函数的单调性与导数教学设计

合集下载

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 让学生理解函数的单调性的概念,能够判断函数的单调性。

2. 让学生掌握导数的定义,能够计算常见函数的导数。

3. 让学生理解导数与函数单调性的关系,能够利用导数判断函数的单调性。

二、教学内容1. 函数的单调性定义:如果函数f(x)在区间I上,对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≤f(x2),则称f(x)在区间I上为增函数;如果对于任意的x1, x2∈I,当x1 < x2时,都有f(x1) ≥f(x2),则称f(x)在区间I上为减函数。

2. 导数的定义定义:函数f(x)在点x处的导数定义为函数在点x处的切线斜率,记作f'(x),即f'(x) =lim┬(h→0)⁡〖(f(x+h)-f(x))/h〗。

3. 常见函数的导数(1)常数函数f(x) = c,其导数为f'(x) = 0。

(2)幂函数f(x) = x^n,其导数为f'(x) = nx^(n-1)。

(3)指数函数f(x) = a^x,其导数为f'(x) = a^x ln(a)。

(4)对数函数f(x) = ln(x),其导数为f'(x) = 1/x。

4. 导数与函数单调性的关系(1)如果f'(x) > 0,则f(x)在区间(-∞, +∞)上为增函数。

(2)如果f'(x) < 0,则f(x)在区间(-∞, +∞)上为减函数。

(3)如果f'(x) = 0,则f(x)可能在某点处改变单调性。

三、教学方法1. 采用讲解法,讲解函数的单调性和导数的定义及计算方法。

2. 采用案例分析法,分析导数与函数单调性的关系。

3. 采用练习法,让学生通过练习巩固所学知识。

四、教学步骤1. 导入:回顾函数的概念,引导学生思考函数的单调性。

2. 讲解:讲解函数的单调性的定义,并通过实例演示如何判断函数的单调性。

3. 讲解:引入导数的定义,讲解常见函数的导数计算方法。

导数与函数的单调性教学设计

导数与函数的单调性教学设计

《导数与函数的单调性》教学设计【课题】导数与函数的单调性【课时】1课时【教材分析】导数与函数的单调性是人教版选修2-2第三章第一节的内容。

函数单调性是高中阶段刻划函数变化的一个最基本的性质。

在高中数学课程中,对于函数单调性的研究分成两个阶段:第一个阶段是用定义研究单调性,知道它的变化趋势,是高一需要了解的知识点;第二阶段用导数的性质研究单调性,知道它的变化快慢,是高二需要掌握的知识内容。

在学习本节课之前学生已经学习了导数、函数及函数单调性等概念,对单调性有了一定的感性和理性的认识,同时在第二章中已经学习了导数的概念,对导数有了一定的知识储备。

函数的单调性是高中数学中极为重要的一个知识点。

以前学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用。

同时,在本章第二节要学习利用导数研究函数的极值,学习了导数研究函数的单调性,对于研究利用导数求函数的极值有重要的帮助。

因此,学习本节内容具有承上启下的作用。

【学情分析】课堂学生为高二年级的的学生,学生基础一般,高一阶段对于单调性概念的理解不够准确且现在早已忘记;同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点。

在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上。

本节课应着重让学生通过探究来研究利用导数判定函数的单调性。

【教学目标】知识与能力:一是能探索并应用函数的单调性与导数的关系求单调区间;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象。

过程与方法:通过利用导数研究单调性问题的研究过程,体会从特殊到一般的、数形结合的研究方法。

情感态度与价值观:(1)通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。

2)通过导数研究单调性的基本步骤(即算法)的形成和使用,使得学生认识到导数使得一些复杂的问题就变得有矩可循,因而认识到导数的实用价值。

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案

数学《函数单调性与导数》教案教学目标:1. 知道函数单调性的定义,掌握判断单调性的方法。

2. 知道导数的定义,掌握求导的方法。

3. 熟练掌握函数单调性与导数的关系,能够应用相关知识解决实际问题。

教学重点:1. 函数单调性与导数的概念及其关系。

2. 求导数的方法和技巧。

3. 应用函数单调性和导数解决实际问题。

教学难点:1. 求高阶导数,各种复杂函数的单调性判断。

2. 应用函数单调性与导数解决实际问题。

教学方法:1. 讲授法:讲解相关知识点,示范演示,点拨解释。

2. 实验法:以具体例子演示如何判断函数的单调性。

3. 问题解决法:提供丰富的例题及作业,引导学生自主思考,解决问题。

教学过程设计:Part 1:函数单调性的引入1. 通过一个具体的例子引入函数单调性的概念,让学生理解函数单调性的含义。

2. 介绍单调递增和单调递减的概念,以及如何判断一个函数的单调性。

3. 引导学生思考,研究不同类型函数单调性的特点和判断方法。

Part 2:导数的定义和求导方法1. 导数的概念:定义导数,解释导数的几何意义和物理意义。

2. 求导方法:讲解求导过程,引导学生掌握基本的求导技巧。

3. 常用函数的导数:讲解常用函数的导数公式,让学生记忆。

Part 3:函数单调性与导数1. 函数单调性与导数的关系:引导学生研究函数单调性与导数之间的关系。

2. 求解函数单调性:利用导数判断函数单调性,让学生掌握方法。

3. 应用导数求解实际问题:让学生通过实际问题应用导数,求解函数单调性问题。

Part 4:案例分析1. 给出一些实际问题,让学生通过函数单调性和导数的方法求解。

2. 分组讨论,展示各自的解题思路和方法,互相学习。

Part 5:练习与总结1. 提供一些例题给学生练习,巩固所学知识。

2. 学生自己整理笔记,总结函数单调性与导数的概念及其应用教具准备:1. 教师演示用的白板或黑板、彩色粉笔或白板笔。

2. 学生实验用的计算器。

3. 相关练习题和例题。

函数的单调性与导数(教学设计)

函数的单调性与导数(教学设计)

函数的单调性与导数(教学设计)教学设计:函数的单调性与导数本节课的主要内容是函数的单调性与导数。

在研究本节课之前,学生已经研究了导数、函数及函数单调性等概念,对导数的几何意义与函数单调性有了一定的感性和理性的认识。

函数的单调性是高中数学中极为重要的一个知识点。

在以前的研究中,学生已经研究了如何利用函数单调性的定义和函数的图像来研究函数的单调性。

而在研究了导数之后,学生可以利用导数来研究函数的单调性,这是导数在研究处理函数性质问题中的一个重要应用。

学好本课时的知识对接下来要研究利用导数研究函数的极值奠定知识基础,因此,研究本节内容具有承上启下的作用。

在本节课之前,学生已经研究了导数的概念、导数的几何意义和导数的四则运算,研究了用导数求曲线的切线方程。

因此,本节课应着重让学生通过探究来研究利用导数判定函数的单调性。

本节课的教学目标包括以下几点:1.知识与能力:1) 理解函数单调性与导数的关系:函数f(x)在区间(a,b)内可导,若f'(x)>0,则f(x)在区间(a,b)内单调递增;若f'(x)<0,则f(x)在区间(a,b)内单调递减。

2) 探究函数的单调性与导数的关系,利用导数与函数单调性的关系求函数的单调区间、画函数的简单图像。

2.过程与方法:通过利用导数研究单调性问题的研究过程,引导学生养成自主研究的研究惯,体会知识的类比迁移,体会从特殊到一般的、数形结合的研究方法。

3.情感态度与价值观:1) 通过导数方法研究单调性问题,体会到不同数学知识间的内在联系,认识到数学是一个有机整体。

2) 通过导数研究单调性,使学生知道用导数判断函数的单调性比用单调性的定义更容易,知道导数作为研究函数的工具的实用价值。

本节课的教学重点是利用导数判断函数的单调性,并求函数的单调区间。

教学难点在于如何将导数与函数的单调性联系起来。

本节课的教学方法为启发引导式,课时安排为1课时。

教学准备包括多媒体平台和课件。

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、引入:1.很多初学者对于函数的单调性以及导数的概念有些混淆和不清楚,导致在学习相关知识时存在一定的困惑。

2.本教案旨在通过简明扼要地介绍函数的单调性和导数的概念,结合实际例子和练习,帮助学生更好地理解和掌握相关知识。

二、函数的单调性:1.单调函数的定义:设函数f(x)在区间I上有定义,若对于任意的x1、x2∈I,若x1<x2,则f(x1)<f(x2),即函数在区间I上是单调递增的。

2.一般而言,单调函数在其定义域内满足下面两个条件之一:a.在定义域上恒大于零或恒小于零,即f'(x)≥0或f'(x)≤0;b.在定义域上的导函数的符号不变,即f'(x)单调递增或单调递减。

3.通过实例说明和分析函数的特点,加深学生对单调性的理解。

三、导数的概念:1.导数的定义:函数f(x)在x=a处的导数定义为:f'(a)=lim┬(x→a)⁡(f(x)-f(a))/(x-a)2.导数的几何意义:函数在一点处的导数等于函数曲线在该点的切线斜率。

3.导数的物理意义:函数在一点处的导数等于在该点的瞬时变化率,表示函数在其中一点的瞬时速率。

4.通过上述两个导数的概念和意义,学生可以从不同视角理解导数,并且感受到导数在不同学科中的应用。

四、如何判断函数的单调性:1.根据导数的定义和性质,可以通过求导来判断函数的单调性。

2.若函数f(x)在(a,b)上连续,在(a,b)内可导,且当x∈(a,b)时,f'(a)>0,则f(x)在(a,b)上是严格单调递增的。

3.同时,可以通过求导数的符号表并分析函数的增减情况,判断函数的单调性。

五、导数的计算方法:1.根据导数的定义和性质,介绍常见函数的导数计算方法,如:常数函数、幂函数、指数函数、对数函数等。

2.导数的四则运算法则:和、差、积、商的导数计算方法。

3.注意一阶导数和n阶导数的概念。

六、例题分析与讲解:1.运用上述概念和方法,结合典型的例题进行分析和讲解,加深学生对函数单调性和导数的理解和运用能力。

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案函数的单调性与导数教案一、目标知识与技能:了解可导函数的单调性与其导数的关系;能利用导数研究函数的单调性,会求函数的单调区间。

过程与方法:多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力;情感、态度与价值观:通过学生的参与,激发学生学习数学的兴趣。

二、重点难点教学重点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间教学难点:利用导数研究函数的单调性,会求不超过4次的多项式函数的单调区间三、教学过程:函数的赠与减、增减的快与慢以及函数的最大值或最小值等性质是非常重要的.通过研究函数的这些性质,我们可以对数量的变化规律有一个基本的了解.我们以导数为工具,对研究函数的增减及极值和最值带来很大方便.四、学情分析我们的学生属于平行分班,没有实验班,学生已有的知识和实验水平有差距。

需要教师指导并借助动画给予直观的认识。

五、教学方法发现式、启发式新授课教学基本环节:预习检查、总结疑惑→情境导入、展示目标→合作探究、精讲点拨→反思总结、当堂检测→发导学案、布置预习六、课前准备1.学生的学习准备:2.教师的教学准备:多媒体课件制作,课前预习学案,课内探究学案,课后延伸拓展学案。

七、课时安排:1课时八、教学过程(一)预习检查、总结疑惑检查落实了学生的预习情况并了解了学生的疑惑,使教学具有了针对性。

提问1.判断函数的单调性有哪些方法?(引导学生回答“定义法”,“图象法”。

)2.比如,要判断y=x2的单调性,如何进行?(引导学生回顾分别用定义法、图象法完成。

)3.还有没有其它方法?如果遇到函数:y=x3-3x判断单调性呢?(让学生短时间内尝试完成,结果发现:用“定义法”,作差后判断差的符号麻烦;用“图象法”,图象很难画出来。

)4.有没有捷径?(学生疑惑,由此引出课题)这就要用到咱们今天要学的导数法。

以问题形式复习相关的旧知识,同时引出新问题:三次函数判断单调性,定义法、图象法很不方便,有没有捷径?通过创设问题情境,使学生产生强烈的问题意识,积极主动地参与到学习中来。

函数的单调性与导数教学设计与反思

函数的单调性与导数教学设计与反思

函数的单调性与导数一、教学目标:了解可导函数的单调性与其导数的关系.掌握利用导数判断函数单调性的方法.二、教学重点:利用导数判断一个函数在其定义区间内的单调性.教学难点:判断复合函数的单调区间及应用;利用导数的符号判断函数的单调性.三、教学过程(一)复习引入求下列函数的导数: (1)f x 25x =+() ;(2)()2x f x = ; (3)3()log f x x = ;(4) 2f x 254x x =-+().设计意图 :复习上节课的内容,由(4)引出高台跳水的例子.(二)新课讲解问题:右图(1)它表示跳水运动中高度h 随时间t 变化的函数2() 4.9 6.510h t t t =-++的图像,图(2)表示高台跳水运动员的速度v 随时间t变化的函数'()()9.8 6.5v t h t t ==-+的图像.运动员从起跳到最高点,以及从最高点到入水这两段时间的运动状态有什么区别?问题1:高台跳水运动的高度随时间变化的函数:,观察图像的变化情况和相应的导函数的变化情况.设计意图:利用几何画板,直观观察原函数的单调性与导函数的正负之间的关系. 归纳:(1)在(0,a )内,在(0,a )内单调递增;(2)在(0,a )内,在(0,a )内单调递减;问题2:在同一坐标系内,分别作出下列函数的图像:((1)f x 25x =+() ; (2)()2x f x = ;(3)3()log f x x = ,()0,x ∈+∞ ; (4) 2f x 254x x =-+(),5,4x ⎛⎫∈-∞ ⎪⎝⎭.设计意图:结合学生学过的函数,借助这些函数的图像,让学生观察函数的单调 性与导函数的正负之间的关系.归纳:函数的单调性与导函数的符号之间的关系若'()0f x ,则f x ()在(a ,b )上是增函数; 若'()0f x ,则f x ()在(a ,b )上是减函数; 思考:如果在某个区间内恒有'()=0f x ,那么函数f (x )有什么特性?(三)例题讲解例1:教材P24面的例1.例2.确定函数f(x)=x 2-2x +4在哪个区间内是增函数,哪个区间内是减函数.(四)归纳小结(1)函数的单调性与导函数的符号之间的关系(2)利用导数确定函数的单调性的步骤:(五)布置作业课后练习1,2(六)教学反思:本节课是一节新授课,课本所提供的信息很简单,如果直接得出结论,学生也能接受,可学生只能进行简单的模仿应用。

高中数学《函数的单调性与导数》公开课优秀教学设计

高中数学《函数的单调性与导数》公开课优秀教学设计

高中数学《函数的单调性与导数》公开课优秀教学设计教学设计普通高中课程标准实验教科书《数学》选修1-1(人教A版)(第一课时)函数的单调性与导数《函数的单调性与导数》教学设计课题:函数的单调性与导数教材:人教A版《数学》选修1-1 课时:1课时教材分析:函数的单调性与导数是人教A版选修1-1第三章第三课第一节的内容. 《数学课程标准》中与本节课相关的要求是:结合实例,借助几何直观探索并了解函数的单调性与导数的关系;能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.函数的单调性是函数的重要性质之一.在必修一中学习了利用函数单调性的定义、函数的图象来研究函数的单调性,学习了导数以后,利用导数来研究函数的单调性,是导数在研究处理函数性质问题中的一个重要应用.在前几节课中,学生学习了平均变化率,瞬时变化率,导数的定义和几何意义等内容,在本节课中,学生将要在此基础上学习通过导数来研究函数的单调性,掌握研究函数单调性的更一般方法,进而为后面学习函数的极值,最值等作出知识铺垫,打下能力基础,进行方法指导,因此,本节课可以起到承上启下,完善建构,拓展提升的作用. 学生学情分析:课堂学生为高二年级的学生,学生基础普遍比较好,但是学习单调性的概念是在高一第一学期学过,因此对于单调性概念的理解不够准确,同时导数是高中学生新接触的概念,如何将导数与函数的单调性联系起来是一个难点.在本节课之前学生已经学习了导数的概念、导数的几何意义和导数的四则运算,初步接触了导数在几何中的简单应用,但对导数的应用还仅停留在表面上.本节课应着重让学生通过探究来研究利用导数判定函数的单调性.教学目标:结合实例,借助几何直观探索并了解函数的单调性与导数的关系:能利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间. 重点:利用导数研究函数的单调性,会求不超过三次的多项式函数的单调区间.难点:探索并了解函数的单调性与导数的关系.借助几何直观,通过实例探索并了解函数的单调性与导数的关系;理解并掌握利用导数判断函数单调性的方法,会用导数求函数的单调区间;体会导数方法在研究函数性质中的一般性和有效性,同时感受和体会数学发展的一般规律. 教学策略分析:根据新课程标准的要求,本节课的知识目标定位在以下三个方面:一是能探索函数的单调性与导数的关系;二是掌握判断函数单调性的方法;三是能由导数信息绘制函数大致图象.本节课的教学设计也是围绕这些目标,让学生自主探究,充分参与课堂,并从中体会学习的成功和快乐.本节课时学习过导数的概念和运算后,首次运用导数解决函数相关问题的一节课,如何激发学生的兴趣,使其探索和运用新的工具即导数解决单调性问题是本节课的关键,利用手边胡工具,更好的分析这个过程,运用信息技术确认加深理解.充分利用学生已有的基础,分析原函数的单调性与导数正负之间的关系,本着由形到数,由数到形,数形结合的思想. (一)创设情境,引发冲突.师:在北方,进入十月,就能感觉到阵阵寒意,今天我们就从一个气温的实际问题开始数学之旅.师:我市气象站对冬季某一天气温变化的数据统计显示,从2时到5时的C随C与时间 t可近似的用函数 C(t)?t?4lnt?1拟合,气温问:这段气温t的变化趋势如何?时间回答这个问题,我们需要了解这个函数的什么性质?生:函数的单调性.师:如何判断这个函数的单调性呢?生:画图象,用定义.师:有的同学说画图象,有的说用单调性的定义,我们动手来做一下吧生:动手操作.师:选择画图的同学们,可以画出图象么?生:不可以.师:哪位同学来说一下如何用单调性的定义来解决. 生:在区间2到5上,任意选取 t1,t2且 t1?t2,我们需要判断 C(t1)?C(t2)的符号,师:可以判断么?生:不可以.师:好,请坐,也就是我们已有的方法都遇到了困难,如何解决这个单调性问题呢?设计意图:通过学生熟悉的生活情景,激发学生迫切知晓函数单调性的欲望,尝试运用所学知识解决非初等函数的单调性,引发学生的认知冲突,思考如何将未知化为已知,激发了学生主动学习新知识的热情. (二)回归定义,寻求方法.师:追本溯源,我们重新回到定义.请一位同学回答单调性的定义.(a,b)内,满足对于任意的 x1,x2?(a,b)生:在函数f(x)的定义域内的某区f(x1)?f(x2),是增函数. 且 x1?x2,都有师:很好,也就是我们要需要判断 f(x 1)?f(x2)的符号,我们把这个形式变形,判断生:大于0.师:即函数值的改变量与自变量改变量的比值: 生:大于0师:函数f(x)在区间 (a,b)内是减函数,满足对于任意的 x1,x2?(a,b)且 x1?x2,都有 f(x1)?f(x2),也就是 f(x2)?f(x1)x2?x1生:小于0.即函数值的改变量与自变量改变量的比值:f(x2)?f(x1)x2?x1的符号,结果为:生:小于0.师:我们发现,函数的单调性与这样一个比值的符号相关,在本章的学习中,我们知道这叫做---- 生:函数的平均变化率.师:我们运用无限趋近于的方式,可以由平均变化率得到瞬时变化率,反过来,瞬时变化率可以刻画函数在该点附近的变化情况,我们知道瞬时变化率,即---- 生:导数.师:非常棒!我们这节课就试着用导数来研究函数的单调性. 板书:3.3.1函数的单调性与导数. 设计意图:注意到知识的联系,尝试在学生原有认知的基础上建立新知,通过回顾函数单调性的定义,将其形式改变,联想平均变化率,运用无限趋近于的方式,得到瞬时变化率,即导数,引发学生思考导数与单调性的关系,这个过程由浅入深,层层深入,合乎学生的逻辑思维. (三)观察发现,探索规律.师:要研究函数的单调性与导数的关系,我们来观察,函数单调递增时,平均变化率大于0,函数单调递减时,平均变化率小于0,那么,导数的符号是否与函数的单调性有关呢?师:我们从最熟悉的函数开始研究,我们都学过哪些基本初等函数呢?生:幂函数,指数函数,对数函数,三角函数.师:对于这些函数,我们都是通过函数的形,也就画出图像的方式来研究,同样的,导数的形,也就是导数的几何意义是什么呢?生:函数的图像在该点处切线的斜率.师:根据导数的几何意义,我们一起来看研究的方法.师:给出函数的图像,指出其单调区间,用牙签靠近图像,使其作为该点处的切线,移动牙签,观察斜率即导数的正负情况.师:拿出坐标纸,作出你研究的函数图像,利用牙签,得出结论,并填写下面的表格.师:可以进行讨论,到前面展示你的结果.师:我们一起来看同学们的展示,可以得到什么结论呢?生:导数为负数时函数单调递减,导数为正数时单调递增.师:熟悉的初等函数,得到这样的结论,数学来源于生活,我们再来看生活中的例子:t变化的函数,来研究运动员运动状态的给出高台跳水运动员的高 h随时间变化情况.生:可以画出这个二次函数的图像,得到高度的变化情况,从(0,a)时刻,高度上升,(a,b)时刻高度下降.师:也就是高度函数先单调递增,而后单调递减,运动状态除了高度,还有速度,我们进一步研究.师:给出导函数即速度函数的图像,有什么结论?生:导函数即速度图像在x轴的上方时高度函数单调递增,导函数图像在x轴下方时函数单调递减. 设计意图:从基本初等函数入手,让学生动手操作,通过观察、归纳,提炼,激发学生的自主探究欲望.让学生发现导数的符号与函数的单调性之间的联系.培养学生共同解决问题、探讨问题的能力和合作意识,从而培养学生的探究意识和探究能力.引导学生从形的角度来验证,降低了学生的思维难度,又能体会导数研究单调性的一般性.生活实例高台跳水是我们从导数概念就开始使用,把抽象的概念与物理背景结合,能迅速的突破难点,高度函数的单调性与速度函数的关系,再次确认了结论. (四)结论总结,揭示本质.师:我们一起来总结一下函数的单调性与导数的关系. 一般地,函数y?f(x)在某个区间(a,b)内 1) 如果恒有 f?(x)>0,那么y?f(x) 在这个区间(a,b)内单调递增; 2) 如果恒有 f?(x)<0,那么 y?f(x)在这个区间(a,b)内单调递减.导函数值的正负与单调性之间存在这样的关系,这个结论也印证了我们本节课一开始的思考和分析. 若恒有f?(x)=0呢?思考一下板书:结论内容师:有结果了么?生:常函数. 设计意图:由观察、猜想到归纳、总结,让学生体会知识的发现的过程,使学生的思维、行动积极主动地参与课堂教学.从猜想到验证的发现过程,使自主探究成为学生的一种学习习惯. (五)自主分析,多维验证.师:这里我们分析了我们熟悉的函数,其他的函数呢?我们不妨来分析一下我们遇到困难的函数f(x).师:运用我们探究出的结论,求出函数f(x)的单调区间,如何运用导数知识来解决呢?生:先给出定义域,求出导函数,导函数大于0的部分为增区间,小于0的部分为减区间.感谢您的阅读,祝您生活愉快。

函数的单调性与导数表格-教学设计【教学参考】

函数的单调性与导数表格-教学设计【教学参考】

《函数的单调性与导数》教学设计一.基本说明《函数的单调性与导数》是人民教育出版社《普通高中课程标准实验教科书数学》选修1-1第三章《导数及其应用》的第三节《导数在研究函数中的应用》的第一课时。

本部分共设计两课时,是高二年级的教学内容。

每课时均用时40分钟。

二.教学设计1. 教学目标:知识与技能:1.了解函数单调性和导数的关系;2.能利用导数研究函数的单调性,并且会求函数的单调区间;过程与方法:1.通过本节的学习,掌握用导数研究单调性的方法;2.利用几何画板动画展示,加深理解;情感态度与价值观:培养学生的探索精神,引导学生养成自主学习的学习习惯。

2. 内容分析:在必修一的函数部分,我们已经学习了用定义法求函数的单调性。

本节课是在学习了《基本初等函数的导数公式》基础上,讲述利用导数如何来求函数单调性。

导数是求函数单调性的另一种方法,在高考中是函数题必考的内容。

它是函数中的一个重点。

3. 学情分析我所任教的是两个文科班,基础薄弱,认知能力比较差,主动学习的能力不足。

虽然在高一的时候已经学习了利用定义求解函数的单调性,但大多数同学也已经忘的差不多了。

本节课函数单调性与导数,是数到形的转化,直观到抽象的转变,对学生都是比较难理解的。

因此在上课之前先布置作业:复习必修一中用定义求函数的单调性及预习本节课的内容。

4. 设计思路根据本节课的教学目标及新课标下的高考大纲要求,结合学生的实际认知特点,本节课我采用多媒体教学,用几何画板动画展示导数变化的时候单调性如何变化,数形结合,增加学生的视觉感知。

让学生带着问题从图像上直观的观察得出结论。

然后做一些相应的简单题目加深理解。

本节课是第一课时,主要抓基础,所以设计的课堂练习题都是比较基础的。

三.教学过程一.温故知新(课件展示)提出问题1.导数的几何意义;2.基本初等函数的导数公式;3.导数的运算法则;(教师写两个简单的题目)1.回忆知识点;2.动手做练习回忆导数相应知识,为本节课打好基础二.问题引入(几何画板展示)如右图(1),它表示跳水运动中高度h随时间t变化的函数2() 4.9 6.510h t t t=-++的图像,右图(2)表示高台跳水运动员的速度v随时间t变化的函数'()()9.8 6.5v t h t t==-+的图像(几何画板展示)问:运动员从起跳到最高学生观察图像,回答下列问题(互相探讨)(1)运动员从起点到最高点,离水面的高度h随时间t的增加而增加,即()h t是单调 .此时'()()0v t h t=>.(2)从最高点到入水,运动员离水面的高度h随时间t的增加而减少,即1.观察图象进一步提高学生数形结合的能力。

导数与函数的单调性教案

导数与函数的单调性教案

导数与函数的单调性教案教案标题:导数与函数的单调性教案目标:1. 理解导数的概念和计算方法;2. 掌握函数单调性的判定方法;3. 能够运用导数判定函数的单调性。

教学准备:1. 教师准备:黑板、白板笔、教学课件;2. 学生准备:教材、笔记本。

教学步骤:Step 1:导入与导入(5分钟)引导学生回顾函数的单调性概念,并提问:如何判断一个函数的单调性?引出导数与函数单调性的关系。

Step 2:导数的定义(10分钟)1. 讲解导数的定义:导数表示函数在某一点的变化率,是函数的斜率。

2. 通过几个简单的例子,帮助学生理解导数的计算方法。

Step 3:导数与函数的单调性(15分钟)1. 解释导数与函数单调性的关系:若函数在某一区间上导数恒大于零,则函数在该区间上单调递增;若导数恒小于零,则函数在该区间上单调递减。

2. 通过具体的例子,演示如何通过导数判断函数的单调性。

Step 4:练习与巩固(15分钟)1. 给学生分发练习题,让他们运用导数的知识判断函数的单调性。

2. 针对练习题,进行讲解和答疑。

Step 5:拓展与应用(10分钟)1. 引导学生思考如何利用导数求函数的极值点。

2. 通过实际问题,让学生应用导数和函数单调性的知识解决实际问题。

Step 6:总结与反思(5分钟)1. 总结导数与函数单调性的关系;2. 学生对本节课的掌握情况进行反馈。

教学延伸:1. 学生可以通过更多的练习题来巩固导数与函数单调性的知识;2. 学生可以尝试使用导数求函数的极值点。

教学评估:1. 课堂练习题的完成情况;2. 学生对导数和函数单调性的理解程度;3. 学生在应用导数和函数单调性解决实际问题时的表现。

教学反思:1. 教师可以根据学生的实际情况,调整教学内容和难度;2. 教师可以通过更多的案例和实际问题,帮助学生深入理解导数和函数单调性的概念。

《导数与函数的单调性》教学设计

《导数与函数的单调性》教学设计

《导数与函数的单调性》教学设计驻马店高中安康一、教学内容分析本节课选自《普通高中课程标准实验教科书数学(选修2-2)》北师大版第三章“导数的应用”第一节“函数的单调性与极值”的第一小节“导数与函数的单调性”.这节内容是放在导数的计算之后,是学习导数这个工具之后的一个具体应用.学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础.由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。

通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简洁得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性。

二、学生学习情况分析在此之前,学生已学习了导数的概念及其几何意义、导数的计算以及简单复合函数的求导法则.但学生素质参差不齐,又存在能力差异,导致不同学生对知识的领悟与掌握能力的差距很大。

因此进行本堂课的教学,应首先有意识地让学生发现问题,解决问题,最后归纳总结解决问题的方法,充分化解学生的认知冲突,化难为易,化繁为简,突破难点.三、设计思想学生是教学的主体,本节课要给学生提供各种参与机会。

为了调动学生学习的积极性,使学生化被动为主动。

根据本节教学内容的特点,我主要采用“启发式”与“探究式”的教学方法,营造“自主探索”和“合作交流”的学习环境,以问题引导学习,采用“归纳式”让学生经历概念的概括过程,思想方法的形成过程.使用多媒体辅助教学增强直观,加大容量,提高兴趣.四、教学目标(一)知识与技能目标:1.探索函数的单调性与导数的关系2.会利用导数判断函数的单调性并求函数的单调区间(二)过程与方法目标:1、通过本节的学习,掌握用导数研究函数单调性的方法。

2、培养学生的观察、比较、分析、概括的能力,数形结合思想、转化思想、分类讨论的数学思想。

(三)情感、态度与价值观目标:1、通过在教学过程中让学生多动手、多观察、勤思考、善总结,2、培养学生的探索精神,渗透辩证唯物主义的方法论和认识论教育。

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案教案标题:函数的单调性与导数教案教案目标:1. 理解函数的单调性的概念及其在数学中的应用。

2. 掌握使用导数判断函数的单调性的方法。

3. 能够应用函数的单调性和导数的概念解决实际问题。

教案步骤:引入:1. 引导学生回顾函数的概念,并提醒他们函数图像上的一些特征,如上升、下降、水平等。

2. 引出函数的单调性的概念,解释函数在特定区间上的单调性表示函数值的增减趋势。

探究:1. 提供一个简单的函数图像,让学生观察并讨论函数在不同区间上的单调性。

2. 引导学生思考如何使用导数来判断函数的单调性。

3. 解释导数的概念,以及导数与函数单调性之间的关系。

4. 通过几个例子,演示如何使用导数来判断函数的单调性。

实践:1. 提供一些函数的导数表达式,让学生根据导数的正负判断函数的单调性。

2. 给学生一些函数图像,让他们通过观察图像判断函数的单调性,并用导数来验证他们的结论。

3. 给学生一些实际问题,让他们应用函数的单调性和导数的概念解决问题。

总结:1. 总结函数的单调性的概念及其判断方法。

2. 强调导数与函数单调性之间的关系。

3. 鼓励学生在实际问题中运用所学知识。

拓展:1. 提供更复杂的函数图像和问题,让学生进一步应用函数的单调性和导数解决问题。

2. 引导学生思考如何使用函数的单调性和导数来优化问题的解决方案。

评估:1. 设计一些练习题,考察学生对函数的单调性和导数的理解和应用能力。

2. 给学生一些实际问题,让他们运用所学知识解决问题,并评估他们的解决方案的合理性和准确性。

教案扩展:1. 引导学生探究函数的凹凸性与导数的关系。

2. 拓展教案内容,介绍更高级的函数性质和导数应用。

注意事项:1. 根据学生的学习水平和理解能力,适当调整教案的难度和深度。

2. 鼓励学生积极参与讨论和实践,培养他们的数学思维和问题解决能力。

3. 提供足够的练习和实践机会,巩固学生对函数单调性和导数的掌握程度。

函数的单调性与导数教案

函数的单调性与导数教案

函数的单调性与导数教案一、教学目标1. 理解函数单调性的概念,能够判断函数的单调性。

2. 掌握导数的定义和计算方法,能够运用导数判断函数的单调性。

3. 能够运用函数的单调性和导数解决实际问题。

二、教学内容1. 函数单调性的定义和判断方法。

2. 导数的定义和计算方法。

3. 运用导数判断函数的单调性。

4. 实际问题中的应用。

三、教学重点与难点1. 函数单调性的判断方法。

2. 导数的计算方法。

3. 运用函数的单调性和导数解决实际问题。

四、教学方法与手段1. 采用讲授法,讲解函数单调性和导数的定义及计算方法。

2. 利用多媒体演示函数的单调性和导数的应用。

3. 引导学生通过小组讨论和练习,巩固所学知识。

五、教学过程1. 引入:通过举例说明函数的单调性,引导学生思考如何判断函数的单调性。

2. 讲解:讲解函数单调性的定义和判断方法,引导学生理解并掌握。

3. 练习:布置练习题,让学生独立完成,巩固对函数单调性的理解。

4. 引入:讲解导数的定义和计算方法,引导学生理解并掌握。

5. 练习:布置练习题,让学生独立完成,巩固对导数的理解。

6. 讲解:讲解如何运用导数判断函数的单调性,引导学生理解并掌握。

7. 练习:布置练习题,让学生独立完成,巩固对导数判断函数单调性的理解。

8. 应用:讲解如何运用函数的单调性和导数解决实际问题,引导学生思考并实践。

9. 练习:布置综合练习题,让学生独立完成,巩固对函数单调性和导数的应用。

10. 总结:对本节课的内容进行总结,强调重点和难点,提醒学生加强练习。

教学反思:在教学过程中,要注意引导学生理解函数单调性和导数的概念,并通过练习题让学生巩固所学知识。

要关注学生的学习情况,及时解答学生的疑问,提高教学效果。

在实际问题中的应用环节,要引导学生将所学知识与实际相结合,提高学生的应用能力。

六、教学评价1. 评价目标:通过评价学生对函数单调性和导数的理解,以及运用导数判断函数单调性的能力。

2. 评价方法:a) 课堂练习:观察学生在课堂练习中的表现,判断其对函数单调性和导数的理解和运用能力。

《函数的单调性与导数》教学设计

《函数的单调性与导数》教学设计

《函数的单调性与导数》教学设计一、教材分析:1、教材的地位和作用“函数单调性与导数”是人教版《普通高中课程标准实验教科书数学》选修1-1第三章《导数及其应用》的内容。

本节的教学内容属导数的应用,是在学生学习了导数的概念、计算、几何意义的基础上学习的内容,学好它既可加深对导数的理解,又可为后面研究函数的极值和最值打好基础。

由于学生在高一已经掌握了单调性的定义,并能用定义判定在给定区间上函数的单调性。

通过本节课的学习,应使学生体验到,用导数判断单调性要比用定义判断简捷得多(尤其对于三次和三次以上的多项式函数,或图象难以画出的函数而言),充分展示了导数解决问题的优越性。

根据新课标要求和教材的分析,并结合学生的认知特点,确定如下几个方面为本课的教学目标:2、教学目标(1)知识与技能⒈理解利用导数判断函数单调性的原理⒉掌握利用导数判断函数单调性的方法及步骤(2)过程与方法通过问题的探究,体会知识的类比迁移。

以已知探求未知,从特殊到一般的数学思想方法(3)情感态度与价值观通过师生互动,生生互动的数学活动,形成学生的体验认识,并体验成功的喜悦。

提高学习数学的兴趣,形成锲而不舍的钻研精神和合作交流的科学态度。

对于函数单调性与导数,学生的认知困难主要体现在:用准确的数学语言描述函数单调性与导数的关系,这种由数到形的翻译,从直观到抽象的转变,对学生是比较困难的。

根据以上的分析和新课程标准的要求,我确定了本节课的重点和难点。

3.教学的重点和难点教学重点:探索并应用函数的单调性与导数的关系求单调区间。

教学难点:探索函数的单调性与导数的关系。

4、教材处理本节课内容教材主要学习函数的单调性和导数的关系;能利用导数研究函数的单调性;利用导数信息绘制函数的大致图像;会求函数和的单调区间。

二.教法分析:1.教学方法的选择:为还课堂于学生,突出学生的主体地位,本节课拟运用“问题--- 解决”课堂教学模式,采用发现式、启发式、讲练结合的教学方法。

函数单调性与导数教案

函数单调性与导数教案

函数单调性与导数教案一、教学目标:1. 让学生理解函数单调性的概念,能够判断简单函数的单调性。

2. 引导学生掌握导数的定义和计算方法,能够利用导数判断函数的单调性。

3. 培养学生运用函数单调性和导数解决实际问题的能力。

二、教学内容:1. 函数单调性的定义和判断方法。

2. 导数的定义和计算方法。

3. 利用导数判断函数的单调性。

4. 函数单调性和导数在实际问题中的应用。

三、教学重点与难点:1. 教学重点:函数单调性的判断方法,导数的计算方法,利用导数判断函数的单调性。

2. 教学难点:导数的计算方法,利用导数判断函数的单调性。

四、教学方法:1. 采用讲解法,引导学生理解函数单调性和导数的概念。

2. 采用案例分析法,让学生通过实际例子掌握函数单调性和导数的应用。

3. 采用练习法,巩固学生对函数单调性和导数的理解和掌握。

五、教学过程:1. 引入:通过生活中的例子,引导学生思考函数单调性的概念。

2. 讲解:讲解函数单调性的定义和判断方法,引导学生掌握函数单调性的基本概念。

3. 案例分析:分析实际例子,让学生通过计算导数判断函数的单调性。

4. 练习:布置练习题,让学生巩固对函数单调性和导数的理解和掌握。

5. 总结:对本节课的内容进行总结,强调函数单调性和导数在实际问题中的应用。

6. 作业布置:布置课后作业,让学生进一步巩固对本节课内容的理解和掌握。

六、教学评估:1. 通过课堂提问,检查学生对函数单调性和导数概念的理解程度。

2. 通过课堂练习,评估学生对函数单调性和导数计算方法的掌握情况。

3. 通过课后作业,评估学生对函数单调性和导数应用能力的掌握。

七、教学拓展:1. 探讨函数单调性与导数在实际问题中的应用,如经济领域、物理领域等。

2. 引入更复杂的函数单调性和导数问题,如多变量函数的单调性、隐函数的导数等。

八、教学资源:1. 教学PPT:展示函数单调性和导数的定义、判断方法、计算示例等。

2. 练习题库:提供丰富的练习题,帮助学生巩固函数单调性和导数知识。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《函数的单调性与导数》教学设计
教材分析
1、内容分析
导数是微积分的核心概念之一,是高中数学教材新增知识,在研究函数性质时有独到之处,体现了现代数学思想.本节的教学内容属导数的应用,是在学习了导数的概念、运算和几何意义的基础上学习的内容.学好它既可加深对导数的理解,又为研究函数的极值和最值打下了基础.
由于学生在高一已经掌握了函数单调性的定义,并会用定义判定函数在给定区间上的单调性.通过本节课的学习应使学生体验到,用导数判断函数的单调性比用定义要简捷的多(尤其对于三次和三次以上的多项式函数,或图像难以画出的函数而言),充分展示了导数的优越性.
2、学情分析
在必修一中,学生学习了单调函数的定义,并会用定义判断或证明函数在给定区间上的单调性,在前几节,学生学习了导数的概念、几何意义及运算法则,已经掌握了利用导数研究函数单调性的必备知识.
用定义证明函数在给定区间的单调性的方法是作差、变形、判断符号.而对大部分函数而言,变形环节是非常繁琐,甚至是无法做到的,并且不清楚“给定区间”是如何给出的,这就要求同学们积极探索更好的方法来判断函数的单调性和探求函数的单调区间,以此来激发学生的学习兴趣.
教学目标
依据新课标纲要和学生已有的认知基础和本节的知识特点,我制定了以下教学目标:
1、知识与技能目标:
借助于函数的图象了解函数的单调性与导数的关系;培养学生的观察能力、归纳能力,增强数形结合的思维意识.
2、过程与方法目标:
会判断具体函数在给定区间上的单调性;会求具体函数的单调区间.
3、情感、态度与价值观目标:
通过在教学过程中让学生多动手、多观察、勤思考、善总结,引导学生养成自主学习的学习习惯。

教学重点、难点
教学重点:1、利用导数判断函数的单调性.
2、会求不超过三次的多项式的单调区间。

教学难点:1、函数的单调性与导数的关系
2、提高灵活应用导数法解决有关函数单调性问题的能力.
教学重难点的解决方法
通过问题激发学生求知欲,使学生主动参与教学实践活动,在教师的指导下发现、分析和解决问题;通过几何画板的动态演示,使抽象的知识直观化、形象化,以促进学生的理解.
教法设计:
1、自主探究法:让学生自己发现问题,自己归纳总结,自己评析解题对错,从而提高学生的参与意识和数学表达能力.
2、比较法:对同一个问题,采用不同的方法,从中体会导数法的优越性.
教学媒体
根据本节课的教学要求及学生学习的需要,我对本节课的教学媒体设计如下
1:多媒体辅助教学:制作直观,有效地多媒体课件,可以节省课堂时间,也给学生直观认识和感觉;
2:投影仪的辅助教学:利用投影把学生的解题过程及方法及时展示,可以提高学生学习数学的兴趣.
课型:新授课
教学过程
教学过程设计意图
创设情境复习引入1、回顾函数单调性的定义;
2、判断函数的单调性.
解法一:单调性的定义:
设x
1
x
2

=
因为x
1
x
2,

当时;
当时
所以函数在区间上单调递减,在区间
上单调递增
解法二:图像法
引导学生回顾判断函数单调
性的基本方法:
(1)“定义法”
(2)“图象法”
探求新知形成概念问题:如何确定函数f(x)=2x3-6x2+7的单调区间?
导数的几何意义是函数在该点处的切线的斜率,函数图象上
每个点处的切线的斜率都是变化的,那么能否用导数来研究
函数的单调性呢?
前面我们用定义和图像已经知道
二次函数的单调性及单调区间,下面我用几
让学生在短时间内尝试完成,
结果发现用“定义法”作差后
判断正负很麻烦,而用“图象
法”时,图象又很难画出.
教师对具体例子进行动态演
示,学生对一般情况进行实验
验证。

由观察、猜想到归纳、
总结,
何画板来展示曲线上任何一点的导数的变化。

一般的,函数的单调性与其导函数的正负有如下的关系:在某个区间(a,b)内,如果,那么函数在这个区间内单调递增;
如果,那么函数在这个区间内单调递减;
如果,那么函数在这个区间内是常函数.思考:能推出为增函数,反之是否成立?

f(x)为增函数的充分不必要条件(举例f(x)=x3))
例题讲解例题1:求函数f(x)=2x3-6x2+7的单调区间
解:f(x)‘‘=6x2-12x.
令6x2-12x>0,解得x<0或x>2.
令6x2-12x<0,解得0<x<2.
因此,当x∈(0, 2)时,f(x)是减函数.
f(x)也是增函数.
当x∈(-∞, 0)和当x∈(2, +∞)时,
函数f(x)是增函数,
尝试练习1:
(2009江苏卷)函数的
单调减区间

2:函数的单调
增区间为。

3:函数f(x)=x+elnx的单调递增区
间( )
(A)、(0,+∞) (B)、(-∞,0)
(C)(-∞,0)和(0,+∞) (D)、R
例题2:如图,水以常速(即单位时间内注入水的体积相同)
注入下面四种底面积相同的容器中,请分别找出与各容器对
应的水的高度与时间的函数关系图像.
师板书规范合理的解题过程
并强调用导数求函数单调区
间的方法
练习由易到难1、让学生熟悉
利用导数求函数单调区间的
方法,
2、考察单调区间时必须保证
定义域优先.
练习采用提问、投影演示等形
式讲解。

教师引导学生思考应用导数
信息确定函数大致图像,利用
导数的正负可以判断函数的
增减性,求函数的单调区间,
同样,利用导数的正负还可以
绘制函数的大致图象。

通过此题进一步培养学生看
图及识图的能力。

一般
地,如
果一
个函
数在
某一
范围内的导数的绝对值较大,说明函数在这个范围内变化得快,这时,函数的图象就比较“陡峭”(向上或向下);反之,函数的图象就较“平缓”.
尝试高考:设f ‘‘(x)是函数f(x)的导函数,f ‘‘(x)
的图象
如下,则
f
(x) 的
图象的
大致形状为: ( )
小结通过这节课的学习,你都学到了什么?
1、知识方面:
导数法判定单调性的步骤:
(1)求定义域;
(2)求导数;
(3),则为增(减)函数;
通过学生自己归纳和总结进
一步理解本节课的重要内容
及解题方法
板书设计
1.3.1:函数的单调性与导数
解答例2
1 尝试练习1、2、3;
2、方法方面:数形结合
本课作业必做题:
习题组1, 2;
选作题:
1、(2011年高考江苏卷2)函数的单调增
区间是__________
2、已知函数f(x)=ax3+3x2-x+1在R上是减函数,求实数a
的取值范围.
3、(宁夏2010年高考21)设函数f(x)=.
(1)、若a=0,求f(x)的单调区间;
(2)、若当x≥0时f(x)≥0,求a的取值范围
给不同层次的学生不同的提
升空间
本课教育评注(课堂设计理念,实际教学效果及改进设想)
对于学生来说,利用导数研究函数的单调性是一个全新的方法,为使学生对这一定理的引入不感到突然,安排了两简单的引例,引导他们发现引进导数的必然性,通过几何画板给学生直观感受,以便自然的得到定理,这也是对学生观察、分析、归纳能力的一种培养。

课后作业的不同层次的设置,既可以帮助学生巩固所学知识,又为学有余力的学生留有提升的空间.。

相关文档
最新文档