线性元件伏安特性的测定实验报告线性与非线性元件伏安特性的测定实验报告引言:伏安特性是电子元器件的重要参数之一,它描述了电流与电压之间的关系。
在实际应用中,线性和非线性元件的伏安特性测定对于电路设计和性能评估非常重要。
本实验旨在通过测定不同元件的伏安特性曲线,探究线性和非线性元件的特性及其应用。
实验目的:1. 通过测定线性元件的伏安特性曲线,研究其电阻特性;2. 通过测定非线性元件的伏安特性曲线,研究其电流与电压的非线性关系;3. 探讨线性和非线性元件在电路中的应用。
实验器材:1. 直流电源;2. 电压表和电流表;3. 不同电阻值的电阻器;4. 二极管和晶体管。
实验步骤:1. 线性元件的伏安特性测定:a. 将电阻器连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。
2. 非线性元件的伏安特性测定:a. 将二极管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。
3. 晶体管的伏安特性测定:a. 将晶体管连接到直流电源的正负极,并在电路中串联一个电流表,测量电流表的读数;b. 在电路中并联一个电压表,测量电压表的读数;c. 通过改变直流电源的电压,记录不同电压下的电流和电压值;d. 绘制电流与电压之间的伏安特性曲线。
实验结果与分析:通过实验测定得到的伏安特性曲线可以清晰地反映出线性和非线性元件的特性。
在线性元件的伏安特性曲线中,电流与电压成正比,呈线性关系。
而在非线性元件的伏安特性曲线中,电流与电压之间存在非线性关系,通常表现为一个阈值电压,当电压小于该值时,电流几乎为零;当电压大于该值时,电流迅速增加。
非线性电阻元件伏安特性曲线的测定
非线性电阻元件伏安特性曲线的测定
非线性电阻是相对于线性电阻而言的。
前面我们学习了线性电阻的特点是其电阻值不随其两端电压或电流而变,或者说其伏安特性可用欧姆定律来表示,是在U-I平面上一条通过原点的直线。
而非线性电阻是指加在它两端的电压与通过它的电流之比值不是常数,其伏安特性不再是一条直线而是遵循某种特定的非线性函数关系。
通过非线性电阻的伏安特性很难用数学公式精确表达出来,而是借助于试验结果获得近似的非线性函数关系。
1.举例
非线性电阻元件在现代工业中应用非常广泛,例如各种半导体器件的伏安特性都是非线性的,如图所示就是半导体二极管的伏安特性。
非线性电阻的图形符号如图所示。
2.描述方法
一般来说,非线性电阻的伏安特性可以用下列函数关系来表示
或
对于前面一个式子来说,非线性电阻两端电压是其电流的单值函数,我们把这种非线性电阻称为电流掌握的电阻;对于后面的式子来说,电阻中的电流是电阻两端电压的单值函数,称之为电压掌握的电阻。
上述所介绍的半导体二极管则是属于一种“单调型”的元件,它同时是电流掌握又是电压掌握的非线性电阻元件。
()非线性电阻伏安特性曲线实验.
线性电阻和非线性电阻的伏安特点曲线【授课目标】1、测绘电阻的伏安特点曲线,学会用图线表示实验结果。
2、认识晶体二极管的单导游电特点。
【授课重点】1、测绘电阻的伏安特点曲线;2、认识二极管的单导游电特点。
【授课难点】非线性电阻的导电性质。
【课程解说】提问: 1.如何测绘伏安特点曲线?2.二极管导电有何特点?一、实验原理常用的晶体二极管是非线性电阻,其电阻值不但与外加电压的大小有关,而且还与方向有关。
下面对它的结构和电学性能作一简单介绍。
图 1 线性电阻的伏安特点图2晶体二极管的p-n 结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
若是在贞洁的半导体中合适地掺入极微量的杂质,那么半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两各种类:一种杂质加到半导体中去后,在半导体中会产生好多带负电的电子,这种半导体叫电子型半导体( 也叫 n 型半导体 ) ;另一种杂质加到半导体中会产生好多缺少电子的空穴( 空位 ) ,这种半导体叫空穴型半导体( 也叫 p 型半导体 ) 。
晶体二极管是由两种拥有不同样导电性能的n 型半导体和p 型半导体结合形成的p-n 结构成的。
它有正、负两个电极,正极由p 型半导体引出,负极由n 型半导体引出,如图2(a)所示。
p-n 结拥有单导游电的特点,常用图2(b) 所示的符号表示。
关于 p-n 结的形成和导电性能可作以下解说。
图 3 p-n结的形成和单导游电特点如图 3(a) 所示,由于p 区中空穴的浓度比n 区大,空穴便由p 区向 n 区扩散;同样,由于 n 区的电子浓度比p 区大,电子便由p 区扩散。
随着扩散的进行,p 区空穴减少,出现了一层带负电的粒子区( 以 ? 表示 ) ;n 区的电子减少,出现了一层带正电的粒子区( 以⊕表示) 。
结果在 p 型与 n 型半导体交界面的两侧周边,形成了带正、负电的薄层,称为 p-n 结。
这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子 ( 电子、空穴 ) 扩散运动的方向相反,使载流子的扩散碰到内电场的阻力作用,所以这个带电薄层又称为阻截层。
非线性电阻的伏安特性曲线
非线性电阻的伏安特性曲线通过一个元件的电流随外加电压的变化关系曲线,称为伏安特性曲线。
从伏安特性曲线所遵循的规律,可以得知该元件的导电特性,以便确定它在电路中的作用。
在坐标纸上描述伏安特性曲线之前,应阅读绪论中有关实验数据图示法的内容。
[实验目的]1、测绘二极管的伏安特性曲线,学会用图线表示实验结果。
2、了解晶体二极管的单向导电特性。
[实验原理]当一个元件两端加上电压,元件内有电流通过时,电压与电流之比称为该元件的电阻。
若一个元件两端的电压与通过它的电流成比例,则伏安特性曲线为一条直线,该类元件称为线性元件。
若元件两端的电压与通过它的电流不成比例,则伏安特性曲线不再是直线,而是一条曲线,这类元件称为非线性元件。
一般金属导体的电阻是线性电阻,它与外加电压的大小和方向无关,其伏安特性是一条直线(见图1)。
从图上看出,直线通过一、三象限。
它表明,当调换电阻两端电压的极性时,电流也换向,而电阻始终为一定值,等于直线斜率的倒数VR I 。
常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
为了了解晶体二极管的导电特性,下面对它的结构和电学性能作一简单介绍。
图1线性电阻的伏安特性 图2晶体二极管的p-n 结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n 型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p 型半导体)。
晶体二极管是由两种具有不同导电性能的n 型半导体和p 型半导体结合形成的p-n 结构成的。
它有正、负两个电极,正极由p 型半导体引出,负极由n 型半导体引出,如图2(a)所示。
实验十六 线性电阻和非线性电阻的伏安特性曲线
I (A ) 2.0 1.0
-2.0 0 2.0 4.0 -1.0
V (V )
实验十六 线性电阻和非线性电阻的 伏安特性曲线
通过一个元件的电流随外加电压变化的 关系曲线,称为伏安特性曲线,从伏安特性 曲线所遵循的规律,可以得知该元件的导电 特性。
在坐标纸上描绘伏安特性曲线之前,应 阅读附录三中的内容。
2023/3/13
1
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验目的】 1.测绘电阻的伏安特性曲线。 2.了解晶体二极管的单向导电特性。 3.学会用作图法表示实验结果。
2023/3/13
2
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验装置】 稳压电源
滑线变阻器
二极管及其正 向保护电阻
导线
电流表 2023/3/13 Nhomakorabea电压表
电键(单刀双 掷开关)
金属电阻(高、 低)
3
实验十六 线性电阻和非线性电阻伏安特性曲线
【实验原理】
当一个元件两端加上电压,元件内有电流通过时,
3.将电压调为零,改变加在电阻上的电压方向(可将电阻 R 调转 180°连接),取电压为 0.00V,-0.50V,-1.00V,-1.50V,…,读出相应 的电流值。电流、电压值最好不要凑整数。
4.将测得的正、反向电压和相应的电流值填入自拟的表格,以电 压为横坐标,电流为纵坐标,给出金属电阻的伏安特性曲线。
2023/3/13
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
线性电阻和非线性电阻的伏安特性曲线
【教学目的】
1、测绘电阻的伏安特性曲线,学会用图线表示实验结果。
2、了解晶体二极管的单向导电特性。
【教学重点】
1、测绘电阻的伏安特性曲线;
2、了解二极管的单向导电特性。
【教学难点】
非线性电阻的导电性质。
【课程讲授】
提问:1.如何测绘伏安特性曲线?
2.二极管导电有何特点?
一、实验原理
常用的晶体二极管是非线性电阻,其电阻值不仅与外加电压的大小有关,而且还与方向有关。
下面对它的结构和电学性能作一简单介绍。
图1线性电阻的伏安特性图2晶体二极管的p-n结和表示符号晶体二级管又叫半导体二极管。
半导体的导电性能介于导体和绝缘体之间。
如果在纯净的半导体中适当地掺入极微量的杂质,则半导体的导电能力就会有上百万倍的增加。
加到半导体中的杂质可分成两种类型:一种杂质加到半导体中去后,在半导体中会产生许多带负电的电子,这种半导体叫电子型半导体 (也叫n型半导体);另一种杂质加到半导体中会产生许多缺少电子的空穴(空位),这种半导体叫空穴型半导体 (也叫p型半导体)。
晶体二极管是由两种具有不同导电性能的n型半导体和p型半导体结合形成的p-n结构成的。
它有正、负两个电极,正极由p型半导体引出,负极由n型半导体引出,如图2(a)所示。
p-n结具有单向导电的特性,常用图2(b)所示的符号表示。
关于p-n结的形成和导电性能可作如下解释。
图3 p-n结的形成和单向导电特性
如图3(a)所示,由于p区中空穴的浓度比n区大,空穴便由p区向n区扩散;同样,由于n区的电子浓度比p区大,电子便由p区扩散。
随着扩散的进行,p区空穴减少,出现
了一层带负电的粒子区(以Ө表示);n区的电子减少,出现了一层带正电的粒子区(以⊕表示)。
结果在p型与n型半导体交界面的两侧附近,形成了带正、负电的薄层,称为p-n结。
这个带电薄层内的正、负电荷产生了一个电场,其方向恰好与载流子(电子、空穴)扩散运动的方向相反,使载流子的扩散受到内电场的阻力作用,所以这个带电薄层又称为阻挡层。
当扩散作用与内电场作用相等时,p区的空穴和n区的电子不再减少,阻挡层也不再增加,达到动态平衡,这时二极管中没有电流。
如图3(b)所示,当p-n结加上正向电压(p区接正,n区接负)时,外电场与内电场方向相反,因而削弱了内电场,使阻挡层变薄。
这样,载流子就能顺利地通过p-n结,形成比较大的电流。
所以,p-n结在正向导电时电阻很小。
如图3(c)所示,当p-n结加上反向电压(p区接负,n区接正)时,外加电场与内场方向相同,因而加强了内电场的作用,使阻挡层变厚。
这样,只有极少数载流子能够通过p-n 结,形成很小的反向电流。
所以p-n结的反向电阻很大。
晶体二极管的正、反向特性曲线如图12-4所示。
从图上看出,电流和电压不是线性关系,各点的电阻都不相同。
凡具有这种性质的电阻,就称为非线性电阻。
图4晶体二极管的伏安特性图5测电阻伏安特性的电路
二、实验仪器
直流稳压电源,万用表(2台),电阻,白炽灯泡,灯座,短接桥和连接导线,实验用九孔插件方板。
三、实验步骤
(一)测绘金属膜电阻的伏安特性曲线
1.按图5接好线路,图中R >>A R (A R 毫安表的内阻)。
注意将分压器的滑动端调至电压为零的位置;电表的量限要选择得适当。
2.经教师检查线路后,接通电源,调节滑线变阻器的滑动头,从零开始逐步增大电压(例加取0.00V ,0.50V ,1.00V ,1.50V ,…),读出相应的电流值。
3.将电压调为零,改变加在电阻上的电压方向(可将电阻R 调转180°连接),取电压为0.00V ,-0.50V ,-1.00V ,-1.50V ,…,读出相应的电流值。
4.将测量的正、反向电压和相应的电流值填入预先自拟的表格。
以电压为横坐标,电流为纵坐标,绘出金属膜电阻的伏安特性曲线。
(二)测绘晶体二极管的伏安特性曲线
测量之前,先记录所用晶体管的型号(为测出反向电流的数值,采用锗管)和主要参数(即最大正向电流和最大反向电压),再判别晶体管的正、负极。
1.为了测得晶体二极管的正向特性曲线,可按照图6所示的电路联线。
图中R 为保护晶体二极管的限流电阻,电压表的量限取1伏左右。
经教师检查线路后,接通电源,缓慢地增加电压,例如,取0.00V ,0.10V ,0.20V ,…(在电流变化大的地方,电压间隔应取小一些),读出相应的电流值。
最后断开电源。
图6测晶体二极管正向伏安特性的电路 图7测晶体二极管反向伏安特性的电路
2.为了测得反向特性曲线,可按图7联接电路。
将电流表换成微安表,电压表换接比1伏大的量限,接上电源,逐步改变电压,例如,取0.00V ,1.00V ,2.00V ,…,读出相应的电流值。
确认数据无错误和遗漏后,断开电源,拆除线路。
3.以电压为横轴,电流为纵轴,利用测得的正、反向电压和电流的数据,绘出晶体二极管的伏安特性曲线。
由于正向电流读数为毫安,反向电流读数为微安,纵轴上半段和下半段坐标纸上每小格代表的电流值可以不同,但必须分别标注清楚。
四、注意事项
1.测晶体二极管正向伏安特性时,毫安表读数不得超过二极管允许通过的最大正向电流值。
2.测晶体二极管反向伏安特性时,加在晶体管上的电压不得超过管子允许的最大向电压。
实验时,如果违反上述任一条规定,都将会损坏晶体管。
五、思考题
1.在图6和图7中,电表的接法有何不同?为什么要采用这样的接法?
2.如何作出伏欧特性曲线(V R -曲线)?金属膜电阻和晶体二极管的伏欧特性曲线各具有什么特性?
3.有一个12伏、15瓦的钨丝灯泡,已知加在灯泡上的电压与通过热灯丝的电流之间的关系为n I KV =其中K 、n 是与该灯泡有关的常数,现在要用实验方法确定K 、n 。
(1)请画出实验的线路图;(2)请简述如何用作图法求出K 和n 值,最后得到I 随V 变化的经验公式。