整理好的平面直角坐标系找规律解析知识讲解
平面直角坐标系知识点总结归纳
平面直角坐标系知识点总结归纳平面直角坐标系是分析平面上点的位置和运动的基本工具之一、它由两条相互垂直的数轴(通常称为x轴和y轴)组成,在规定的单位长度上构成一个矩形坐标系。
该坐标系可以用来描述平面内的点的位置以及它们之间的关系。
以下是平面直角坐标系的一些重要知识点:1.坐标轴:平面直角坐标系包括两条垂直于彼此的直线,称为坐标轴。
其中一条被标记为x轴,另一条被标记为y轴。
2.原点:平面直角坐标系的交点称为原点,通常标记为O。
3.坐标:平面直角坐标系中的每个点都可以用一对有序实数(x,y)来表示,其中x表示在x轴上的位置,y表示在y轴上的位置。
这对实数称为坐标。
例如,点(3,4)表示位于x轴上3个单位和y轴上4个单位的点。
4.象限:平面直角坐标系将平面分为四个象限。
第一象限位于x轴和y轴的正方向上,第二象限位于x轴的负方向和y轴的正方向,第三象限位于x轴和y轴的负方向上,第四象限位于x轴的正方向和y轴的负方向。
象限用于确定坐标点的相对位置和符号。
5.距离:在平面直角坐标系中,可以使用勾股定理计算两点之间的距离。
两点之间的距离公式为:d=√((x2-x1)^2+(y2-y1)^2),其中(x1,y1)和(x2,y2)是两点的坐标。
6.斜率:斜率用于描述直线的倾斜程度。
在平面直角坐标系中,可以使用两点间的坐标来计算斜率。
斜率公式为:m=(y2-y1)/(x2-x1),其中(x1,y1)和(x2,y2)是直线上的两点。
7. 截距:截距是指直线与y轴的交点。
在平面直角坐标系中,斜率截距公式为:y = mx + b,其中m是斜率,b是截距。
8.正交性:平面直角坐标系的x轴和y轴相互垂直,也就是说它们的夹角为90度。
这种相互垂直的性质被称为正交性。
9.平移:平面直角坐标系中的点可以通过平移来改变它们的位置。
平移是指沿着x轴和y轴移动一定的距离,而不改变它们之间的相对位置。
10.缩放:可以通过缩放来改变坐标系的单位长度。
初中数学平面直角坐标系规律题技巧优质
初中数学平面直角坐标系规律题技巧优质平面直角坐标系是初中数学中一个非常重要且常用的概念,通过利用平面直角坐标系可以解决很多实际问题。
对于学生来说,掌握平面直角坐标系的规律题技巧非常重要。
下面是一些优质的技巧和方法,帮助学生更好地解决平面直角坐标系的规律题。
技巧一:理解平面直角坐标系的基本概念平面直角坐标系是由两条垂直的直线组成的,一条被称为x轴,另一条被称为y轴。
两条轴的交点被称为原点,用O表示。
平面直角坐标系将平面分成四个象限,分别是第一象限、第二象限、第三象限和第四象限。
技巧二:确定点的坐标在平面直角坐标系中,每个点可以用一个有序数对来表示,这个有序数对被称为坐标。
通常用(x,y)来表示一个点的坐标,其中x表示点在x 轴上的位置,y表示点在y轴上的位置。
确定一个点的坐标时,首先要确定点在x轴上的位置,再确定点在y轴上的位置。
技巧三:熟悉轴与坐标的关系在平面直角坐标系中,x轴上的点的y坐标一定为0,y轴上的点的x 坐标一定为0。
这个性质非常重要,可以帮助我们更好地确定点的位置。
技巧四:了解象限的特点四个象限有各自的特点,第一象限中的x坐标和y坐标都是正数;第二象限中的x坐标是负数,y坐标是正数;第三象限中的x坐标和y坐标都是负数;第四象限中的x坐标是正数,y坐标是负数。
熟悉象限的特点可以帮助我们更好地定位点的位置。
技巧五:寻找对称点在平面直角坐标系中,对于一个点(x,y),其关于x轴的对称点为(x,-y),关于y轴的对称点为(-x,y),关于原点的对称点为(-x,-y)。
利用对称性可以帮助我们更好地解决规律题。
技巧六:利用点与点之间的关系在平面直角坐标系中,点与点之间有一些特定的关系,如直线上的点满足一次方程、距离公式等。
利用这些关系可以帮助我们解决规律题。
例如,当两个点的坐标之差的平方等于两个点到原点的距离之差的平方时,可以认为这两个点在直线上,通过这个关系可以确定直线上的其他点。
技巧七:建立方程解题在解决规律题时,可以根据题目的要求建立方程,然后通过求解方程得到答案。
专题03 平面直角坐标系(专题详解)(解析版)
专题03 平面直角坐标系专题03 平面直角坐标系 (1)7.1 平面直角坐标系 (2)知识框架 (2)一、基础知识点 (2)知识点1 有序数对 (2)知识点2 平面直角坐标系 (2)知识点3 点的坐标特点 (3)二、典型题型 (6)题型1 有序数对 (6)题型2 平面直角坐标系的概念 (6)题型3 点的坐标的特征 (6)一、点的位置与坐标 (7)二、点的坐标与距离 (8)三、点的坐标与平行于坐标轴的直线(数形结合思想) (8)四、点的坐标与图形的面积 (9)(1)知坐标,求面积 (9)(2)知面积,求坐标(方程思想) (10)(3)分类讨论 (12)三、难点题型 (14)题型1 确定点所在的象限 (14)题型2 点到坐标轴的距离 (14)题型3 探究平面直角坐标系坐标的变化规律 (15)7.2 坐标系的简单运用 (17)知识框架 (17)一、基础知识点 (17)知识点1 用坐标表示地理位置 (17)知识点2 用坐标表示平移 (18)二、典型题型 (20)题型1 用坐标表示地理位置 (20)题型2 用坐标表示平移 (21)一、点的平移 (21)(1)已知点和平移方式,求对应点 (21)(2)已知点和对应点,求平移方式 (21)二、图形的平移 (22)三、难点题型 (23)题型1 动点问题 (23)7.1 平面直角坐标系知识框架{基础知识点{有序数对平面直角坐标系点的坐标的特点典型题型{ 有序数对平面直角坐标系的概念点的坐标的特征{ 点的位置与坐标点的坐标与距离点的坐标与平行于坐标轴的直线(数形结合思想)点的坐标与图形的面积{知坐标,求面积知面积,求坐标(方程思想)分类讨论难点题型{确定点所在的象限点到坐标轴的距离探究平面直角坐标系坐标的变化规律 一、基础知识点知识点1 有序数对1)我们把有顺序的两个数a 与b 组成的数对,用于表示平面中某一确定位置的,叫作有序数对,记作(a ,b )注:①(a ,b )与(b ,a )表达的含义不同,注意有序数对的顺序②在表达有序数对时,一般行在前,列在后。
考点01 平面直角坐标系内点的坐标特征(解析版)
考点一平面直角坐标系内点的坐标特征知识点整合1.有序数对(1)有顺序的两个数a与b组成的数对,叫做有序数对.平面直角坐标系中的点和有序实数对是一一对应的.(2)经一点P分别向x轴、y轴作垂线,垂足在x轴、y轴上对应的数a,b分别叫做点P的横坐标和纵坐标.有序实数对(a,b)叫做点P的坐标.2.点的坐标特征点的位置横坐标符号纵坐标符号第一象限﹢+第二象限-+第三象限--第四象限+-x轴上正半轴上+0负半轴上-0y轴上正半轴上0+负半轴上0-原点003.轴对称(1)点(x,y)关于x轴对称的点的坐标为(x,-y);(2)点(x,y)关于y轴对称的点的坐标为(-x,y).4.中心对称两个点关于原点对称时,它们的坐标符号相反,即点P(x,y)关于原点的对称点为P'(-x,-y).5.图形在坐标系中的旋转图形(点)的旋转与坐标变化:(1)点P(x,y)绕坐标原点顺时针旋转90°,其坐标变为P′(y,-x);(2)点P(x,y)绕坐标原点顺时针旋转180°,其坐标变为P′(-x,-y);(3)点P(x,y)绕坐标原点逆时针旋转90°,其坐标变为P′(-y,x);(4)点P(x,y)绕坐标原点逆时针旋转180°,其坐标变为P′(-x,-y).6.图形在坐标系中的平移图形(点)的平移与坐标变化(1)点P(x,y)向右平移a个单位,其坐标变为P′(x+a,y);(2)点P(x,y)向左平移a个单位,其坐标变为P′(x-a,y);(3)点P(x,y)向上平移b个单位,其坐标变为P′(x,y+b);(4)点P(x,y)向下平移b个单位,其坐标变为P′(x,y-b).考向一有序数对有序数对的作用:利用有序数对可以在平面内准确表示一个位置.有序数对一般用来表示位置,如用“排”“列”表示教师内座位的位置,用经纬度表示地球上的地点等.典例引领1.根据下列表述,能确定具体位置的是()A.电影城1号厅6排B.北京市海淀区C.北纬31︒,东经103︒D.南偏西40︒【答案】C【分析】本题考查了平面内的点与有序实数对一一对应,根据平面内的点与有序实数对一一对应分别对每个选项判断.【详解】A、电影城1号厅6排不能确定具体位置.故本选项不合题意;B、北京市海淀区不能确定具体位置.故本选项不合题意;C、北纬31︒,东经103︒能确定具体位置.故本选项符合题意;D、南偏西40︒不能确定具体位置.故本选项不合题意.故选:C2.下列表述,能确定准确位置的是()A.威高广场东面B.环翠楼北偏西10︒C.U度影城2号厅一排D.北纬37︒,东经122︒【答案】D【分析】本题考查了有序数对,利用有序数对可以准确的表示出一个位置.确定位置需要两个数据,对各选项分析判断利用排除法即可求解.【详解】解:A、威高广场东面,不能确定具体位置,故本选项不符合题意;B、环翠楼北偏西10︒,不能确定具体位置,故本选项不符合题意;C 、U 度影城2号厅一排,不能确定具体位置,故本选项不符合题意;D 、北纬37︒,东经122︒,能确定具体位置,故本选项符合题意.故选:D .3.2023年山西省大学生篮球锦标赛于12月中旬开赛,图1是某大学篮球场座位图,图2是该篮球场部分座位的示意图.小刚、小芳、小美的座位如图所示.若小刚的座位用()1,1-表示,小芳的座位用()3,2表示,则小美的座位可以表示为()A .()1,2-B .()2,0C .()2,1-D .()1,0【答案】C【分析】本题考查点的坐标,根据点的位置先确定平面直角坐标系的位置,然后写出点的坐标是解题的关键.【详解】解:根据小刚、小芳的位置确定坐标系位置如图所示,∴小美的座位可以表示为()2,1-,故选C .4.如图,雷达探测器测得六个目标A ,B ,C ,D ,E ,F ,目标E ,F 的位置分别表示为()()3,330,2,30E F ︒︒.按照此方法,目标A ,B ,C ,D 的位置表示不正确的是()A .()5,60A ︒B .()3,120B ︒C .()3,210C ︒D .()5,270D ︒【答案】C【分析】本题考查利用有序实数对表示位置,解题的关键是根据理解题意.根据()3,330E ︒,()2,30F ︒得到第一个数为由里向外的圈数,第二个数为角度,直接逐个判断即可得到答案【详解】解:∵()3,330E ︒,()2,30F ︒,∴()5,60A ︒,()3,120B ︒,()4,210C ︒,()5,270D ︒,故选:C5.如果剧院里“5排2号”记作()5,2,那么()7,9表示()A .“7排9号”B .“9排7号”C .“7排7号”D .“9排9号”【答案】A【分析】本题考查了坐标确定位置,解题关键是清楚有序数对与排号之间的关系,根据题意可前一个数表示排数,后一个数表示号数即可求解.【详解】解:由“5排2号”记作()5,2可知,有序数对与排号对应,所以()7,9表示第7排9号.故选:A .6.一幢东西走向的5层教学楼,每层共8个教室.若把一楼从东侧数起第3个教室记为()1,3,二楼最东侧教室记为()2,1,则五楼最西侧教室记为()A .()5,1B .()5,8C .()8,5D .()1,5【答案】B【解析】略7.某班级第3组第4排的位置可以用数对()3,4表示,则数对()1,2表示的位置是()A.第2组第1排B.第1组第1排C.第1组第2排D.第2组第2排【答案】C【解析】略变式拓展00,【答案】()【分析】本题考查有序数对位置的确定,进而得出答案,采用数形结合的思想是解此题的关键.【详解】解:根据棋子“马”和“车”00,.故答案为()【答案】23【分析】本题主要考查了数字类的规律探索,的数为()1n n+,据此算出第三、解答题13.如图是某校区域示意图.规定列号写在前面,行号写在后面.(1)用数对的方法表示校门的位置.9,7在图中表示什么地方?(2)数对()2,3;【答案】(1)()(2)教学楼.【分析】(1)根据校门所在的列及所在的行,即可表示出校门的位置;(2)根据数对的表示方法找到对应的位置,即可得到数对表示的地点;本题考查了用有序数对表示点的位置,理解序数对表示的含义是解题的关键.【详解】(1)解:由图可知,校门位于第2列,第3行,2,3;∴校门的位置为数对()9,7表示的位置为第9列,第7行,(2)解:数对()由图可知,表示的地方为教学楼.14.在计算机软件Excel中,若将第A列第1行空格记作A1,如图.(1)试在图中找出空格B53,并填上“B53”字样;(2)图中的蜜蜂所在位置记作什么?(3)一只电子“蜜蜂”的行进路线为A52→A51→B52→C51→D52→C53.试在图中描出它的行进路线.【答案】(1)见解析(2)D52(3)见解析【详解】(1)如图所示(2)图中的蜜蜂所在位置记作D52.(3)行进路线如图所示.考向二点的坐标特征1.象限角平分线上的点的坐标特征(1)第一、三象限角平分线上的点的横、纵坐标相等;第二、四象限角平分线上的点的横、纵坐标互为相反数;(2)平行于x轴(或垂直于y轴)的直线上的点的纵坐标相等,平行于y轴(或垂直于x轴)的直线上的点的横坐标相等.2.点P(x,y)到x轴的距离为|y|,到y轴的距离为|x|.典例引领∴点()3,1Q a a -+所在象限是第二象限,故选:B .变式拓展二、填空题所以23a a +=±,解得3a =-(舍去)或1-.故答案为:1-.三、解答题考向三点的坐标规律探索这类问题通常以平面直角坐标系为载体探索点的坐标的变化规律.解答时,应先写出前几次的变化过程,并将相邻两次的变化过程进行比对,明确哪些地方发生了变化,哪些地方没有发生变化,逐步发现规律,从而使问题得以解决.典例引领1.如图,将边长为1的正方形ABOC 沿x 轴正方向连续翻转2014次,点A 依次落在点12A A 、、32014A A 、、的位置,则点2014A 的横坐标为()A .1343B .1510C .1610D .2014【答案】D【分析】本题考查了探究规律,利用规律即可解决问题,涉及坐标与图形变化-对称、规律型:点的坐标,先根据题意写出已知点的坐标,再找到规律为次数是2的奇数倍的偶数,位于x 轴上,横坐标为这个翻转次数;次数是2的偶数倍的偶数,位于x 轴的上方,横坐标为这个翻转次数加上1;据此作答即可.A .()3032,1-B .()3034,4C .()3036,4D .()3031,1【答案】B【分析】本题考查坐标的规律问题,先找到点的规律,然后计算解题即可,解题的关键是找到点的坐标规律.【详解】由题可知,每四个点纵坐标重复一次,横坐标向左平移6个单位长度,∴202345053÷= ,则2023A 的横坐标为:505643034⨯+=,纵坐标为4,故选:B .4.对一组数(),x y 的一次操作变换记为()111,P x y ,定义其变换法则如下:()111,(,)P x y x y x y =+-,()()()()22211111111,,,,n n n n n n n P x y x y x y P x y x y x y ----=+-=+- (n 为大于1的整数),如这组数为(1,2),则1(3,1)P =-,2(2,4)P =,3(6,2)P =-…当这组数为(1,1)-时,2024P =()A .()101210122,2-B .()10120,2-C .()10110,2D .()101110112,2-【答案】A【分析】本题考查了新定义点的坐标,根据操作方法依次求出前几次变换的结果,然后根据规律解答,读懂题目信息,理解操作方法并观察出点的纵坐标的指数的变化规律是解题的关键.【详解】解:当这组数为()1,1-时,()()11,10,2P -=,()()21,12,2P -=-,()()()231,10,40,2P -==,()()()2241,14,42,2P -=-=-,()()()351,10,80,2P -==,∴()()1012101220241,12,2P -=-,故选:A .二、填空题【答案】()20212,【分析】本题考查了点坐标规律探索,旨在考查学生的抽象概括能力.标为对应的运动次数减3,纵坐标依次为:4,2,1,1,2-,每5次一个循环,据此即可求解.【详解】解:由题意得:动点0()34P -,在平面直角坐标系中的运动为:1()22P -,,()21,1P -,31(0)P -,,42(1)P ,,54(2)P ,,62(3)P ,,...∴横坐标为对应的运动次数减3,则第2024次运动到点2024P 的横坐标为:202432021-=;∵()202415405+÷=,∴第2024次运动到点2024P 的纵坐标为:2;故答案为:()20212,变式拓展【答案】()20242024,0P 【分析】本题考查了坐标系中点的坐标规律探索,仔细观察点的坐标发现第()22,0P ,第4次坐标为()44,0P ,第6次坐标为()66,0P ,故第2024次的坐标为【详解】第2次坐标为()22,0P ,第4次坐标为()44,0P ,第6次坐标为故第2024次的坐标为()20242024,0P .故答案为:()20242024,0P .7.在平面直角坐标系xOy 中,对于点(),P x y ,我们把(11,P y x --知点1A 的友好点为2A ,点2A 的友好点为3A ,点3A 的友好点为4A ,这样依次得到各点的坐标为()1,2,设()1,A x y ,则x y +的值是.【答案】5-【分析】本题主要考查了规律型:点的坐标,解答本题的关键是准确理解题意,发现变换规【答案】()2023,1-【分析】本题主要考查的是坐标系中的规律探究问题,计算P 的时间,根据规律即可求得第2023秒P 点位置,找出运动规律是解题的关键.【详解】由题意可知,点P 运动一个半圆所用的时间为:π÷三、解答题10.如图,在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:4A (_________,_________),8A (_________,_________),12A (_________,_________);(2)写出点4n A 的坐标(n 是正整数);(3)指出蚂蚁从点2021A 到点2022A 的移动方向.【答案】(1)2,0;4,0;6,0;(2)()2,0n (3)向右.【分析】(1)本题考查了在平面坐标系中点的坐标特点,根据题意知道按向上、向右、向下、向右的方向每次移动1个单位,即可解题.(2)本题考查了在平面坐标系中坐标的特点和坐标的规律,观察点4A 的位置,由图可知,蚂蚁每走4步为一个周期,得出4n OA 的值,再根据点4n A 在x 轴的正半轴上,即可解题.(3)本题考查了在平面坐标系中坐标的特点和坐标的规律,根据点4n A 的坐标,分析可得点2020A 的坐标,再结合题意知道按方向每次移动1个单位,得到点2021A 和点2021A 的坐标,即可解题.【详解】(1)解:由图可知,点4A ,点8A ,点12A 都在x 轴的正半轴上,小蚂蚁每次移动1个单位,42OA ∴=,84OA =,126OA =,()42,0A ∴,()84,0A ,()126,0A ,故答案为:2,0;4,0;6,0.(2)解:由图可知,蚂蚁每走4步为一个周期,44422n OA n n ∴=÷⨯=,点4n A 在x 轴的正半轴上,()42,0n A n ∴.(3)解: 当2020n =时,4505n ∴=⨯,∴点2020A 的坐标为()1010,0,∴点2021A 的坐标为()1010,1,点2022A 的坐标为()1011,1,∴蚂蚁从点2021A 到点2022A 的移动方向为向右.。
平面直角坐标系的13个知识点
平面直角坐标系的13个核心知识点哎,说起平面直角坐标系,那可是数学里头相当重要的一个板块儿。
咱们今天就来摆一摆它的13个核心知识点。
首先呢,平面直角坐标系就是由两条互相垂直的数轴组成,水平方向的叫x轴,垂直方向的叫y轴,它们交在一块儿的那个点叫原点。
然后啊,平面上的每个点都可以用一对有序实数来表示,比如(x,y),x就是横坐标,y就是纵坐标。
再说说象限,根据点的坐标的正负,平面被分成了四个部分,叫象限。
第一象限的点坐标都是正数,第二象限的x坐标为负,y坐标为正,第三象限的点坐标都是负数,第四象限的x坐标为正,y坐标为负。
还有啊,关于x轴、y轴、原点对称的点的坐标,都是有规律的。
比如关于x轴对称的点,横坐标不变,纵坐标变相反数。
另外,平面直角坐标系里头还可以搞平移、缩放这些变换。
平移的时候,点的坐标会跟着变,比如向右平移,横坐标就变大,向左平移,横坐标就变小。
缩放的时候,比如横坐标变为原来的k倍,那图形就跟着放大或缩小了。
再来说说直线、圆这些图形,它们都可以用方程来表示。
比如直线y=2x+3,圆的方程是(x-h)^2+(y-k)^2=r^2。
最后啊,还有中点公式、斜率公式、距离公式这些工具,它们可以用来求线段的中点、直线的斜率和两点间的距离。
总之啊,平面直角坐标系的知识点虽然多,但只要掌握了规律,学起来也就不那么难了。
专题 坐标系中的找规律-讲义
坐标系中找规律主讲教师:傲德我们一起回顾1、动点找规律2、图形运动找规律重难点易错点解析动点找规律题一:如图,在平面直角坐标系中,一动点从原点O出发,按向上、向右、向下、向右的方向不断地移动,每移动一个单位,得到点A1(0,1),A2(1,1),A3(1,0),A4(2,0),…那么点A4n+1(n为自然数)的坐标为.(用n表示)图形运动找规律题二:如图,将边长为1的正方形OAPB沿x轴正方向连续翻转48次,点P依次落在点P1,P2,P3,P4,…,P48的位置,则P48的坐标是.金题精讲题一:一个质点在第一象限及x轴、y轴上运动,在第一秒钟,它从原点运动到(0,1),然后接着按图中箭头所示方向运动,即(0,0)→(0,1)→(1,1)→(1,0)→…,且每秒移动一个单位,那么第35秒时质点所在位置的坐标是.题二:如图,在平面直角坐标系中,第一次将△OAB变换成△OA1B1,第二次将△OA1B1变换成△OA2B2,第三次将△OA2B2变换成△OA3B3…已知:A(1,3),A1(2,3),A2(4,3),A3(8,3);B(2,0),B1(4,0),B2(8,0),B3(16,0).观察每次变换前后的三角形有何变化,按照变换规律,第n次变换后得到的三角形A n的坐标是,B n的坐标是.题三:如图,在平面直角坐标系中,已知点A(-3,0)、B(0,4),且AB=5,对△OAB连续作旋转变换,依次得到△1、△2、△3、△4…,则△2014的直角顶点的坐标为.题四:如图,矩形BCDE的各边分别平行于x轴或y轴,物体甲和物体乙由点A(2,0)同时出发,沿矩形BCDE的边作环绕运动,物体甲按逆时针方向以1个单位/秒匀速运动,物体乙按顺时针方向以2个单位/秒匀速运动,则两个物体运动后的第2014次相遇地点的坐标是()A.(2,0)B.(-1,1)C.(-2,1)D.(-1,-1)思维拓展题一:如图,动点P从(0,3)出发,沿所示方向运动,每当碰到长方形的边时反弹,反弹时角度均为45°,当点P第2015次碰到长方形的边时,点P的坐标为()A.(1,4)B.(5,0)C.(6,4)D.(8,3)学习提醒重点:动点找规律——分析横、纵坐标与运动次数n的关系图形运动找规律——先分析图形整体位置,再看所研究点的位置坐标系中找规律讲义参考答案重难点易错点解析题一:(2n, 1)点拨:动点找规律,分析横、纵坐标与运动次数n的关系题二:(47, 1)点拨:图形运动找规律:先分析图形整体位置,再看所研究点的位置金题精讲题一:(5, 0) 题二:(2n, 3),(2n+1, 0)题三:(8052, 0) 题四:B思维拓展题一:A。
平面直角坐标系知识点汇总
平面直角坐标系知识点汇总平面直角坐标系知识点汇总知识点一确定位置1.平面内确定一个物体的位置需要2个数据。
2.平面内确定位置的几种方法:(1)行列定位法:在这种方法中常把平面分成若干行、列,然后利用行号和列号表示平面上点的位置,在此方法中,要牢记某点的位置需要两个互相独立的数据,两者缺一不可。
(2)方位角距离定位法:方位角和距离。
(3)经纬定位法:它也需要两个数据:经度和纬度。
(4)区域定位法:只描述某点所在的大致位置。
如“解放路22号”。
知识点二平面直角坐标系1.定义在平面内,两条互相(垂直)且具有公共(焦点)的数轴组成平面直角坐标系.其中水平方向的数轴叫(X轴)或(横轴),向(右)为正方向;竖直方向的数轴叫(Y轴)或(纵轴),向(上)为正方向;两条数轴交点叫平面直角坐标系的(原点)。
.2.平面内点的坐标对于平面内任意一点P,过P分别向x轴、y 轴作垂线,x轴上的垂足对应的数a叫P的(横)坐标,y轴上的垂足对应的数b叫P的(纵)坐标。
有序数对(a,b),叫点P的坐标。
若P的坐标为(a,b),则P到x轴距离为(|b|),到y轴距离为(|a|) 注意:平面内点的坐标是有序实数对,(a,b)和(b,a)是两个不同点的坐标.3.平面直角坐标系内点的坐标特征:(1)坐标轴把平面分隔成四个象限。
根据点所在位置填表点的位置横坐标符号纵坐标符号第一象限+ +第二象限_ +第三象限_ _第四象限+ _(2)坐标轴上的点不属于任何象限,它们的坐标特征①在x轴上的点(纵)坐标为0;②在y轴上的点(横)坐标为0;(3)P(a,b)关于x轴、y轴、原点的对称点坐标特征①点P(a,b)关于x轴对称点P1(a,-b);②点 P(a,b)关于y轴对称点P2(-a,b);③点P(a,b)关于原点对称点P3(-a,-b);④若点P(a,b)关于一三象限角平分线对称点P4(b,a);⑤若点P(a,b)关于二四象限角平分线对称点P5(-b,a);4.平行于x轴的直线上的点(纵)坐标相同;平行于y轴的直线上的点(横)坐标相同。
(完整版)平面直角坐标系知识点总结
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
梳理平面直角坐标系知识点
梳理平面直角坐标系知识点1. 什么是平面直角坐标系?平面直角坐标系是在平面上建立起来的一个坐标系,通过它我们可以方便地描述平面上的点的位置。
平面直角坐标系由两条互相垂直的坐标轴组成,通常被称为x轴和y轴。
2. 坐标轴和坐标点在平面直角坐标系中,x轴和y轴分别代表水平和垂直方向。
原点是坐标轴的交点,表示坐标值为(0, 0)。
其他点的位置可以通过相对于原点的水平和垂直距离来表示,这就是坐标点。
3. 坐标的表示方法坐标点一般用一对有序数来表示,第一个数表示横坐标,第二个数表示纵坐标。
例如,点A的坐标是(2, 3),表示A点在x轴上的坐标是2,在y轴上的坐标是3。
4. 坐标轴的刻度和方向坐标轴上的刻度表示单位长度,通常用相同长度的线段表示。
刻度的方向一般从原点向右为正方向,向左为负方向。
对于y轴,向上为正方向,向下为负方向。
5. 坐标点的位置关系在平面直角坐标系中,坐标点的位置关系可以通过比较它们的坐标值来确定。
例如,当两个点的横坐标相等,纵坐标不等时,它们在同一条垂直线上;当两个点的纵坐标相等,横坐标不等时,它们在同一条水平线上。
6. 坐标点的运算在平面直角坐标系中,可以进行坐标点的加法和减法运算。
对于两个点A(x1,y1)和B(x2, y2),它们的和是C(x1+x2, y1+y2),它们的差是D(x1-x2, y1-y2)。
7. 点到原点的距离在平面直角坐标系中,可以计算一个点到原点的距离。
对于点A(x, y),它到原点的距离可以通过勾股定理来计算,即d = √(x^2 + y^2)。
8. 点关于坐标轴的对称点在平面直角坐标系中,一个点关于x轴的对称点的坐标是(x, -y),关于y轴的对称点的坐标是(-x, y),关于原点的对称点的坐标是(-x, -y)。
9. 直线的方程在平面直角坐标系中,一条直线可以用方程来表示。
常见的直线方程有斜截式方程和截距式方程。
斜截式方程的形式是y = kx + b,其中k是斜率,b是y轴截距;截距式方程的形式是x/a + y/b = 1,其中a和b是x轴截距和y轴截距。
平面直角坐标系知识点归纳总结
平面直角坐标系知识点归纳总结一、知识网络结构二、知识要点1、有序数对:有顺序的两个数a 与b 组成的数对叫做有序数对,记做(a,b )。
2、平面直角坐标系:在平面内,两条互相垂直且有公共原点的数轴组成平面直角坐标系。
3、横轴、纵轴、原点:水平的数轴称为x 轴或横轴;竖直的数轴称为y 轴或纵轴;两坐标轴的交点为平面直角坐标系的原点。
4、坐标:对于平面内任一点P ,过P 分别向x 轴,y 轴作垂线,垂足分别在x 轴,y 轴上,对应的数a,b分别叫点P 的横坐标和纵坐标,记作P(a ,b);点P(a ,b)到x 轴的距离是 |b| ,到y 轴的距离是 |a| 。
点P(a ,b)到x 轴或横坐标轴的距离是 |b| (纵坐标的绝对值),到y 轴或纵坐标轴的距离是 |a| (横坐标的绝对值)。
5、象限:两条坐标轴把平面分成四个部分,右上部分叫第一象限,按逆时针方向依次叫第二象限、第三象限、第四象限。
坐标轴上的点不在任何一个象限内。
6、各象限点的坐标特点 ①第一象限的点:横坐标 0,纵坐标 0;②第二象限的点:横坐标 0,纵坐标 0;③第三象限的点:横坐标 0,纵坐标 0;④第四象限的点:横坐标 0,纵坐标 0。
7、坐标轴上点的坐标特点 ①x 轴正半轴上的点:横坐标 0,纵坐标 0;②x 轴负半轴上的点:横坐标 0,纵坐标 0;③y 轴正半轴上的点:横坐标 0,纵坐标 0;④y 轴负半轴上的点:横坐标 0,纵坐标 0;⑤坐标原点:横坐标 0,纵坐标 0。
(填“>”、“<”或“=”x 轴上的点:纵坐标 0,y 轴上的点:横坐标 08、对称点的坐标特点 ①关于x 轴对称的两个点,横坐标 相等,纵坐标 互为相反数;②关于y 轴对称的两个点,纵坐标相等,横坐标互为相反数;③关于原点对称的两个点,横坐标、纵坐标分别互为相反数。
9、点P(2,3) 到x 轴的距离是 ; 到y 轴的距离是 ;点P(2,3) 关于x 轴对称的点坐标为( , );点P(2,3) 关于y 轴对称的点坐标为( , )。
平面直角坐标系知识点总结
平面直角坐标系知识点总结一、知识点框架图二、知识点整理1、有序数对两个数a 、b 组成的有顺序的数对即为有序数对,记作(a ,b )。
ps :有序,即强调(a ,b )和(b ,a )的区别 2、平面直角坐标系三要素:x 轴(横轴)、y 轴(纵轴)、原点O 。
四象限:第一、二、三、四 象限ps :x 轴、y 轴方向要死记 3、点的坐标写点的坐标:写出A 点的坐标(a ,b ),过A 做x 轴y 轴的垂线,点A 到y 轴的距离为a ,点A 到x 轴的距离为b 。
确定平面内点的坐标建立平面直角坐标系点P 坐标 (有序数对(x ,y ))画两条数轴 ①数轴 ②有公共原点1)写点的坐标时,横轴在前(a),纵轴在后(b)2)注意各象限中a、b的正负号4、点坐标的特征1)四象限中点的特征:2)数轴上点的特征:x轴上点的纵坐标为0,写为(a,0)y轴上点的横坐标为0,写为(0,b)ps:坐标轴上的点不属于任一象限!!!3)象限角分线上点的坐标:4)对称点坐标的特点:点A(a,b):5)平行于坐标轴的直线上的点三、平面直角坐标系的应用:1、坐标表示地理位置a)建立坐标系,选择原点,确定下x、y轴b)由具体问题建立适当的比例,标单位长度c)在坐标平面内画出点,写出坐标ps:即为,建系、定长度、写坐标2、用坐标表示平移a)点的平移:b)图形的平移:图形平移即为点平移,且为图形上的点的整体平移。
四、坐标系中的重点&难点重点:建立坐标系,点坐标的特征;难点:点的平移和图形的平移1:如图,在X轴上有五个点,它们的横坐标依次为1,2,3,4,5.分别过这些点作X轴的垂线,与三条直线y=ax,y=(a+1)x,y=(a+2)x相交,其中a >0,则图中阴影部分的面积是()A.12.5B.25C.12.5aD.25a2:在平面直角坐标系中,已知3个点的坐标分别为A1(1,1) 、A2(0,2)、A3(-1,1),一只电子蛙位于坐标原点处,第1次电子蛙由原点跳到以A1为对称中心的对称点P1,第2次电子蛙由P1点跳到以A2为对称中心的对称点P2,第3次电子蛙由P 2点跳到以A3为对称中心的对称点P3,…,按此规律,电子蛙分别以A1、A2、A3为对称中心继续跳下去.问当电子蛙跳了2009次后,电子蛙落点的坐标是P2009(_______ ,_______).1、考点分析:此题包括坐标系、一次函数以及图形面积的求法。
平面直角坐标系找规律技巧(一)
平面直角坐标系找规律技巧(一)平面直角坐标系找规律技巧介绍平面直角坐标系是数学中常用的工具,可以帮助我们描述平面上的各种图形和现象。
在解决问题时,我们经常需要找出规律来简化计算或推导过程。
本文将介绍一些在平面直角坐标系中找规律的常用技巧。
技巧一:观察坐标轴上的点•观察点在坐标轴上的位置,可以帮助我们找出两个量之间的关系。
例如,如果一个点的横坐标和纵坐标相等,则它在坐标系中呈现出对称的特点。
•另外,当点的横坐标或纵坐标为0时,它们通常代表特殊的情况。
我们可以通过观察这些点来找到一些特殊的规律。
技巧二:观察图形的对称性•当图形呈现出对称的形态时,我们可以利用对称性来简化问题。
例如,如果一个图形在横轴或纵轴上对称,则它的性质可能也在对称轴上相同。
•另外,如果一个图形在原点对称,则它的性质通常也在原点附近具有一些特殊的规律。
技巧三:利用直角三角形的性质•平面直角坐标系中的直角三角形具有一些特殊的性质,我们可以利用这些性质来找规律。
例如,两条边分别与横轴和纵轴平行的直角三角形可能呈现出相似的形状。
•此外,直角三角形中的角度关系也可以帮助我们找到一些规律。
例如,当两条线段之间的夹角为90度时,它们可能具有一些特殊的性质。
技巧四:利用平移和旋转的性质•在平面直角坐标系中,我们可以通过平移和旋转来改变图形的位置和方向。
利用平移和旋转的性质,我们可以找到一些规律。
例如,当一个图形经过平移后仍具有相似的性质时,我们可以猜测这个性质与平移无关。
•此外,有时候我们可以通过适当的旋转来简化问题。
例如,当一个图形经过旋转后具有一些特殊的性质时,我们可以利用这个性质找规律。
技巧五:利用数学工具辅助分析•平面直角坐标系中的问题通常涉及到数学知识,例如代数和几何。
我们可以利用这些数学工具来辅助分析,找到问题的规律。
例如,利用代数中的方程和函数可以帮助我们推导出一些特殊的关系式。
•此外,几何中的一些定理和性质也可以用来分析图形和推导规律。
(完整word版)平面直角坐标系知识点总结
平面直角坐标系二、知识要点梳理知识点一:有序数对比如教室中座位的位置,常用“几排几列”来表示,而排数和列数的先后顺序影响座位的位置,因此用有顺序的两个数a与b组成有序数时,记作(a,b),表示一个物体的位置。
我们把这种有顺序的两个数a与b组成的数对叫做有序数对,记作: (a,b).要点诠释:对“有序”要准确理解,即两个数的位置不能随意交换,(a,b)与(b,a)顺序不同,含义就不同,表示不同位置。
知识点二:平面直角坐标系以及坐标的概念1.平面直角坐标系在平面内画两条互相垂直、原点重合的数轴就组成平面直角坐标系。
水平的数轴称为x 轴或横轴,习惯上取向右为正方向;竖直的数轴称为y轴或纵轴,取向上方向为正方向,两坐标轴的交点为平面直角坐标系的原点(如图1)。
注:我们在画直角坐标系时,要注意两坐标轴是互相垂直的,且有公共原点,通常取向右与向上的方向分别为两坐标轴的正方向。
平面直角坐标系是由两条互相垂直且有公共原点的数轴组成的。
2.点的坐标点的坐标是在平面直角坐标系中确定点的位置的主要表示方法,是今后研究函数的基础。
在平面直角坐标系中,要想表示一个点的具体位置,就要用它的坐标来表示,要想写出一个点的坐标,应过这个点A分别向x轴和y轴作垂线,垂足M在x轴上的坐标是a,垂足N在y轴上的坐标是b,我们说点A的横坐标是a,纵坐标是b,那么有序数对(a,b)叫做点A的坐标.记作:A(a,b).用(a,b)来表示,需要注意的是必须把横坐标写在纵坐标前面,所以这是一对有序数。
注:①写点的坐标时,横坐标写在前面,纵坐标写在后面。
横、纵坐标的位置不能颠倒。
②由点的坐标的意义可知:点P(a,b)中,|a|表示点到y轴的距离;|b|表示点到x轴的距离。
知识点三:点坐标的特征l.四个象限内点坐标的特征:两条坐标轴将平面分成4个区域称为象限,按逆时针顺序分别叫做第一、二、三、四象限,如图2.这四个象限的点的坐标符号分别是(+,+),(-,+),(-,-),(+,-).2.数轴上点坐标的特征:x轴上的点的纵坐标为0,可表示为(a,0);y轴上的点的横坐标为0,可表示为(0,b).注意:x轴,y轴上的点不在任何一个象限内,对于坐标平面内任意一个点,不在这四个象限内,就在坐标轴上。
平面直角坐标系知识点梳理
平面直角坐标系知识点梳理嘿,咱今儿就来好好聊聊平面直角坐标系这玩意儿!你想想啊,这平面直角坐标系就像是一个超级大的棋盘,那横竖的线交织在一起,可不就把平面分成了一格一格的嘛!先来说说坐标轴吧。
那横着的轴就像一条长长的大马路,咱叫它 x 轴;竖着的呢,就像立起来的杆子,这就是y 轴啦。
它们相交的地方,嘿,那就是原点,就好比棋盘的正中心呢!那上面的点可就有意思啦!每个点都有自己独特的位置。
就好像每个人都有自己的家一样。
通过那两个数字,也就是横坐标和纵坐标,咱就能准确找到这个点在哪里。
比如说,(3,5),那就是在 x 轴上找到 3 那个位置,再沿着 y 轴往上数 5 格,这不就找到啦!坐标轴还分正负呢,这边是正的,那边就是负的,就像有好人也有坏人一样。
在 x 轴右边都是正数,左边就是负数;y 轴上面是正数,下面就是负数。
这多好记呀!再来说说象限。
这平面直角坐标系被分成了四个部分,就像把一个大蛋糕切成了四块。
第一象限里全是正数,那可都是厉害的角色呢;第二象限 x 轴是负的,y 轴是正的,有点特别吧;第三象限呢,全是负数,感觉有点可怜巴巴的;第四象限 x 轴正,y 轴负,也有它自己的特点。
这象限里的点也各有各的脾气呢!在第一象限的点,那可都是积极向上的,两个坐标都是正数,多精神呀!第二象限的点呢,有点像那种表面严肃但内心火热的人,x 轴负但 y 轴正。
第三象限的点就像是受了挫折的,两个都负,唉,真不容易。
第四象限的点呢,有点像那种表面低调但其实也有本事的,x 轴正 y 轴负。
还有啊,那直线在这平面直角坐标系里也有它的玩法。
通过一些点,咱就能画出一条直线,然后看看这条直线有啥特点,和坐标轴有啥关系。
咱学这平面直角坐标系有啥用呢?用处可大啦!比如咱要在地图上找个地方,那不就和在平面直角坐标系里找个点一样嘛!或者设计个什么图形,也得靠它呀!总之呢,平面直角坐标系就像是我们探索数学世界的一个大地图,我们得好好熟悉它,才能在数学的海洋里畅游无阻呀!你说是不是呢?可别小瞧了它哟!。
平面直角坐标系知识点总结
平面直角坐标系知识点总结一、引言平面直角坐标系是数学中一个重要的概念,也是解析几何的基础。
它在代数课程中广泛应用,对于理解和解决各种几何问题有着重要的作用。
本文将对平面直角坐标系的相关知识进行总结和介绍。
二、平面直角坐标系的定义平面直角坐标系是由两条相互垂直的坐标轴组成的,其中一条称为x轴,另一条称为y轴。
x轴和y轴的交点称为原点O,它的坐标为(0, 0)。
平面直角坐标系中的每一个点可以表示为一个有序数对 (x, y),其中 x 表示该点在 x 轴上的投影,y 表示该点在 y 轴上的投影。
三、平面直角坐标系的四象限在平面直角坐标系中,将x轴和y轴的正负方向分别延长,将整个平面分为四个象限。
第一象限为x轴和y轴的正方向区域,第二象限为x轴负方向和y轴正方向区域,第三象限为x轴和y轴的负方向区域,第四象限为x轴正方向和y轴负方向区域。
四、坐标的表示方法在平面直角坐标系中,点的坐标可以用两种方式表示:直角坐标和极坐标。
直角坐标用有序数对 (x, y) 表示,x 表示点在 x 轴上的投影,y 表示点在 y 轴上的投影。
极坐标则用极径和极角来表示,极径表示点到原点的距离,极角表示点与x轴正半轴的夹角。
五、距离的计算平面直角坐标系中,两点之间的距离可以通过勾股定理来计算。
若两点的坐标分别为(x1, y1)和(x2, y2),则这两点之间的距离d可以计算为:d = √((x2-x1)^2 + (y2-y1)^2)。
六、图形的表示与运算在平面直角坐标系中,各种图形都可以通过方程进行表示。
例如,直线可以用一次方程y = kx + b来表示,其中k为斜率,b为截距。
圆可以用二次方程表示,例如(x-a)^2 + (y-b)^2 = r^2,其中(a, b)为圆心的坐标,r为半径。
七、平面直角坐标系的应用平面直角坐标系在几何学和物理学中有着广泛的应用。
在几何学中,通过直角坐标系可以方便地解决几何形状的性质和关系问题。
在物理学中,直角坐标系可以用来描述物体的运动轨迹和受力情况。
平面直角坐标系知识点总结
平面直角坐标系知识点总结平面直角坐标系是数学中一个重要的概念,它在几何图形的分析与研究中起到了关键作用。
在本文中,我们将对平面直角坐标系的概念、性质以及常见的应用进行总结。
通过阅读本文,读者将更好地理解和应用平面直角坐标系。
1. 平面直角坐标系的定义平面直角坐标系是由两条相互垂直的数轴(x轴和y轴)所确定的坐标系统。
其中,x轴被称为横轴,y轴被称为纵轴。
x轴和y轴的交点称为坐标原点O,它是平面直角坐标系的起点。
通过在每个轴上引入单位长度,我们可以对平面上的点进行精确的描述。
2. 平面直角坐标系的性质- 平面直角坐标系中的任意一点都可以通过一对有序实数(x, y)来表示,这对实数分别表示点在x轴和y轴上的投影长度,称为该点的坐标。
- 坐标原点O的坐标为(0, 0)。
横轴上的点的坐标形式为(x, 0),纵轴上的点的坐标形式为(0, y)。
- 平面上两点的距离可以通过坐标计算公式来确定。
对于两个点A(x₁, y₁)和B(x₂, y₂),它们之间的距离为√((x₂ - x₁)² + (y₂ - y₁)²)。
- 平面上两条线段垂直的条件是它们的斜率互为相反数。
3. 平面直角坐标系的应用- 几何图形的位置表示:通过平面直角坐标系,我们可以精确地确定几何图形在平面上的位置。
通过计算坐标,我们可以判断图形的相对位置、大小和形状。
- 直线方程的表示:平面直角坐标系能够方便地将直线的方程表示出来。
一般地,直线的方程可以表示为y = kx + b的形式,其中k是斜率,b是与y轴的截距。
- 坐标变换:平面直角坐标系中,我们可以对坐标进行平移、旋转、缩放等变换操作。
这些操作对于解决几何问题和数学推导具有重要意义。
总结:通过本文的介绍,我们对平面直角坐标系的定义、性质以及应用有了更深入的了解。
平面直角坐标系不仅仅是一个几何概念,它在数学和实际问题的求解中具有广泛的应用。
希望读者通过阅读本文,能够更好地理解和运用平面直角坐标系,为进一步的数学学习和问题解决提供帮助。
平面直角坐标系知识点
平面直角坐标系知识点平面直角坐标系知识点两个数值轴相互垂直,在同一平面上有一个共同的原点,形成一个平面直角坐标系,简称直角坐标系。
以下是边肖整理的平面直角坐标系知识点,仅供参考,我们一起来看看。
(1)有序数对1.有序数对:两个数用来表示某个位置,其中两个数各表示不同的意思。
我们称这个由两个数字依次组成的数字对为有序数字对,并记录为(a,b)。
2.坐标:数轴(或平面)上的一个点可以用一个数(或数对)来表示,称为这个点的坐标。
(2)平面直角坐标系1.平面直角坐标系:画出两个互相垂直且在平面上有共同原点的轴。
这样,我们说在平面上建立了一个平面直角坐标系,简称直角坐标系。
2.X轴:度数的数值轴称为X轴或横轴。
正确标记的目的是肯定标记的目的。
3.Y轴:垂直数值轴称为Y轴或垂直轴。
向上标记的目的就是正向标记的目的。
4.原点:两个数值轴的交点称为平面直角坐标系的原点。
对应关系:平面直角坐标系中的点与有序实数对之间存在一一对应关系。
(3)坐标对于平面上的任意点P,交点P与X轴分开,Y轴为垂直线,垂足与X轴和Y轴分开,对应的数字A和B与点P的横坐标和纵坐标分开。
(4)象限1.象限:X轴和Y轴将坐标平面分成四个部分,也称为四个象限。
右边上半部分称为第一象限,其余三部分按照逆时针标记的目的依次称为第二象限、第三象限、第四象限。
象限以数轴为界,横轴和纵轴上的点和原点不属于任何象限。
一般在X轴和Y轴取相同的单位长度。
2.象限的特征:1.特殊位置点的坐标特征:(1)X轴上点的纵坐标为零;y轴上该点的横坐标为零。
(2)第一象限角和第三象限角平分线上各点的水平坐标和垂直坐标相等;第二和第四象限角平分线上的点的水平和垂直坐标彼此相反。
(3)在任意两点中,如果两点的横坐标相同,则两点之间的连线平行于纵轴;如果两点的纵坐标相同,则两点的连线平行于横轴。
2.点到轴和原点的距离:从点到x轴的距离是| y |点到Y轴的距离为| x |点到原点的距离是x的平方加y的平方,然后开根符号;3.三大定律(1)翻译规律:点翻译定律平移纵坐标不变,横坐标左减右加;高低平移横坐标不变,纵坐标增减。
平面直角坐标系知识点
平面直角坐标系知识点(一)有序数对1、有序数对:用两个数来表示一个确定的位置,其中两个数各自表示不同的意义,我们把这种有挨次的两个数组成的数对,叫做有序数对,记作(a,b)。
2、坐标:数轴(或平面)上的点可以用一个数(或数对)来表示,这个数(或数对)叫做这个点的坐标。
(二)平面直角坐标系1、平面直角坐标系:在平面内画两条相互垂直,并且有公共原点的数轴。
这样我们就说在平面上建立了平面直角坐标系,简称直角坐标系。
2、X轴:水平的数轴叫X轴或横轴。
向右方向为正方向。
3、Y轴:竖直的数轴叫Y轴或纵轴。
向上方向为正方向。
4、原点:两个数轴的交点叫做平面直角坐标系的原点。
对应关系:平面直角坐标系内的点与有序实数对一一对应。
(三)坐标对于平面内任一点P,过P分别向x轴,y轴作垂线,垂足分别在x 轴,y轴上,对应的数a,b分别叫点P的横坐标和纵坐标。
(四)象限1、象限:X轴和Y轴把坐标平面分成四个局部,也叫四个象限。
右上面的叫做第一象限,其他三个局部按逆时针方向依次叫做其次象限、第三象限和第四象限。
象限以数轴为界,横轴、纵轴上的点及原点不属于任何象限。
一般,在x轴和y轴取一样的单位长度。
2、象限的特点:1、特别位置的点的坐标的特点:(1)x轴上的点的纵坐标为零;y轴上的点的横坐标为零。
(2)第一、三象限角平分线上的点横、纵坐标相等;其次、四象限角平分线上的点横、纵坐标互为相反数。
(3)在任意的两点中,假如两点的.横坐标一样,则两点的连线平行于纵轴;假如两点的纵坐标一样,则两点的连线平行于横轴。
2、点到轴及原点的距离:点到x轴的距离为|y|;点到y轴的距离为|x|;点到原点的距离为x的平方加y的平方再开根号;3、三大规律(1)平移规律:点的平移规律左右平移→纵坐标不变,横坐标左减右加;上下平移→横坐标不变,纵坐标上加下减。
图形的平移规律,找特别点。
(2)对称规律关于x轴对称→横坐标不变,纵坐标互为相反数;关于y轴对称→横坐标互为相反数,纵坐标不变;关于原点对称→横纵坐标都互为相反数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平面直角坐标系找规律题型解析1、如图,正方形ABCD 的顶点分别为A(1,1) B(1,-1) C(-1,-1) D(-1,1),y 轴上有一点P(0,2)。
作点P 关于点A 的对称点p1,作p1关于点B 的对称点p2,作点p2关于点C 的对称点p3,作p3关于点D 的对称点p4,作点p4关于点A 的对称点p5,作p5关于点B 的对称点p6┅,按如此操作下去,则点p2011的坐标是多少?解法1:对称点P1、P2、P3、P4每4个点,图形为一个循环周期。
设每个周期均由点P1,P2,P3,P4组成。
第1周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第2周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第3周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)第n 周期点的坐标为:P1(2,0),P2(0,-2),P3(-2,0),P4(0,2)2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)解法2:根据题意,P1(2,0) P2(0,-2) P3(-2,0) P4(0,2)。
根据p1-pn 每四个一循环的规律,可以得出:P4n (0,2),P4n+1(2,0),P4n+2(0,-2),P4n+3(-2,0)。
2011÷4=502…3,所以点P2011的坐标与P3坐标相同,为(-2,0)总结:此题是循环问题,关键是找出每几个一循环,及循环的起始点。
此题是每四个点一循环,起始点是p 点。
2、在平面直角坐标系中,一蚂蚁从原点O 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动1个单位.其行走路线如下图所示.(1)填写下列各点的坐标:A4( , ),A8( , ),A10( , ),A12( );(2)写出点A4n 的坐标(n 是正整数);(3)按此移动规律,若点Am 在x 轴上,请用含n 的代数式表示m (n 是正整数)(4)指出蚂蚁从点A2011到点A2012的移动方向.(5)指出蚂蚁从点A100到点A101的移动方向.(6)指出A106,A201的的坐标及方向。
解法:(1)由图可知,A4,A12,A8都在x 轴上,∵小蚂蚁每次移动1个单位, ∴OA4=2,OA8=4,OA12=6,∴A4(2,0),A8(4,0),A12(6,0);同理可得出:A10(5,1)(2)根据(1)OA4n=4n÷2=2n,∴点A4n 的坐标(2n ,0);(3)∵只有下标为4的倍数或比4n 小1的数在x 轴上,∴点Am 在x 轴上,用含n 的代数式表示为:m=4n 或m=4n-1;(4)∵2011÷4=502…3,∴从点A2011到点A2012的移动方向与从点A3到A4的方向一致,为向右.(5)点A100中的n 正好是4的倍数,所以点A100和A101的坐标分别是A100(50,0)和A101(50,1),所以蚂蚁从点A100到A101的移动方向是从下向上。
(6)方法1:点A1、A2、A3、A4每4个点,图形为一个循环周期。
设每个周期均由点A1,A2,A3,A4组成。
第1周期点的坐标为:A1(0,1), A2(1,1), A3(1,0), A4(2,0)第2周期点的坐标为:A1(2,1), A2(3,1), A3(3,0), A4(4,0)第3周期点的坐标为:A1(4,1), A2(5,1), A3(5,0), A4(6,0)第n 周期点的坐标为:A1(2n-2,1),A2(2n-1,1),A3(2n-1,0),A4(2n,0)O 1 A 1 A 2 A 3 A4 A5 A6 A7 A8 A9 A 10 A 11 A 12 xy106÷4=26…2,所以点A106坐标与第27周期点A2坐标相同,(2×27-1,1),即(53,1)方向朝下。
201÷4=50…1,所以点A201坐标与第51周期点A1坐标相同,(2×51-2,1),即(100,1)方向朝右。
方法2:由图示可知,在x轴上的点A的下标为奇数时,箭头朝下,下标为偶数时,箭头朝上。
106=104+2,即点A104再移动两个单位后到达点A106,A104的坐标为(52,0)且移动的方向朝上,所以A106的坐标为(53,1),方向朝下。
同理:201=200+1,即点A200再移动一个单位后到达点A201,A200的坐标为(100,0)且移动的方向朝上,所以A201的坐标为(100,1),方向朝右。
3、一只跳蚤在第一象限及x轴、y轴上跳动,在第一秒钟,它从原点跳动到(0,1),然后接着按图中箭头所示方向跳动[即(0,0)→(0,1) →(1,1) →(1,0)→…],且每秒跳动一个单位,那么第35秒时跳蚤所在位置的坐标是多少?第42、49、2011秒所在点的坐标及方向?解法1:到达(1,1)点需要2秒到达(2,2)点需要2+4秒到达(3,3)点需要2+4+6秒到达(n,n)点需要2+4+6+...+2n秒=n(n+1)秒当横坐标为奇数时,箭头朝下,再指向右,当横坐标为偶数时,箭头朝上,再指向左。
35=5×6+5,所以第5*6=30秒在(5,5)处,此后要指向下方,再过5秒正好到(5,0)即第35秒在(5,0)处,方向向右。
42=6×7,所以第6×7=42秒在(6,6)处,方向向左49=6×7+7,所以第6×7=42秒在(6,6)处,再向左移动6秒,向上移动一秒到(0,7)即第49秒在(0,7)处,方向向右解法2:根据图形可以找到如下规律,当n为奇数是n2秒处在(0,n)处,且方向指向右;当n为偶数时n2秒处在(n,0)处,且方向指向上。
35=62-1,即点(6,0)倒退一秒到达所得点的坐标为(5,0),即第35秒处的坐标为(5,0)方向向右。
用同样的方法可以得到第42、49、2011处的坐标及方向。
4、如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,顶点A55的坐标是()解法1:观察图象,每四个点一圈进行循环,根据点的脚标与坐标寻找规律。
观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。
设每个周期均由点A1,A2,A3,A4组成。
第1周期点的坐标为:A1(-1,-1), A2(-1,1), A3(1,1), A4(1,-1)第2周期点的坐标为:A1(-2,-2), A2(-2,2), A3(2,2), A4(2,-2)第3周期点的坐标为:A1(-3,-3), A2(-3,3), A3(3,3), A4(3,-3)第n周期点的坐标为:A1(-n,-n), A2(-n,n), A3(n,n), A4(n,-n)∵55÷4=13…3,∴A55坐标与第14周期点A3坐标相同,(14,14),在同一象限解法2:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,根据题中图形中的规律可得:3=4×1-1,A3的坐标为(1,1),7=4×2-1,A7的坐标为(2,2),11=4×3-1,A11的坐标为(3,3);55=4×14-1,A55(14,14)5、在平面直角坐标系中,对于平面内任一点(m,n),规定以下两种变换:(1)f(m,n)=(m,﹣n),如f(2,1)=(2,﹣1);(2)g(m,n)=(﹣m,﹣n),如g(2,1)=(﹣2,﹣1).按照以上变换有:f[g(3,4)]=f(﹣3,﹣4)=(﹣3,4),那么g[f(﹣3,2)]等于()解:∵f(﹣3,2)=(﹣3,﹣2),∴g[f(﹣3,2)]=g(﹣3,﹣2)=(3,2),6、在平面直角坐标系中,对于平面内任一点(a,b),若规定以下三种变换:1、f(a,b)=(﹣a,b).如:f(1,3)=(﹣1,3);2、g(a,b)=(b,a).如:g(1,3)=(3,1);3、h(a,b)=(﹣a,﹣b).如:h(1,3)=(﹣1,﹣3).按照以上变换有:f(g(2,﹣3))=f(-3,2)=(3,2),那么f(h(5,-3))等于()(5,3)7、一质点P从距原点1个单位的M点处向原点方向跳动,第一次跳动到OM的中点M3处,第二次从M3跳到OM3的中点M2处,第三次从点M2跳到OM2的中点M1处,如此不断跳动下去,则第n次跳动后,该质点到原点O的距离为()解:由于OM=1,所有第一次跳动到OM的中点M3处时,OM3=OM=,同理第二次从M3点跳动到M2处,即在离原点的2处,同理跳动n次后,即跳到了离原点的处8、如图,在平面直角坐标系中,有若干个横坐标分别为整数的点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(1,1),(1,2),(2,2)…根据这个规律,第2012个点的横坐标为()45 .解:根据图形,以最外边的矩形边长上的点为准,点的总个数等于x轴上横坐标的平方,例如:右下角的点的横坐标为1,共有1个,1=12,右下角的点的横坐标为2时,共有4个,4=22,右下角的点的横坐标为3时,共有9个,9=32,右下角的点的横坐标为4时,共有16个,16=42,右下角的点的横坐标为n时,共有n2个,∵452=2025,45是奇数,∴第2025个点是(45,0),第2012个点是(45,13),9、(2007•遂宁)如图,在平面直角坐标系中,有若干个整数点,其顺序按图中“→”方向排列,如(1,0),(2,0),(2,1),(3,2),(3,1),(3,0)…根据这个规律探究可得,第88个点的坐标为().解:由图形可知:点的横坐标是偶数时,箭头朝上,点的横坐标是奇数时,箭头朝下。
坐标系中的点有规律的按列排列,第1列有1个点,第2列有2个点,第3列有3个点…第n列有n 个点。
∵1+2+3+4+…+12=78,∴第78个点在第12列上,箭头常上。
∵88=78+10,∴从第78个点开始再经过10个点,就是第88个点的坐标在第13列上,坐标为(13,13-10),即第88个点的坐标是(13,3)10、如图,已知Al(1,0),A2(1,1),A3(﹣1,1),A4(﹣1,﹣1),A5(2,﹣1),….则点A2007的坐标为().解法1:观察图象,点A1、A2、A3、A4每4个点,图形为一个循环周期。
设每个周期均由点A1,A2,A3,A4组成。
第1周期点的坐标为:A1(1,0), A2(1,1), A3(-1,1), A4(-1,-1)第2周期点的坐标为:A1(2,-1), A2(2,2), A3(-2,2), A4(-2,-2)第3周期点的坐标为:A1(3,-2), A2(3,3), A3(-3,3), A4(-3,-3)第n周期点的坐标为:A1(n,-(n-1)), A2(n,n), A3(-n,n), A4(-n,-n)因为2007÷4=501…3,所以A2007的坐标与第502周期的点A3的坐标相同,即(-502,502)解法2:由图形以可知各个点(除A1点和第四象限内的点外)都位于象限的角平分线上,位于第一象限点的坐标依次为A2(1,1) A6(2,2) A10(3,3)…A4n﹣2(n,n)。