胶乳微球的清洗

合集下载

胶乳微球吸附原理

胶乳微球吸附原理

胶乳微球物理吸附反应微球带磺酸基、羧基、醛基表面的都是疏水微球,都可以用来设计被动吸附蛋白。

磺酸基微球表面含带有负电荷的磺酸基团,pka大约为2,因此在酸性pH保持稳定。

醛基微球表面也带有磺酸基团,但能和蛋白行程共价键。

羧基微球表面含带负电荷的羧基基团,在pH5.0以上时保持稳定。

带有疏水基团的蛋白的吸附和配位结合,是最简单和直接的标记方法。

这种方法中,微球溶液和含目标蛋白的溶液混合,反应后,未结合的游离蛋白通过清洗步骤除去,从而获得胶体蛋白复合物。

疏水吸附方法只能用于疏水微球(硫酸盐、羧基、醛基表面修饰的微球)。

醛基表面修饰微球是一个特例,其疏水吸附结果取决于后来的共价结合。

虽然物理吸附是不依赖pH的,但反应缓冲液的pH对蛋白的结构有非常大的影响,从而影响蛋白吸附到微球上的反应效率。

一般,在被吸附蛋白等电点附近pH时,物理吸附效率会很高。

反应步骤:1. 用反应缓冲液系数蛋白到10mg/ml;2. 用反应缓冲液系数胶乳微球到1%;3. 将蛋白溶液加入到胶乳微球溶液中,10ml胶乳中加入1ml蛋白溶液。

室温搅拌孵育2hr;4. 离心或超滤,除去未结合蛋白;5. 将微球蛋白复合物用储存缓冲液溶解。

注意事项:1. 最优蛋白标记量影响因素1)有效比表面积:粒径减小时,比表面积/mg微球值得增加;2)胶体稳定性:蛋白对胶乳有稳定和去稳定作用;3)免疫反应:最近标记量由免疫反应需要决定。

2. 胶乳微球中加入蛋白后,快速搅拌混合,利于反应均衡。

反应体积是1ml时,可用移液器吸取蛋白加入微球中,并吹打数次。

如果反应体积较大时,用烧杯,边搅拌边加入蛋白,3. 储存缓冲液和反应缓冲液不同时,抗体有脱落的可能;4. 表面活性剂能使得抗体从胶乳中脱落,所以应避免加入。

微球共价结合抗体方法一、一步法1. 准备50mM pH 6.0的reaction buffer,醋酸或MES buffer更合适2. 用reaction buffer溶解抗体,使其浓度为1mg/mL。

免疫比浊胶乳颗粒使用资料

免疫比浊胶乳颗粒使用资料

免疫比浊胶乳颗粒使用胶乳微球使用中常见问题及解答问:产品说明书中给出的胶乳粒径是平均粒径吗?答:产品说明书中给出的胶乳粒径(Diameter)是平均粒径。

问:如何选择胶乳微球的粒径?答:一般选择粒径小的胶乳微球,则需要的抗体量就多,精密度和线性相对较好,而选择粒径大的胶乳微球性,则所需抗体少,精密度和线性相对较差,相对于小球,大球的灵敏度较好。

问:一般情况下我们所使用的微球的浓度大概是多少?答:整个测定体系中,微球的浓度大约在 0.01%左右,当然这与试剂本身规定的线性有关系。

问:在使用离心方法偶联乳胶微球,一般需要多大的(相对)离心力?答:需要多大的离心力和所使用的乳胶微球有关,一般 70nm 左右的微球大概13000g/min 30min 以上,粒径越小所需时间越长,离心力越大。

问:蛋白(抗体)与微球偶联前,是不是微球的活化时间越长,效率越好?答:羧基微球的活化所需时间很短,一般以 10-20 分钟为宜,长时间的活化反而会降低偶联效率。

问:由于抗体不只是 FC 的氨基酸上有 NH2,是不是表示它可以在任何方向与EDCA 活化微球偶联呢?如果是这样,是不是会影响抗体与抗原的特异性反应?答:事实的确如此,当然由于抗体的空间折叠方式和 FC 端疏水性强,因此偶联反应的绝大多数发生在 Fc 端,对抗体与抗原的结合的影响不大。

问:胶乳微球与抗体偶联后,当时没发现有凝集,但隔夜后发现有凝集,这是什么原因?如何控制和避免?答:这种情况一般是偶联效率低的原因。

当体系中蛋白不足或是其它原因,使微球表面在交联后还空出许多反应基团时,这些基团又可以与相连微球上的蛋白反应,结果是把球又拉在一起了,所以有聚集。

可以加一些阻断剂解决,常见的是 BSA,另外,也可提高微球的交联率。

但为什么是过一段时间后才出现凝集呢,这是因为微球偶联上蛋白后,相互之间由于携带同种电荷的关系,比较稳定(所以能以胶体样存在),只有当偶尔相互碰撞,遇上彼此的反应基团时才能结合。

乳胶微球偶联方法

乳胶微球偶联方法

乳胶微球偶联方法乳胶微球偶联方法的步骤通常包括光敏交联聚合、功能物质固定化和乳胶微球基质处理。

首先,乳胶微球的合成是基础。

通常,聚合物乳胶微球的制备通过乳液聚合反应来实现,其中聚合物的单体通过乳化剂稳定在水相中。

这种方法的优点是可以通过调整单体的类型和含量来控制微球的性质,比如粒径、形状和表面特性。

光敏交联聚合是乳胶微球偶联的关键步骤之一、光敏交联聚合通过在聚合物单体中引入光敏剂来实现。

在光照条件下,光敏剂可以吸收光能并诱导单体分子之间的交联反应,从而形成网络结构的聚合物。

这种交联结构可以增强乳胶微球的稳定性并提高其机械性能。

在光敏交联聚合过程中,需要选择合适的光敏剂和光照条件,并根据所需的功能物质来确定单体的选择和交联程度。

功能物质固定化是另一个重要的步骤。

在乳胶微球的光敏交联聚合之后,可以通过物理吸附、共价结合或离子键结合等方法将功能物质固定在乳胶微球的表面上。

这种固定化方法的选择取决于功能物质的性质和乳胶微球的表面特性。

例如,对于含有氨基团的功能物质,可以通过与乳胶微球表面带有羧基的聚合物发生共价结合来固定在乳胶微球上。

最后,乳胶微球基质处理是乳胶微球偶联的最后一步。

乳胶微球偶联后,需要对乳胶微球进行处理以增强其稳定性和使用性能。

常用的处理方法包括洗涤、溶解和干燥。

这些处理可以去除其中的有机溶剂和未固定的功能物质,并使乳胶微球获得更好的稳定性和储存性能。

总之,乳胶微球偶联方法是一种将功能物质固定在乳胶微球表面的技术。

通过光敏交联聚合、功能物质固定化和乳胶微球基质处理等步骤,可以制备出具有特定功能和稳定性的乳胶微球。

这种方法具有简单、灵活和可控性强等特点,并在催化剂、生物传感器和药物释放等领域具有广泛的应用前景。

免疫比浊法生产流程

免疫比浊法生产流程

免疫比浊法生产流程免疫比浊法的生产流程如下:1. 清洗:吸取100μL胶乳微球加入1 mLMES缓冲液中,混匀后17000 rpm离心30min,弃上清,加入1mLMES,用超声波清洗器振散微球团块,每次持续约30s,3~5次。

2. 活化:将NHS粉末和EDCI粉末恢复室温,配制浓度为20mg/mL的NHS活化剂和EDCI活化剂,将适量的NHS和EDCI活化剂加入已清洗的微球中,上下颠倒混匀后再置旋转混匀器上混匀,持续约20~30min。

3. 包被:将已彻底超声振散的微球加入一定浓度的CSFVE2蛋白单抗中,先手动上下颠倒混匀,再置旋转混匀器充分反应。

15000rpm离心10min后弃上清,加入1 mL MES。

4. 封闭:将已彻底超声振散的微球加入100μL封闭液,置旋转混匀器充分反应1h或置2~8℃封闭过夜。

此外,还应注意如下问题:在离心前使标本完全自然形成凝块。

保持样品管的密闭状态。

抽血后2小时内完成离心和冷藏。

血清和血浆需用物理方法尽快与细胞分离。

去除所有可能存在的纤维蛋白和细胞成分,否则会得到假阳性结果。

如果48小时内不能完成检测即应将标本放入-20℃冰箱冻藏。

标本只能复溶一次,检测前须将复溶标本离心处理。

不要用水浴方法复溶标本。

吸取血浆标本时应避免将红细胞层上的白细胞或血小板层吸出。

含有颗粒物质的浑浊血清或血浆标本在检测前须先从原始管内转运出来,并重新离心,原始管中含有分离介质(分离胶)的可以不再离心。

如果标本不在24小时内检测或运送标本时,将标本保存在-20℃或更低温度的环境中。

标本不能溶血。

标准液所用的物质对HIV抗体,乙型肝炎表面抗原和丙型肝炎抗体测试呈阴性反应。

建议各实验室建立自己的正常值范围。

测量的特征值(测量范围、精度、准确度、灵敏度)和多种分析仪的参数将另外提供。

以上信息仅供参考,如有需要建议咨询专业人士。

胶乳标记过程中常见问题集

胶乳标记过程中常见问题集

胶乳标记过程中常见问题集1)问题:蛋白无法吸附到微球上。

解决方法:加入更多的蛋白;去除微球中的表面活性剂,释放其占据的蛋白结合位点;引入中间物,将微球与蛋白相连;改变缓冲液。

2)问题:标记时加入了大量的蛋白,但是仍然无活性。

解决方法:改变蛋白加入量,从而改变蛋白与微球结合的空间构象;使用表位稀释物,占据微球上的部分蛋白结合位点,防止蛋白靠的太近。

3)问题:清洗去除未吸附蛋白后,微球聚集。

解决方法:增加蛋白标记量或封闭剂的用量,防止有空余位点;4)问题:标记后开始活性很好,储存一段时间后,活性降低。

解决方法:降低储存温度到2~8度;降低储存液中的封闭剂浓度,防止抗体被替换;确认储存液中无能与抗体竞争的杂质,防止长时间取代抗体。

5)PS微球与蛋白(抗体)交联后,当时没发现有凝集,但隔夜后发现有凝集是偶联效率低的原因。

当体系蛋白不足或是其它原因,使微球表面在交联后还空出许多反应基团时,由于这些基团又可以与相连微球上的蛋白反应,结果是把球又拉在一起了,所以有聚集。

可以加一些blocker agents 解决,常见的是BSA,另外,也可提高微球的交联率。

但为什么是过一段时间后才出现凝集呢,这是因为微球偶联上蛋白后,相互之间由于携带同种电荷的关系,比较稳定(所以能以胶体样存在),只有当偶尔相互碰撞,遇上彼此的反应基团时才能结合。

6)抗体偶联至羧基PS球,即时检测效果很好,但置于37度2天后,抗体活性似乎下降很大。

可能共价结合未成功,如果是这样,那么最主要的原因是EDAC质量差或过期了。

EDAC长期放在空气中会吸潮,水汽会降低EDAC活性。

另一个可能原因是凝集。

观察胶乳是否有凝集产生。

还有,交联蛋白前有没有清洗?我们提供的胶乳缓冲液中含有表面活性剂,可能干扰抗体的结合。

如果未发生凝集,而且用前已经清洗,那么我们建议换新的EDAC。

7)EDC活化羧基乳胶微球后,加蛋白(抗体)即时有沉淀出现,是什么原因?很多因素可以导致蛋白加入后,微球聚集成块。

胶乳微球偶联蛋白的使用中常见问题及解答

胶乳微球偶联蛋白的使用中常见问题及解答

胶乳微球偶联蛋白的使用中常见问题及解答胶乳微球使用中常见问题及解答以下问题是我们用户在使用过程中遇到的问题,我们咨询了国外的技术人员,这是他们的答复)问:产品说明书中给出的胶乳粒径是平均粒径吗?答:产品说明书中给出的胶乳粒径(Diameter)是平均粒径。

问:如何选择胶乳微球的粒径?答:一般选择粒径小的胶乳微球,则需要的抗体量就多,精密度和线性相对较好,而选择粒径大的胶乳微球性,则所需抗体少,精密度和线性相对较差,相对于小球,大球的灵敏度较好。

问:一般情况下我们所使用的微球的浓度大概是多少?答:整个测定体系中,微球的浓度大约在0.01%左右,当然这与试剂本身规定的线性有关系。

问:在使用离心方法偶联乳胶微球,一般需要多大的(相对)离心力?答:需要多大的离心力和所使用的乳胶微球有关,一般70nm左右的微球大概13000g/min 30min以上,粒径越小所需时间越长,离心力越大。

问:蛋白(抗体)与微球偶联前,是不是微球的活化时间越长,效率越好?答:羧基微球的活化所需时间很短,一般以10-20分钟为宜,长时间的活化反而会降低偶联效率。

问:由于抗体不只是FC的氨基酸上有NH2,是不是表示它可以在任何方向与EDCA活化微球偶联呢?如果是这样,是不是会影响抗体与抗原的特异性反应?答:事实的确如此,当然由于抗体的空间折叠方式和FC端疏水性强,因此偶联反应的绝大多数发生在Fc端,对抗体与抗原的结合的影响不大。

问:胶乳微球与抗体偶联后,当时没发现有凝集,但隔夜后发现有凝集,这是什么原因?如何控制和避免?答:这种情况一般是偶联效率低的原因。

当体系中蛋白不足或是其它原因,使微球表面在交联后还空出许多反应基团时,这些基团又可以与相连微球上的蛋白反应,结果是把球又拉在一起了,所以有聚集。

可以加一些阻断剂解决,常见的是BSA,另外,也可提高微球的交联率。

但为什么是过一段时间后才出现凝集呢,这是因为微球偶联上蛋白后,相互之间由于携带同种电荷的关系,比较稳定(所以能以胶体样存在),只有当偶尔相互碰撞,遇上彼此的反应基团时才能结合。

聚苯乙烯微球清洗的方法

聚苯乙烯微球清洗的方法

聚苯乙烯微球清洗的方法引言聚苯乙烯微球是一种常见的微球材料,具有广泛的应用领域,如生物医学、环境科学等。

然而,在使用聚苯乙烯微球的过程中,由于微球表面的杂质、污染物的存在,会影响其应用效果。

因此,开展聚苯乙烯微球的清洗工作非常重要。

本文将介绍几种常见的聚苯乙烯微球清洗方法,希望能够对相关研究工作者提供参考和帮助。

方法一:溶剂清洗法溶剂清洗法是一种常见的聚苯乙烯微球清洗方法。

具体步骤如下:1. 准备清洗溶剂:可以选择乙醇、醚类等有机溶剂,将其加入一个容器中。

2. 将待清洗的聚苯乙烯微球放入容器中,轻轻搅拌,使溶剂与微球充分接触。

3. 静置一段时间,允许微球与溶剂发生物理或化学作用。

4. 将清洗后的聚苯乙烯微球过滤或离心,去除溶剂。

5. 将清洗后的聚苯乙烯微球用适当的溶剂重新悬浮,以备后续实验使用。

方法二:酸碱洗法酸碱洗法也是一种常见的聚苯乙烯微球清洗方法。

具体步骤如下:1. 准备酸性或碱性溶液:酸性溶液可以选择盐酸、硫酸等,碱性溶液可以选择氢氧化钠、氢氧化钾等,将其加入容器中。

2. 将待清洗的聚苯乙烯微球放入容器中,轻轻搅拌,使溶液与微球充分接触。

3. 静置一段时间,允许微球与溶液发生化学反应。

4. 将清洗后的聚苯乙烯微球过滤或离心,去除溶液。

5. 用去离子水反复洗涤聚苯乙烯微球,使pH值接近中性。

6. 将清洗后的聚苯乙烯微球用适当的溶剂重新悬浮,以备后续实验使用。

方法三:超声波清洗法超声波清洗法采用超声波功率来去除聚苯乙烯微球表面的杂质和污染物。

具体步骤如下:1. 准备超声波清洗装置,将待清洗的聚苯乙烯微球放入装置中。

2. 将清洗液(如去离子水)加入装置中,液位需覆盖微球。

3. 打开超声波清洗装置,调节功率和清洗时间,将超声波能量传到聚苯乙烯微球表面。

4. 关闭超声波清洗装置,将清洗后的聚苯乙烯微球过滤或离心,去除清洗液。

5. 将清洗后的聚苯乙烯微球用适当的溶剂重新悬浮,以备后续实验使用。

结论聚苯乙烯微球清洗是确保其应用效果的关键步骤。

胶球清洗装置操作规程

胶球清洗装置操作规程

胶球清洗装置操作规程一、胶球清洗装置操作规程(一)胶球清洗装置是什么胶球清洗装置啊,就像是给设备做清洁的小助手呢。

它主要是用来清洗那些容易脏污、结垢的设备部件的,比如说冷凝器之类的。

这东西可重要啦,如果不清洗干净,设备的效率就会大打折扣,就像人要是好久不洗澡,浑身不舒服还没精神一样。

(二)操作前的准备1. 检查胶球要看看胶球是不是完好无损的,有没有破损或者变形的情况。

要是胶球都坏了,那还怎么清洗呀,就好比扫地用的扫帚都散架了,肯定扫不干净地啦。

而且要确保胶球的数量是足够的,缺了几个可不行哦。

2. 检查装置检查胶球清洗装置的各个部件,像管道有没有堵塞,阀门是不是能正常开关。

这就像检查汽车一样,轮胎有没有气,刹车灵不灵,这些都得好好看看。

还有就是要检查装置的密封性,如果密封不好,胶球可能就会跑掉,那就乱套啦。

3. 检查动力系统动力系统可是胶球清洗装置的动力源泉啊。

要看看电机是不是能正常运转,有没有异常的声音或者震动。

如果电机出问题了,胶球就动不起来,那清洗就无从谈起啦。

(三)操作过程1. 装填胶球把检查好的胶球小心地装填到装置里,就像把小宝贝放进摇篮一样。

要注意装填的数量和位置,要按照装置的要求来,不能随便乱放。

2. 启动装置按下启动按钮,这时候就像给装置下达了开始工作的命令。

要密切关注装置启动时的情况,看看有没有异常的声音或者震动。

如果有,就得赶紧停下来检查,可不能让小问题变成大问题。

3. 清洗过程中的监控在清洗的过程中,要时不时地看看装置的运行情况。

看看胶球是不是在正常地循环运动,有没有卡在管道里的情况。

就像看着小朋友在操场上玩耍,要确保他们的安全一样。

同时,也要关注清洗的效果,如果发现清洗得不太干净,可能就要调整一下清洗的时间或者胶球的数量。

(四)操作后的维护1. 取出胶球清洗完成后,要把胶球从装置里取出来。

这时候要小心一点,别把胶球弄坏了。

取出的胶球要进行检查,如果有损坏的就要及时更换。

2. 清洗装置把胶球清洗装置本身也清洗一下,把里面的污垢、杂质都清理干净。

1、胶乳偶联方案的输出

1、胶乳偶联方案的输出

实验方法:一步法共价结合实验步骤:1、配制50mM的MES反应缓冲溶液,pH值为6.0;2、将蛋白质溶解于反应缓冲溶液中,其浓度为10mg/L;3、用反应缓冲溶液稀释胶乳微球,使其浓度为1%(W/V);4、将上述蛋白质溶液与胶乳微球混合,混合后在温室培育20分钟;5、用去离子水配制EDAC溶液,浓度为10mg/mL(52μmol/mL);6、取计算量的EDAC溶液加到蛋白质与胶乳微球混合液中;7、用0.1M氢氧化钠(NaOH)溶液调整该反应混合液的pH值至6.5±0.2,在摇床温室培育2小时;8、将未结合的蛋白质除去,贮藏于缓冲溶液中。

实验方法:简单二步法共价结合实验步骤:1、配制50mM的MES反应缓冲溶液,pH值为6.0;2、将蛋白质溶解于反应缓冲溶液中,其浓度为10mg/L;3、用反应缓冲溶液稀释胶乳微球,使其浓度为1%(W/V);4、1mL胶乳微球悬浮液,加入20mgEDAC,在室温培育40分钟,在20分钟后第二次加入20mg/mL;5、用相等体积的该缓冲溶液来洗涤胶乳微球,离心,用1倍体积的缓冲溶液重复处理;6、将蛋白质溶解于50-100mM的MES缓冲溶液中,蛋白质浓度为1mg/mL;7、再将胶乳微球悬浮于去离子水或结合的缓冲溶液中,迅速加入溶解的蛋白质,37℃搅拌反应3小时;8、按1mL反应混合液加入2.5μL乙醇胺混合,搅拌反应10分钟;9、除去未结合的蛋白质,贮藏与贮存的缓冲溶液中实验方法:生成NHS-酯的中间体二步法共价结合实验步骤:1、每ml反应混合物加入下列各物:a.去离子水是最后容积为1.0mL;b.0.1mL的10x的贮备缓冲溶液,其pH值为6.0-6.5(一般可用0.5M MES缓冲溶液);胶乳微球最终浓度为1%(W/V);c.0.23mL的50mg/ml的NHS在去离子水中的溶液;d.19.2mg/mL(100mM)的EDAC在去离子水中的溶液2、在室温将此混合物反应15-30分钟,不断搅拌;3、用MES缓冲液或纯化水洗涤胶乳微球悬浮物,除去未反应的NHS和EDAC;4、重新将胶乳微球在去离子水中悬浮,使其浓度为1%(w/v);5、将结合的蛋白质溶于50-100mM的MES缓冲溶液中,浓度为1mg/mL;6、立即加入蛋白质溶液(胶乳微球、蛋白质和缓冲溶液的浓度分别为0.5%(w/v)、0.5mg/mL、25-50mM);7、将混合物反应至少2小时,轻轻搅拌;8、按1mL反应混合液加入2.5μL乙醇胺混合,搅拌反应10分钟;9、除去未结合的蛋白质和乙醇胺,贮于适宜的贮存缓冲溶液中。

胶体微球安全操作及保养规程

胶体微球安全操作及保养规程

胶体微球安全操作及保养规程胶体微球是一种常用于生物医学和化学研究中的微小颗粒物质。

为了确保实验室的安全,本文提供一份胶体微球的安全操作及保养规程,以供参考。

胶体微球的定义和特点胶体微球主要由聚合物、无机材料、金属氧化物等构成,通常尺寸在几纳米到数微米之间。

其特点为具有较大的比表面积和表面活性,易受外界环境影响而发生变化。

胶体微球的安全操作规程1. 个人防护在操作胶体微球前,需要佩戴实验室常规的个人防护装备,包括实验室服、手套、护目镜等,确保眼睛、皮肤和呼吸道不受危害。

2. 储存条件胶体微球应储存在干燥、阴凉、避光的环境下,避免受到潮湿、高温、强光等有害影响。

在储存时,应严格遵守制造商的说明,不要超过保质期。

3. 操作环境在进行胶体微球操作时,必须保持实验室清洁,避免其它实验室物品污染颗粒物。

实验室应经常清洁、净化空气,确保操作环境卫生。

4. 操作方式在进行胶体微球操作时,应根据实验所需要的溶液或介质类型,选取合适的操作工具(如注射器、微量移液管等),避免与水、有机溶剂、酸碱性物质等反应。

5. 废物处理在操作结束后,应适当处置剩余的胶体微球及操作工具。

如有残余溶液,请按照实验室规章制度进行废物处理,避免影响环境和人类的健康。

胶体微球的保养规程1. 清洁在使用前后,应使用简单、容易清洁的方法进行胶体微球的清洁,包括表面和内部的杂质、残留物的清除。

清洁方式可根据不同的材质类型选择合适的方法,如洗涤、超声波处理、气体吹扫等。

2. 储存在清洁后,应将胶体微球储存于经过消毒、防潮处理的容器或瓶中,并尽快存放在合适的温度和湿度下,避免颗粒粘连和变形。

3. 检查储存时,应定期检查胶体微球的外观和性质,确保不受污染或变质影响。

如外观变化、溶解性、颗粒尺寸等发生变异,应在储存条件不可更改时停止使用。

4. 正确使用在使用前,应根据实验需要选择合适的胶体微球,按照实验流程合理使用。

不可将不同类型的胶体微球混合使用,以免影响实验结果。

乳胶标记

乳胶标记

方法一:1、分别称取EDC和NHS各10mg,分别装于2个干净离心管中。

2、取羧基微球悬浊液1ml,移至干净离心管中,10000rpm×5min,用Tip头小心弃去上清。

3、用80ul Activation Buffer洗涤微球,10000rpm×5min,用Tip头小心弃去上清。

共洗涤2次。

4、在离心管底部轻轻地加80ul Activation Buffer,不用吹打微球。

5、将离心管在超声波下,声浴60s。

6、用去离子水将EDC和NHS配成浓度为50mg/ml的溶液。

分别取10ul NHS溶液和10ul EDC溶液,加入到微球悬浊液中,暗室孵浴20min。

7、10000rpm×5min,小心弃去上清。

Coupling the capture molecule to the activated beads8、用Couple Buffer将抗体配成终浓度为100ug/ml的溶液,配500ul。

9、用500ul Couple Buffer重悬微球(by votexing)。

10、用500ul Couple Buffer洗涤微球,10000rpm×5min,小心弃去上清。

共洗涤2次。

11、用500ul Couple Buffer重悬微球(by votexing)。

12、将事先配好的500ul抗体加入到微球管中。

13、将离心管置水平振荡器上,室温,暗室,轻振2hours(Gently agitate)。

14、用PBS/BSA洗涤微球2次。

15、用PBS/BSA重悬微球,如需较长时间保存,可用0.05% azide保存。

方法二:1、待标记蛋白于Buffer A透析1h。

2、用1000u1 Buffer A 稀释250 u1乳胶颗粒(10%)至2%的胶乳悬液。

3、用Buffer A溶解EDC至终浓度20mg/ml.4、250 u1 EDC溶液(20mg/ml.)加入到1250 u1乳胶悬液混匀。

聚苯乙烯微球清洗的方法

聚苯乙烯微球清洗的方法

聚苯乙烯微球清洗的方法引言聚苯乙烯微球是一种重要的功能性材料,被广泛应用于医疗、环境、能源等领域。

然而,在使用聚苯乙烯微球之前,由于加工、合成等过程所产生的杂质需要进行清洗。

本文将介绍几种常用的聚苯乙烯微球清洗方法。

方法一:溶剂清洗聚苯乙烯微球的表面通常会附着一些有机杂质或其他污染物。

溶剂清洗是最常见的一种清洗方法,可以有效去除这些污染物。

步骤:1. 准备所需溶剂。

常用的溶剂有丙酮、乙醇、甲醇等。

选择合适的溶剂时需要考虑聚苯乙烯微球的耐受性和溶剂的挥发性。

2. 将聚苯乙烯微球放置于容器中,加入足够的溶剂,使微球完全浸没。

3. 用封闭的容器将溶剂和聚苯乙烯微球混合,使微球充分与溶剂接触。

4. 静置一段时间,让溶剂中的杂质溶解。

5. 轻轻搅拌容器,以促进清洗过程。

6. 将溶剂和微球分离,可以用滤纸或离心机进行分离。

7. 重复以上步骤,直到微球完全清洗干净。

方法二:酸碱清洗有些污染物可能是由酸碱物质导致的。

酸碱清洗可以去除这些酸碱污染物,并还原微球表面的原有性质。

步骤:1. 准备所需的酸碱溶液。

通常使用的酸有盐酸、硝酸等;碱有氢氧化钠、氨水等。

需要注意的是,选择合适的浓度和种类时需要考虑聚苯乙烯微球的适应性。

2. 将聚苯乙烯微球放置于容器中,加入足够的酸碱溶液,使微球完全浸没。

3. 静置一段时间,让酸碱溶液中的杂质与微球进行反应。

4. 轻轻搅拌容器,以促进清洗过程。

5. 将酸碱溶液和微球分离,可以用滤纸或离心机进行分离。

6. 重复以上步骤,直到微球完全清洗干净。

方法三:热处理清洗聚苯乙烯微球在一定温度下会软化,这时可以利用热处理来清洗微球表面的污染物。

步骤:1. 准备热处理设备,如热板、烘箱等。

2. 将聚苯乙烯微球放置在热板或烘箱中,调节温度为微球软化温度以下。

3. 将微球加热一段时间,使其软化。

4. 使用工具或溶剂清除表面的污染物。

5. 关闭热处理设备,使微球冷却。

6. 用溶剂清洗微球,将剩余的污染物彻底去除。

琼脂糖微球的清洗方法[发明专利]

琼脂糖微球的清洗方法[发明专利]

专利名称:琼脂糖微球的清洗方法
专利类型:发明专利
发明人:余曾成,高双双,庄晓慧,张磊,王业富申请号:CN202111516131.1
申请日:20211206
公开号:CN114191848A
公开日:
20220318
专利内容由知识产权出版社提供
摘要:本发明提供了一种琼脂糖微球的清洗方法,将乳化‑冷却法得到的琼脂糖微球乳液静置分层,将上层油相分离出来,得到下层琼脂糖微球乳化层;然后向琼脂糖微球乳化层中加入水,静置分层,分离得到上层乳化层和下层琼脂糖微球水相层,从下层水相层中分离得到琼脂糖微球;将上层乳化层反复加水分层分离,将每一次分离得到的琼脂糖微球混合,水洗得到高纯度琼脂糖微球。

本发明首先将乳化液静置,使大部分油相分离出,大大减少了待清洗乳化层的体积,故而能提高单次可实现的最大清洗量,节省设备的运行成本;同时乳化层体积的减少也必将减少清洗液的用量,进一步减少清洗成本,适合工业化生产;所得微球在交联反应完成后具备良好的理化性质。

申请人:武汉瑞法医疗器械有限公司
地址:430200 湖北省武汉市东湖新技术开发区高新二路392号研发楼4楼
国籍:CN
代理机构:武汉卓越志诚知识产权代理事务所(特殊普通合伙)
代理人:戴宝松
更多信息请下载全文后查看。

胶乳微球的清洗

胶乳微球的清洗

胶乳微球的清洗TechNote 203Washing Microspheres9025 Technology Dr. ? Fishers, IN 46038-2886800.387.0672 ? 317.570.7020 ? Fax 317.570.7034info@/doc/3edfb3bab0717fd5360cdc 38.html ? /doc/3edfb3bab0717fd5360cdc38.html ContentsI. IntroductionII. General ConsiderationsIII. CentrifugationA. ConsiderationsB. ProcedureIV. DialysisA. ConsiderationsB. ProcedureC. Dialysis Equipment SuppliersV. Cross-Flow FiltrationA. General InformationB. Ultrafiltration SuppliersVI. Mixed-Bed Ion-ExchangeA. General InformationB. Ion-Exchange Resin SuppliersVII. Serum ReplacementA. General InformationB. Stirred Cells for Serum ReplacementVIII. Cleaning Coated Dry ParticlesIX. AppendixA. Washing of (Superpara)Magnetic MicrospheresB. Washing of Silica MicrospheresX. ReferencesI. IntroduCtIonBangs’ Laboratories microspheres are presented to the customer in severaldifferent ways; dry (large particles and some silica), in methanol (spacers),and, most frequently, in an aqueous suspension. The aqueous suspensioncontains surfactant, unless otherwise specified, and, in some cases, theremay be an antimicrobial agent.There is a common view that microspheres must be washed before they canbe used by the customer. This is not always the case. If the aqueous solutionwill not harm the system in which you are working, the microspheres may beused directly out of the bottle. The surfactant is in the solution to help keepthe microspheres monodisperse, and removing it may not be necessary. Wesuggest that you first try using microspheres without washing them.Please also note that our ProActive? protein-coated microspheres come in abuffer with specified salts and surfactants that may not be suitable for yoursystem. This may make it necessary to replace the initialbuffer.If the surfactant in the aqueous solution needs to be decreased or eliminated,or water should not enter your system, then the microspheres will have tobe washed. There are many different techniques that can be used; however,the microsphere size dictates which method is preferred. The standardmethods of washing microspheres use centrifugation, dialysis, mixed-bed ionexchange, cross-flow filtration (tangential flow filtration, ultrafiltration), andserum replacement.Centrifugation is the most commonly used, and perhaps easiest, cleaningmethod, but is difficult to use with microspheres smaller than 300nm indiameter. The speeds required to centrifuge microspheres this small would bevery high, and the pellet would be very hard to resuspend.The other four cleaning methods that were mentioned can be used onany type of microsphere, with some reservations. In this technical note,procedures for these methods are outlined. General considerations for eachof the procedures are also covered. The procedures presented in the body ofthis technical note are for dyed and undyed, nonmagneticmicrospheres. Theappendix will outline the washing of magnetic and silica microspheres.II. General ConsIderatIonsAlthough it is often not necessary that microspheres be completely cleanedof surfactant prior to use, there are applications that call for this condition.One can measure surfactant coming off the microspheres with instrumentalmethods, including surface tension analysis, to determine when the washliquid is free of surfactant. An alternative and more practical method comesfrom Dr. Geoffrey Seaman of Emerald Diagnostics. The wash liquid can beconsidered to be free of surfactant when the foam or bubbles on top of 5mLof H2O, shaken in a clean 10mL test tube, collapse in 2-3 seconds. We callthis the “Seaman Shake Test.” This method can be used with many of themethods outlined in this TechNote.Use the cleanest water possible when mixing buffers or washingmicrospheres. This is water with low conductivity, zero organics, and nomicrobes. Any organic or inorganic contaminants, present ineven commercial deionized water, will tend to stick to the microspheres, effectively cleaning your water, but making matters worse for the microspheres.Many cleaning methods result in a microsphere pellet or filter cake at some point. It is important that the microspheres be completely resuspendedbetween washes, or before continuing with ligand coating. Resuspension can be made easier by forming the loosest pellet or filter cake that is possible or practical to work with, without losing microspheres in the supernatant. After addition of clean wash liquid or buffer, any microsphere aggregates can normally be broken up using brief (1-2 minute) bath sonication. If a bath sonicator is not available, vortexing or repeated pipetting and dispensing can often do the trick. We do not recommend the use of sonic probes, as they are a potential source of microbial contamination, and have been known to shed metal into the solution.Complete microsphere resuspension can be verified by microscopic evaluation. Even for particles smalle r than ~0.8μm in diameter (the practical single particle limit for 1000X magnification with a light microscope),aggregates can usually be seen quite easily. A uniform suspension of small microspheres will appear as a hazy vibrating background.III. CentrIfuGatIonA. Consi derationsMicrospheres less than 300nm in diameter should not be cleaned bycentrifugation (see dialysis, serum replacement, or ionexchange).? Times are estimates based on settling 10cm through water. Settlingtimes will, of course, vary for large volumes and viscous or high specific gravity solutions.B. Proce dure1. Place aliquot of microspheres in appropriate centrifuge tube.2. Centrifuge the microspheres at the appropriate G forces for 15 minutesto clear the supernatant (see Table below).3. Remove and discard supernatant.4. Resuspend the microspheres in water or buffer of choice. - Use proper amount of liquid to arrive at desired percent solids. - The microspheres may need to be vortexed or sonicated to redisperse. - Use a sonic bath. Probe sonicators introduce the possibility of contamination in the sample, so care should be taken that the probe tip is completely clean before use.5. Repeat these steps the number of times needed for your application. - For coupling of protein, at least 3 washes are recommended, with the final wash being done in the buffer to be used for protein attachment.IV. dIalysIsThis method can be used with any size microsphere, but as particle diameter and membrane pore size change, dialysis time for complete cleaning might also vary.A. Consi derations1. Concentration DifferentialThe driving force in dialysis is the concentration differentialbetween the two solutions on the opposite sides of the membrane. Maximum efficiency occurs when the membrane is thin and the concentration differential is large.2. Molecular Weight Cut Off (MWCO)Dialysis membrane performance is characterized by the molecular weight at which 90% of the solute will be retained by the membrane. In addition to the MW, the exact permeability of a solute is dependent on the shape of the molecule, its degree of hydration, and its charge. Each of these may be influenced by the nature of the solvent. Extreme pH, ionic strength, or non-aqueous solvents may cause a deviation in the MWCO. Because of this, the MWCO should be used as a guide, and not an absolute prediction of performance. In the case of microspheres, a pore size close to the mean microsphere diameter will ensure a rapid exchange, but also a potential loss of 10% of the material.3. Pore SizeA narrow pore size distribution is important. The pores should be very uniform and very close to reported size.4. Flow DirectionSample flow perpendicular to the membrane may cause blockage. Blockage can be reduced by sample mixing during dialysis. Mixing can be achieved by stirring the dialysis buffer, or by passing the sample parallel to the membrane. A good way to keep both the dialysate and buffer passing over the membrane at the same time, when dialyzing small volumes, is to place the microsphere suspension in a dialysis sack, inside a 50mL conical tube containing wash buffer. The tube is then placed on a rocker. Alternatively, a slow stirring rate will inhibit dialysis by creating a concentration polarization barrier at the membrane. Increased stirring will improve dialysis to the maximum rate allowed by theintrinsic properties of the membrane.5. Hydrodynamic FlowFlow is not a molecular process, but includes bulk movement of the fluid through a porous medium. The flow rate of the fluid through the medium is influenced by pressure, porosity, and the viscosity of the fluid.6. The Donnan EffectThe Donnan Effect arises when one of the solutes (i.e., protein or polymer) is charged, but non-diffusible. As a result, an unequal distribution of ions impedes diffusion of the ionic species of the opposite charge from the non-diffusible species. This results in a membrane potential.7. Concentration PolarizationThis is a phenomenon that affects solute transfer across a semi-permeable membrane. Although this effect is more prevalent in ultrafiltration, an effort should be made to reduce concentration polarization in dialysis. Stirring or circulating the buffer is perhaps the easiest and most effective way to minimize this effect, caused by the accumulation of retained solutes, or particles, on the membrane or in the boundary layer adjacent to themembrane surface. This layer of solute is known as a gel layer, and may have a higher retention rate than the membrane itself. Diluting the solution will also help to minimize this effect.8. Sample VolumeTubing size should be selected to ensure that the sample can be contained within 5-20cm of tubing. The flat width of the tubing should provide the greatest surface area to volume ratioto enhance the rate of dialysis. There should also be an allowance for increased volume to retentate (2X).9. Membrane Cleaning Dialysis membranes must be washed thoroughly before being used for microsphere cleaning, since they are made with various water soluble surfactants, polymers, and other organics.10. Solvent ConcentrationThe solvent volume should be maintained at least 10X the sample volume. The solvent should be changed frequently to ensure that diffusion takes place across the membrane against essentially zero concentration.B. Proce d ure1. Choose dialysis tubing according to the considerations listed above.A good guide is to choose the largest pore size that will still retain the microspheres.2. Cut the proper length of tubing for your sample. Remember that thesample volume will increase from osmotic pressure during the dialysis.3. Thoroughly wash the tubing free of any water soluble impurities, withthe best available water, making sure that no air bubbles remain. At this point, you should also check your tubing with water to make sure that there are no leaks.4. Place your sample inside the dialysis tubing. Again, remember to allowfor increased volume inside the tubing.5. Place the tubing containing the sample into the solvent you are dialyzingagainst. Make sure that you have securely clamped or tied off the ends of the tubing.6. Allow to dialyze for ~24 hours at room temperature. Mixing will helpincrease the rate of diffusion. Changing the external solvent frequently will increase the exchange rate.7. Remove the cleaned microsphere suspension for use in yourexperiment.C. Dialysis Equipment SuppliersThese are only some companies that supply this equipment.Fisher ScientificPhone: 800-766-7000Fax: 800-926-1166Pierce ChemicalPhone: 800-874-3723Fax: 800-842-5007* Try Pierce’s Slide-A-Lyzer ?dialysis cassettes.Spectrum/Microgon Phone: 800-634-3300 Fax: 800-445-7330* Try Spectrum’s 300K MWCO DispoDialyzers ?for removing unbound IgG.V. Cross-flow fIltratIonA. General InformationCross-flow filtration, also known as ultrafiltration or tangential-flow filtration, is another method that can be used to clean microspheres. In this method, the sample passes across the membrane tangentially, allowing solutes that are small enough to pass through the membrane, but retaining the microspheres. Making the flow run tangential to the membrane reduces the chance of clogging the pores and developing a filter cake. This method is effective for small microspheres as well as large ones,and may be a nice alternative to centrifugation, especially with large volumes.Cross-flow filtration is an effective method for cleaning microspheres, but there are several things that must be taken into consideration before choosing to use it. There is some loss of sample with this method, due to material being incompletely removed from the filtration unit. Although advances have allowed for the running of smaller sample volumes, there is always loss involved, so the volume you are filtering should be evaluated. This method will have a tendency to concentrate the microspheres.A detailed protocol for this method is not included, as it will vary according to your application and equipment. We have listed several suppliers of this equipment below. If you decide that this is the proper method for your experiment, you will get technical help and protocols from the supplier, as well as advice on equipment choice.B. Ultrafiltration Suppliers Millipore Phone: 800-645-5476 Fax: 800-645-5439Pall / Gelman Phone: 800-521-1520 Fax: 516-484-5228Spectrum Phone: 800-634-3300Fax: 800-445-7330VI. MIxed Ion-exChanGeA. General InformationThis method will remove all electrolytes from the suspension, includingcharged surfactants. A mix of positive (cation) and negative (anion) exchange resins are used in this process. The sample containing the microspheres is added to the mixed resins, and any charged material on the particle or in the solution issequestered by the exchange resins.Figure 1: Cross-Flow Filtration(Illustration courtesy of Spectrum / Microgon)There are several considerations when using this method. One must carefully choose which type of resin to use. Although some precleaned and ready to use mixed resins are commercially available (e.g. through Bio-Rad), other resins may have to be cleaned or activated prior to use. They may have material on them that will adhere to the microspheres, and end up making them dirty instead of cleaning them. (We can offer additional guidance and protocols for cleaning commercial ion-exchange resins, upon request.) Itis also true that uncharged material will not be removed from the particle suspension. This includes nonionic surfactants and some water-soluble polymers, which may be present in the microsphere suspension.B. Ion - Exchange Resin SuppliersDow Chemical Phone: 800-447-4369 Fax: 517-638-9331 Bio-Rad Phone: 800-424-6723 Fax: 510-741-5800 VII. seruM replaCeMentA. General InformationSerum replacement is a cleaning method that is very similar to dialysis or cross-flow filtration. The considerations for dialysis can be carried over to this method. In the case of serum replacement, the particle suspe nsion is placed in a “cell.” The same osmotic process takes place, as in dialysis.B. Stirred Cells for Serum ReplacementMillipore Phone: 800-645-5476 Fax: 800-645-5439 VIII. CleanInG Coated dry partIClesSome dry particles may have a coating (i.e., calciumphosphate or colloidal silica) or contaminants that may need to be removed. Following is a simple procedure for doing so.1. Place particles in a Büchner funnel that is attached to a vacuum source.2. Ensure that the funnel has the appropriate frit or membrane to catchparticles.3. Disperse phosphate-coated particles in 2N Hydrochloric acid.4. Disperse silica-coated particles in 10% NaOH (sodium hydroxide).5. Stir for 1 hour.6. Remove liquid by vacuum filtration.7. Wash with DI water by filling funnel with water, stir for 5 minutes, thenvacuum off water. Repeat water washes until pH of water in = pH ofwater out.Ix. appendIxA. Washing of (Superpara)Magnetic MicrospheresMagnetic microspheres were made and are utilized for their ease-of-use. They are easy to separate from solution and, therefore, easy to wash. The same method of washing can be used for all magnetic particles, regardless of their size. The microsphere suspension is placed adjacent to a magnet, and the microspheres will pull over to the magnet. As soon as the supernatantis clear and has been aspirated or decanted, the tube can be removed from the magnet and the microspheres resuspended in fresh water or buffer. It should be noted that our magnetic microspheres contain a large amount of surfactant and mayrequire many (10-15) washes at pH 8-10 to remove it. There are many suppliers of magnetic separation racks specialized for test tubes and centrifuge/microfuge tubes.B. Washing of Silica MicrospheresSilica microspheres are supplied as either dry powders or as aqueous suspensions without surfactant. Because they might contain trace impurities as a result of the precipitation process, users often wash them prior to use. They may be washed using any of the methods outlined above. Their density (1.96 g/cm3 versus 1.05 g/cm3 for polystyrene) allows for easier handling. They will pellet more quickly and at lower speed than polystyrene microspheres will, and will resuspend more readily due to their hydrophilic surface. Please note, though, that silica microspheres will settle more quickly than polymeric microspheres, and so will need to be mixed or agitated when being processed by dialysis.x. referenCes1. Ahmed, S.M., M.S. El-Aasser, G.H. Pauli, G.W. Poehlein, J.W.Vanderhoff. 1980. Cleaning latexes for surface characterization by serum replacement. J Coll Interface Sci, 73(2): 338-406.CO / MM - 11 / 97Copyright 1999, Bangs Laboratories, Inc.All Rights Reserved。

胶球清洗步骤

胶球清洗步骤

投运前准备
1 胶球用温水浸泡24小时,对浸泡后不合格的球去出不用;
2加球:打开装球室放气门,放水门,将装球室上盖打开,放入泡好的胶球,然后将上盖压好,将放气门、放水门关闭;
3 排气,将装球室出水阀打开,打开排气阀,将装球室内气排掉直至出水,关闭排气阀及放水阀;
运行操作
将收球网操作手轮旋至“收球位置”
胶球泵进口阀打开
启动胶球泵
打开装球室出口阀
将装球室切换阀打至“清洗位置”
清洗系统30分钟
停止操作
将装球室切换阀打至“收球位置”,
胶球泵出口阀打开
停止胶球泵
关闭装球室出口阀
关闭胶球泵进口阀
将收球网操作收轮旋至“网板反洗”,此时水流对网板进行反冲洗,运行结束;
使用方法
1、正常投球量
正常投球量为凝汽器单侧单流程冷却管根数7%-13%,依胶球循环一次所需时间的长短,取下限或上限或其接近值,胶球循环一次的时间一般以30秒作为界限;
2、胶球补充周期或更换周期胶球补充周期为胶球自动清洗系统累计运行7次,也可根据本单位具体情况不同调整补充周期;
胶球更换周期,根据国产球使用统计,其更换周期为胶球自动清洗系统累计运行60次;
另外,在水中浸泡一段时间后,个别胶球可能胀大过多,致使直径超标,在补充和更换胶球时,均应及时换掉,以防冷却管被堵;
3、使用时湿态球直径一般比冷却管内径大,冷却管有两种规格时,以小规格的一种为准,冷却管口加装套管口以套管为准选择胶球;。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

TECH NOTE 203
microspheres. This is water with low conductivity, zero organics, and no microbes. Any organic or inorganic contaminants, present in even commercial deionized water, will tend to stick to the microspheres, effectively cleaning your water, but making matters worse for the microspheres.
Centrifugation is the most commonly used, and perhaps easiest, cleaning method, but is difficult to use with microspheres smaller than 300nm in diameter. The speeds required to centrifuge microspheres this small would be very high, and the pellet would be very hard to resuspend.
Many cleaning methods result in a microsphere pellet or filter cake at some point. It is important that the microspheres be completely resuspended between washes, or before continuing with ligand coating. Resuspension can be made easier by forming the loosest pellet or filter cake that is possible or practical to work with, without losing microspheres in the supernatant. After addition of clean wash liquid or buffer, any microsphere aggregates can normally be broken up using brief (1-2 minute) bath sonication. If a bath sonicator is not available, vortexing or repeated pipetting and dispensing can often do the trick. We do not recommend the use of sonic probes, as they are a potential source of microbial contamination, and have been known to shed metal into the solution.
Please also note that our ProActive® protein-coated microspheres come in a buffer with specified salts and surfactants that may not be suitable for your system. This may make it necessary to replace the initial buffer.
If the surfactant in the aqueous solution needs to be decreased or eliminated, or water should not enter your system, then the microspheres will have to be washed. There are many different techniques that can be used; however, the microsphere size dictates which method is preferred. The standard methods of washing microspheres use centrifugation, dialysis, mixed-bed ion exchange, cross-flow filtration (tangential flow filtration, ultrafiltration), and serum replacement.
Complete microsphere resuspension can be verified by microscopic evaluation. Even for particles smaller than ~0.8µm in diameter (the practical single particle limit for 1000X magnification with a light microscope), aggregates can usually be seen quite easily. A uniform suspension of small microspheres will appear as a hazy vibrating background.
Use the cleanest water possible when mixing buffes, Inc. TechNote 203
Rev. #003, Active: 18/March/2013
<< COPY >>
Page 1 of 4
Although it is often not necessary that microspheres be completely cleaned of surfactant prior to use, there are applications that call for this condition. One can measure surfactant coming off the microspheres with instrumental methods, including surface tension analysis, to determine when the wash liquid is free of surfactant. An alternative and more practical method comes from Dr. Geoffrey Seaman of Emerald Diagnostics. The wash liquid can be considered to be free of surfactant when the foam or bubbles on top of 5mL of H2O, shaken in a clean 10mL test tube, collapse in 2-3 seconds. We call this the “Seaman Shake Test.” This method can be used with many of the methods outlined in this TechNote.
The other four cleaning methods that were mentioned can be used on any type of microsphere, with some reservations. In this technical note, procedures for these methods are outlined. General considerations for each of the procedures are also covered. The procedures presented in the body of this technical note are for dyed and undyed, nonmagnetic microspheres. The appendix will outline the washing of magnetic and silica microspheres.
BEADS
A B O V E T H E R E S T™
Contents
I. Introduction II. General Considerations III. Centrifugation
A. Considerations B. Procedure IV. Dialysis A. Considerations B. Procedure C. Dialysis Equipment Suppliers V. Cross-Flow Filtration A. General Information B. Ultrafiltration Suppliers VI. Mixed-Bed Ion-Exchange A. General Information B. Ion-Exchange Resin Suppliers VII. Serum Replacement A. General Information B. Stirred Cells for Serum Replacement VIII. Cleaning Coated Dry Particles IX. Appendix A. Washing of (Superpara)Magnetic Microspheres B. Washing of Silica Microspheres X. References
TechNote 203
Washing Microspheres
相关文档
最新文档