第章高斯光束
合集下载
第8章高斯光束
![第8章高斯光束](https://img.taocdn.com/s3/m/feb6e0a9ddccda38366baf5a.png)
l2 f 2
f
2
1
l f
(3) F 1 R(l) 1 (l f 2 )时,
2
2l
(4)F
时,
w0 w0
1
lim w0 lim
F
w F 0
F (l F )2 f 2
lim F
1
1
(l
- F)2 F
f F
2 2
w0 1 w0
w0 w0
1
l f
2
1
RR
2
F
25
结论
只有 F 1 R(l) ,才有聚焦作用
F15 q
五、透镜对高斯光束的变换规律
q=l+if q=-l+if
q Fq Fq
q、q:透镜处物、像高斯光束q参数
l、l :物、像高斯光束腰到透镜距离
f、f :物像高斯光束焦参数
q q
f(w0)
O
f(w0) Z
O
l F l
16
例1 某高斯光束焦参数为f=1m,将焦距F=1m 的凸透镜置於其腰右方l=2m处,求经透镜变换 后的像光束的焦参数f及其腰距透镜的距离l
解 (1)
0
f
f
02
3.14 106 3.14 106
1m
z=0.5m
q(z) பைடு நூலகம் if 0.5 i(m)
(2)
w(z) w0
1
z2 f2
w0
1
0.52 12
1.12mm
f2
12
R(z) z 0.5 2.5m
z
0.5
8
例8-2 高斯光束在某处的光斑半径为w=1mm, 等相
激光原理第三章
![激光原理第三章](https://img.taocdn.com/s3/m/df78b818ba1aa8114431d9c7.png)
r2 z exp ) 2 2 w z exp i kz (1 m n) arct an( w0 kr exp[i ] 2 R( z )
2
(3-1-24)
式中 cmn 中
是归一化常数。当m0,n=0时,上式退化为基模高斯光束的表达式(3-1-21),式
欲使该式对 x 和 y 的任何值都成立,要求x和y同次幂的系数之和分别等于零. 结果可 得下列两个简单的常微分方程:
2
2
dq( z ) 1 dz dP( z ) i q( z ) dz
由(3-1-6)式与其他参量无关,所以先讨论 它的解及其含义。它的解很简单:
(3-1-6)
H
2x m w( z )
Hn
2y w( z )
和
分别为m阶和n阶厄米多项式。
1、垂直于光轴的横截面上的厄米-高斯分布 高阶高斯光束在垂直于光轴的横截面上场振幅或光强的分布由厄米多项式与高斯函 数的乘积决定:
r 2x 2y exp H [ ] H [ ] m n 2 w z w( z ) w( z )
与轴线交于z点的等相平面 上的光斑半径
z z wz w0 1 w2 w0 1 z 0 0
2
2
R ( z ) z (1
w
z0 2 ) z[1 ( ) ] z z
与轴线相交于z点的高斯光 束等相位面的曲率半径 基模光束腰 斑半径
kr 0 ( z 0) exp( ) exp[ip( z 0)] 2 z0
2
将(3-1-9)式代入 (3-1-4)式 , 并令 z=0, 得 z=0 处基模的振幅分布:
第4章高斯光束。
![第4章高斯光束。](https://img.taocdn.com/s3/m/3ae0feed58f5f61fb7366631.png)
Aq1 B q2 Cq1 D
结论:高斯光束q参数经薄透镜的变换规律满足ABCD法则
3. 实例分析
0
A B l
l
0 c
已知:
0、l、F
C
q0
方法一:
q A qB
lC
求:
qC
C、RC
2 q i z=0 处: 0 0 A处:qA q0 l
B处:1 qB 1 qA 1 F
2 2 x y x2 y2 z2 z 2R
3. 高斯光束
激光束既不是均匀的平面光波,也不是均匀的球面光波, 而是一种比较特殊的高斯球面波。
A0 ( x2 y2 ) x2 y2 E ( x, y, z ) e xp[ ] e xp ik[ z ] i ( z ) 2 (z) (z) 2 R( z )
几何光学中牛顿公式:
( F l )( F l ) FF
比较可知:几何光线的透镜变换是高斯光束在
0 的情形
0
特例:若入射束腰在物方焦点处, l
F l F , 0 0
F
: 最大值
当物点位于透镜前焦点,像点不在无穷远处,与几何光线不同
4.3 高斯光束的聚焦和准直
2 2
0
r ( z) r
( z ) 0
( z ) 随z以双曲线函数变化
2 L 0 双曲线顶点坐为 0 ,共焦参数 f 2 光能主要分布在双锥体内
2. 波面曲率半径
光波面
( z)
F
0
f 2 R( z ) z 1 z z
0 2 2 z 1 ( ) z
第8章高斯光束
![第8章高斯光束](https://img.taocdn.com/s3/m/152998863186bceb18e8bb39.png)
例3 高斯光束波长为=3.14m,某处的q参数 为q=1+i(m),求(1)此光束腰斑半径w0及腰位置 (2)该处光斑半径w与等相位面曲率半径R
解 (1) z=1m f=1m
w0
f
3.14 106 1 1mm 3.14
腰位置为在该处左方1m处
(2) 1 1 1 i 1 i 1
q 1i 2 2 2
2i
q 1 2 i 2 i 0.4 0.2i(m) 2i 41 5
(2)
w(z) w0
1
z2 f2
( f z2 )
f
R(z) z f 2 z
z f 2 0.5 z
f z2 1 f
z2 f 2 0.5 ① z
f 2 z2 1 ②
f
z2 f 2 0.5 z
f 2 z2 1 f
R=R(z) R=R(z)
z
0 z z
L
2、通过透镜 R FR
FR
F:透镜焦距(凸透镜为正)
证 透镜的光学变换矩阵
T
1
1 F
0 1
R
1 1
R
R
0
1
R 1 R
FR F R
F
F
或
Ru
11 1 uv F
R v 1 1 1 R R F
R R
o u v o z
F
1 1 1 FR R R F FR
例1 某高斯光束波长为=3.14m,腰斑半径为 w0=1mm,求腰右方距离腰50cm处的(1)q参数 (2)光斑半径w与等相位面曲率半径R
解 (1)
w0
f
z=0.5m
f
w
2 0
3.14 106 3.14 106
3.8高斯光束
![3.8高斯光束](https://img.taocdn.com/s3/m/ad98e1d476a20029bd642d25.png)
第八节 高斯光束
一、高斯光束的基本性质
1.基模高斯光束
沿z轴传播的基模高斯光束的表达式
x2 + y2 ⎡ z k x2 + y2 ⎤ −i ⎢ kz − arctg + ⎥ zR 2 R(z ) ⎥ ⎢ ⎣ 14444244443 4 4⎦
相位因子
(
)
C 00 − w2 ( z ) ψ 00 ( x, y , z ) = e e w( z ) 14243
U ( x, y , z ) ∝ 1 −ikR 1 e ≈ e R R
⎛ x2 + y2 −ik ⎜ z + ⎜ 2z ⎝ ⎞ ⎟ ⎟ ⎠
=
1 e R
⎛ x2 + y2 −ik ⎜ z + ⎜ 2R ⎝
⎞ ⎟ ⎟ ⎠
因此,q(z)称为高斯光束的复曲率半径,也称为q参数
q(z)将w(z)和R(z)统一起来,已知q(z)可求出w(z) 和R(z)
Q 高斯光束的q的变换规律同球面波R的变换规律相同 ∴ Aq1 + B q2 = Cq1 + D
(1)高斯光束q参数在自由空间的传播 由
⎧ 1 1 λ ⎪ = −i q( z ) R( z ) πω 2 ( z ) ⎪ ⎪ ⎡ ⎛ πω 2 ⎞ 2 ⎤ ⎪ 0 ⎨ R( z ) = z ⎢1 + ⎜ ⎟ ⎜ λz ⎟ ⎥ ⎢ ⎝ ⎠ ⎥ ⎪ ⎦ ⎣ ⎪ ⎡ ⎛ λz ⎞ 2 ⎤ ⎪ω 2 ( z ) = ω 2 ⎢1 + ⎜ 0 ⎟ ⎜ πω 2 ⎟ ⎥ ⎪ ⎢ ⎝ 0⎠ ⎥ ⎦ ⎣ ⎩
(3)普通球面波的ABCD定律
光学系统 R1
θ1
P1 R2
r1
r2
θ2
P2
一、高斯光束的基本性质
1.基模高斯光束
沿z轴传播的基模高斯光束的表达式
x2 + y2 ⎡ z k x2 + y2 ⎤ −i ⎢ kz − arctg + ⎥ zR 2 R(z ) ⎥ ⎢ ⎣ 14444244443 4 4⎦
相位因子
(
)
C 00 − w2 ( z ) ψ 00 ( x, y , z ) = e e w( z ) 14243
U ( x, y , z ) ∝ 1 −ikR 1 e ≈ e R R
⎛ x2 + y2 −ik ⎜ z + ⎜ 2z ⎝ ⎞ ⎟ ⎟ ⎠
=
1 e R
⎛ x2 + y2 −ik ⎜ z + ⎜ 2R ⎝
⎞ ⎟ ⎟ ⎠
因此,q(z)称为高斯光束的复曲率半径,也称为q参数
q(z)将w(z)和R(z)统一起来,已知q(z)可求出w(z) 和R(z)
Q 高斯光束的q的变换规律同球面波R的变换规律相同 ∴ Aq1 + B q2 = Cq1 + D
(1)高斯光束q参数在自由空间的传播 由
⎧ 1 1 λ ⎪ = −i q( z ) R( z ) πω 2 ( z ) ⎪ ⎪ ⎡ ⎛ πω 2 ⎞ 2 ⎤ ⎪ 0 ⎨ R( z ) = z ⎢1 + ⎜ ⎟ ⎜ λz ⎟ ⎥ ⎢ ⎝ ⎠ ⎥ ⎪ ⎦ ⎣ ⎪ ⎡ ⎛ λz ⎞ 2 ⎤ ⎪ω 2 ( z ) = ω 2 ⎢1 + ⎜ 0 ⎟ ⎜ πω 2 ⎟ ⎥ ⎪ ⎢ ⎝ 0⎠ ⎥ ⎦ ⎣ ⎩
(3)普通球面波的ABCD定律
光学系统 R1
θ1
P1 R2
r1
r2
θ2
P2
北交大激光原理 第4章 高斯光束部分
![北交大激光原理 第4章 高斯光束部分](https://img.taocdn.com/s3/m/b4fb07d4e53a580217fcfe39.png)
第
一、
学习要求
1.掌握高斯光束的描述参数以及传输特性;
2.理解q参数的引入,掌握q参数的ABCD定律;
3.掌握薄透镜对高斯光束的变换;
4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;
5.理解高斯光束的聚焦和准直条件;
6.了解谐振腔的模式匹配方法。
重点
1.高斯光束的传输特性;
2.q参数的引入;
让实部和虚部对应相等得到:
进而得到:
将 代入上式可求出
2.二氧化碳激光器,采用平凹腔,凹面镜的曲率半径 ,腔长 。求出它所产生的高斯光束的光腰大小和位置,共焦参数 及发散角 。
解:
由 ,可得
由 ,可得
3.某高斯光束光腰大小为 ,波长 。求与腰相距30 ,10 ,1 处光斑的大小及波前曲率半径。
解答:
9. 某高斯光束的 , ,今用一望远镜将其准直,如图3.4所示,主镜用镀金全反射镜: ,口径为 ;副镜为一锗透镜: ,口径为 ,高斯光束的束腰与副镜相距 ,求以下两种情况望远镜系统对高斯光束的准直倍率:(1)两镜的焦点重合;(2)从副镜出射的光腰刚好落在主镜的焦平面。
3.q参数的ABCD定律;
4.薄透镜对高斯光束的变换;
5.高斯光束的聚焦和准直条件;
6.谐振腔的模式匹配方法。
难点
1.q参数,及其ABCD定律;
2.薄透镜对高斯光束的变换;
3.谐振腔的模式匹配。
二、知识点总结
三、典型问题的分析思路
此类问题只涉及高斯光束在自由空间传输,不通过其它光学系统。解此类问题比较简单,根据已知特征参数,高斯光束的结构完全确定,就可以知道任意位置处的光斑尺寸、等相位面曲率半径、q参数及发散角等。
23、试由自在现变换的定义式(2.12.2)用 参数法来推导出自在现变换条件式(2.12.3)。
一、
学习要求
1.掌握高斯光束的描述参数以及传输特性;
2.理解q参数的引入,掌握q参数的ABCD定律;
3.掌握薄透镜对高斯光束的变换;
4.了解高斯光束的自再现变换,及其对球面腔稳定条件的推导;
5.理解高斯光束的聚焦和准直条件;
6.了解谐振腔的模式匹配方法。
重点
1.高斯光束的传输特性;
2.q参数的引入;
让实部和虚部对应相等得到:
进而得到:
将 代入上式可求出
2.二氧化碳激光器,采用平凹腔,凹面镜的曲率半径 ,腔长 。求出它所产生的高斯光束的光腰大小和位置,共焦参数 及发散角 。
解:
由 ,可得
由 ,可得
3.某高斯光束光腰大小为 ,波长 。求与腰相距30 ,10 ,1 处光斑的大小及波前曲率半径。
解答:
9. 某高斯光束的 , ,今用一望远镜将其准直,如图3.4所示,主镜用镀金全反射镜: ,口径为 ;副镜为一锗透镜: ,口径为 ,高斯光束的束腰与副镜相距 ,求以下两种情况望远镜系统对高斯光束的准直倍率:(1)两镜的焦点重合;(2)从副镜出射的光腰刚好落在主镜的焦平面。
3.q参数的ABCD定律;
4.薄透镜对高斯光束的变换;
5.高斯光束的聚焦和准直条件;
6.谐振腔的模式匹配方法。
难点
1.q参数,及其ABCD定律;
2.薄透镜对高斯光束的变换;
3.谐振腔的模式匹配。
二、知识点总结
三、典型问题的分析思路
此类问题只涉及高斯光束在自由空间传输,不通过其它光学系统。解此类问题比较简单,根据已知特征参数,高斯光束的结构完全确定,就可以知道任意位置处的光斑尺寸、等相位面曲率半径、q参数及发散角等。
23、试由自在现变换的定义式(2.12.2)用 参数法来推导出自在现变换条件式(2.12.3)。
激光原理第三章
![激光原理第三章](https://img.taocdn.com/s3/m/1101edf3284ac850ac02421c.png)
)
exp[i kr2 ] 2R(z)
(3-1-24)
c 式中 mn 是归一化常数。当m0,n=0时,上式退化为基模高斯光束的表达式(3-1-21),式
中
Hm
2x w(z)
H 和 n
2
y
w(z)
分别为m阶和n阶厄米多项式。
1、垂直于光轴的横截面上的厄米-高斯分布
x, y, z k[z r 2 ] arctan( z )
2R(z)
w02
(3-1-22)
kz 它描述高斯光束在点(r,z)处相对于原点(0,0)处的相位滞后,其中 描述几
何相位为 移的
arctan( z )
w
2 0
kr 2
描述高斯光束在空间行进距离z时相对几何相
附加相位超前,因子 2R(z) 描述与径向有关的相移。
Apl
r,,
z
[
2r ]l w(z)
Llp
[
2r 2
w2 z]
exp
r w2
2
z
scionsll
(3-1-27)
式(3-1-27)表示沿径向r和p个节线圈,沿辐射角方向有l根节线。
TEM pl 模高斯光束的总相移为:
r,, z k(z r 2 ) (1 p 2l) arctan( z )
u0
x,
y,
z
{
w0
wz
exp
r w2
2
z
exp
ikz
z ar c tan(w02
第五章高斯光束
![第五章高斯光束](https://img.taocdn.com/s3/m/7744b542a8956bec0975e3bb.png)
w (z) z 2 =1 2 w0 z0
2 2
《激光技术与应用》
5.3 基模高斯光束的相移和等相位面分布
基模高斯光束的相移特性由相位因子决定
r2 λz Φ ( x, y, z ) = k[ z + ] arctan( 2 ) 2 R( z ) πw0
它描述高斯光束在点(r,z)处相对于原点 0,0)处的相位滞后 处相对于原点( 它描述高斯光束在点 处相对于原点 处的相位滞后
(2L R1 R2 )2
镜面上基模的光斑尺寸
w1 = R ( R2 L) λL π L( R1 L )( R1 + R2 L)
2 1
2 R2 ( R1 L ) λL π L ( R2 L )( R1 + R 2 L )
14
14
w2 =
w0 =
λ L ( R1 L )( R2 L )( R1 + R 2 L ) π ( R1 + R 2 2 L ) 2
共焦腔与稳定球面腔的等价性 任一稳定的球面腔唯一地等价于某一共焦腔
《激光技术与应用》
其对应的共焦腔是唯一确定的。 假设实际稳定腔的参数为 R1 , R2 , L ,其对应的共焦腔是唯一确定的。 需要确定共焦腔的焦距及共焦腔的中心位置。 需要确定共焦腔的焦距及共焦腔的中心位置。 以共焦腔的中 点为坐标原点, 心o点为坐标原点,则同样有 :
f2 R1 = z1 + , z1 f2 R2 = z2 + , z2 L = z2 z1
稳定球面腔和它的等价共焦腔
由上述方程联立可以求解: 由上述方程联立可以求解:
L(R2 L) z1 = 2L R1 R2
L(R1 L) z2 = 2L R1 R2 f =
第三章 高斯光束的传输与变换
![第三章 高斯光束的传输与变换](https://img.taocdn.com/s3/m/7f84bcfb19e8b8f67c1cb917.png)
2.9.4 高阶高斯光束 (1)厄米特—高斯光束 高阶高斯光束横截面内的场分布可由高斯函数与厄米多项式的 乘积来描述。 沿z方向传输的厄米卢高斯光束
mn(x ,y ,z ) C mn
C mn 1
1
H m(
2
2
x )H n(
2
y) e
r2 2
e
r2 z i k(z )( m n 1)arctg 2R f
激光物理
第三章
高斯光束的传输与变换
回顾
方形镜共焦腔的行波场
(厄米-高斯光束) 当镜面上的场分布能够用厄米-高斯函数来描述时,共焦 腔中的行波场可以表示为:
2 2 0 Emn( x, y, z ) AmnE 0 Hm x Hn y e ( z) ( z) ( z)
1 1 令q0=q(0),则: Nhomakorabeai 2 q 0 R(0) (0)
20 R(0) , (0) 0 q 0 i if
通过这些公式,我们可以用高斯光束的q参数来描述高斯光束。
以上三组参数都可以用来确定高斯光束的具体结构,需要根据 实际问题来灵活选择使用哪种参数。
2 2 2 2
可见,光斑半径随坐标z按双曲线的规律而扩展,在z=0处,以 ω(z)=ω0,达到极小值(束腰)。
(2)基模高斯光束的相移特性由相位因子决定
r2 z 00(x ,y ,z ) k(z ) arctg 2R f
表明高斯光束的等相位面是以R为半径的球面
2 2 0 R(z ) z 1 z
式中ω0和ω(z)分别为基模光腰半径和z处光斑半径。在z方向和y 方向的远场发散角 2 ( z ) 2 m lim m 2m 1 2m 1 0 z z 0 2n ( z ) 2 n lim 2n 1 2n 1 0 z z 0
高斯光束
![高斯光束](https://img.taocdn.com/s3/m/9f0abdaf8bd63186bdebbc3f.png)
1
1.亥姆霍兹方程的波束解
波束场强在横截面上的分布形式是由具体激发条件确 定的.现在我们研究一种比较简单和常见的形式.这 种波束能量分布具有轴对称性,在中部场强最大,靠 近边缘处强度迅速减弱.设波束对称轴为z轴,在横 截面上具有这种分布性质的最简单的函数是高斯函数
e−
x
2+y w2
2
2
x2 + y2
(6.2)
ψ(x,y,z)是z的缓变函数.所谓缓变是相对于eikz而言的 .因 子eikz当z≤λ时已有显著变化,我们假设ψ(x,y,z),当z~λ时
变化很小,因此在它对z的展开式中可以忽略高次项5 .
电磁场的任一直角分量u(x,y)满足亥姆霍兹方程
∇2u + k 2u = 0
把
µ(x, y, z) = ψ (x, y, z)eikz
2
2
e −iφ
= µ0
w0 w
e−iφ
φ = arc tg 2z kw02
(6.14) (6.15)
11
把(6 .13)和(6 .14)代人(6 .2)和(6. 4)式 得光束场强函数
( ) µ
x, y, z
µ =
w0
−
x
2+y ω2
2
iΦ
w e e 0
( ) Φ
=
kz
+
§6 高斯光束
第一节所讨论的平面电磁波是具有确定传播方向, 但却广延于全空间中的波动 . 实际上应用的定向电磁 波除了要求它具有大致确定的传播方向外,一般还要 求它在空间中形成比较狭窄的射束,即场强在空间中 的分布具有有限的宽度 . 特别是在近年发展激光技术 中,从激光器发射出来的光束一般是很狭窄的光束 . 研究这种有限宽度的波束在自由空间中传播的特点对 于激光技术和定向电磁波传播问题都具有重要意义 . 本节我们从电磁场基本方程研究波束传播的特性 .
1.亥姆霍兹方程的波束解
波束场强在横截面上的分布形式是由具体激发条件确 定的.现在我们研究一种比较简单和常见的形式.这 种波束能量分布具有轴对称性,在中部场强最大,靠 近边缘处强度迅速减弱.设波束对称轴为z轴,在横 截面上具有这种分布性质的最简单的函数是高斯函数
e−
x
2+y w2
2
2
x2 + y2
(6.2)
ψ(x,y,z)是z的缓变函数.所谓缓变是相对于eikz而言的 .因 子eikz当z≤λ时已有显著变化,我们假设ψ(x,y,z),当z~λ时
变化很小,因此在它对z的展开式中可以忽略高次项5 .
电磁场的任一直角分量u(x,y)满足亥姆霍兹方程
∇2u + k 2u = 0
把
µ(x, y, z) = ψ (x, y, z)eikz
2
2
e −iφ
= µ0
w0 w
e−iφ
φ = arc tg 2z kw02
(6.14) (6.15)
11
把(6 .13)和(6 .14)代人(6 .2)和(6. 4)式 得光束场强函数
( ) µ
x, y, z
µ =
w0
−
x
2+y ω2
2
iΦ
w e e 0
( ) Φ
=
kz
+
§6 高斯光束
第一节所讨论的平面电磁波是具有确定传播方向, 但却广延于全空间中的波动 . 实际上应用的定向电磁 波除了要求它具有大致确定的传播方向外,一般还要 求它在空间中形成比较狭窄的射束,即场强在空间中 的分布具有有限的宽度 . 特别是在近年发展激光技术 中,从激光器发射出来的光束一般是很狭窄的光束 . 研究这种有限宽度的波束在自由空间中传播的特点对 于激光技术和定向电磁波传播问题都具有重要意义 . 本节我们从电磁场基本方程研究波束传播的特性 .
《高斯光束》课件
![《高斯光束》课件](https://img.taocdn.com/s3/m/db7dcf46f02d2af90242a8956bec0975f465a49d.png)
02
高斯光束的数学模型
高斯光束的电场分布
描述高斯光束的电场分布通常使用高 斯函数,其形式为$E(r,z)=E_{0} frac{omega_{0}}{w(z)} exp(frac{r^{2}}{w(z)^{2}}) exp(ifrac{kr^{2}}{2R(z)}+ivarphi(z))$, 其中$E_{0}$是光束中心电场强度, $omega_{0}$是束腰半径,$w(z)$ 是光束半径,$R(z)$是光束的波前曲 率半径,$varphi(z)$是相位。
VS
高斯光束的电场分布具有中心强度高 、向外逐渐减小的特点,这种分布有 利于在一定范围内实现较高的能量集 中度。
高斯光束的能量分布
高斯光束的能量分布与电场分布类似,也呈现出中心强 度高、向外逐渐减小的特点。
在实际应用中,高斯光束的能量分布可以通过控制激光 器的参数和光束传输过程中的光学元件进行调整,以满 足不同应用需求。
高斯光束的特性
总结词
高斯光束具有许多独特的性质,包括光束宽度随传播距离增加、中心光强为零、能量集中于光束的腰斑等。
详细描述
高斯光束的一个重要特性是它的光束宽度随着传播距离的增加而增加,这是由于光束在传播过程中不断发生衍射 。此外,高斯光束的中心光强为零,即光束的最小值点位于中心。高斯光束的能量主要集中在腰斑处,即光束宽 度最小的地方,这使得高斯光束在远场具有很好的汇聚性能。
总结词
高斯光束在光学无损检测中能够穿透物质并检测其内部 结构和缺陷。
详细描述
高斯光束具有较好的穿透性和方向性,能够深入物质内 部并检测其结构和缺陷。在无损检测中,高斯光束被用 来检测材料内部的裂纹、气孔、夹杂物等缺陷,为产品 质量控制和安全性评估提供可靠的依据。这种检测方法 具有非破坏性和高灵敏度等优点,广泛应用于航空航天 、核工业等领域的安全监测和质量控制。
第六章高斯光束详解
![第六章高斯光束详解](https://img.taocdn.com/s3/m/56c1cbb14afe04a1b071deee.png)
解: (1)
(z) 0
z 2
1
02
1.12m
R(z)
z
1
2 0
z
2
0.5
12 0.5
=
2.5m
(2) 0
F
F 02 1m
z 0.5m q 0.5 i(m )
知识回顾
0
F
F 02
(z) 0
1
z F
2
R(z)
z 1
F z
2
2 =2 0 F
q(z)=q0+z
q参数
q 参数表征高斯光束的优点:
将描述高斯光束的两个参数ω (z)和R(z)统一在 一个表达式中, 便于研究高斯光束通过光学系统的 传输规律.
【例题2】某高斯光束波长为=3.14m,腰斑半径 为ω 0=1mm,求腰右方距离腰50cm处的 (1)光斑 半径ω与等相位面曲率半径R. (2)q参数
(4) 由
(-z - f ') f '2
0
1
z 02
2
1
2
R
z
1
02 z
2
② 利用公式,由入射波面的R、ω 求得出射波面 ω ′和R′;
1 1 1 R' R f '
'
③ 将上一步计算出的R′和ω′代入公式,求出射 光束的束腰位置和束腰半径。
0
=
2 2 2
1+
R
z
R
1
R' 2
2
【例题3】已知一台He–Ne激光器输出的激光束束腰 半径ω 0为0.5mm,在离束腰100mm处放置一个焦距为 100mm的单透镜,试求经过透镜变换后的束腰大小 以及束腰位置。
高斯光束
![高斯光束](https://img.taocdn.com/s3/m/843d6f16ff00bed5b9f31df7.png)
r2 r2 A0 A0 E ( x , y ,0 ) exp 2 exp ik (0 0) i 0 exp 2 W0 W0 W0 W0
图2-4
A0 推导:令r=0,则E(0,0,0)= W0
W02 1 A0 1 A0 E (0,0,0) 令r=W0,则E(x0,y0,0)= exp 2 W0 W0 e W0 e
二、高斯光束通过—孔径光栏时,能量的讨论 由基尔霍夫公式;在光束传播方向上任一点z处的电矢量 振幅为:
A0 r2 E exp 2 W ( z) W ( z)
而其光强ρ∝E2 计算高斯光束通过某一孔径的能量,即计算高斯光束通过 某一半径为ρ的光孔时,高斯能量包的体积。 其光强为:
对稳定球面腔:
通用公式:
l ( R1 l )( R2 l )( R1 R2 l ) W04 ( R1 R2 2l ) 2
2
图2-3
特例:若对平凹稳定腔(氪氖激光器多采用),令R1=R,R2=∝ 1/ 4 代入上式 2 2
W0 2 ( Rl l ) (2 6)
等效于 0 2 ( Rl l 2 )
2 1/ 4
结论:1.高斯光束的发散角随传播距离的增大而非线性增大 2.在束腰处,发散角为0o在无穷远,发散角最大,其远 场发散角为:
W02 3.通常将 0 Z 区域定义为光束准直区 4.W0越大,则远场发散角愈小。因此为了减小光束的远
dW ( z ) 2 z 2 4 W0 Z 2 2 即 dz W0
1 2
2 1 W0 2W04
z2
图2-4
A0 推导:令r=0,则E(0,0,0)= W0
W02 1 A0 1 A0 E (0,0,0) 令r=W0,则E(x0,y0,0)= exp 2 W0 W0 e W0 e
二、高斯光束通过—孔径光栏时,能量的讨论 由基尔霍夫公式;在光束传播方向上任一点z处的电矢量 振幅为:
A0 r2 E exp 2 W ( z) W ( z)
而其光强ρ∝E2 计算高斯光束通过某一孔径的能量,即计算高斯光束通过 某一半径为ρ的光孔时,高斯能量包的体积。 其光强为:
对稳定球面腔:
通用公式:
l ( R1 l )( R2 l )( R1 R2 l ) W04 ( R1 R2 2l ) 2
2
图2-3
特例:若对平凹稳定腔(氪氖激光器多采用),令R1=R,R2=∝ 1/ 4 代入上式 2 2
W0 2 ( Rl l ) (2 6)
等效于 0 2 ( Rl l 2 )
2 1/ 4
结论:1.高斯光束的发散角随传播距离的增大而非线性增大 2.在束腰处,发散角为0o在无穷远,发散角最大,其远 场发散角为:
W02 3.通常将 0 Z 区域定义为光束准直区 4.W0越大,则远场发散角愈小。因此为了减小光束的远
dW ( z ) 2 z 2 4 W0 Z 2 2 即 dz W0
1 2
2 1 W0 2W04
z2
2-5高斯光束
![2-5高斯光束](https://img.taocdn.com/s3/m/67d0a219b7360b4c2e3f642e.png)
Aq1 B q2 Cq1 D
曲率半径R
复曲率半径q
例1 某高斯光束焦参数为f=1m,将焦距F=1m 的凸透镜置於其腰右方l=2m处,求经透镜变换 后的像光束的焦参数f及其腰距透镜的距离l 解 q=2+i
q f(w0)
O
q f(w0) Z
O
l F l
研究对象
普通球面波
高斯球面波
特点
曲率中心固定的 曲率中心变化的
q2=q1+L
1 1 1 q2 q1 F
在自由空间的传 R2=R1+L 输规律 通过薄透镜的变 1 1 1 R2 R1 F 换 总的变换规律 AR1 B
R2 CR1 D
高斯光束q参数的传输规律
1、传播L距离
q q L
1 T 0 L 1
证
传播L距离的光学变换矩阵
1 q L q qL 0 q 1
2、通过透镜
q、q:透镜处物、像高斯光束q参数 l、l :物、像高斯光束腰到透镜距离 f、f :物像高斯光束焦参数
1 T 1 F 0 1
• 研究对象:高斯球面波—非均匀的、曲率中心不断改变的 球面波 • q参数在自由空间的传输规律q(z)=q0+z,q2=q1+L 1 1 1 • 通过薄透镜的变换
q2
q1
F
• q参数的变换规律可统一表示为
Aq1 B q2 Cq1 D
• 结论:高斯光束经任何光学系统变换时服从ABCD公式,由 光学系统对傍轴光线的变换矩阵所决定。 • 优点:能通过任意复杂的光学系统追踪高斯光束的q参数值 (将q称为复曲率半径the complex radius of curvature)
高斯光束的传播特性课件
![高斯光束的传播特性课件](https://img.taocdn.com/s3/m/75eeb95b54270722192e453610661ed9ac515566.png)
高斯光束的未来发展趋势
01 发展现状分析
前景广阔
02 未来趋势探讨
挑战与机遇并存
03 科学研究发展
跨学科交叉
高斯光束在工业应用中的创新
制造工艺
高效精准 节约成本
设备应用
智能控制 自动化生产
材料加工
高质量 快速加工
能源利用
节能环保 绿色生产
● 07
第7章 高斯光束的传播特性 课件
高斯光束的重要性
折射率与热效应
热效应
高斯光束在介质中 传播时会产生热效
应。
折射率变化
热效应会导致折射率 发生变化,影响高斯 光束的传播和聚焦效
果。
总结
高斯光束的传播特性受到折射率、衍射效应、非线性光学和热 效应等因素的影响。理解这些因素对于光学应用和光束传输具 有重要意义。
● 03
第3章 高斯光束的光学系统
高斯光束的聚焦系统
● 04
第四章 高斯光束的传播实验
高斯光束的干涉实验
迈克尔逊干涉仪观测
利用迈克尔逊干涉 仪观测高斯光束的
干涉条纹
分析干涉条纹
分析干涉条纹的形状 和对比度,验证高斯
光束的传播特性
高斯光束的衍射实验
在衍射光栅实验中,观测高斯光束的衍射效 应是探究光栅对高斯光束的光斑形状和光强 分布的影响。通过实验,可以进一步了解光 的衍射现象,验证高斯光束在衍射过程中的 特性。
衍射效应
光束传播中的衍射 现象
散射效应
光束在物质中传播时 的散射现象
折射效应
光束在介质中传播时 的折射规律
高斯光束的调制特性
高斯光束可以通过调制改变其传播特性,例 如调制频率、相位等参数可以实现对光束的 精准控制。调制技术在光通信和激光加工中 有着重要的应用价值。
激光物理第1.3章 高斯光束
![激光物理第1.3章 高斯光束](https://img.taocdn.com/s3/m/4f33070e4a7302768e9939c2.png)
q1 Aq B 1
1 2
1 2
i
2 y2
e
Cq1 D Aq1 B
q1 Aq B e 1
1 2
2 y2 i q 2
(1.4.8)
Aq1 B q2 Cq1 D
推广到二维坐标的情况,得到:
(1.4.9)
(1.3.8)和(1.3.11)
k qz Qz
E0 e
r 2 i P z q z
(1.3.26)
得到两个方程:
d 1 qz 2 0 q 2 z dz 1
1 dPz i 0 q z dz
2 01 2 01
2
2
C
因为C点取在像方光腰 处,此时应有
1 Re 0 qC
由此即可解得
l2 f ( f l1 ) f
2 2 2 01 2
( f l1 )
2 f 201
(1.4.16)
1 1 i 2 q( z ) ( z ) ( z )
z = 0 ,ρ(0)→∞,
(0) 0
1 1 1 i q0 q( 0 ) ( 0 ) 2 ( 0 )
02 q0 i iz0
可将高斯光束表示为
0 E ( x , y , z ) E0 e z
z0 2 ( z ) z 1 z 2 0 2 z0 ,k
(1.3.19)
均匀介质中高斯光束的传 播特性
沿z轴方向传播的基模(m=n=0)高斯光束
1 2
1 2
i
2 y2
e
Cq1 D Aq1 B
q1 Aq B e 1
1 2
2 y2 i q 2
(1.4.8)
Aq1 B q2 Cq1 D
推广到二维坐标的情况,得到:
(1.4.9)
(1.3.8)和(1.3.11)
k qz Qz
E0 e
r 2 i P z q z
(1.3.26)
得到两个方程:
d 1 qz 2 0 q 2 z dz 1
1 dPz i 0 q z dz
2 01 2 01
2
2
C
因为C点取在像方光腰 处,此时应有
1 Re 0 qC
由此即可解得
l2 f ( f l1 ) f
2 2 2 01 2
( f l1 )
2 f 201
(1.4.16)
1 1 i 2 q( z ) ( z ) ( z )
z = 0 ,ρ(0)→∞,
(0) 0
1 1 1 i q0 q( 0 ) ( 0 ) 2 ( 0 )
02 q0 i iz0
可将高斯光束表示为
0 E ( x , y , z ) E0 e z
z0 2 ( z ) z 1 z 2 0 2 z0 ,k
(1.3.19)
均匀介质中高斯光束的传 播特性
沿z轴方向传播的基模(m=n=0)高斯光束
第三章 高斯光束及其特性精选全文
![第三章 高斯光束及其特性精选全文](https://img.taocdn.com/s3/m/0ea9cd9c4128915f804d2b160b4e767f5acf80a3.png)
1 1 1 R2 (z) R1(z) f
R2 ( z )
AR1(z) CR1(z)
DB,
A C
B
D
1 1 /
f
0
1
反映了近轴球面波曲率半径的传输与光学系统矩阵元之间的关系
§3.1 基模高斯光束
球面波的传播规律可以统一写成
R2
AR1 CR1
B D
结论:具有固定曲率中心的普通傍轴球面波可以由其曲率半径R 来描述,传播规律由变换矩阵确定。
f
2 2
2 F
q
(1
l F
)q (l q (1
l l
)
ll F
)
F
F
0
(l
F F )2
f
2 0
§3.1 基模高斯光束
出射光束的束腰位置和尺寸 随入射光束的变化:
l
l(l F ) (l F )2
f f
2 2
F
0
(l
F F )2
f
2 0
§3.1 基模高斯光束
0
(l
§3.1 基模高斯光束
球面反射镜对高斯光束的自再现变换:
F 1 R(l) 2
F
1 2
R球面
R球面 R(l)
当入射在球面镜上的高斯光束波前曲率半径正好等于球面镜的曲率半径 时,在反射时高斯光束的参数将不发生变化,即像高斯光束与物高斯光 束完全重合。通常将这种情况称为反射镜与高斯光束的波前相匹配。
第三章 高斯光束及其特性
本章大纲
§3.1 基模高斯光束 掌握高斯光束q参数的表达 高斯光束在线性光学系统中的变换 高斯光束的自再现变换与稳定球面腔模式的关系
§3.2 高阶高斯光束 了解高阶高斯光束的特性。
R2 ( z )
AR1(z) CR1(z)
DB,
A C
B
D
1 1 /
f
0
1
反映了近轴球面波曲率半径的传输与光学系统矩阵元之间的关系
§3.1 基模高斯光束
球面波的传播规律可以统一写成
R2
AR1 CR1
B D
结论:具有固定曲率中心的普通傍轴球面波可以由其曲率半径R 来描述,传播规律由变换矩阵确定。
f
2 2
2 F
q
(1
l F
)q (l q (1
l l
)
ll F
)
F
F
0
(l
F F )2
f
2 0
§3.1 基模高斯光束
出射光束的束腰位置和尺寸 随入射光束的变化:
l
l(l F ) (l F )2
f f
2 2
F
0
(l
F F )2
f
2 0
§3.1 基模高斯光束
0
(l
§3.1 基模高斯光束
球面反射镜对高斯光束的自再现变换:
F 1 R(l) 2
F
1 2
R球面
R球面 R(l)
当入射在球面镜上的高斯光束波前曲率半径正好等于球面镜的曲率半径 时,在反射时高斯光束的参数将不发生变化,即像高斯光束与物高斯光 束完全重合。通常将这种情况称为反射镜与高斯光束的波前相匹配。
第三章 高斯光束及其特性
本章大纲
§3.1 基模高斯光束 掌握高斯光束q参数的表达 高斯光束在线性光学系统中的变换 高斯光束的自再现变换与稳定球面腔模式的关系
§3.2 高阶高斯光束 了解高阶高斯光束的特性。
高斯光束的基本性质及特征参数课件
![高斯光束的基本性质及特征参数课件](https://img.taocdn.com/s3/m/5b659809a9956bec0975f46527d3240c8447a1b9.png)
变换方法
通过使用各种光学元件,如反射镜、 棱镜等,可以对高斯光束进行各种形 式的变换,如旋转、平移、缩放等。
高斯光束的操控与调制
操控技术
利用光学元件对高斯光束进行操控,如改变光束方向、实现光束分裂等。
调制方法
通过在光束中加入外部信号,可以对高斯光束进行调制,实现信息传输和信号 处理等功能。
05
CHAPTER
高斯光束的聚焦
通过透镜可以将高斯光束聚焦到一点 ,聚焦点处的光强最大过程中,其传播方向呈发散状。
光强分布
高斯光束的光强呈高斯型分布,中心光强最大,向外逐渐减小。
衍射极限
高斯光束的衍射极限由波长和束腰宽度决定,短波长、小束腰宽度 的高斯光束具有更好的聚焦性能。
高斯光束的模拟与仿真
高斯光束的数值模拟方法
有限差分法
通过离散化高斯光束的波动方程,使用差分公式 求解离散点上的场值。
有限元法
将高斯光束的波动方程转化为变分问题,利用分 片多项式逼近解。
谱方法
将高斯光束的波动方程转化为频域或谱域的方程 ,通过傅里叶变换求解。
高斯光束的物理仿真实验
光学实验平台
搭建光学实验装置,通过实际的光路系统模拟高斯光束的传播。
光学成像
1 2 3
高分辨率成像
高斯光束在光学成像领域可用于实现高分辨率、 高清晰度的成像,从而提高图像的细节表现力和 清晰度。
荧光显微镜
高斯光束作为激发光,能够均匀地激发样品中的 荧光物质,提高荧光显微镜的成像质量和稳定性 。
光学共聚焦显微镜
利用高斯光束的聚焦和扫描特性,可以实现光学 共聚焦显微镜的高精度、高灵敏度成像。
激光加工
高效加工
01
高斯光束具有较高的亮度和能量集中度,能够实现高效、高精
通过使用各种光学元件,如反射镜、 棱镜等,可以对高斯光束进行各种形 式的变换,如旋转、平移、缩放等。
高斯光束的操控与调制
操控技术
利用光学元件对高斯光束进行操控,如改变光束方向、实现光束分裂等。
调制方法
通过在光束中加入外部信号,可以对高斯光束进行调制,实现信息传输和信号 处理等功能。
05
CHAPTER
高斯光束的聚焦
通过透镜可以将高斯光束聚焦到一点 ,聚焦点处的光强最大过程中,其传播方向呈发散状。
光强分布
高斯光束的光强呈高斯型分布,中心光强最大,向外逐渐减小。
衍射极限
高斯光束的衍射极限由波长和束腰宽度决定,短波长、小束腰宽度 的高斯光束具有更好的聚焦性能。
高斯光束的模拟与仿真
高斯光束的数值模拟方法
有限差分法
通过离散化高斯光束的波动方程,使用差分公式 求解离散点上的场值。
有限元法
将高斯光束的波动方程转化为变分问题,利用分 片多项式逼近解。
谱方法
将高斯光束的波动方程转化为频域或谱域的方程 ,通过傅里叶变换求解。
高斯光束的物理仿真实验
光学实验平台
搭建光学实验装置,通过实际的光路系统模拟高斯光束的传播。
光学成像
1 2 3
高分辨率成像
高斯光束在光学成像领域可用于实现高分辨率、 高清晰度的成像,从而提高图像的细节表现力和 清晰度。
荧光显微镜
高斯光束作为激发光,能够均匀地激发样品中的 荧光物质,提高荧光显微镜的成像质量和稳定性 。
光学共聚焦显微镜
利用高斯光束的聚焦和扫描特性,可以实现光学 共聚焦显微镜的高精度、高灵敏度成像。
激光加工
高效加工
01
高斯光束具有较高的亮度和能量集中度,能够实现高效、高精
第八章 高斯光束
![第八章 高斯光束](https://img.taocdn.com/s3/m/c3bcaa09fad6195f312ba665.png)
光束在均匀介质和类透镜介质中的传播
• 高斯分布:
– 在统计学中更多的被称为正态分 布,它指的是服从以下概率密度 函数的分布:
x 2 1 f ( x; , ) exp 2 2 2
Johann Carl Friedrich Gauss (1777–1855)
2r 2 I (r ) I 0 exp 2
r2 A(r ) A0 exp 2
P T P
I (r )2 rdrd 1 exp 2 I (r )2 rdrd 孔径半径 a
证
z2 w( z ) (f ) f
1 p f = 2 w l f 2 + z2
f2 R (z) z z
1 1 z f z if i 2 i 2 2 2 2 2 q R W z f z f z f2
z 2 f 2 (z 2 f 2 )( z if ) q z if z if (z if )( z if )
1 1 1 3.14 10 i 2 i 2i 3 2 q R w 0.5 3.14 (10 ) 1 2i 2i q 0.4 0.2i (m) 2 i 4 1 5
6
(2)
w( z ) w0 1
2
z z ( f ) 2 f f
1. 高斯光束在其轴线附近可看作是一种非均匀高斯
球面波,
2.在其传播过程中曲率中心不断改变
3.其振幅在横截面内为一高斯光束
4.强度集中在轴线及其附近 5.等相位面保持球面
• 高斯光束的孔径
– 从基模高斯光束的光束半径表达式可以得到截面上振幅的分布为: – 则其光强分布为:
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1 1 q(z) if z
z if f 2 z2
1
i
R(z) 2 ( )
2
(
z
)
2 0
1
z 02
2
R(z) z
1
f z
2
结论:高斯光束q参数在自由空间的变换规律满足ABCD法则
(2)高斯光束经过薄透镜的变换
M1
M2
1 11
R2 R1 F
1 2
R1
F
u 0 0 (x ,y ,z ) c(0 z )e x p { ik z x 2 2 y 2 (R 1 (z ) k i2 (z )) i(z )
1 1 i q(z) R(z)2(z)
q ( z ) 复曲率半径
u 0 0(x ,y,z)c(z 0)e x p i k (zx 2 2 q (z y )2)(z)
0
z
R
(
z
)
0
2. 任一 坐标 z 处的光斑半径 ( z 及) 等相面曲率半径 R ( z )
(z)
R( z )
0
z
3. 高斯光束的 q 参数
u 0 0 ( x ,y ,z ) c( 0 z )e x p x 2 2 ( z y ) 2 e x p i k ( z x 2 2 R ( z y ) 2 ) ( z )
第四章:高 斯 光 束
高斯光束:所有可能存在的激光波型的概称。 理论和实践已证明,在可能存在的激光束形式中,最重要且 最具典型意义的就是基模高斯光束。
无论是方形镜腔还是圆形镜腔,基模在横截面上的光强 分布为一圆斑,中心处光强最强,向边缘方向光强逐渐减弱, 呈高斯型分布。因此,将基模激光束称为“高斯光束”。
R2
1 q2
1 R2
i 22
( 1 R1
1)i F
22
1 1 11
( R1
i
12
) F
q1
F
Aq B q 1 2 Cq D
1
结论:高斯光束q参数经薄透镜的变换规律满足ABCD法则
高阶模激光束的场分布不同于基模,但传输与变换规律和 基模高斯光束相同,称为高阶模高斯光束。
非稳腔输出的基模光束经准直后在远场的强度分布也接近 高斯型。
高斯光束是可能存在的各种激光模式的总称。
4.1 高斯光束的基本性质
4.1.1 高斯光束的特点
1. 均匀平面波 沿某方向(如z轴)传播的均匀平面波(即均匀的平行光
1 11
R2 R1 F
A TF C
B D
1 1
F
0
1
R2
AR1 CR1
B D
(3)经过球面镜反射
R2
AR1 CR1
B D
CA
DB
12 R
0 1
2. 高斯光束的传输与变换规律
(1) 高斯光束在自由空间的传输
束腰处: z0, q(0)if i 02
自由空间变换矩阵:
1
TL
0
Z
1
由ABCD法则:q(z)ifz
R
2R
3. 高斯光束 激光束既不是均匀的平面光波,也不是均匀的球面光波,
而是一种比较特殊的高斯球面波。
E (x ,y ,z )A ( 0 z )e x (x 2 2 p ( z ) y 2 ) [ ] e x i[ k p x 2 2 R ( z y ) 2 z ] i( z )
双曲线顶点坐为 ,0 共焦参数
f L 02 2
光能主要分布在双锥体内
2. 波面曲率半径
光波面
(z) F
0
0
F
zR(z)z1zf2z1(z02)2
Z=0(束腰处) R(z) → ∞ (束腰处等相面为平面)
z
2 0
|
z
|
2 0
|
z
|
2 0
Z=± ∞
| R(z) | 202 (极小值)
| R ( z ) | 逐渐减小,曲率中心在 (, 02U 02 ,)
束),其电矢量为:
E(x,y,z)A0eikz k2 ,波数
特点:在与光束传播方向垂直的平面上光强是均匀的。
2. 均匀球面波
由某一点光源(位于坐标原点)向外发射的均匀球面光波,
其电矢量为:
E (x ,y ,z ) A 0 e x p [ ikx 2 y 2 z 2 ] A 0 e x p ( ik r )
x 2 y 2 z 2
R
R x2y2z2 ,光源到点 (x, y,z) 的距离
与坐标原点距离为常数 ,是以原点为球心的一个球面,在这 个球面上各点的位相相等,即该球面是一个等相位面。
近轴( x,y z,z R ):
r x2y2z2zx2y2
2R
E (x,y,z)A 0exp[ik(zx2y2)]
q0
i 02
if
§4.2 高斯光束的传输与变换规律
1. 普通球面波的传输与变换规律
(1)自由空间传 输
R (z2)R (z1)z2z1
A B 1 L TL C D0 1
R2
AR1 CR1
B D
(遵循ABCD变换法则)
(2)经过薄透镜的变换规律
R1(z) R2(z)
O1
O2
F
(遵循ABCD变换法则)
等相位面为球面; 曲率中心和曲率半径随传播过程而改变; 振幅和强度在横截面内为高斯分布。
幅度非均匀的变曲率中心的球面波。
4.1.3 高斯光束的特征参数
(z) 0
z 2
1
f
R(z)
z
1
f z
2
Hale Waihona Puke 0 f f
2 0
(共焦参量)
1. 腰斑 0 (或共焦参量 f )与腰位置 z
(z)
,
均匀球面波:
u (x,y,z)u R 0exp i k(zx2 2 R y2)0
可将基模高斯光束看作具有复数波面曲率半径的球面波光束
1 1 i q(z) R(z)2(z)
1
1
R(z)
Re
q
(
z
)
1 2 ( z )
Im
1
q
(
z
)
光腰处:
11 1
i
q0 q(0)R(0)2(0)
振幅因子
相位因子
0 ——基模高斯光束的腰斑半径(束腰)
( z ) ——高斯光束在z处的光斑半径
R ( z ) ——高斯光束在z处的波面曲率半径
4.1.2 高斯光束的基本性质
1. 振幅分布及光斑半径
A(r)
A0
A0 e
(z)
F
0
z 0 F
0 r (z) r
(z)0
2
1zf 0
z
2
102
( z ) 随z以双曲线函数变化
|
R(z)
|
逐渐增加,曲率中心在
(
2 0
,
2 0
)
|R(z)|≈|z|→ ∞ (无限远处等相面为平面)
3. 远场发散角
(z)
F
0
B
0
z
0
F
0 li2 m z (z) 2 0 0 .63 06 2 7 f 1 .12 f8
总结: 基模高斯光束特点
光波面
(z)
F
0
B
0
z
0
F
高斯光束 非均匀球面波