力学重难点习题解答
力学(漆安慎_杜婵英)习题解答
2.1.1质点运动学方程为:j i t r ˆ5ˆ)23(++=ϖ⑴j t i t r ˆ)14(ˆ)32(-+-=ρ⑵,求质点轨迹并用图表示.解:⑴,5,23=+=y t x 轨迹方程为5=y 的直线.⑵14,32-=-=t y t x ,消去参数t 得轨迹方程0534=-+y x2.1.2 质点运动学方程为k j e ie r t t ˆ2ˆˆ22++=-ϖ.⑴求质点轨迹;⑵求自t= -1到t=1质点的位移。
解:⑴由运动学方程可知:1,2,,22====-xy z e y ex t t,所以,质点是在z=2平面内的第一像限的一条双曲线上运动。
⑵j e e i e e r r r ˆ)(ˆ)()1()1(2222---+-=--=∆ϖϖϖ j i ˆ2537.7ˆ2537.7+-=。
所以,位移大小:︒==∆∆=︒==∆∆=︒=-=∆∆==+-=∆+∆=∆900arccos ||arccos z 45)22arccos(||arccos y 135)22arccos(||arccos x ,22537.72537.7)2537.7()()(||2222r zr y r x y x r ϖϖϖϖγβα轴夹角与轴夹角与轴夹角与2.1.3质点运动学方程为j t it r ˆ)32(ˆ42++=ϖ. ⑴求质点轨迹;⑵求质点自t=0至t=1的位移. 解:⑴32,42+==t y t x ,消去参数t 得:2)3(-=y x⑵j i j j ir r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆ρρρ2.2.1雷达站于某瞬时测得飞机位置为︒==7.33,410011θm R 0.75s 后测得︒==3.29,424022θm R ,R 1,R 2均在铅直面内,求飞机瞬时速率的近似值和飞行方向(α角)解:tRt R R v v ∆∆=∆-=≈ϖϖϖϖϖ12,在图示的矢量三角形中,应用余弦定理,可求得:xx5/1mR R R R R 58.3494.4cos 42004100242404100)cos(22221212221=︒⨯⨯-+=--+=∆θθ s m t R v v /8.46575.0/58.349/≈=∆∆=≈据正弦定理:)180sin(/)sin(/1221αθθθ--︒=-∆R R︒=∴︒≈--︒≈︒=∆-=--︒89.34,41.111180,931.058.349/4.4sin 4240/)sin()180sin(12121ααθθθαθR R2.2.2 一圆柱体沿抛物线轨道运动,抛物线轨道为y=x 2/200(长度:毫米)。
弹性力学重点复习题及其答案
弹性力学重点复习题及其答案一、填空题1、弹性力学研究弹性体由于受外力作用、边界约束或温度改变等原因而发生的应力、形变和位移。
2、在弹性力学中规定,线应变以伸长时为正,缩短时为负,与正应力的正负号规定相适应。
3、在弹性力学中规定,切应变以直角变小时为正,变大时为负,与切应力的正负号规定相适应。
4、物体受外力以后,其内部将发生内力,它的集度称为应力。
与物体的形变和材料强度直接有关的,是应力在其作用截面的法线方向和切线方向的分量,也就是正应力和切应力。
应力及其分量的量纲是L -1MT -2。
5、弹性力学的基本假定为连续性、完全弹性、均匀性、各向同性。
6、平面问题分为平面应力问题和平面应变问题。
7、已知一点处的应力分量100=x σMPa ,50=y σMPa ,5010=xy τ MPa ,则主应力=1σ150MPa ,=2σ0MPa ,=1α6135' 。
8、已知一点处的应力分量, 200=x σMPa ,0=y σMPa ,400-=xy τ MPa ,则主应力=1σ512MPa ,=2σ-312 MPa ,=1α-37°57′。
9、已知一点处的应力分量,2000-=x σMPa ,1000=y σMPa ,400-=xy τ MPa ,则主应力=1σ1052 MPa ,=2σ-2052 MPa ,=1α-82°32′。
10、在弹性力学里分析问题,要考虑静力学、几何学和物理学三方面条件,分别建立三套方程。
11、表示应力分量与体力分量之间关系的方程为平衡微分方程。
12、边界条件表示边界上位移与约束,或应力与面力之间的关系式。
分为位移边界条件、应力边界条件和混合边界条件。
13、按应力求解平面问题时常采用逆解法和半逆解法。
14、有限单元法首先将连续体变换成为离散化结构,然后再用结构力学位移法进行求解。
其具体步骤分为单元分析和整体分析两部分。
15、每个单元的位移一般总是包含着两部分:一部分是由本单元的形变引起的,另一部分是由于其他单元发生了形变而连带引起的。
03 力学:第二章 运动和力-课堂练习及部分习题解答
α α
N
沿斜面方向
mg+ma0
K K K 以地面为参照系,物体加速度 a = a′ + a0
建立如图所示坐标系,据加速度分量关系
( ma0 + mg ) sin α = ma′ a′ = ( a0 + g ) sin α
y K a0 x α K a′
ax = a′ cos α = ( a0 + g ) sin α cos α a y = a0 − ( a0 + g ) sin 2 α = a0 cos 2 α − g sin 2 α
(2) 小球将离开锥面时,支持力N=0,有
0 = mg sin θ − mω 2l sin θ cos θ ⇒ ωc = g l cos θ
练习册·第二章 运动和力·第3题
Zhang Shihui
题. 小球质量为m,在水中受的浮力为常力F。当它从静止 开始沉降时,受到水的粘滞阻力为 f = kv (k为常数)。证 明:小球在水中竖直沉降的速度v与时间t的关系为
2
O
θ
H r
l
r = l sin θ
竖直面内静止 T cos θ + N sin θ − mg = 0
学习指导·第二章 运动和力·习作题9
Zhang Shihui
2
⎧ ⎪ N = mg sin θ − mω l sin θ cos θ (1) 联立可得 ⎨ 2 2 T mg cos θ m ω l sin θ = + ⎪ ⎩
题. 已知一质量为m的质点在x轴上运动,质点只受到指 向原点的引力的作用,引力大小与质点离原点的距离x 的平方成反比,即f =-k/x2,k是比例常数。设质点在 x=A时的速度为零,求质点在x=A /4处的速度的大小.
工程力学课后习题标准答案静力学基本概念与物体受力分析标准答案
第一章静力学基本概念与物体的受力分析下列习题中,未画出重力的各物体的自重不计,所有接触面均为光滑接触。
1.1试画出下列各物体(不包括销钉与支座)的受力图。
解:如图1.2画出下列各物体系统中各物体(不包括销钉与支座)以及物体系统整体受力图。
解:如图1.3铰链支架由两根杆AB、CD和滑轮、绳索等组成,如题1.3图所示。
在定滑轮上吊有重为W的物体H。
试分别画出定滑轮、杆CD、杆AB和整个支架的受力图。
解:如图1.4题1.4图示齿轮传动系统,O1为主动轮,旋转方向如图所示。
试分别画出两齿轮的受力图。
解:1.5结构如题1.5图所示,试画出各个部分的受力图。
解:第二章汇交力系2.1在刚体的A点作用有四个平面汇交力。
其中F1=2kN,F2=3kN,F3=lkN,F4=2.5kN,方向如题2.1图所示。
用解读法求该力系的合成结果。
解2.2 题2.2图所示固定环受三条绳的作用,已知F1=1kN,F2=2kN,F3=l.5kN。
求该力系的合成结果。
解:2.2图示可简化为如右图所示2.3 力系如题2.3图所示。
已知:F 1=100N ,F 2=50N ,F 3=50N ,求力系的合力。
解:2.3图示可简化为如右图所示2.4 球重为W =100N ,悬挂于绳上,并与光滑墙相接触,如题2.4图所示。
已知,试求绳所受的拉力及墙所受的压力。
解:2.4图示可简化为如右图所示墙所受的压力F=57.74N2.5 均质杆AB 重为W 、长为 l ,两端置于相互垂直的两光滑斜面上,如题2.5图所示。
己知一斜面与水平成角,求平衡时杆与水平所成的角及距离OA 。
解:取 AB 杆为研究对象,受力如图所示由于杆件再三力作用下保持平衡,故三力应汇交于C 点。
AB 杆为均质杆,重力作用在杆的中点,则W 作用线为矩形ACBO 的对角线。
由几何关系得 所以 又因为 所以2.6 一重物重为20kN ,用不可伸长的柔索AB 及BC悬挂于题2.6图所示的平衡位置。
北京大学出版社理论力学部分习题解答
示:
2 ΣFx = 0 ⇒ F1 + F2 × 2 + FGH = 0
2 ΣFy = 0 ⇒ 50 + F2 × 2 = RE ΣM D = 0 ⇒ GGH = RE = 87.5 ∴ F1 = −125kN ; F2 = 37.5 2kN
F1 D 5 0 k N
E
F2
H RE FGH
对 H 点采用节点法;
习题 2.8 液压式夹紧机构如图所示,D 为固定铰链,B,C,E 为
活动铰链。已知力 F,机构平衡时角度如图所示,各构件自重不
计,求此时工件 H 所受的压紧力。
F ΣFB = 0 ⇒ NBC = sin α
ΣFC
=
0⇒
N BC sin(π − 2α )
=
NCE sin(π / 2)
ΣFE = 0 ⇒ FH = NCE cosα F
0
⇒
N BC
×
2 2.5
×1.5 +W
×1.5
=
0
⇒
N BC
=
−15kN
习题 2.36 试用截面法求如图 3.50 所示桁架的内力。
整体法:
ΣM A = 0 ⇒ RE × 4 = 100 × 2 + 50 × 3 ⇒ RE = 87.5kN
用截面法将 1,2,GH 三根杆件截开,取右边为分析对象如图所
利用三角形法则
ΣFF = 0
N AF N FG
=
4.48 4.37
⇒
N AF
= 367kN
N BF N FG
=
4.37
⇒
N BF
= 82kN
习题 2.34 由杆 AB、BC、和 CE 组成的支架和滑轮 E 支持着物体 W。物体 W 重 12kN。D 处为铰链连接,尺寸如图 3.48 所示。试 求固定铰链支座 A 和滚动铰链支座 B 的约束力以及杆 BC 所受 的力。
力学习题解答(漆安慎)
1
力学习题解答
第二章基本知识小结 ⒈基本概念
v v v v dr r = r (t ) v = dt
v v v dv d 2 r a= = dt dt 2
dv r d 2s v2 ˆ + an n ˆ , a = aτ 2 + a n 2 , aτ = τ = 2 , a n = a = aτ τ dt ρ dt
力学习题解答
殷保祥 编写
石河子大学师院物理系
力学习题解答
目 录
第 02 章 第 03 章 第 04 章 第 05 章 第 06 章 第 07 章 第 08 章 第 09 章 第 10 章 第 11 章 质点运动学……………………………01 动量定理及其守恒定律………………11 动能和势能……………………………24 角动量及其规律………………………34 万有引力定律…………………………38 刚体力学………………………………41 弹性体的应力和应变…………………52 振动……………………………………56 波动……………………………………64 流体力学………………………………71
v −2 t ˆ ˆ .⑴求质点轨迹; + e 2t ˆ j + 2k 2.1.2 质点运动学方程为 r = e i
⑵求自 t= -1 到 t=1 质点的位移。 解:⑴由运动学方程可知: x = e
−2 t
R θ
, y = e 2t , z = 2, xy = 1 ,所
以,质点是在 z=2 平面内的第一像限的一条双曲线上运动。 ⑵ Δr = r (1) − r ( −1) = (e
2 2
向行驶,求列车的平均加速度。 解: a =
v
v v v v2 − v1 Δv = Δt Δt
理论力学习题及解答
第一次作业[单选题]力场中的力,必须满足的条件是:力是位置的()函数A:单值、有限、可积B:单值、有限、可微C:单值、无限、可微D:单值、无限、可积参考答案:B[单选题]下列不属于牛顿第二定律的特点或适用条件的是()A:瞬时性B:质点C:惯性系D:直线加速参考系参考答案:D[单选题]在质心坐标系与实验室坐标系中观测两体问题时,()A:在质心坐标系中观测到的散射角较大B:在实验室坐标系中观测到的散射角较大C:在两种体系中观测到的散射角一样大D:在两种体系中观测到的散射角大小不确定参考答案:A[判断题]两动点在运动过程中加速度矢量始终相等,这两点的运动轨迹一定相同()参考答案:错误[判断题]惯性力对质点组的总能量无影响()参考答案:正确[判断题]只在有心力作用下质点可以在空间自由运动。
()参考答案:错误[单选题]下列表述中错误的是:()A:如果力是关于坐标的单值的、有限的、可微的函数,则在空间的每一点上都将有一定的力作用,此力只与该点的坐标有关,我们称这个空间为力场;B:保守力的旋度一定为0;C:凡是矢量,它对空间某一点或者某一轴线就必具有矢量矩;D:由动量矩守恒律(角动量守恒律)可知,若质点的动量矩为一恒矢量,则质点必不受外力作用。
参考答案:D[单选题]某质点在运动过程中,其所属的状态参量位移、速度、加速度和外力中,方向一定相同的是:()A:加速度与外力;B:位移与加速度;C:速度与加速度;D:位移与速度。
参考答案:A[单选题]下面关于内禀方程和密切面的表述中,正确的是()A:密切面是轨道的切线和轨道曲线上任意点所组成的平面;B:加速度矢量全部位于密切面内;C:切向加速度在密切面内,法向加速度为主法线方向,并与密切面垂直;D:加速度和主动力在副法线方向上的分量均等于零。
参考答案:B[单选题]力的累积效应包括()A:冲量、功B:力矩、动量矩C:速度、加速度D:动量、动能参考答案:A第二次作业[论述题]什么叫惯性力?它与通常讲的力即物体间的相互作用力有什么区别?参考答案:答:①.惯性力是在非惯性坐标系中,为了使得质点运动方程保持与在惯性系中相同的形式,即保持F=m a的形式而假想的力,如惯性力、科利奥利力等。
理论力学习题及答案(全)
第一章静力学基础一、是非题1.力有两种作用效果,即力可以使物体的运动状态发生变化,也可以使物体发生变形。
()2.在理论力学中只研究力的外效应。
()3.两端用光滑铰链连接的构件是二力构件。
()4.作用在一个刚体上的任意两个力成平衡的必要与充分条件是:两个力的作用线相同,大小相等,方向相反。
()5.作用于刚体的力可沿其作用线移动而不改变其对刚体的运动效应。
()6.三力平衡定理指出:三力汇交于一点,则这三个力必然互相平衡。
()7.平面汇交力系平衡时,力多边形各力应首尾相接,但在作图时力的顺序可以不同。
()8.约束力的方向总是与约束所能阻止的被约束物体的运动方向一致的。
()二、选择题1.若作用在A点的两个大小不等的力F1和F2,沿同一直线但方向相反。
则其合力可以表示为。
①F1-F2;②F2-F1;③F1+F2;2.作用在一个刚体上的两个力F A、F B,满足F A=-F B的条件,则该二力可能是。
①作用力和反作用力或一对平衡的力;②一对平衡的力或一个力偶。
③一对平衡的力或一个力和一个力偶;④作用力和反作用力或一个力偶。
3.三力平衡定理是。
①共面不平行的三个力互相平衡必汇交于一点;②共面三力若平衡,必汇交于一点;③三力汇交于一点,则这三个力必互相平衡。
4.已知F1、F2、F3、F4为作用于刚体上的平面共点力系,其力矢关系如图所示为平行四边形,由此。
①力系可合成为一个力偶;②力系可合成为一个力;③力系简化为一个力和一个力偶;④力系的合力为零,力系平衡。
5.在下述原理、法则、定理中,只适用于刚体的有。
①二力平衡原理;②力的平行四边形法则;③加减平衡力系原理;④力的可传性原理;⑤作用与反作用定理。
三、填空题1.二力平衡和作用反作用定律中的两个力,都是等值、反向、共线的,所不同的是。
2.已知力F沿直线AB作用,其中一个分力的作用与AB成30°角,若欲使另一个分力的大小在所有分力中为最小,则此二分力间的夹角为度。
《大学物理A》力学部分习题解答
Y
V BA
V B地
V 地A
0
图 1.12
V A地
X
1.31、一质点沿 X 轴运动,其加速度 a 与坐标 X 的关系为
a 2 6 x 2 ( SI ) ,如果质点在原点处的速度为零,试求其在任意位置处的速
度? 解: a
dv dv dx dv v 2 6 x 2 ,利用分离变量积分解此题 dt dx dt dx
dt
,
x
k t k v0 (1 e m ) , m
t 时, x 有最大值且为 xmax
第三章
k v0 m
。
3.1、一质量为 1 kg 的物体,置于水平地面上,物体与地面之间的静摩擦系 数=0.20,滑动摩擦系数=0.16,现对物体施一水平拉力 F=t+0.96(SI),则 2 秒末物体的速度大小 v=______________。 题意分析:在 01 s 内, F<mg=1.96 ,未拉动物体.当拉力大于(克服)最大 静摩擦力后,物体开始运动,力对时间积累的效果称为:合外力对物体在 dt 时间内 的冲量。 解题思路:从题意分析中得出解题思路:由力对时间的积累,即力对时间的 积分,求出冲量,再求速度。 解题:在 1 s2 s 内, I (t 0.96) d t mg (t 2 t1 ) 0.89 N s
t1 0
t2
20
20 0
18( N ) .
3.5、一质量为 m 的物体,以初速 v0 成从地面抛出,抛射角 300 ,如忽略空
气阻力,则从抛出到刚要接触地面的过程中 (1) 物体动量增量的大小为 (2) 物体动量增量的方向为 提示: p p2 p1 。 。
结构力学2复习资料 重难点习题
2
y st
2 1 2 4 2
2
2
2
,
振幅:yp,最大静力位移 yst=F/k=F/mω2
3.形成结构的荷载列阵 { P }
(1)将各原始结点荷载集合进结构的荷载列阵 { P } ; (2)将各杆上荷载转化后,集合叠加进结构荷载列阵 { P } 。
4.解方程 [ K ]{ } P ,求出结点位移{Δ}(整体坐标系); (局部坐标系) 5.求杆端内力
(1)由定位向量确定各单元 ,并转换为
(5)弹簧和桁架杆不影响体系的自由度。
(4)单自由度体系的频率、周期的计算公式;振幅、相 位的算式和各种力的平衡关系;简谐荷载下纯受迫振动的 动力放大系数与频率比、阻尼比间的关系等等。这些基本 概念必须深刻理解、熟练掌握。 (5) 由于阻尼比一般很小,它对频率、周期的影响一般 可忽略。 (6)在共振区,阻尼的作用是不可忽略的。从能量角度 看,阻尼使能量耗散,当不希望有能量耗散时应减少阻尼, 而当希望尽可能使输入结构的能量减少时,应增大阻尼。
1
有阻尼的自由振动
k m
.. . 2 y 2 y y 0
,
c
2m
( 阻尼比damping
ratio )
y 设解为: (t ) Ce
i r
t
1)ξ<1(低阻尼)情况
特征方程为: 2 2 2 0 (characteristic ( ± 2 1 ) equation)
总
结
矩阵位移法的基本思路是:
(1) 先把结构离散成单元,进行单元分析,建立单元杆 端力与杆端位移之间的关系; (2)在单元分析的基础上,考虑结构的几何条件和平衡 条件,将这些离散单元组合成原来的结构,进行整体分析, 建立结构的结点力与结点位移之间的关系,即结构的总刚 度方程,进而求解结构的结点位移和单元杆端力。 在从单元分析到整体分析的计算过程中,全部采用矩 阵运算。
初中物理力学常见题型及答题技巧及练习题(含答案)
计在水平方向上受到两个力的合力为 0。
一个弹簧测力计的挂钩和挂环分别受到向上和向下都是 5N 的拉力作用(不计弹簧测力计
自重),则弹簧测力计所受合力及弹簧测力计的示数是 5N。
故答案为:B。
【分析】弹簧测力计上显示的是挂钩上力的大小,与挂环上力的大小以及弹簧测力受到的
合力大小无关。
14.如图所示中,物体对支持面压力的示意图正确的是( )
9.某弹簧秤中的弹簧断掉了一小段,如果重新安装并调零以后继续使用,测量值与原来的
测量值相比较( )
A. 测量值偏大
B. 测量值保持不变
C. 测量值偏小
D. 前三种情况都可能
出现
【答案】C
【解析】【解答】弹簧变短后其劲度系数会增大,在拉力相同时,弹簧的伸长变短,如果
继续使用原来的刻度盘,必然会使测量值偏小,因此只有选项 C 符合题意;
A. 用球杆击球时,台球的运动状态改变了,是由于受到球杆施加的力
B. 台球被击出后能
继续向前运动,是由于受到了向前的力
C. 水平桌面上运动的台球没有受到摩擦力
D. 水平桌面上做减速运动的台球,在水平
方向受到平衡力
【答案】A
【解析】【解答】力的作用效果有两个,一是力可改变物体的运动状态;二是力可改变物
确;
因为只知道物体受浮力的大小关系,据 F 浮=G-F′所以不能确定物体受重力.浸没水中后弹簧 测力计的示数的大小关系,B.C 项错; 浸没水中的物体受到的浮力与所处的深度无关,D 项错. 故选 A. 分析 物体浸没在水中,弹簧测力计减少的示数就是物体受到的浮力大小,减小的示数相同
说明受到的浮力相同.
初中物理力学常见题型及答题技巧及练习题(含答案)
一、力学
大学物理习题力学习题解答
2.39 1018s
7.6 1010 year
例4 两静止质量为m0的全同粒子以相同的速率相向运 动,碰后复合在一起形成一个复合粒子。求复合粒子的 速度和质量。
解:设复合粒子质量为M 速度为 碰撞过程,动量守恒:
碰撞前后总能量守恒:
>
碰撞过程中损失的能量转换成复合粒子的静质 量——静能增加
(三)相对论的动量能量关系式
• 解:因小转椅静止与大圆盘 • 上,故游客作圆周运动。A,B二 • 人受力分析如图3.12(b)为重 • 力,和分别为扶手施与得测 • 向力,和表示椅座支撑力。 • 根据牛顿第二定律有
N PAW maA 取N B单位PB矢 W量nAbmAanBBbB与加速度平行或垂直,得
PAn W sin mw02 (R r) N Ab W cos 0 PBn W sin mw02 (R r) NBb W cos 0
子所做的功 为:
A Ek Ek 2 Ek1
(m2c 2 m0c 2 ) (m1c 2 m0c 2 )
m0
c
2
{[1
(
v2 c
)
2
]
1 2
[1
(
v1
)
2
1
]2
}
c
当v1 0, v2 0.10c时,对电子所做的功为:
A Ek 2.58 103 eV
当v1 0.80c, v2 0.90c时,对电子所做的功为:
2
3
3 g cos
2l
习题课 / 例3
m,l
mg
3 g cos
2l
60时 3 g
4l
0时 3 g
2l
m,l
mg
习题课 / 例3
理论力学课后习题解答附答案
5.27证取广义坐标
因为
又因为
所以
5.28解 如题5.28.1图
(1)小环的位置可以由角 唯一确定,因此体系的自由度 ,取广义坐标 ,广义速度 。小球的动能:
以 为势能零点,则小环势能
所以拉氏函数
(2)由哈密顿原理
故
所以
又由于
所以
因为 是任意的,所以有被积式为0,即
化简得
5.29解 参考5.23题,设 ,体系的拉氏函数
⑶小球动能
又由
①式得
设小球势能为V,取固定圆球中心O为零势点,则
小球拉氏函数
= ①
根据定义
有
根据正则方程
④
⑤
对式两边求时间得:
故小球球心切向加速度
5.25解根据第二章§2.3的公式有:
①
根据泊松括号的定义:
②
所以
同理可知:
,
由②得:
同理可得:
,
5.26解 由题5.25可知 的表达式
因为
故
同理可求得:
势能:
根据定义式
故
因为
所以 为第一积分.又
故
得 为第二个第一积分.
同理
即
得 为第三个第一积分.
5.23解如题5.23.1图,
由5.6题解得小球的动能
①
根据定义
②
得
③
根据哈密顿函数的定义
代入③式后可求得:
④
由正则方程得:
⑤
⑥
代入⑤得
整理得
5.24如题5.24.1图,
⑴小球的位置可由 确定,故自由度
⑵选广义坐标 ,广义速度 .
①
根据哈密顿原理
故
②
理论力学课后习题解答
《理论力学》课后习题解答(赫桐生,高教版)(总53页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--第一章习题1-1.画出下列指定物体的受力图。
解:习题1-2.画出下列各物系中指定物体的受力图。
解:习题1-3.画出下列各物系中指定物体的受力图。
解:第二章习题2-1.铆接薄钢板在孔心A、B和C处受三力作用如图,已知P1=100N沿铅垂方向,P2=50N沿AB方向,P3=50N沿水平方向;求该力系的合成结果。
解:属平面汇交力系;合力大小和方向:习题2-2.图示简支梁受集中荷载P=20kN,求图示两种情况下支座A、B的约束反力。
解:(1) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:(2) 研究AB,受力分析:画力三角形:相似关系:几何关系:约束反力:习题2-3.电机重P=5kN放在水平梁AB的中央,梁的A端以铰链固定,B端以撑杆BC支持。
求撑杆BC所受的力。
解:(1)研究整体,受力分析:(2) 画力三角形:(3) 求BC受力习题2-4.简易起重机用钢丝绳吊起重量G=2kN的重物,不计杆件自重、磨擦及滑轮大小,A、B、C三处简化为铰链连接;求杆AB和AC所受的力。
解:(1) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆受拉,BC杆受压。
(2) 研究铰A,受力分析(AC、AB是二力杆,不计滑轮大小):建立直角坐标Axy,列平衡方程:解平衡方程:AB杆实际受力方向与假设相反,为受压;BC杆受压。
习题2-5.三铰门式刚架受集中荷载P作用,不计架重;求图示两种情况下支座A、B的约束反力。
解:(1) 研究整体,受力分析(AC是二力杆);画力三角形:求约束反力:(2) 研究整体,受力分析(BC是二力杆);画力三角形:几何关系:求约束反力:习题2-6.四根绳索AC、CB、CE、ED连接如图,其中B、D两端固定在支架上,A端系在重物上,人在E点向下施力P,若P=400N,α=4o,求所能吊起的重量G。
工程力学习题 及最终答案
第一章 绪论思 考 题1) 现代力学有哪些重要的特征?2) 力是物体间的相互作用。
按其是否直接接触如何分类?试举例说明。
3) 工程静力学的基本研究内容和主线是什么? 4) 试述工程力学研究问题的一般方法。
第二章刚体静力学基本概念与理论习题2-1 求图中作用在托架上的合力F R 。
2-2 已知F 1=7kN ,F 2=5kN, 求图中作用在耳环上的合力F R 。
2-3 求图中汇交力系的合力F R 。
习题2-1图12030200N F4560F 习题2-2图2-4 求图中力F 2的大小和其方向角α。
使 a )合力F R =1.5kN, 方向沿x 轴。
b)合力为零。
2-5二力作用如图,F 1=500N 。
为提起木桩,欲使垂直向上的合力为F R =750N ,且F 2力尽量小,试求力F 2的大小和α角。
2-6 画出图中各物体的受力图。
(b)x453=30N =20N=40N A x45600N 2=700N0N 习题2-3图 (a )F 1习题2-4图F 12习题2-5图(b)(a )2-7 画出图中各物体的受力图。
(c)(d)(e)(f) (g) 习题2-6图(a)ACD2-8 试计算图中各种情况下F 力对o 点之矩。
(b)(d)习题2-7图P(d)(c)(a ) CA2-9 求图中力系的合力F R 及其作用位置。
2-10 求图中作用在梁上的分布载荷的合力F R 及其作用位置。
习题2-8图习题2-9图( a )1F 3 ( b )F 3F 2( c)1F /m( d )F 32-11 图示悬臂梁AB 上作用着分布载荷,q 1=400N/m ,q 2=900N/m, 若欲使作用在梁上的合力为零,求尺寸a 、b的大小。
第三章 静力平衡问题习 题3-1 图示液压夹紧装置中,油缸活塞直径D=120mm ,压力p =6N/mm 2,若α=30︒, 求工件D 所受到的夹紧力F D 。
( b )q ( c )习题2-10图B习题2-11图3-2 图中为利用绳索拔桩的简易方法。
理论力学课后习题答案详解
理论力学习题解答 第 8 页 共 48 页
理论力学习题解答 第 9 页 共 48 页
理论力学习题解答 第 10 页 共 48 页
理论力学习题解答 第 11 页 共 48 页
理论力学习题解答 第 12 页 共 48 页
理论力学习题解答 第 13 页 共 48 页
理论力学习题解答 第 14 页 共 48 页
理论力学习题解答 第 36 页 共 48 页
理论力学习题解答 第 37 页 共 48 页
理论力学习题解答 第 38 页 共 48 页
理论力学习题解答 第 39 页 共 48 页
理论力学习题解答 第 40 页 共 48 页
理论力学习题解答 第 41 页 共 48 页
理论力学习题解答 第 42 页 共 48 页
理论力学习题解答
理论力学习题解答:
第 1 页 共 48 页
理论力学习题解答 第 2 页 共 48 页
理论力学习题解答
第二章:
第 3 页 共 48 页
理论力学习题解答 第 4 页 共 48 页
理论力学习题解答 第 5 页 共 48 页
理论力学习题解答 第 6 页 共 48 页
理论力学习题解答 第 7 页 共 48 页
理论力学习题解答 第 43 页 共 48 页
理论力学习题解答 第 44 页 共 48 页
理论力学习题解答 第 45 页 共 48 页
理论力学习题解答 第 46 页 共 48 页
理论力学习题解答 第 47 页 共 48 页
理论力学习题解答 第 48 页 共 48 页
理论力学习题解答 第 22 页 共 48 页
理论力学习题解答 第 23 页 共 48 页
理论力学习题解答 第 24 页 共 48 页
工程力学(一)习题集及部分解答指导
工程力学学习参考资料第一章静力学基础一、判断题1-1.如物体相对于地面保持静止或匀速运动状态,则物体处于平衡。
()1-2.作用在同一刚体上的两个力,使物体处于平衡的必要和充分条件是:这两个力大小相等、方向相反、沿同一条直线。
( ) 1-3.静力学公理中,二力平衡公理和加减平衡力系公理仅适用于刚体。
( ) 1-4.二力构件是指两端用铰链连接并且指受两个力作用的构件。
( ) 1-5.对刚体而言,力是滑移矢量,可沿其作用线移动。
()1-6.对非自由体的约束反力的方向总是与约束所能阻止的物体的运动趋势的方向相反。
()1-7.作用在同一刚体的五个力构成的力多边形自行封闭,则此刚体一定处于平衡状态。
()1-8.只要两个力偶的力偶矩相等,则此两力偶就是等效力偶。
()二、单项选择题1-1.刚体受三力作用而处于平衡状态,则此三力的作用线( )。
A、必汇交于一点B、必互相平行C、必都为零D、必位于同一平面内1-2.力的可传性()。
A、适用于同一刚体B、适用于刚体和变形体C、适用于刚体系统D、既适用于单个刚体,又适用于刚体系统1-3.如果力F R是F1、F2二力的合力,且F1、F2不同向,用矢量方程表示为F R= F1+ F2,则三力大小之间的关系为()。
A、必有F R= F1+ F2B、不可能有F R= F1+ F2C、必有F R>F1, F R>F2D、必有F R<F1, F R<F21-4.作用在刚体上的一个力偶,若使其在作用面内转移,其结果是()。
A、使刚体转动B、使刚体平移C、不改变对刚体的作用效果D、将改变力偶矩的大小三、计算题1-1.已知:F1=2000N,F2=150N,F3=200N,F4=100N,各力的方向如图1-1所示。
试求各力在x、y轴上的投影。
解题提示F x= + F cosαF y= + F sinα注意:力的投影为代数量;式中:F x、F y的“+”的选取由力F的指向来确定;α为力F与x轴所夹的锐角。
工程力学简明教程(老师画的重点含解答)
第 1 章静力学基本概念与物体受力分析习题1-6(b)F R D F C' F R D(a1)(a2) (a3)比较:图(a1)与图(b1)不同,两者之F R D值大小也不同。
1-7a 试画出图a 所示物体的受力图。
(a) (b) 或(c)1-7b 试画出图a 所示物体的受力图。
(a) (b) 或(c)B BFDR(b1)答设正方体的边长为a,则()()2/2M F M F Fazy==−(()2/2M F Fax=)FC BAyFAyF FBCAAxFDA1-7c 画出图 a 中构件 AB 的受力图。
所有接触处均为光滑接触。
(a) (b)1-7d 试画出图 a 所示物体的受力图。
(a) (b) 或(c)1-7e 画出图 a 中构件 AB 的受力图。
自重不计,所有接触处均为光滑接触。
qAAxB(a) (b)1-7f 改正图a 所示棘轮的受力图b 中错误。
1-8a 试画出图 a 所示结构中各杆的受力图。
( c )答 正确的受力图如图c 所示。
Ax F B(a) (b) (c)1-8b 画出图 a 中每个标注字符的物体的受力图。
所有接触处均为光滑接触。
(a) (b) (c)1-8d 画出图 a 中每个标注字符的物体的受力图。
所有接触处均为光滑接触。
(a) (b) (c) (d)第 2 章力系的简化习题2-1图示固定在墙壁上的圆环受3 条绳索的拉力作用,力F 1沿水平方向,力F 3沿铅直方向,力F 2与水平线成 40°角。
3 个力的大小分别为F 1=2000 N ,F 2=2500 N ,F 3=1500 N 。
求3 个力的合力。
解FR x = −( F 1 − F 2 cos40 )° i = −3915 iF R y = −(F 3 − F 2 sin 40 )° j =−3107 jCxBxByBy′AxF2-5 图a 中,已知F1 =150 N ,F2 = 200 N ,F3 = 300 N ,F = F'= 200 N。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2.1.3质点运动学方程为j t i t r ˆ)32(ˆ42++=. 则质点轨迹方程————质点自t=0至t=1的位移————2)3(-=y xj i j j i r r r ˆ2ˆ4ˆ3ˆ5ˆ4)0()1(+=-+=-=∆2.4.1质点从坐标原点出发时开始计时,沿x 轴运动,其加速度a x = 2t (cms -2),求在下列两种情况下质点的运动学方程,出发后6s 时质点的位置、在此期间所走过的位移及路程。
⑴初速度v 0=0;⑵初速度v 0的大小为9cm/s ,方向与加速度方向相反。
解:200,2,20t v v tdt dv tdt dt a dv x tv v x x x x+====⎰⎰33100200020,,)(t t v x dt t dt v dx dt t v dt v dx tt xx +=+=+==⎰⎰⎰ ⑴cm x t x t v v x 726)6(;,0213120=⨯====时, cm x S m x x x 7272)0()6(===-=∆∆路程⑵tt x t v v x 9,9933120-=-=-=时, cm x x x 18)0()6(=-=∆令v x =0,由速度表达式可求出对应时刻t=3,由于3秒前质点沿x 轴反向运动,3秒后质点沿x 轴正向运动,所以路程:cm x x x x x x S 543618)393(218)3(2)6(|)3()6(||)0()3(|331=+=⨯-⨯-=-=-+-= 2.4.4飞机着陆时为尽快停止采用降落伞制动,刚着陆时,t=0时速度为v 0,且坐标x=0,假设其加速度为 a x = - bv x 2,b=常量,求飞机速度和坐标随时间的变化规律。
解:bt v dt b dv v dt bv dt a dv xxv v xtv v x x x x x -=--=-==--⎰⎰|,,1022bt v v v v bt v bt v bt v v x x x v 0000001,1,11,11+=++=-=- )1ln(1,1)1(11,10000000000bt v bx bt v bt v d b bt v dt v dx bt v dt v dt v dx t tx x +=++=+=+==⎰⎰⎰2.5.1质点在o-xy 平面内运动,其加速度为j t i t a ˆsin ˆcos --= ,位置和速度的初始条件为:t=0时,ir j v ˆ,ˆ== ,则质点的位失—————jt i t r ˆsin ˆcos +=3.5.11棒球质量为0.14kg ,用棒击棒球的力随时间的变化如图所示,设棒球被击前后速度增量大小为70m/s ,求力的最大值,打击时,不计重力。
解:由F —t 图可知:max 03.008.0max05.008.005.005.00F F t F F t t t -=≤≤=≤≤时,当时,当[斜截式方程y=kx+b ,两点式方程 (y-y 1)/(x-x 1)=(y 2-y 1)/(x 2-x 1)]由动量定理:⎰⎰⎰-+==∆08.005.003.005.0005.008.00)08.0(max max dtt tdt Fdt v m F F可求得F max = 245N3.8.3气球下悬软梯,总质量为M ,软梯上站一质量为m 的人,共同在气球所受浮力F 作用下加速上升,当人以相对于软梯的加速度a m 上升时,气球的加速度如何?解:由质心定理:F- (m+M)g = (m+M)a C ①设人相对地的加速度为a 1,气球相对地的加速度为a 2,由相对运动公式:a 1=a m +a 2,由质心定义式可知:(m+M )a C = m a 1+M a 2=m(a m +a 2)+M a 2 ②①②联立,可求得:g Mm ma F a m-+-=24.3.1质量为m=0.5kg 的木块可在水平光滑直杆上滑动,木块与一不可伸长的轻绳相连,绳跨过一固定的光滑小环,绳端作用着大小不变的力T=50N ,木块在A 点时具有向右的速率v 0=6m/s ,求力T 将木块从A 拉至B 点时的速度。
解:以A 为原点建立图示坐标o-x ,木块由A 到B ,只有拉力T 做功: ⎰⎰⎰+--===43)4()4(4422cos x dx x x T dx T dx F A θJx x x d x T100)35(50|9)4(50|]9)4[(2]9)4[(]9)4[(402402/122504022/122=-⨯=+-=+-⨯-=+-+--=⎰- 设木块到达B 时的速度为v ,由动能定理:20121mvmv A -= s m v m A v /88.2065.0/1002/2220≈+⨯=+=,方向向右xABxF4.3.2 质量为1.2kg 的木块套在光滑铅直杆上,不可伸长的轻绳跨过固定的光滑小环,孔的直径远小于它到杆的距离。
绳端作用以恒力F ,F=60N,木块在A 处有向上的速度v 0=2m/s,求木块被拉至B 时的速度。
解:以地为参考系,建立图示坐标A-xy ,木块在由A 到B 的运动过程中受三个力的作用,各力做功分别是:A N = 0;A W = -mg(yB -y A )=-1.2×9.8×0.5= -5.88J ;F 大小虽然不变,但方向在运动过程中不断变化,因此是变力做功。
JF y y d y y d y dyF dy F dy F A FF F y y y F 43.12)12(605.0)12(5.0|])5.0(5.0[2])5.0(5.0[])5.0(5.0[)5.0(])5.0(5.0[cos 5.002/12225.00222/12225.0022/12225.00)5.0(5.05.05.005.0022=-⨯=-=-+⨯-=-+-+-=--+-====⎰⎰⎰⎰⎰---+-θ 由动能定理:221221A B F W N mv mvA A A -=++ 代入数据,求得 vB =3.86 m/s.4.3.4圆柱形容器内装有气体,容器内壁光滑,质量为m 的活塞将气体密封,气体膨胀前后的体积各为V 1,V 2,膨胀前的压强为p 1,活塞初速率为v 0. ⑴求气体膨胀后活塞的末速率,已知气体膨胀时气体压强与体积满足pv=恒量. ⑵若气体压强与体积的关系为pv γ=恒量,γ为常量,活塞末速率又如何?解:以活塞为研究对象,设膨胀后的速率为v ,在膨胀过程中,作用在活塞上的力有重力mg ,气体对活塞的压力N=pS (S 为气缸横截面),忽略重力所做的功(很小),对活塞应用动能定律: m A v v mvmv A N N /2,202021221+=∴-= ⑴若pV=p 1V 1,1222121ln 11111V V VV V V V N V p dV V p pdV pSdx A ====⎰⎰⎰ ⑵若pV γ=p 1V 1)(1111211112121γγγγγγ-----===⎰⎰V V V p dV V V p pdV A V V V V N5.1.2 一个质量为m 的质点沿着j t b i t a r ˆsin ˆcos ωω+=的空间曲线运动,其中a 、bm S及ω皆为常数。
则该质点对原点的角动量。
解:v r m p r L ⨯=⨯=km ab k t ab k t ab m j t b i t a j t b i t a m ˆ)ˆsin ˆcos ()ˆcos ˆsin ()ˆsin ˆcos (22ωωωωωωωωωωω=+=+-⨯+=5.1.8 一个质量为m 的质点在o-xy 平面内运动,其位置矢量为j t b i t a r ˆsin ˆcos ωω+= ,其中a 、b 和ω是正常数,试以运动学和动力学观点证明该质点对于坐标原点角动量守恒。
证明:rj t b i t a dt v d a jt b i t a dt r d v 222ˆsin ˆcos /ˆcos ˆsin /ωωωωωωωωω-=--==+-== ⑴运动学观点:kmab k t mab k t mab L k ij j i j j i i j t b i t a m j t b i t a v m r L ˆˆsin ˆcos ˆ)ˆ(ˆˆˆ,0ˆˆˆˆ)ˆcos ˆsin ()ˆsin ˆcos (22ωωωωωωωωωωω=+=∴=-⨯=⨯=⨯=⨯+-⨯+=⨯=显然与时间t 无关,是个守恒量。
⑵动力学观点:∵0)(22=⨯-=-⨯=⨯=⨯=r r m r m r a m r F rωωτ,∴该质点角动量守恒。
5.1.7 水平光滑桌面中间有一光滑小孔,轻绳一端伸入孔中,另一端系一质量为10g 小球,沿半径为40cm 的圆周作匀速圆周运动,这 时从孔下拉绳的力为10-3N 。
如果继续 向下拉绳,而使小球沿半径为10cm的圆周作匀速圆周运动,这时小球的速率是多少?拉力所做的功是多少?解:设小球的质量为m=10×10-3kg,原来的运动半径为R 1=40cm,运动速率为v 1;后来的运动半径为R 2=10cm,运动速率为v 2.先求小球原来的速率v 1:据牛顿第二定律,F=mv 12/R 1,所以,s m m F R v /2.010/104.0/2311=⨯==--由于各力对过小孔的竖直轴的力矩为零,所以小球对该轴的角动量守恒,m v 1R 1=m v 2R 2,v 2=v 1R 1/R 2=0.2×0.4/0.1=0.8m/s在由R 1→R 2的过程中,只有拉力F 做功,据动能定理,有Jv v v v m v v m m vm v A F 322112122121222121212221103)2.08.0)(2.08.0(10))(()(--⨯=-+⨯=-+=-=-=7.1.3 某发动机飞轮在时间间隔t 内的角位移为):,:(43s t rad ct bt at θθ-+=则t 时刻的角速度和角加速度。
解:23212643ct bt ct bt a dt d dtd -==-+==ωθβω7.3.8斜面倾角为θ,位于斜面顶端的卷扬机鼓轮半径为R ,转动惯量为I ,受到驱动力矩τ,通过绳所牵动斜面上质量为m 的物体,物体与斜面间的摩擦系数为μ,求重物上滑的加速度,绳与斜面平行,不计绳质量。
解:隔离鼓轮与重物,受力分析如图,其中T 为绳中张力,f=μN 为摩擦力,重物上滑加速度与鼓轮角加速度的关系为a =βR对重物应用牛二定律:T- μN- mgsin θ=ma, N=mgcos θ,代入前式,得 T- μmgcos θ- mgsin θ=ma ①对鼓轮应用转动定理:τ- TR=I β=I a /R ② 由①②联立,可求得重物上滑的加速度: 22)sin cos (mRI mg R R a ++-=θθμτ 7.3.7 现在用阿特伍德机测滑轮转动惯量。