高中数学选修1-1测试题与答案

合集下载

人教A版高中数学选修1-1习题精选(含答案)

人教A版高中数学选修1-1习题精选(含答案)

习题精选一、选择题1.过抛物线焦点的直线与抛物线相交于,两点,若,在抛物线准线上的射影分别是,,则为().A.45°B.60°C.90°D.120°2.过已知点且与抛物线只有一个公共点的直线有().A.1条B.2条C.3条D.4条3.已知,是抛物线上两点,为坐标原点,若,且的垂心恰好是此抛物线的焦点,则直线的方程是().A.B.C.D.4.若抛物线()的弦PQ中点为(),则弦的斜率为()A.B.C.D.5.已知是抛物线的焦点弦,其坐标,满足,则直线的斜率是()A.B.C.D.6.已知抛物线()的焦点弦的两端点坐标分别为,,则的值一定等于()A.4 B.-4 C.D.7.已知⊙的圆心在抛物线上,且⊙与轴及的准线相切,则⊙的方程是()A.B.C.D.8.当时,关于的方程的实根的个数是()A.0个B.1个C.2个D.3个9.将直线左移1个单位,再下移2个单位后,它与抛物线仅有一个公共点,则实数的值等于()A.-1 B.1 C.7 D.910.以抛物线()的焦半径为直径的圆与轴位置关系为()A.相交 B.相离 C.相切 D.不确定11.过抛物线的焦点作直线交抛物线于,两点,如果,那么长是()A.10 B.8 C.6 D.412.过抛物线()的焦点且垂直于轴的弦为,为抛物线顶点,则大小()A.小于B.等于C.大于D.不能确定13.抛物线关于直线对称的曲线的顶点坐标是()A.(0,0)B.(-2,-2)C.(2,2)D.(2,0)14.已知抛物线()上有一点,它到焦点的距离为5,则的面积(为原点)为()A.1 B.C.2 D.15.记定点与抛物线上的点之间的距离为,到此抛物线准线的距离为,则当取最小值时点的坐标为()A.(0,0)B.C.(2,2)D.16.方程表示()A.椭圆 B.双曲线 C.抛物线 D.圆17.在上有一点,它到的距离与它到焦点的距离之和最小,则的坐标为()A.(-2,8)B.(2,8)C.(-2,-8)D.(-2,8)18.设为过焦点的弦,则以为直径的圆与准线交点的个数为()A.0 B.1 C.2 D.0或1或219.设,为抛物线上两点,则是过焦点的()A.充分不必要B.必要不充分C.充要D.不充分不必要20.抛物线垂点为(1,1),准线为,则顶点为()A.B.C.D.21.与关于对称的抛物线是()A.B.C.D.二、填空题1.顶点在原点,焦点在轴上且通径(过焦点和对称轴垂直的弦)长为6的抛物线方程是_________.2.抛物线顶点在原点,焦点在轴上,其通径的两端点与顶点连成的三角形面积为4,则此抛物线方程为_________.3.过点(0,-4)且与直线相切的圆的圆心的轨迹方程是_________.4.抛物线被点所平分的弦的直线方程为_________.5.已知抛物线的弦过定点(-2,0),则弦中点的轨迹方程是________.6.顶点在原点、焦点在轴上、截直线所得弦长为的抛物线方程为____________.7.已知直线与抛物线交于、两点,那么线段的中点坐标是__ _.8.一条直线经过抛物线()的焦点与抛物线交于、两点,过、点分别向准线引垂线、,垂足为、,如果,,为的中点,则 =__________.9.是抛物线的一条焦点弦,若抛物线,,则的中点到直线的距离为_________.10.抛物线上到直线的距离最近的点的坐标是____________.11.抛物线上到直线距离最短的点的坐标为__________.12.已知圆与抛物线()的准线相切,则=________.13.过()的焦点的弦为,为坐标原点,则 =________.14.抛物线上一点到焦点的距离为3,则点的纵坐标为__________.15.已知抛物线(),它的顶点在直线上,则的值为__________.16.过抛物线的焦点作一条倾斜角为的弦,若弦长不超过8,则的范围是________.17.已知抛物线与椭圆有四个交点,这四个交点共圆,则该圆的方程为__________.18.抛物线的焦点为,准线交轴于,过抛物线上一点作于,则梯形的面积为_______________.19.探照灯的反射镜的纵断面是抛物线的一部分,安装灯源的位置在抛物线的焦点处,如果到灯口平面的距离恰好等于灯口的半径,已知灯口的半径为30cm,那么灯深为_________.三、解答题1.知抛物线截直线所得的弦长,试在轴上求一点,使的面积为392.若的焦点弦长为5,求焦点弦所在直线方程3.已知是以原点为直角顶点的抛物线()的内接直角三角形,求面积的最小值.4.若,为抛物线的焦点,为抛物线上任意一点,求的最小值及取得最小值时的的坐标.5.一抛物线拱桥跨度为52米,拱顶离水面6.5米,一竹排上一宽4米,高6米的大木箱,问能否安全通过.6.抛物线以轴为准线,且过点,()求证不论点的位置如何变化,抛物线顶点的轨迹是椭圆,且离心率为定值.7.已知抛物线()的焦点为,以为圆心,为半径,在轴上方画半圆,设抛物线与半圆交于不同的两点、,为线段的中点.①求的值;②是否存在这样的,使、、成等差数列,若存在,求出的值;若不存在,说明理由.8.求抛物线和圆上最近两点之间的距离.9.正方形中,一条边在直线上,另外两顶点、在抛物线上,求正方形的面积.10.已知抛物线的一条过焦点的弦被焦点分为,两个部分,求证.11.一抛物线型拱桥的跨度为,顶点距水面.江中一竹排装有宽、高的货箱,问能否安全通过.12.已知抛物线上两点,(在第二象限),为原点,且,求当点距轴最近时,的面积.13.是抛物线上的动点,连接原点与,以为边作正方形,求动点的轨迹方程.参考答案:一、1.C;2.C;3.D;4.B;5.C;6.B;7.B;8.D;9.C10.C;11.B;12.C;13.C;14.C;15.C;16.C;17.B;18.B;19.C;20.A;21.D二、1.;2.;3.;4.5.;6.(在已知抛物线内的部分)7.或;8.(4,2);9.10.;11.;12.2;13.-414.2;15.0,,,;16.17.;18.3.14;19.36.2cm三、1.先求得,再求得或2.3.设,,则由得,,,于是当,即,时,4.抛物线的准线方程为,过作垂直准线于点,由抛物线定义得,,要使最小,、、三点必共线,即垂直于准线,与抛物线交点为点,从而的最小值为,此时点坐标为(2,2).5.建立坐标系,设抛物线方程为,则点(26,-6.5)在抛物线上,抛物线方程为,当时,,则有,所以木箱能安全通过.6.设抛物线的焦点为,由抛物线定义得,设顶点为,则,所以,即为椭圆,离心率为定值.7.①设、、在抛物线的准线上射影分别为、、,则由抛物线定义得,又圆的方程为,将代入得②假设存在这样的,使得,由定义知点必在抛物线上,这与点是弦的中点矛盾,所以这样的不存在8.设、分别是抛物线和圆上的点,圆心,半径为1,若最小,则也最小,因此、、共线,问题转化为在抛物线上求一点,使它到点的距离最小.为此设,则,的最小值是9.设所在直线方程为,消去得又直线与间距离为或从而边长为或,面积,10.焦点为,设焦点弦端点,,当垂直于轴,则,结论显然成立;当与轴不垂直时,设所在直线方程为,代入抛物线方程整理得,这时,于是,命题也成立.11.取抛物线型拱桥的顶点为原点、对称轴为轴建立直角坐标系,则桥墩的两端坐标分别为(-26,-6.5),(26,-6.5),设抛物线型拱桥的方程为,则,所以,抛物线方程为.当时,,而,故可安全通过.12.设,则,因为,所以,直线的方程为,将代入,得点的横坐标为(当且仅当时取等号),此时,,,,所以.13.设,,过,分别作为轴的垂线,垂足分别为,,而证得≌,则有,,即、,而,因此,即为所求轨迹方程.。

高中数学(人教A版)选修1-1全册综合测试题(含详解)

高中数学(人教A版)选修1-1全册综合测试题(含详解)

综合测试(时间:120分钟 满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列说法正确的是( )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“当a >1时,方程x 2-4x +a =0有实根”不是命题C .命题“矩形的对角线互相垂直且平分”是真命题D .命题“当a >4时,方程x 2-4x +a =0有实根”是假命题 答案 D2.如果命题“綈p 且綈q ”是真命题,那么下列结论中正确的是( )A .“p 或q ”是真命题B .“p 且q ”是真命题C .“綈p ”为真命题D .以上都有可能解析 若“綈p 且綈q ”是真命题,则綈p ,綈q 均为真命题,即命题p 、命题q 都是假命题,故选C.答案 C3.若椭圆x 2a 2+y 2b 2=1(a >b >0)的离心率为32,则双曲线x 2a 2-y 2b 2=1的渐近线方程为( )A .y =±12xB .y =±2xC .y =±4xD .y =±14x解析 由椭圆的离心率e =c a =32,可知c 2a 2=a 2-b 2a 2=34,∴b a =12,故双曲线的渐近线方程为y =±12x ,选A.答案 A4.若θ是任意实数,则方程x 2+y 2sin θ=4表示的曲线不可能是( )A .椭圆B .双曲线C .抛物线D .圆解析 当sin θ=1时,曲线表示圆. 当sin θ<0时,曲线表示的双曲线. 当sin θ>0时,曲线表示椭圆. 答案 C5.曲线y =x 3+1在点(-1,0)处的切线方程为( ) A .3x +y +3=0 B .3x -y +3=0 C .3x -y =0D .3x -y -3=0解析 y ′=3x 2,∴y ′| x =-1=3,故切线方程为y =3(x +1),即3x -y +3=0. 答案 B6.下列命题中,正确的是( )A .θ=π4是f (x )=sin(x -2θ)的图像关于y 轴对称的充分不必要条件B .|a |-|b |=|a -b |的充要条件是a 与b 的方向相同C .b =ac 是a ,b ,c 三数成等比数列的充分不必要条件D .m =3是直线(m +3)x +my -2=0与mx -6y +5=0互相垂直的充要条件答案 A7.函数f (x )=x 2+a ln x 在x =1处取得极值,则a 等于( ) A .2 B .-2 C .4D .-4解析 f (x )的定义域为(0,+∞), 又f ′(x )=2x +ax ,∴由题可知,f ′(1)=2+a =0,∴a =-2. 当a =-2时,f ′(x )=2x -2x =2(x -1)(x +1)x , 当0<x <1时,f ′(x )<0. 当x >1时,f ′(x )>0, ∴f (x )在x =1处取得极值. 故选B. 答案 B8.设P 是椭圆x 29+y 24=1上一点,F 1,F 2是椭圆的两个焦点,则cos ∠F 1PF 2的最小值是( )A .-19B .-1 C.19D.12解析 由椭圆方程a =3,b =2,c =5, ∴cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 1|22|PF 1|·|PF 2|=(|PF 1|+|PF 2|)2-|F 1F 2|2-2|PF 1||PF 2|2|PF 1|·|PF 2| =(2a )2-(2c )2-2|PF 1||PF 2|2|PF 1|·|PF 2| =162|PF 1|·|PF 2|-1.∵|PF 1|·|PF 2|≤(|PF 1|+|PF 2|2)2=9, ∴cos ∠F 1PF 2≥162×9-1=-19,故选A.答案 A9.给出下列三个命题: ①若a ≥b >-1,则a 1+a ≥b1+b;②若正整数m 和n 满足m ≤n ,则m (n -m )≤n2;③设P (x 1,y 1)为圆O 1:x 2+y 2=9上任一点,圆O 2以Q (a ,b )为圆心且半径为1.当(a -x 1)2+(b -y 1)2=2时,圆O 1与圆O 2相切.其中假命题的个数为( ) A .0个 B .1个 C .2个D .3个解析 考查不等式的性质及其证明,两圆的位置关系.显然命题①正确,命题②用“分析法”便可证明其正确性.命题③:若两圆相切,则两圆心间的距离等于4或2,二者均不符合,故为假命题.故选B.答案 B10.如图所示是y=f(x)的导数图像,则正确的判断是()①f(x)在(-3,1)上是增函数;②x=-1是f(x)的极小值点;③f(x)在(2,4)上是减函数,在(-1,2)上是增函数;④x=2是f(x)的极小值点.A.①②③B.②③C.③④D.①③④解析从图像可知,当x∈(-3,-1),(2,4)时,f(x)为减函数,当x∈(-1,2),(4,+∞)时,f(x)为增函数,∴x=-1是f(x)的极小值点,x=2是f(x)的极大值点,故选B.答案 B11.已知双曲线x2a2-y2b2=1(a>0,b>0)的左、右焦点分别为F1,F2,P是直线l:x=a2c(c2=a2+b2)上一点,且PF1⊥PF2,|PF1|·|PF2|=4ab,则双曲线的离心率是()A. 2B. 3C. 2D. 3解析 设直线l 与x 轴交于点A ,在Rt △PF 1F 2中,有|PF 1|·|PF 2|=|F 1F 2|·|P A |,则|P A |=2ab c ,又|P A |2=|F 1A |·|F 2A |,则4a 2b 2c 2=(c -a2c )·(c +a 2c )=c 4-a 4c 2,即4a 2b 2=b 2(c 2+a 2),即3a 2=c 2,从而e =c a = 3.选B.答案 B12.设p :f (x )=x 3+2x 2+mx +1在(-∞,+∞)内单调递增,q :m ≥8xx 2+4对任意x >0恒成立,则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析 f (x )在(-∞,+∞)内单调递增,则f ′(x )≥0在(-∞,+∞)上恒成立,即3x 2+4x +m ≥0对任意x ∈R 恒成立,故Δ≤0,即m ≥43;m ≥8x x 2+4对任意x >0恒成立,即m ≥(8x x 2+4)max ,因为8x x 2+4=8x +4x ≤2,当且仅当x =2时,“=”成立,故m ≥2.易知p 是q 的必要不充分条件.答案 B二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.以x 24-y 212=-1的焦点为顶点,顶点为焦点的椭圆方程为________.解析 ∵双曲线y 212-x 24=1的焦点坐标为(0,±4),顶点坐标为(0,±23),∴椭圆的顶点坐标为(0,±4),焦点坐标为(0,±23),在椭圆中a =4,c =23,b 2=4.∴椭圆的方程为x 24+y 216=1. 答案 x 24+y 216=114.给出下列三个命题:①函数y =tan x 在第一象限是增函数;②奇函数的图像一定过原点;③函数y =sin2x +cos2x 的最小正周期为π,其中假.命题的序号是________. 解析 ①不正确,如x =π4时tan x =1,当x =9π4时tan x =1,而9π4>π4,所以tan x 不是增函数;②不正确,如函数y =1x 是奇函数,但图像不过原点;③正确.答案 ①②15.若要做一个容积为324的方底(底为正方形)无盖的水箱,则它的高为________时,材料最省.解析 把材料最省问题转化为水箱各面的面积之和最小问题,然后列出所用材料和面积关于边长a 的函数关系式.设水箱的高度为h ,底面边长为a ,那么V =a 2h =324,则h =324a 2,水箱所用材料的面积是S =a 2+4ah =a 2+1296a ,令S ′=2a -1296a 2=0,得a 3=648,a =633,∴h =324a 2=324(633)2=333,经检验当水箱的高为333时,材料最省. 答案 33316.设m ∈R ,若函数y =e x +2mx (x ∈R)有大于零的极值点,则m 的取值范围是________.解析 因为函数y =e x +2mx (x ∈R)有大于零的极值点,所以y ′=e x +2m =0有大于0的实根.令y 1=e x ,y 2=-2m ,则两曲线的交点必在第一象限.由图像可得-2m >1,即m <-12.答案 m <-12三、解答题(本大题共6个小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知抛物线y =ax 2+bx +c 过点(1,1),且在点(2,-1)处与直线y =x -3相切,求a ,b ,c 的值.解 本题涉及了3个未知量,由题意可列出三个方程即可求解. ∵y =ax 2+bx +c 过点(1,1), ∴a +b +c =1.①又∵在点(2,-1)处与直线y =x -3相切, ∴4a +2b +c =-1. ②∴y ′=2ax +b ,且k =1. ∴k =y ′| x =2=4a +b =1,③联立方程①②③得⎩⎪⎨⎪⎧a =3,b =-11,c =9.18.(12分)已知椭圆C 1:x 2a 2+y 2b 2=1(a >b >0)的离心率为63,直线l :y =-x +22与以原点为圆心、以椭圆C 1的短半轴长为半径的圆相切.求椭圆C 1的方程.解 ∵e =63,∴e 2=c 2a 2=a 2-b 2a 2=23,∴a 2=3b 2.∵直线l :y =-x +22与圆x 2+y 2=b 2相切, ∴222=b ,∴b =2.∴b 2=4,a 2=12. ∴椭圆C 1的方程是x 212+y 24=1.19.(12分)已知函数f (x )=ln x ,g (x )=ax (a >0),设F (x )=f (x )+g (x ). (1)求函数F (x )的单调区间;(2)若以函数y =F (x )(x ∈(0,3])图像上任意一点P (x 0,y 0)为切点的切线的斜率k ≤12恒成立,求实数a 的最小值.解 (1)F (x )=f (x )+g (x )=ln x +a x (x >0),则F ′(x )=1x -a x 2=x -ax 2(x >0),∵a >0,由F ′(x )>0,得x ∈(a ,+∞), ∴F (x )在(a ,+∞)上单调递增; 由F ′(x )<0,得x ∈(0,a ), ∴F (x )在(0,a )上单调递减.∴F (x )的单调递减区间为(0,a ),单调递增区间为(a ,+∞).(2)由(1)知F ′(x )=x -a x 2(0<x ≤3),则k =F ′(x 0)=x 0-a x 20≤12(0<x 0≤3)恒成立,即a ≥(-12x 20+x 0)max ,当x 0=1时,-12x 20+x 0取得最大值12, ∴a ≥12,∴a min =12.20.(12分)已知定点F (0,1)和直线l 1:y =-1,过定点F 与直线l 1相切的动圆圆心为点C .(1)求动点C 的轨迹方程;(2)过点F 的直线l 2交轨迹于两点P ,Q ,交直线l 1于点R ,求RP →·RQ →的最小值.解 (1)由题设知点C 到点F 的距离等于它到l 1的距离, ∴点C 的轨迹是以F 为焦点,l 1为准线的抛物线. ∴所求轨迹的方程为x 2=4y .(2)由题意知,直线l 2的方程可设为y =kx +1(k ≠0),与抛物线方程联立消去y 得x 2-4kx -4=0.设P (x 1,y 1),Q (x 2,y 2),则x 1+x 2=4k ,x 1x 2=-4.又易得点R 的坐标为(-2k ,-1).∴RP →·RQ →=(x 1+2k ,y 1+1)·(x 2+2k ,y 2+1)=(x 1+2k )(x 2+2k )+(kx 1+2)(kx 2+2)=(1+k 2)x 1x 2+(2k +2k )(x 1+x 2)+4k 2+4 =-4(1+k 2)+4k (2k +2k )+4k 2+4 =4(k 2+1k 2)+8. ∵k 2+1k 2≥2,当且仅当k 2=1时取等号,∴RP →·RQ →≥4×2+8=16,即RP →·RQ →的最小值为16.21.(12分)已知函数f (x )=x 2-8ln x ,g (x )=-x 2+14x .(1)求函数f (x )在点(1,f (1))处的切线方程;(2)若函数f (x )与g (x )在区间(a ,a +1)上均为增函数,求a 的取值范围;(3)若方程f (x )=g (x )+m 有唯一解,试求实数m 的值.解 (1)因为f ′(x )=2x -8x ,所以切线的斜率k =f ′(1)=-6,又f (1)=1,故所求的切线方程为y -1=-6(x -1),即y =-6x +7.(2)因为f ′(x )=2(x +2)(x -2)x, 又x >0,所以当x >2时,f ′(x )>0;当0<x <2时,f ′(x )<0.即f (x )在(2,+∞)上单调递增,在(0,2)上单调递减.又g (x )=-(x -7)2+49,所以g (x )在(-∞,7)上单调递增,在(7,+∞)上单调递减,欲使函数f (x )与g (x )在区间(a ,a +1)上均为增函数,则⎩⎪⎨⎪⎧a ≥2,a +1≤7,解得2≤a ≤6.故a 的取值范围是[2,6] (3)原方程等价于2x 2-8ln x -14x =m ,令h (x )=2x 2-8ln x -14x ,则原方程即为h (x )=m .因为当x >0时原方程有唯一解,所以函数y =h (x )与y =m 的图像在y 轴右侧有唯一的交点.又h ′(x )=4x -8x -14=2(x -4)(2x +1)x,且x >0, 所以当x >4时,h ′(x )>0;当0<x <4时,h ′(x )<0.即h (x )在(4,+∞)上单调递增,在(0,4)上单调递减,故h (x )在x =4处取得最小值,从而当x >0时原方程有唯一解的充要条件是m =h (4)=-16ln2-24.22.(12分)已知椭圆的中心在原点,焦点在x 轴上,离心率为32,且经过点M (4,1),直线l :y =x +m 交椭圆于A ,B 两点.(1)求椭圆的方程;(2)若直线l 不过点M ,试问直线MA ,MB 与x 轴能否围成等腰三角形?解 (1)根据题意,设椭圆的标准方程为x 2a 2+y 2b 2=1(a >b >0),因为e =32,a 2-b 2=c 2,所以a 2=4b 2.又椭圆过点M (4,1),所以16a 2+1b 2=1,则可得b 2=5,a 2=20,故椭圆的方程为x 220+y 25=1.(2)将y =x +m 代入x 220+y 25=1并整理得5x 2+8mx +4m 2-20=0,Δ=(8m )2-20(4m 2-20)>0,得-5<m <5.设直线MA ,MB 的斜率分别为k 1和k 2,A (x 1,y 1),B (x 2,y 2),则x 1+x 2=-8m 5,x 1x 2=4m 2-205.k1+k2=y1-1x1-4+y2-1 x2-4=(y1-1)(x2-4)+(y2-1)(x1-4)(x1-4)(x2-4).上式分子=(x1+m-1)(x2-4)+(x2+m-1)·(x1-4) =2x1x2+(m-5)(x1+x2)-8(m-1)=2(4m2-20)5-8m(m-5)5-8(m-1)=0,即k1+k2=0.所以直线MA,MB与x轴能围成等腰三角形.。

人教版高中数学选修1-1综合测试卷B(含答案).doc

人教版高中数学选修1-1综合测试卷B(含答案).doc

数学选修1-1测试卷一、选择题:1、已知a、b为实数,则2" >2"是的( )A.必要非充分条件B.充分非必要条件C.充要条件D.既不充分也不必要条件2、给出命题:若函数y = .f(x)是幕函数,则函数y = f(x)的图象不过第四象限.在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是( )A.OB.lC.2D.33、已知命题p:H VxG[l,2],x2-a>0,,J^题/?,/+2仮+2-0 = 0”,若命题“0人厂是真命题,则实数。

的取值范围是 ( )A.(-oo,-2]U{l}B.(-汽-2] U [1,2]C.[l,+8)D.[-2,l]4、设函数/(兀)在定义域内可导,y = /(x)的图象如左图所示,则导函数y = /©)可能为( )2 25、设片和坊为双曲线—1(。

>0#>0)的两个焦点,若耳,只,P(0,2b)是正三角形的三个顶点, CT b~则双曲线的离心率为()3,5A.-B.2C.-D.32 26、设斜率为2的直线/过抛物线y2 = ax{a 0)的焦点F,且和y轴交于点九若厶0AF(0为朋标原点)的而积为4,则抛物线方程为( )A. =±4xB. y2=±SxC. y2 = 4xD. y2 = 8x7、如图,曲线y = f(x)上任一点P的切线PQ交x轴于Q,过P作PT垂直于x轴于T,若△P7Q的面积为-,则y与y'的关系满足(・)A. y =)/B. y = -y"C. y - y1D. y2 - y'8^ 己知);=/(x)是奇函数,当XG (0,2) lit, f(x) = Inx-ax{a >—),当xw (-2,0)吋,/(x)的最小值为1,则a的值等于( )1 1 」A.—B.—C.—D..14 3 29、设函数y = /(X)在(。

0)上的导函数为广(x),r(x)在(a,b)上的导函数为f\x),若在(a,b)上,/"(X)<0恒成立,贝I」称函数函数/(兀)在(Q0)上为“凸函数已知当m<2时,/(兀)=-x3-—nu2 +无在6 2 (—1,2)上是“凸函数二则f(x)在(—1,2)上()A.既有极人值,也有极小值B.既有极人值,也有最小值C.有极大值,没有极小值D.没有极大值,也没有极小值己知两条曲线y = x2~l与)vi-F 在点兀。

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

(好题)高中数学选修1-1第一章《常用逻辑用语》测试(包含答案解析)(2)

一、选择题1.已知命题p :x R ∀∈,0x x +≥,则( ) A .p ⌝:x R ∀∈,0x x +≤ B .p ⌝:x R ∃∈,0x x +≤ C .p ⌝:x R ∃∈,0x x +<D .p ⌝:x R ∀∈,0x x +<2.下列选项中,p 是q 的必要不充分条件的是( )A .p :a c b d +>+,q :a b >且c d >B .p :1a >, 1b >,q :()x f x a b =-(0a >且1a ≠)的图像不过第二象限C .p :1x =,q :2x x =D .p :1a >,q :()log a f x x =(0a >且1a ≠)在()0,∞+上为增函数 3.“∀x ∈R ,e x -x +1≥0”的否定是( ) A .∀x ∈R ,e x -x +1<0 B .∃x ∈R ,e x -x +1<0 C .∀x ∈R ,e x -x +1≤0 D .∃x ∈R ,e x -x +1≤0 4.命题“a ∀∈R ,20a >或20a =”的否定形式是( )A .a ∀∈R ,20a <B .a ∀∈R ,20aC .0a R ∃∈,200aD .0a R ∃∈,200a <5.“2a =”是直线“1:210l ax y ++=与2:3(1)30l x a y ++-=平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件6.“x y <”是“1122log log x y >”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件7.命题“,40x x ∀∈>R ”的否定是( ) A .,40x x ∀∉<R B .,40x x ∀∈≤R C .00,40xx ∃∉<RD .00,40x x ∃∈≤R8.若,a b ∈R ,使||||6a b +>成立的一个充分不必要条件是( ) A .6a b +≥B .6a ≥C .6b <-D .||3a ≥且3b ≥9.命题:p “11,22xx N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为( )A .11,22xx N *⎛⎫∀∈> ⎪⎝⎭B .11,22xx N *⎛⎫∀∉> ⎪⎝⎭C .0011,22x x N *⎛⎫∃∉> ⎪⎝⎭D .0011,22xx N *⎛⎫∃∈> ⎪⎝⎭10.命题“21,1x x ∀>>”的否定是( ) A .21,1x x ∀>≤B .21,1x x ∀≤≤C .21,1x x ∃≤≤D .21,1x x ∃>≤11.若条件:|1|1p x -,条件:q x a ,且p 是q 的充分不必要条件,则a 的取值范围是( ) A .2aB .2aC .2a -D .2a -12.“2x <”是“22320x x --<”的( )条件 A .充分不必要 B .必要不充分 C .充要D .既不充分也不必要二、填空题13.若命题“2,10x x ax ∃∈-+≤R ”是假命题,则a 范围是_________. 14.下列说法中,正确的序号为___________.①命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”;②已知,x y R ∈,则“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件; ③命题“若22am bm <,则a b <”的逆命题为真;④若p q ∨为真命题,则p ⌝与q 至少有一个为真命题; 15.命题p :已知0a >,且满足对任意正实数x ,总有1ax x+≥成立.命题q :二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性.若“p 或q ⌝”与“q ”均为真命题,则实数a的取值范围为_________;16.若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则实数a 的取值范围是______.17.能够说明“设x ,y ,z 是任意实数.若x y z >>,则x y z >+”是假命题的一组整数x ,y ,z 的值依次为______.18.命题“x R ∀∈,使20x a -≥”是真命题,则a 的范围是________. 19.原命题“若1z 与2z 互为共轭复数,则2121z z z =”,则其逆命题,否命题,逆否命题中真命题的个数为___________. 20.条件:25p x -<<,条件2:0x q x a+<-,若p 是q 的充分不必要条件,则实数a 的取值范围是______________.三、解答题21.已知2:760p x x -+≤,22:230q x ax a -≤-.(1)若1a =,“p q ∨”为真命题,“p q ∧”为假命题,求实数x 的取值范围; (2)若p 是q 的充分不必要条件,求实数a 的取值范围.22.已知A ={x |112x +-<0},B ={x |x 2-2x+1-m 2<0,m>0}. (1)若m =2,求A ∩B ;(2)若x ∈A 是x ∈B 的充分不必要条件,求实数m 的取值范围. 23.已知集合{}3A x x a =<+,501x B x x ⎧⎫-=>⎨⎬+⎩⎭.(1)若2a =-,求()RAB ;(2)若x A ∈是x B ∈的充分不必要条件,求实数a 的取值范围. 24.命题:p 函数()0,1xy cc c =>≠是R 上的单调减函数;命题:120q c -<.若p q∨是真命题,p q ∧是假命题,求常数c 的取值范围.25.在平面直角坐标系x O y 中,直线l 与抛物线2y =2x 相交于A 、B 两点. (1)求证:命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题; (2)写出(1)中命题的逆命题,判断它是真命题还是假命题,并说明理由. 26.已知: p x R ∀∈,230ax x -+>,:[1,2]q x ∃∈,21x a ⋅≥.(1)若p 为真命题,求a 的取值范围;(2)若p q ∨为真命题,且p q ∧为假命题,求a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.C 解析:C 【分析】根据全称命题的否定是特称命题进行否定即可得答案. 【详解】解:因为全称命题的否定为特称命题,所以命题p :x R ∀∈,0x x +≥的否定为:p ⌝:x R ∃∈,0x x +<. 故选:C.2.A解析:A 【分析】一一分析每个选项中,p q 的充分必要性即可. 【详解】A 选项中,由不等式的性质可知,q p p q ⇒⇒,故p 是q 的必要不充分条件;B 选项中,若:()(0x q f x a b a =->且1)a ≠的图象不过第二象限,则1,1a b >≥,故p 是q 的充分不必要条件;C 选项中,若q :2x x =,则1x =或0,故p 是q 的充分不必要条件;D 选项中,若:()log (0a q f x x a =>,且1)a ≠在(0,)+∞上为增函数,则1a >,故p 是q 的充要条件; 故选:A.3.B解析:B 【分析】由全称命题的否定即可得解. 【详解】因为命题“∀x ∈R ,e x -x +1≥0”为全称命题, 所以该命题的否定为:∃x ∈R ,e x -x +1<0. 故选:B.4.D解析:D 【分析】利用全称命题的否定是特称命题可得出结论. 【详解】命题“a ∀∈R ,20a >或20a =”为全称命题,该命题的否定为“0a R ∃∈,200a <”.故选:D.5.A解析:A 【分析】根据充分条件和必要条件的定义即可求解. 【详解】当2a =时,1:2210l x y ++=,2:10l x y +-=,此时两直线斜率都是1-且不重合,所以12//l l ,即2a =可以得出12//l l , 若12//l l ,则21313a a =≠+- ,即()16a a +=,解得3a =-或2a =, 所以12//l l 得不出2a =,所以“2a =”是“直线1:210l ax y ++=与直线2:3(1)30l x a y ++-=平行”的充分不必要条件, 故选:A6.B解析:B 【分析】根据充分条件、必要条件的定义判断即可; 【详解】解:若0x y <<,则1122log log x y >不成立,故不具有充分性,因为12log y x =单调递减,若1122log log x y >,所以x y <,故有必要性,故选:B .7.D解析:D 【分析】利用全称命题的否定可得出结论. 【详解】命题“,40x x ∀∈>R ”的否定是“00,40x x ∃∈≤R ”,故选:D.8.C解析:C 【分析】利用不等式的性质以及充分条件、必要条件的定义逐一判断即可. 【详解】A ,3+36≥,不满足6a b +> ;B ,660a b =≥=,,不满足6a b +> ;C ,由6b <-可得6a b +>,反之,6a b +>,得不到6b <-,如2,5a b ==-.D ,33≥,33≥,不满足6a b +>. 故选:C9.D解析:D 【分析】根据全称命题的否定是特称命题即可得正确选项. 【详解】命题:p “11,22x x N *⎛⎫∀∈≤ ⎪⎝⎭”的否定为0011,22xx N *⎛⎫∃∈> ⎪⎝⎭,故选:D.10.D解析:D 【分析】根据命题的否定的定义写出命题的否定. 【详解】命题“21,1x x ∀>>”的否定是21,1x x ∃>≤.故选:D .11.A解析:A 【分析】转化成两个集合之间的包含关系求解即可. 【详解】:|1|1p x -解之得02x ≤≤设{}|02A x x =≤≤,{}|B x x a =,p 是q 的充分不必要条件,则A 是B 的真子集 则2a 故选:A12.B解析:B 【分析】解不等式22320x x --<,利用集合的包含关系判断可得出结论. 【详解】解不等式22320x x --<,可得122x -<<, {}2x x < 122x x ⎧⎫-<<⎨⎬⎩⎭,因此,“2x <”是“22320x x --<”的必要不充分条件. 故选:B.二、填空题13.【分析】由题设可得为真命题利用判别式可得a 的范围【详解】因为命题是假命题故恒成立故即故答案为: 解析:(2,2)-【分析】由题设可得2,10x x ax ∀∈-+>R 为真命题,利用判别式可得a 的范围. 【详解】因为命题“2,10x x ax ∃∈-+≤R ”是假命题,故x ∀∈R ,210x ax -+>恒成立,故240a ∆=-<即22a -<<. 故答案为:(2,2)-.14.①②【分析】对于①把特称命题否定为全称命题即可;对于②由充分条件和必要条件的定义判断即可;对于③取验证即可;对于④由为真命题得命题与命题至少有一个为真命题由此可判断【详解】解:对于①命题的否定是所以解析:①②【分析】对于①,把特称命题否定为全称命题即可;对于②,由充分条件和必要条件的定义判断即可;对于③,取0m =验证即可;对于④,由p q ∨为真命题,得命题p 与命题q 至少有一个为真命题,由此可判断 【详解】解:对于①,命题“2,0x R x x ∃∈->”的否定是“2,0x R x x ∀∈-≤”,所以①正确;对于②,因为10x y +≠,所以5x =与5y =不可能同时成立,即10x y +≠可得5x ≠或5y ≠,但5x ≠或5y ≠不能得到10x y +≠,比如4,6x y ==,可得10x y +=,所以“10x y +≠”是“5x ≠或5y ≠”的充分不必要条件,所以②正确;对于③,题“若22am bm <,则a b <”的逆命题为“若a b <,则22am bm <”,当0m =时,结论不成立,所以③错误;对于④,若p q ∨为真命题,则命题p 与命题q 至少有一个为真命题,而当命题p 为真命题,命题q 为假命题时,p ⌝与q 均为假命题,所以④错误, 故答案为:①②15.或【分析】依据题意知p 均为真命题再计算p 为真命题时的取值范围求公共解即得结果【详解】若或与均为真命题则p 均为真命题若命题为真命题即且满足对任意正实数总有成立而当且仅当时等号成立故则若命题为真命题即二解析:1143a ≤≤或23a ≥【分析】依据题意知p ,q 均为真命题,再计算p ,q 为真命题时a 的取值范围,求公共解即得结果. 【详解】若“p 或q ⌝”与“q ”均为真命题,则p ,q 均为真命题.若命题p 为真命题,即0a >,且满足对任意正实数x ,总有1ax x+≥成立,而a x x +≥=a x x =时等号成立,故min 1a x x ⎛⎫+= ⎪⎝⎭,则14a ≥. 若命题q 为真命题,即二次函数2()6f x x ax a =-+在区间[]1,2上具有单调性, 由对称轴3x a =,故31a ≤或32a ≥,故13a ≤或23a ≥. 由p ,q 均为真命题,知14a ≥,且13a ≤或23a ≥, 故1143a ≤≤或23a ≥.故答案为:1143a ≤≤或23a ≥.16.【分析】由题意得从而解出实数a 的取值范围【详解】若命题使得成立是真命题则在上有解即解得或故答案为:【点睛】关键点点睛:开口向上的二次函数图象的应用 解析:()(),13,-∞-+∞【分析】由题意得()2140a ∆=-->,从而解出实数a 的取值范围. 【详解】若命题x R ∃∈,使得()2110x a x +-+<成立是真命题,则()2110x a x +-+<在R 上有解,即()2140a ∆=-->,解得3a >或1a <-. 故答案为:()(),13,-∞-+∞【点睛】关键点点睛:开口向上的二次函数图象的应用.17.321(答案不唯一)【分析】由题意举出反例即可得解【详解】由题意整数满足但不满足所以的值依次可以为321故答案为:321(答案不唯一)解析:3,2,1(答案不唯一) 【分析】由题意举出反例即可得解. 【详解】由题意,整数x ,y ,z 满足x y z >>,但不满足x y z >+, 所以x ,y ,z 的值依次可以为3,2,1. 故答案为:3,2,1(答案不唯一).18.【分析】等价于在恒成立即得解【详解】命题使是真命题等价于时恒成立所以在恒成立所以故答案为:【点睛】本题主要考查全称命题的真假求参数的问题的求解意在考查学生对该知识的理解掌握水平解析:0a ≤. 【分析】等价于2a x ≤在x ∈R 恒成立,即得解. 【详解】命题“x R ∀∈,使20x a -≥”是真命题等价于x ∈R 时,2x a ≥恒成立. 所以2a x ≤在x ∈R 恒成立, 所以0a ≤. 故答案为:0a ≤ 【点睛】本题主要考查全称命题的真假求参数的问题的求解,意在考查学生对该知识的理解掌握水平.19.1【分析】根据共轭复数的定义判断命题的真假根据逆命题的定义写出逆命题并判断真假再利用四种命题的真假关系判断否命题与逆否命题的真假【详解】解:根据共轭复数的定义原命题若与互为共轭复数则是真命题;其逆命解析:1 【分析】根据共轭复数的定义判断命题的真假,根据逆命题的定义写出逆命题并判断真假,再利用四种命题的真假关系判断否命题与逆否命题的真假. 【详解】解:根据共轭复数的定义,原命题"若1z 与2z 互为共轭复数,则2121z z z =”是真命题;其逆命题是:“若2121z z z =,则1z 与2z 互为共轭复数”,例10z =,23z =,满足条件,但是1z 与2z 不是共轭复数,原命题的逆命题是假命题;根据原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题. 故答案为: 1 【点睛】本题考查原命题, 逆命题,否命题,逆否命题的真假,是基础题.原命题与其逆否命题同真同假,否命题与逆命题互为逆否命题,同真同假,原命题的否命题是假命题逆否命题是真命题.20.【详解】解:是的充分而不必要条件等价于的解为或故答案为: 解析:5a >【详解】 解:p 是q 的充分而不必要条件,p q ∴⇒,20x x a+<-等价于(2)()0x x a +-<,(2)()0x x a +-=的解为2x =-,或x a =, 5a ∴>,故答案为:(5,)+∞.三、解答题21.(1)(][)1,13,6-;(2)(,6][2,)-∞-⋃+∞.【分析】(1)分别解二次不等式求出命题p 、q 为真命题时x 的范围,由已知条件可得p ,q 一真一假,讨论p 真q 假、p 假q 真即可求解;(2)若p 是q 的充分不必要条件,可得不等式2760x x -+≤的解集是不等式22230x ax a --≤解集的真子集,讨论0a ≥和0a <时22230x ax a --≤的解集,借助数轴即可求解. 【详解】(1)由276(1)(6)0x x x x -+=-≤-,解得16x ≤≤.当1a =时,由223(3)(1)0x x x x --=-≤+,解得13x -≤≤. 因为“p q ∨”为真命题,“p q ∧”为假命题,所以p ,q 一真一假. 当p 真q 假时,[]1,6x ∈且(,1)(3,)x ∈-∞-⋃+∞,所以(]3,6x ∈; 当p 假q 真时,()(,6,1)x ∈-∞+∞且[]13,x ∈-,所以[)1,1x ∈-.故实数x 的取值范围为(][)1,13,6-.(2)根据(1)知,:16p x ≤≤.因为22:23(3)()0q x ax a x a x a -=-+≤-,且p 是q 的充分不必要条件,所以当0a ≥时,:3q a x a -≤≤,则136a a -≤⎧⎨≥⎩,解得2a ≥;当0a <时,:3q a x a ≤≤-, 则31,6a a ≤⎧⎨-≥⎩,解得6a ≤-. 综上,实数a 的取值范围为(,6][2,)-∞-⋃+∞. 【点睛】结论点睛:用集合的观点看充分不必要条件:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 22.(1){}12x x <<;(2)2m ≥ 【分析】(1)分别求两个集合,再求交集;(2)根据条件转化为A B ,列不等式求解. 【详解】 (1)1110022x x x -+<⇔<--,解得:12x <<, {}12A x x ∴=<<,()()22210110,0x x m x m x m m -+-<⇔-+--<>,解得:11m x m -<<+,{}11B x m x m ∴=-<<+;当2m =时,{}13B x x =-<<,{}12A B x x ∴⋂=<<;(2)若x ∈A 是x ∈B 的充分不必要条件,则A B , 1112m m -≤⎧∴⎨+≥⎩,解得:2m ≥. 【点睛】结论点睛:本题考查充分不必要条件的判断,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集;(2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集;(3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含.23.(1){}11x x -<≤;(2)(],4-∞-.【分析】(1)先求出集合A ,B 和B R ,再利用交集运算即得结果; (2)先根据充分不必要条件得到集合A ,B 的包含关系,再列关系计算即可. 【详解】(1)∵{|1B x x =<-或}5x >,∴{}15R B x x =-≤≤, 当2a =-时,{}1A x x =<,因此,{}11R A B x x =-≤<;(2)∵x A ∈是x B ∈的充分不必要条件,∴A B ⊆,且A B ≠,又{}3A x x a =<+,{|1B x x =<-或}5x >.∴31a +≤-,解得4a ≤-.因此,实数a 的取值范围是(],4-∞-.24.()10,1,2⎛⎤+∞ ⎥⎝⎦.【分析】由p q ∨是真命题,p q ∧是假命题,得到,p q 一真一假,分两种情况,求出c 的范围.【详解】解:∵p q ∨是真命题,p q ∧是假命题,∴p ,q 中一个是真命题,一个是假命题.若p 真q 假,则有01,120,c c <<⎧⎨-≥⎩解得012c <≤; 若p 假q 真,则有1,120,c c >⎧⎨-<⎩解得1c >. 综上可知,满足条件的c 的取值范围是()10,1,2⎛⎤+∞ ⎥⎝⎦.本题考查了命题真假的应用,逻辑连结词的理解与应用,还考查转化与化归思想,分类讨论思想,属于中档题.25.(1)见解析;(2)见解析.【分析】(1)直线方程与抛物线方程联立,消去x 后利用韦达定理判断2121212121()4OA OB x x y y y y y y ⋅=+=+的值是否为3,从而确定此命题是否为真命题; (2)根据四种命题之间的关系写出该命题的逆命题,然后再利用直线与抛物线的位置关系知识来判断其真假.【详解】(1)证明:设过点(,)30T 的直线l 交抛物线22y x =于点1122(,),(,)A x y B x y ,当直线l 的斜率不存在时,直线l 的方程为3x =,此时,直线l 与抛物线相交于(3,A B ,所以963OA OB ⋅=-=,当直线l 的斜率存在时,设直线l 的方程为(3)y k x =-,其中0k ≠,22(3)y x y k x ⎧=⎨=-⎩,得2260ky y k --=, 则126y y =-, 又因为22112211,22x y x y ==, 所以212121212136()6344OA OB x x y y y y y y ⋅=+=+=-=, 综上所述,命题“如果直线l 过点T (3,0),那么OA OB ⋅=3”是真命题;(2)逆命题是:“设直线l 与抛物线2y =2x 相交于A 、B 两点,如果OA OB ⋅=3,那么该直线过点2(1)3y x =+”,该命题是假命题, 例如:取抛物线上的点1(2,2),(,1)2A B ,此时OA OB ⋅=3,直线AB 的方程为2(1)3y x =+,而T (3,0)不在直线AB 上. 【点睛】该题考查的是有关判断命题真假的问题,涉及到的知识点有四种命题之间的关系,直线与抛物线的位置关系,向量的数量积,属于简单题目.26.(1)112a >;(2)11124a <<.(1)分0a =和0a ≠两种情况讨论即可;(2)因为p q ∨为真命题,且q q ∧为假命题,所以分p 真q 假或p 假q 真两种情况,分别解出即可.【详解】(1)当0a =时,30x -+>不恒成立,不符合题意;当0a ≠时,01120a a >⎧⎨∆=-<⎩,解得112a > 综上所述,112a >. (2)[]1,2x ∃∈,21x a ⋅≥,则14a ≥. 因为q ρ∨为真命题,且p q ∧为假命题,所以p 真q 假或p 假q 真,当p 真q 假时,有11214a a ⎧>⎪⎪⎨⎪<⎪⎩即11124a <<; 当p 假q 真时,有11214a a ⎧≤⎪⎪⎨⎪>⎪⎩则a 无解. 综上所述11124a <<. 【点睛】 由简单命题和逻辑连接词构成的复合命题的真假可以用真值表来判断,反之根据复合命题的真假也可以判断简单命题的真假.可把“p 或q”为真命题转化为并集的运算;把“p 且q”为真命题转化为交集的运算.。

高中数学选修1-1综合测试题及答案

高中数学选修1-1综合测试题及答案

高中数学选修1-1综合测试题及答案选修1-1模拟测试题一、选择题1.若p、q是两个简单命题,“p或q”的否定是真命题,则必有()A。

p真q真B。

p假q假C。

p真q假D。

p假q真2.“cos2α=-35π/21”是“α=kπ+π/2,k∈Z”的()A。

必要不充分条件B。

充分不必要条件C。

充分必要条件D。

既不充分又不必要条件3.设f(x)=sinx+cosx,那么(。

)A。

f'(x)=cosx-sinxB。

f'(x)=cosx+sinxC。

f'(x)=-cosx+sinxD。

f'(x)=-cosx-sinx4.曲线f(x)=x^3+x-2在点P处的切线平行于直线y=4x-1,则点P的坐标为()A。

(1,0)B。

(2,8)C。

(1,0)和(-1,-4)D。

(2,8)和(-1,-4)5.平面内有一长度为2的线段AB和一动点P,若满足|PA|+|PB|=6,则|PA|的取值范围是A。

[1,4]B。

[1,6]C。

[2,6]D。

[2,4]6.已知2x+y=0是双曲线x^2-λy^2=1的一条渐近线,则双曲线的离心率为()A。

2B。

3C。

5D。

无法确定7.抛物线y^2=2px的准线与对称轴相交于点S,PQ为过抛物线的焦点F且垂直于对称轴的弦,则∠PSQ的大小是()A。

π/3B。

2π/3C。

3π/2D。

与p的大小有关8.已知命题p:“|x-2|≥2”,命题“q:x∈Z”,如果“p且q”与“非q”同时为假命题,则满足条件的x为()A。

{x|x≥3或x≤-1,x∈Z}B。

{x|-1≤x≤3,x∈Z}C。

{-1,0,1,2,3}D。

{1,2,3}9.函数f(x)=x^3+ax-2在区间(1,+∞)内是增函数,则实数a的取值范围是()A。

[3,+∞]B。

[-3,+∞]C。

(-3,+∞)D。

(-∞,-3)10.若△ABC中A为动点,B、C为定点,B(-a1,0),C(a2,0),且满足条件sinC-sinB=sinA,则动点A的轨迹方程是()A。

高中数学选修1-1考试题及答案

高中数学选修1-1考试题及答案

高中数学选修1-1考试题一、选择题(本大题有12小题,每小题5分,共60分,请从A ,B ,C ,D 四个选项中,选出一个符合题意的正确选项,填入答题卷,不选,多选,错选均得零分。

)1.抛物线24yx 的焦点坐标是A .(0,1)B .(1,0)C .1(0,)16D .1(,0)162.设,aR 则1a是11a的A .充分但不必要条件B .必要但不充分条件C .充要条件D .既不充分也不必要条件3.命题“若220ab,则,a b 都为零”的逆否命题是A .若220a b ,则,a b 都不为零B .若220ab,则,a b 不都为零C .若,a b 都不为零,则220abD .若,a b 不都为零,则22a b4.曲线32153yxx在1x 处的切线的倾斜角为A .34B .3C .4D .65.一动圆P 与圆22:(1)1A x y外切,而与圆22:(1)64B x y内切,那么动圆的圆心P 的轨迹是A .椭圆B .双曲线C .抛物线D .双曲线的一支6.函数()ln f x x x 的单调递增区间是A .(,1)B .(0,1)C .(0,)D .(1,)21世纪教育网7.已知1F 、2F 分别是椭圆22143xy的左、右焦点,点M 在椭圆上且2MF x轴,则1||MF 等于21世纪教育网A .12B .32C .52D .38.函数2()xf x x e 在[1,3]上的最大值为A .1B .1eC .24eD .39e9. 设双曲线12222by ax 的一条渐近线与抛物线y=x 2+1 只有一个公共点,则双曲线的离心率为().A.45 B. 5C.25 D.510. 设斜率为2的直线l 过抛物线2(0)yax a的焦点F,且和y 轴交于点A,若△OAF(O 为坐标原点)的面积为4,则抛物线方程为( ).A.24yx B.28yx C.24yx D.28y x11. 已知直线1:4360l x y 和直线2:1l x,抛物线24y x 上一动点P 到直线1l 和直线2l 的距离之和的最小值是A.2B.3C. 4D. 112. 已知函数()f x 在R 上可导,且2'()2(2)f x xxf ,则(1)f 与(1)f 的大小(1)(1)(1)(1)(1)(1).Af f Bf f Cf f D不确定二、填空题(本大题有4小题,每小题5分,共20分,请将答案写在答题卷上)13.已知命题:,sin 1p x R x ,则p 为________。

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

最新人教A版高中数学选修1-1 1.3-1.4试题(含答案)

高中新课标数学选修(1-1)1.3~1.4测试题一、选择题1.若命题:21()+∈Z是偶数,q n np m m-∈Z是奇数,命题:21()则下列说法正确地是()A.p q∨为真B.p q∧为真C.p⌝为真D.q⌝为假答案:A2.在下列各结论中,正确地是()①“p q∧”为真是“p q∨”为真地充分条件但不是必要条件;②“p q∧”为假是“p q∨”为假地充分条件但不是必要条件;③“p q∨”为真是“p⌝”为假地必要条件但不充分条件;④“p⌝”为真是“p q∧”为假地必要条件但不是充分条件.A.①②B.①③C.②④D.③④答案:B3.由下列命题构成地“p q∨”,“p q∧”均为真命题地是()A.:p菱形是正方形,:q正方形是菱形B.:2p是偶数,:2q不是质数C.:15p是质数,:4q是12地约数D.{}⊆,,:q a a b c:p a a b c∈,,,{}{}答案:D4.命题:p 若a b ∈R ,,则1a b +>是1a b +>地充分条件但不是必要条件,命题:q 函数12y x =--地定义域是(][)13--+U ,,∞∞,则下列命题( )A.p q ∨假 B.p q ∧真 C.p 真,q 假 D.p 假,q 真答案:D5.若命题:p x ∀∈R ,22421ax x a x ++-+≥是真命题,则实数a 地取值范围是( )A.3a -≤或2a ≥ B.2a ≥C.2a >- D.22a -<<答案:B6.若k M ∃∈,对x ∀∈R ,210kx kx --<是真命题,则k 地最大取值范围M 是( )A.40k -≤≤ B.40k -<≤C.40k -<≤ D.40k -<<答案:C二、填空题7.命题“全等三角形一定相似”地否命题是 ,命题地否定是 .答案:两个三角形或不全等,则不一定相似;两个全等三角形不一定相似8.下列三个特称命题:(1)有一个实数x ,使2440x x ++=成立;(2)存在一个平面与不平行地两条直线都垂直;(3)有些函数既是奇函数又是偶函数.其中真命题地个数为.答案:29.命题p q∧是真命题是命题p q∨是真命题地(填“充分”、“必要”或“充要”)条件.答案:充分10.命题:p x∃∈R,2250++<是(填“全称x x命题”或“特称命题”),它是命题(填“真”或“假”),它地否定命题:p⌝,它是命题(填“真”或“假”).;真答案:特称命题;假;x∀∈R,2250++≥x x11.若x∀∈R,11-++>是真命题,则实数a地取值范x x a围是.答案:(2)∞-,12.若x∀∈R,2=-是单调减函数,则a地取值范f x a()(1)x围是 .答案:(21)(12)--U ,,三、解答题13.已知命题2:10p xmx ++=有两个不相等地负根,命题2:44(2)10q x m x +-+=无实根,若p q ∨为真,p q ∧为假,求m 地取值范围.解:210x mx ++=有两个不相等地负根24020m m m ⎧->⇔⇔>⎨-<⎩,. 244(2)10x m +-+=无实根2216(2)160430m m x ⇔--<⇔-+<13m ⇔<<. 由p q ∨为真,即2m >或13m <<得1m >;p q ∧∵为假,()p q p⌝∧⇒⌝∴或q ⌝为真,p ⌝为真时,2m ≤,q ⌝为真时,1m ≤或3m ≥.p ⌝∴或q ⌝为真时,2m ≤或3m ≥.∴所求m 取值范围为{}123m m m <,或|≤≥.14.若x ∀∈R ,函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点,求实数a 地取值范围.解:(1)当0m =时,()f x x a =-与x 轴恒相交;(2)当0m ≠时,二次函数2()(1)f x m x x a =-+-地图象和x 轴恒有公共点地充要条件是14()0m m a ∆=++≥恒成立,即24410m am ∆=++≥恒成立,又24410m am ++≥是一个关于m 地二次不等式,恒成立地充要条件是2(4)160a '∆=-≤,解得11a -≤≤.综上,当0m =时,a ∈R ;当0m ≠,[]11a ∈-,.15.有甲、乙、丙、丁四位歌手参加比赛,其中有一位获奖,有人走访了四位歌手,甲说:“我获奖了”,乙说:“甲未获奖,乙也未获奖”,丙说:“是甲或乙获匀”,丁说:“是乙获奖”,四位歌手地话中有两句是对地,请问哪位歌手获奖.甲获奖或乙获奖.解:①乙说地与甲、丙、丁说地相矛盾,故乙地话是错误地;②若两句正确地话是甲说地和丙说地,则应是甲获奖,正好对应于丁说地错,故此种情况为甲获奖;③若两句正确地话是甲说地和丁说地,两句话矛盾;④若两句正确地话是丙说地和丁说地,则为乙获奖,对应甲说地错,故此种情况乙获奖.由以上分析知可能是甲获奖或乙获奖.。

高中数学选修1-1试卷(含答案)

高中数学选修1-1试卷(含答案)

绝密★启用前选修1-1试卷考试范围:必修一;考试时间:100分钟;注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上第I 卷(选择题)一、单选题1( )2.对于R 上可导的任意函数()x f ,若满足()()01/≥-x fx ,则必有( )A .()()()1220f f f <+B .()()()1220f f f >+C .()()()1220f f f ≥+D .()()()1220f f f ≤+3 ) A 且1m ≠ C .1m > D .0m >4( ).A .12x <<B .13x <<C .3x <D .2x <5.“a ≤3” 是“函数f (x )=x 2−4ax+1在区间[4,+∞)上为增函数”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 6.抛物线24y x =的焦点是(A )(2,0)(B )(0,2)(C )(0,1) (D )(1,0) 7.函数f (x )=x +ln x 在(0,6)上是( ) A .单调增函数 B .单调减函数C .在(0,1e )上是减函数,在(1e ,6)上是增函数 D .在(0,1e )上是增函数,在(1e ,6)上是减函数8.已知12,F F 分别为双曲线C : 右焦点, P 为双曲线C 右支上一点,则12PF F ∆外接圆的面积为( )A B C D 9.“1-=m ”是“直线02)12(=+-+y m mx 与直线033=++my x 垂直”的( )条件 A .充分而不必要 B .必要而不充分 C .充要 D .既不充分也不必要10.已知函数()3f x x =在点P 处的导数值为3,则P 点的坐标为( ) A.()2,8-- B.()1,1-- C.()2,8--或()2,8 D.()1,1--或()1,111.函数32()32f x x x =-+在区间[-1,1]上的极大值是 ( )A 、-2B 、0C 、2D 、4 12.命题“∀x ∈(0,1),x 2−x <0”的否定是( )A .∃x 0∉(0,1),x 02−x 0≥0B .∃x 0∈(0,1),x 02−x 0≥0C .∃x 0∉(0,1),x 02−x 0<0D .∃x 0∈(0,1),x 02−x 0<0第II 卷(非选择题)二、填空题 13”的否定是 .14.椭圆x 25+y 24=1的右焦点为F ,则以F 为焦点的抛物线的标准方程是__________.15.与抛物线x y 82=有一个公共的焦点F ,且两曲线的一个交点为P ,若5||=PF ,则双曲线方程为 .16.特称命题“有些三角形的三条中线相等”的否定为______________________________.三、解答题17.设函数f (x )=lnx +x 2+ax .(1)若x =12时,f (x )取得极值,求a 的值;(2)若f (x )在其定义域内为增函数,求a 的取值范围.○…………外…………○…………装…………○…………订…………○…………线…………○…………※※请※※不※※要※※在※※装※※订※※线※※内※※答※※题※※○…………内…………○…………装…………○…………订…………○…………线…………○…………18.已知椭圆2222:1(0)x y C a b a b +=>>的离心率为12,椭圆的短轴端点与双曲线22=12y x -的焦点重合,过点(4,0)P 且不垂直于x 轴直线l 与椭圆C 相交于A 、B 两点. (Ⅰ)求椭圆C 的方程;19.(本小题12分) 一座抛物线形的拱桥的跨度为52米,拱顶离水平面5.6米,水面上有一竹排上放有宽10米、高6米的木箱,问其能否安全通过拱桥?20.已知函数f(x)=13ax 3+(a -2)x +c 的图象如图所示.(1)求函数y =f(x)的解析式;21.已知双曲线的中心在原点,焦点12,F F 在坐标轴上,离心率为2,且过点()4,10-,点()3,M m 在双曲线上.(1)求双曲线方程; (2)求证:12MF MF ⊥; (3)求△12F MF 的面积.6.552参考答案1.C 【解析】考点:双曲线渐近线的求法. 2.C 【解析】试题分析:由已知得'1,()0,()x f x f x >>∴在(1,)+∞单调递增,在(,1)-∞上单调递减,()f x 在1x =取得最小值, (0)(1),f(2)f(1)f(0)f(2)2f(1)f f >>∴+>,选C .考点:导数的性质及函数的单调性. 3.C表示椭圆的充要条件是0{210 21m m m m >->≠-,即且1m ≠,为椭圆方程的一个充分不必要条件是1m >,故选C. 4.A得13,x <<成立的充要条件是13,x <<所以不等式充分不必要条件是12x <<,故选A.【方法点睛】本题通过分式不等式的解集主要考查充分条件与必要条件,属于中档题. 判断充要条件应注意:首先弄清条件p 和结论q 分别是什么,然后直接依据定义、定理、性质尝试,p q q p ⇒⇒.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理. 5.B 【解析】【分析】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.可得2a≤4,解得a即可判断出结论.【详解】函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数.∴2a≤4,解得a≤2.∴“a≤3”是“函数f(x)=x2﹣4ax+1在区间[4,+∞)上为增函数”的必要不充分条件.故选:B.【点睛】本题考查了二次函数的单调性、不等式的解法,考查了推理能力与计算能力,属于中档题. 6.D【解析】试题分析:根据抛物线的标准方程可知该抛物线是焦点在x轴上,开口向右的抛物线,所以焦点坐标是(1,0).考点:本小题主要考查抛物线的标准方程.点评:抛物线的标准方程由四种形式,要牢固掌握,灵活应用.7.A【解析】【分析】计算导函数,根据导数的正负,判定原函数单调性,即可。

高中数学必做100题之数学选修1-1(16道题含答案)

高中数学必做100题之数学选修1-1(16道题含答案)

高中数学必做100题—选修1-1时量:120分钟 班级: 姓名: 计分:(说明:《选修1-1》共精选12题,每题12分,“◎”为教材精选,“☆”为《精讲精练.选修1-1》精选)1. 已知4:223x p --≤≤ , 22:210(0)q x x m m -+-≤>, 若q p ⌝⌝是的必要不充分条件,求实数m 的取值范围. (☆P 9)2. 点(,)M x y 与定点(4,0)F 的距离和它到直线25:l x =的距离的比是常数4,求M 的轨迹.(◎P 41 例6)3. ,且与椭圆221x y+=有公共焦点,求此双曲线的方程. (◎P68 4)4. 倾斜角π的直线l过抛物线24y x=焦点,且与抛物线相交于A、B两点,求线段AB长. (◎P61例4)5. 当α从0︒到180︒变化时,方程22cos 1x y α+=表示的曲线的形状怎样变换?(◎P 68 5)6. 一座抛物线拱桥在某时刻水面的宽度为52米,拱顶距离水面6.5米.(1)建立如图所示的平面直角坐标系xoy ,试求拱桥所在抛物线的方程;7. 已知椭圆C 的焦点分别为F 1(-0)和F 2(0),长轴长为6,设直线y =x +2交椭圆C 于A 、B 两点. 求:(1)线段AB 的中点坐标; (2)弦AB 的长.8. 在抛物线24y x =上求一点P ,使得点P 到直线:40l x y -+=的距离最短, 并求最短距离.9. 点M 是椭圆2216436x y +=上的一点,F 1、F 2是左右焦点,∠F 1MF 2=60º,求△F 1MF 2的面积.10. (06年江苏卷)已知三点P (5,2)、1F (-6,0)、2F (6,0). (☆P 21 例4)(1)求以1F 、2F 为焦点且过点P 的椭圆的标准方程; (2)设点P 、1F 、2F 关于直线y =x 的对称点分别为P '、'1F 、'2F ,求以'1F 、'2F 为焦点且过点P '的双曲线的标准方程。

高中数学选修1-1全册章节测试题集含答案

高中数学选修1-1全册章节测试题集含答案

人教A版高中数学选修1-1全册章节测试题目录1.1命题及其关系(同步练习)1.2 充分条件与必要条件同步测试.1.3_1.4试题(新人教选修1-1).1.3简单的逻辑联结词(同步练习)1.4全称量词与存在量词同步测试(新人教选修1-1).2.1《椭圆的几何性质》测试题2.1椭圆同步测试2.2双曲线几何性质测试2.2双曲线及其标准方程练习2.3抛物线及其标准方程习题精选2.3抛物线及其标准方程同步试题3.1变化率与导数(同步练习)3.2.1导数习题3.2.2 导数的运算法则习题3.3.3 函数的最大值与最小值练习题3.3《导数在研究函数中的应用》习题3.4生活中的优化问题举例(同步练习)1.1 命题及其关系测试练习第1题. 已知下列三个方程24430x ax a +-+=,()2210x a x a +-+=,2220x ax a +-=至少有一个方程有实根,求实数a 的取值范围.答案:312a a a⎧⎫--⎨⎬⎩⎭或,剠.第2题. 若a b c ∈R ,,,写出命题“200ac ax bx c <++=若则,”有两个相异实根的逆命题、否命题、逆否命题,并判断它们的真假.答案:逆命题:()200ax bx c a b c ac ++=∈<R 有实根,则若,,,假;否命题:200ac ax bx c ++=若则,…(a b c ∈R ,,)没有实数根,假;逆否命题:()200ax bx c a b c ac ++=∈R 若没有两实根,则,,…,真.第3题. 在命题22a b a b >>若则“,”的逆命题、否命题、逆否命题中,假命题的个数为.答案:3.第4题. 用反证法证明命题“三角形的内角中至少有一个钝角”时反设是.答案:假设三角形的内角中没有钝角.第5题. 命题“若0xy =,则0x =或0y =”的逆否命题是. 答案:若0x ≠且0y ≠,则0xy ≠.第6题. 命题“若a b ,>则55a b -->”的逆否命题是( ) (A)若a b ,<则55a b --<(B)若55a b --,>则a b >(C) 若a b ,…则55a b --… (D)若55a b --,…则a b …答案:D第7题. 命题“两条对角线相等的四边形是矩形”是命题“矩形是两条对角线相等的四边形”的( )(A)逆命题 (B)否命题 (C)逆否命题 (D)无关命题答案:A第8题. 命题“若60A ∠=,则ABC △是等边三角形”的否命题是( ) (A)假命题(B)与原命题同真同假(C)与原命题的逆否命题同真同假 (D)与原命题的逆命题同真同假答案:D第9题. )(A) (B)是有理数(C) (D)答案:D第10题. 命题“对顶角相等”的逆命题、否命题、逆否命题中,真命题是( ) (A)上述四个命题 (B)原命题与逆命题 (C)原命题与逆否命题 (D)原命题与否命题答案:C第11题. 原命题为“圆内接四边形是等腰梯形”,则下列说法正确的是( ) (A)原命题是真命题 (B)逆命题是假命题 (C) 否命题是真命题 (D)逆否命题是真命题答案:C第12题. 命题“若a A b B ∈∈则,”的否定形式是( ) (A)a A b B ∉∉若则, (B)a A b B ∈∉若则, (C)a A b B ∈∈若则, (D)b A a B ∉∉若则,答案:B第13题. 与命题“能被6整除的整数,一定能被3整除”等价的命题是( ) (A)能被3整除的整数,一定能被6整除 (B)不能被3整除的整数,一定不能被6整除 (C)不能被6整除的整数,一定不能被3整除 (D)不能被6整除的整数,不一定能被3整除答案:B第14题. 下列说法中,不正确的是( ) (A)“若p q 则”与“若q p 则”是互逆的命题 (B)“若非p q 则非“与“若q p 则”是互否的命题 (C)“若非p q 则非”与“若p q 则”是互否的命题 (D)“若非p q 则非”与“若q p 则”是互为逆否的命题答案:B第15题. 以下说法错误的是( )(A) 如果一个命题的逆命题为真命题,那么它的否命题也必为真命题 (B)如果一个命题的否命题为假命题,那么它本身一定为真命题(C)原命题、否命题、逆命题、逆否命题中,真命题的个数一定为偶数 (D)一个命题的逆命题、否命题、逆否命题可以同为假命题答案:B第16题. 下列四个命题:⑴“若220x y +=,则实数x y ,均为0”的逆命题;⑵“相似三角形的面积相等“的否命题 ; ⑶“A B A A B =⊆ 则,”逆否命题;⑷“末位数不是0的数可被3整除”的逆否命题,其中真命题为( ) (A) ⑴⑵ (B)⑵⑶ (C)⑴⑶ (D)⑶⑷答案:C第17题. 命题“a b ,都是偶数,则a b +是偶数”的逆否命题是.答案:a b +不是偶数则a b ,不都是偶数.第18题. 已知命题:33p …;:34q >,则下列选项中正确的是() A .p 或q 为真,p 且q 为真,非p 为假; B .p 或q 为真,p 且q 为假,非p 为真; C .p 或q 为假,p 且q 为假,非p 为假; D .p 或q 为真,p 且q 为假,非p 为假答案:D第19题. 下列句子或式子是命题的有()个.①语文和数学;②2340x x --=;③320x ->;④垂直于同一条直线的两条直线必平行吗?⑤一个数不是合数就是质数;⑥把门关上. A.1个 B.3个 C.5个 D.2个答案:A第20题. 命题①12是4和3的公倍数;命题②相似三角形的对应边不一定相等;命题③三角形中位线平行且等于底边长的一半;命题④等腰三角形的底角相等.上述4个命题中,是简单命题的只有( ). A.①,②,④ B.①,④ C.②,④ D.④答案:A第21题. 若命题p 是的逆命题是q ,命题q 的否命题是r ,则q 是r 的( ) A.逆命题 B.逆否命题 C.否命题 D.以上判断都不对答案:B第22题. 如果命题“p 或q ”与命题“非p ”都是真命题,那么q 为 命题.答案:真第23题. 下列命题:①“若1xy =,则x ,y 互为倒数”的逆命题;②4边相等的四边形是正方形的否命题;③“梯形不是平行四边形”的逆否命题;④“22ac bc >则a b >”的逆命题,其中真命题是 .答案:①,②,③第24题. 命题“若0ad =,则0a =或0b =”的逆否命题是 ,是 命题.答案:若0a ≠且0b ≠,则0ab ≠,真第25题. 已知命题:p N Z Ü,:{0}q ∈N ,由命题p ,q 构成的复合命题“p 或q ”是 ,是 命题;“p 且q ”是 ,是 命题;“非p ”是 ,是 命题.答案:p 或q :N Z Ü或{0}∈N ,为真;p 且q :N Z Ü且{0}∈N ,为假;非:p N Z Ú或=N Z ,为假.第26题. 指出下列复合命题构成的形式及构成它的简单命题,并判断复合命题的真假. (1)23≤;(2)()A A B Ú;(3)1是质数或合数;(4)菱形对角线互相垂直平分.答案:(1)这个命题是“p 或q ”形式,p :23<,q :23=.p 真q 假,p ∴或q 为真命题.(2)这个命题是“非p ”形式,:()p A A B ⊆ ,p 为真,∴非p 是假命题.(3)这个命题形式是p 或q 的形式,其中:1p 是命 数,:1q 是质数.因为p 假q 假,所以“p 或q ”为假命题.(4)这个命题是“p 且q ”形式,:p 菱形对角线互相垂直;:q 菱形对角线互相平分. 因为p 真q 真,所以“p 且q ”为真命题.第27题. 如果p ,q 是2个简单命题,试列出下列9个命题的直值表:(1)非p ;(2)非q ;(3)p 或q ;(4)p 且q ;(5)“p 或q ”的否定;(6)“p 且q ”的否定;(7)“非p 或非答案:第28题. 设命题为“若0m >,则关于x 的方程20x x m +-=有实数根”,试写出它的否命题、逆命题和逆否命题,并分别判断它们的真假.答案:否命题为“若0m >,则关于x 的方程20x x m +-=没有实数根”; 逆命题为“若关于x 的方程20x x m +-=有实数根,则0m >”; 逆否命题“若关于x 的方程20x x m +-=没有实数根,则0m ≤”. 由方程的判别式14m =+ 得0> ,即14m >-,方程有实根. 0m ∴>使140m +>,方程20x x m +-=有实数根,∴原命题为真,从而逆否命题为真.但方程20x x m +-=有实根,必须14m >-,不能推出0m >,故逆命题为假.1.2 充分条件与必要条件 同步测试第1题. 设原命题“若p 则q ”真而逆命题假,则p 是q 的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件D.既不充分又不必要条件答案:A第2题. 设x ∈R ,则2x >的一个必要不充分条件是( ) A.1x > B.1x < C.3x > D.3x <答案:A第3题. 如果A 是B 的必要不充分条件,B 是C 的充分必要条件,D 是C 的充分不必要条件,那么A 是D 的( ) A.必要不充分条件 B.充分不必要条件 C.充要条件 D.既不充分也不必要条件答案:A第4题. 设集合{}2M x x =>,{}3P x x =<,那么“x M ∈或x P ∈”是“x M P ∈ ”的( )A.充分条件但非必要条件 B.必要条件但非充分条件 C.充分必要条件 D.非充分条件,也非必要条件答案:B第5题.0x ≥是2x x ≤的___________条件. 答案:必要不充分第6题. 从“⇒”“¿”与“⇔”中选出适当的符号填空(U 为全集,A B ,为U 的子集):(1)A B =___________A B ⊆. (2)A B ⊆___________U UB A 痧⊆.答案:⇒ ⇔第7题. 若A ⌝是B 的充分不必要条件,则A 是B ⌝的( ) A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第8题. 设:05p x <<,:25q x -<,那么p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:A第9题. 条件甲:()200ax bx c a ++=≠的两根,10x >,20x >,条件乙:0b a ->且0ca>,则甲是乙的( )A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件答案:C第10题. 从“充分条件”“必要条件”中选出适当的一种填空:(1)“()200ax bx c a ++=≠有实根”是“0ac <”的_____________;(2)“AB C A B C '''△≌△”是“ABC A B C '''△∽△”的_____________.答案:(1)必要条件 (2)充分条件第11题. 已知A 是B 的充分条件,B 是C 的充要条件,A ⌝是E 的充分条件,D 是C 是必要条件,则D 是E ⌝的_____________条件.答案:必要第12题. 用多种方法判断“2t ≠”是“24t ≠”的什么条件.答案:必要不充分条件第13题. 设全集为U ,在下列条件中,哪些是B A ⊆的充要条件? (1)A B A = ; (2)U A B =∅ ð; (3)U UA B 痧⊆.答案:三者都是第14题. 是否存在实数p ,使“40x p +<”是“220x x -->”的充分条件?如果存在,求出p 的取值范围.是否存在实数p ,使“40x p +<”是“220x x -->”的必要条件.如果存在,求出p 的取值范围.答案:4p ≥时,“40x p +<”是“220x x -->”的充分条件;不存在实数p ,使“40x p +<”是“220x x -->”的必要条件.第15题. 已知1:123x p --≤,()22:2100q x x m m -+->≤,若p ⌝是q ⌝的必要而不充分条件,求实数m 的取值范围.答案:解:由22210x x m -+-≤得()110m x m m -+>≤≤.所以“q ⌝”:{}110A x x m x m m =∈>+<->R或,.由1123x --≤得210x -≤≤,所以 “p ⌝”:{}102B x x x =∈><-R或.由p ⌝是q ⌝的必要而不充分条件知01203110.m B A m m m >⎧⎪⇔--⇒<⎨⎪+⎩,,⊆≥≤≤故m 的取值范围为03m <≤.第16题. 命题“22530x x --<”的一个必要不充分条件是( ) A.132x -<< B.142x -<< C.132x -<<D.12x -<<答案:B第17题. 设A B ,是非空集合,则A B A = 是A B =的_________条件. 答案:必要不充分第18题. 已知:523p x ->,21:045q x x >+-,试判断p ⌝是q ⌝的什么条件? 答案:充分不必要条件第19题. 设1a ,1b ,1c ,2a ,2b ,2c 均为非零实数,不等式21110a x b x c ++>和22220a x b x c ++>的解集分别为M 和N ,那么“111222a b c a b c ==”是“M N =”的( ) A.充分非必要条件 B.必要非充分条件C.充要条件 D.既非充分也非必要条件答案:D第20题. 已知条件M :“A B C A B C '''△∽△”;条件N :“AB A B ''∥,AC A C ''∥,BC B C ''∥”,则M 是N 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件 D.既不充分也不必要条件答案:B第21题. 从“充分而不必要条件”,“必要而不充分条件”或“充要条件”中选出适当的一种填空:(1)x A B ∈ 是x A ∈的 ; (2)x A B ∈ 是x B ∈的 ;(3)()U x A ∈ð是x U ∈的; (4)()U x A A ∈ 饀是x A ∈的; (5)“A =∅”是“A B B = ”的 ; (6)“A B Ü”是“A B A = ”的;(7)“x A ∈”是“x A B ∈ ”的 ; (8)“四边形的对角线互相垂直平分”是“四边形为矩形”的;(9)“四边形内接于圆”是“四边形对角互补”的;(10)设1O ,2O 的半径为1r ,2r ,则“1212OO r r =+”是“两圆外切”的. 答案:(1)充分不必要条件 (2)必要不充分条件 (3)充分不必要条件 (4)必要不充分条件 (5)充分不必要条件 (6)充分不必要条件(7)必要而不充分条件 (8)既不充分也不必要条件 (9)充要条件 (10)充要条件.第22题. 设{}2A x x a =∈-R ≤≤,{}23B y y x x A ==+∈,,{}2C z z x x A ==∈,,求使C B ⊆的充要条件.答案:132a ≤≤.第23题. 求关于x 的一元二次不等式210ax ax -+>,对一切x ∈R 都成立的充要条件是什么?答案:04a <≤.第24题. 求方程2210ax x ++=至少有一个负根的充要条件.答案:01a <≤.第25题. 求三个实数a b c ,,不全为零的充要条件.答案:a b c ,,中至少有一个不是零.第26题. 设集合{}260A x x x =+-=,{}10B x mx =+=,写出B A Ü的一个充分不必要条件.答案:0m =,13m =,12m =-中之一即可.第27题. 三个数a b c ,,不全为零的充要条件是( ) A.a b c ,,都不是零 B.a b c ,,中至多一个是零 C.a b c ,,中只有一个为零 D.a b c ,,中至少一个不是零答案:D第28题. 设p :“x y z ,,中至少有一个等于1”⇔“(1)(1)(1)0x y z ---=”;q :22(3)0y z -+-=”⇔“(1)(2)(3)0x y z ---=”,那么p ,q 的真假是() A.p 真q 真B.p 真q 假C.p 假q 真D.p 假q 假答案:B第29题. 已知a 为非零实数,x 为某一实数,有命题p :{}x a a ∈-,,q :x a =,则p 是q 的( ) A.充分而不必要条件 B.必要而不充分条件 C.充要条件D.既不充分也不必要条件答案:B第30题. “13x >且23x >”是“126x x +>且129x x >”的充要条件吗?若是,请说明理由;若不是,请给出“13x >且23x >”的充要条件.答案:不是充要条件;1212(3)(3)06x x x x -->⎧⎨+>⎩.《1.3简单的逻辑联结词》测试题A卷一.选择题:1.如果命题“p或q”是真命题,“非p”是假命题,那么()A 命题p一定是假命题 B命题q一定是假命题C命题q一定是真命题 D命题q是真命题或者是假命题2.在下列结论中,正确的结论为()①“p且q”为真是“p或q”为真的充分不必要条件②“p且q”为假是“p或q”为真的充分不必要条件③“p或q”为真是“ p”为假的必要不充分条件④“ p”为真是“p且q”为假的必要不充分条件A①② B①③ C②④ D③④3.对下列命题的否定说法错误的是()A p:能被3整除的整数是奇数; p:存在一个能被3整除的整数不是奇数B p:每一个四边形的四个顶点共圆; p:存在一个四边形的四个顶点不共圆C p:有的三角形为正三角形; p:所有的三角形都不是正三角形D p: x∈R,x2+2x+2≤0; p:当x2+2x+2>0时,x∈R4.已知p: 由他们构成的新命题“p且q”,“p或q”, “ ”中,真命题有()A 1个B 2个C 3个D 4个5.命题p:存在实数m,使方程x2+mx+1=0有实数根,则“非p”形式的命题是()A存在实数m,使得方程x2+mx+1=0无实根B不存在实数m,使得方程x2+mx+1=0有实根C对任意的实数m,使得方程x2+mx+1=0无实根D至多有一个实数m,使得方程x2+mx+1=0有实根6.若p、q是两个简单命题,且“p或q”的否定是真命题,则必有()A. p真,q真B. p假,q假C. p真,q假D. p假,q真二.填空题:7.命题“ x∈R,x2+1<0”的否定是__________________。

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

高中数学 模块综合测试(一)(含解析)新人教A版高二选修1-1数学试题

选修1-1模块综合测试(一)(时间120分钟 满分150分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若命题p :∀x∈R,2x 2+1>0,则¬p 是( ) A .∀x ∈R,2x 2+1≤0 B .∃x ∈R,2x 2+1>0 C .∃x ∈R,2x 2+1<0 D .∃x ∈R,2x 2+1≤0 解析:¬p :∃x ∈R,2x 2+1≤0. 答案:D2.不等式x -1x>0成立的一个充分不必要条件是( )A. -1<x <0或x >1B. x <-1或0<x <1C. x >-1D. x >1解析:本题主要考查充要条件的概念、简单的不等式的解法.画出直线y =x 与双曲线y =1x 的图象,两图象的交点为(1,1)、(-1,-1),依图知x -1x>0⇔-1<x <0或x >1 (*),显然x >1⇒(*);但(*)x >1,故选D.答案:D3.[2014·某某模拟]命题“若a >b ,则a +1>b ”的逆否命题是( ) A .若a +1≤b ,则a >b B .若a +1<b ,则a >b C .若a +1≤b ,则a ≤b D .若a +1<b ,则a <b解析:“若a >b ,则a +1>b ”的逆否命题为“若a +1≤b ,则a ≤b ”,故选C. 答案:C4.[2014·某某省日照一中模考]下列命题中,为真命题的是( ) A. ∀x ∈R ,x 2-x -1>0B. ∀α,β∈R ,sin(α+β)<sin α+sin βC. 函数y =2sin(x +π5)的图象的一条对称轴是x =45πD. 若“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,则a 的取值X 围为(-2,2)解析:本题主要考查命题的判定及其相关知识的理解.因为x 2-x -1=(x -12)2-54,所以A 错误;当α=β=0时,有sin(α+β)=sin α+sin β,所以B 错误;当x =4π5时,y =0,故C 错误;因为“∃x 0∈R ,x 20-ax 0+1≤0”为假命题,所以“∀x ∈R ,x 2-ax +1>0”为真命题,即Δ<0,即a 2-4<0,解得-2<a <2,即a 的取值X 围为(-2,2).故选D.答案:D5.已知△ABC 的顶点B 、C 在椭圆x 23+y 2=1上,顶点A 是椭圆的一个焦点,且椭圆的另外一个焦点在BC 边上,则△ABC 的周长是( )A .2 3B .6C .4 3D .12解析:设椭圆的另一焦点为F ,由椭圆的定义知 |BA |+|BF |=23,且|CF |+|AC |=23, 所以△ABC 的周长=|BA |+|BC |+|AC | =|BA |+|BF |+|CF |+|AC |=4 3. 答案:C6.过点(2,-2)与双曲线x 2-2y 2=2有公共渐近线的双曲线方程为( ) A.x 22-y 24=1 B.x 24-y 22=1 C.y 24-x 22=1 D. y 22-x 24=1解析:与双曲线x 22-y 2=1有公共渐近线方程的双曲线方程可设为x 22-y 2=λ,由过点(2,-2),可解得λ=-2. 所以所求的双曲线方程为y 22-x 24=1.答案:D7.若双曲线x 2a 2-y 2b2=1(a >0,b >0)的右支上到原点和右焦点距离相等的点有两个,则双曲线离心率的取值X 围是( )A .e > 2B .1<e < 2C .e >2D .1<e <2解析:由题意,以原点及右焦点为端点的线段的垂直平分线必与右支交于两个点,故c2>a ,∴c a>2.答案:C8.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱的底面周长与高的比为( )A. 1∶πB. 2∶πC. 1∶2D. 2∶1解析:设圆柱高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π(6-x 2π)2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6). 当x =2时,V 最大.此时底面周长为6-x =4, (6-x )∶x =4∶2=2∶1. 答案:D9.设双曲线x 2a 2-y 2b2=1(a >0,b >0)的渐近线与抛物线y =x 2+1相切,则该双曲线的离心率等于( )A. 3 B .2 C. 5D. 6解析:双曲线x 2a 2-y 2b 2=1的渐近线方程为y =±b ax ,因为y =x 2+1与渐近线相切,故x2+1±bax =0只有一个实根,∴b 2a 2-4=0,∴c 2-a 2a 2=4, ∴c 2a2=5,∴e = 5. 答案:C10.[2014·某某五校联考]设函数f (x )=e x(sin x -cos x )(0≤x ≤2012π),则函数f (x )的各极小值之和为( )A. -e 2π1-e2012π1-e 2πB. -e 2π1-e1006π1-eπC. -e 2π1-e1006π1-e2πD. -e 2π1-e2010π1-e2π解析:f ′(x )=(e x)′(sin x -cos x )+e x(sin x -cos x )′=2e xsin x ,若f ′(x )<0,则x ∈(π+2k π,2π+2k π),k ∈Z ;若f ′(x )>0,则x ∈(2π+2k π,3π+2k π),k ∈Z .所以当x =2π+2k π,k ∈Z 时,f (x )取得极小值,其极小值为f (2π+2k π)=e2k π+2π[sin(2π+2k π)-cos(2π+2k π)]=e2k π+2π×(0-1)=-e2k π+2π,k ∈Z .因为0≤x ≤2012π,又在两个端点的函数值不是极小值,所以k ∈[0,1004],所以函数f (x )的各极小值构成以-e 2π为首项,以e 2π为公比的等比数列,共有1005项,故函数f (x )的各极小值之和为S 1005=-e 2π-e 4π-…-e2010π=e2π1-e2010π1-e2π.答案:D11.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32解析:∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0). 设A (x 0,y 0),如下图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |,又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.答案:B12.[2013·某某高考]如图,F 1、F 2是椭圆C 1:x 24+y 2=1与双曲线C 2的公共焦点,A 、B 分别是C 1、C 2在第二、四象限的公共点.若四边形AF 1BF 2为矩形,则C 2的离心率是( )A. 2B. 3C. 32D.62解析:本题考查椭圆、双曲线的定义和简单的几何性质.设双曲线的方程为x 2a 2-y 2b2=1(a >0,b >0) ①,点A 的坐标为(x 0,y 0).由题意a 2+b 2=3=c 2②,|OA |=|OF 1|=3,∴⎩⎪⎨⎪⎧x 20+y 20=3x 20+4y 20=4,解得x 20=83,y 20=13,又点A 在双曲线C 2上,代入①得,83b 2-13a 2=a 2b2③,联立②③解得a =2,所以e =c a =62,故选D. 答案:D二、填空题(本大题共4小题,每小题5分,共20分)13.函数y =13ax 3-12ax 2(a ≠0)在区间(0,1)上是增函数,则实数a 的取值X 围是________.解析:y ′=ax 2-ax =ax (x -1),∵x ∈(0,1),y ′>0,∴a <0. 答案:a <014.已知命题p :∃x ∈R ,x 2+2ax +a ≤0,若命题p 是假命题,则实数a 的取值X 围是__________.解析:p 是假命题,则¬p 为真命题,¬p 为:∀x ∈R ,x 2+2ax +a >0,所以有Δ=4a 2-4a <0,即0<a <1.答案:(0,1)15.[2014·某某质检]已知a ∈R ,若实数x ,y 满足y =-x 2+3ln x ,则(a -x )2+(a +2-y )2的最小值是________.解析:(a -x )2+(a +2-y )2≥x -a +a +2-y22=x +x 2-3ln x +222.设g (x )=x+x 2-3ln x (x >0),则g ′(x )=1+2x -3x=2x +3x -1x,易知g (x )在(0,1)上为减函数,在(1,+∞)上为增函数,故g (x )≥g (1)=2,(a -x )2+(a +2-y )2≥2+222=8.答案:816.[2013·某某省某某一中月考]F 1、F 2分别是双曲线x 216-y 29=1的左、右焦点,P 为双曲线右支上一点,I 是△PF 1F 2的内心,且S △IPF 2=S △IPF 1-λS △IF 1F 2,则λ=________.解析:本题主要考查双曲线定义及标准方程的应用.设△PF 1F 2内切圆的半径为r ,则S △IPF 2=S △IPF 1-λS △IF 1F 2⇒12×|PF 2|×r =12×|PF 1|×r -12λ×|F 1F 2|×r ⇒|PF 1|-|PF 2|=λ|F 1F 2|,根据双曲线的标准方程知2a =λ·2c ,∴λ=a c =45.答案:45三、解答题(本大题共6小题,共70分)17.(10分)已知全集U =R ,非空集合A ={x |x -2x -3<0},B ={x |(x -a )(x -a 2-2)<0}.命题p :x ∈A ,命题q :x ∈B .(1)当a =12时,p 是q 的什么条件?(2)若q 是p 的必要条件,某某数a 的取值X 围. 解:(1)A ={x |x -2x -3<0}={x |2<x <3}, 当a =12时,B ={x |12<x <94},故p 是q 的既不充分也不必要条件.(2)若q 是p 的必要条件,即p ⇒q ,可知A ⊆B , 由a 2+2>a ,故B ={a |a <x <a 2+2},∴⎩⎪⎨⎪⎧a ≤2a 2+2≥3,解得a ≤-1或1≤a ≤2.18.(12分)已知c >0,设p :y =c x为减函数;q :函数f (x )=x +1x >1c 在x ∈[12,2]上恒成立,若“p ∨q ”为真命题,“p ∧q ”为假命题,求c 的取值X 围.解:由y =c x为减函数,得0<c <1.当x ∈[12,2]时,由不等式x +1x ≥2(x =1时取等号)知:f (x )=x +1x 在[12,2]上的最小值为2,若q 真,则1c <2,即c >12.若p 真q 假,则0<c <1且c ≤12,所以0<c ≤12.若p 假q 真,则c ≥1且c >12,所以c ≥1.综上:c ∈(0,12]∪[1,+∞).19.(12分)[2014·海淀期末]已知函数f (x )=(x +a )e x,其中a 为常数. (1)若函数f (x )是区间[-3,+∞)上的增函数,某某数a 的取值X 围; (2)若f (x )≥e 2在x ∈[0,2]时恒成立,某某数a 的取值X 围. 解:(1)f ′(x )=(x +a +1)e x,x ∈R .因为函数f (x )是区间[-3,+∞)上的增函数,所以f ′(x )≥0,即x +a +1≥0在[-3,+∞)上恒成立. 因为y =x +a +1是增函数,所以满足题意只需-3+a +1≥0,即a ≥2. (2)令f ′(x )=0,解得x =-a -1,f (x ),f ′(x )的变化情况如下:f (0)≥e 2,解得a ≥e 2,所以此时a ≥e 2;②当0<-a -1<2,即-3<a <-1时,f (x )在[0,2]上的最小值为f (-a -1), 若满足题意只需f (-a -1)≥e 2,求解可得此不等式无解, 所以a 不存在;③当-a -1≥2,即a ≤-3时,f (x )在[0,2]上的最小值为f (2),若满足题意只需f (2)≥e 2,解得a ≥-1,所以此时a 不存在.综上讨论,所某某数a 的取值X 围为[e 2,+∞).20.(12分)已知椭圆x 29+y 25=1,F 1、F 2分别是椭圆的左、右焦点,点A (1,1)为椭圆内一点,点P 为椭圆上一点.求|PA |+|PF 1|的最大值.解:由椭圆的定义知|PF 1|+|PF 2|=2a =6, 所以|PF 1|=6-|PF 2|,这样|PA |+|PF 1|=6+|PA |-|PF 2|.求|PA |+|PF 1|的最大值问题转化为6+|PA |-|PF 2|的最大值问题, 即求|PA |-|PF 2|的最大值问题, 如图在△PAF 2中,两边之差小于第三边,即|PA |-|PF 2|<|AF 2|,连接AF 2并延长交椭圆于P ′点时, 此时|P ′A |-|P ′F 2|=|AF 2|达到最大值, 易求|AF 2|=2,这样|PA |-|PF 2|的最大值为2, 故|PA |+|PF 1|的最大值为6+ 2.21.(12分)已知椭圆M 的对称轴为坐标轴,且抛物线x 2=-42y 的焦点是椭圆M 的一个焦点,又点A (1,2)在椭圆M 上.(1)求椭圆M 的方程;(2)已知直线l 的方向向量为(1,2),若直线l 与椭圆M 交于B 、C 两点,求△ABC 面积的最大值.解:(1)由已知抛物线的焦点为(0,-2),故设椭圆方程为y 2a 2+x 2a 2-2=1.将点A (1,2)代入方程得2a 2+1a 2-2=1,整理得a 4-5a 2+4=0,解得a 2=4或a 2=1(舍去). 故所求椭圆方程为y 24+x 22=1.(2)设直线BC 的方程为y =2x +m , 设B (x 1,y 1),C (x 2,y 2),代入椭圆方程并化简得4x 2+22mx +m 2-4=0, 由Δ=8m 2-16(m 2-4)=8(8-m 2)>0, 可得m 2<8.由x 1+x 2=-22m ,x 1x 2=m 2-44,故|BC |=3|x 1-x 2|=3×16-2m22.又点A 到BC 的距离为d =|m |3,故S △ABC =12|BC |·d =m216-2m24≤142×2m 2+16-2m22= 2.因此△ABC 面积的最大值为 2.22.(12分)[2014·某某质检]已知函数f (x )=x -1+ae x (a ∈R ,e 为自然对数的底数).(1)若曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,求a 的值; (2)求函数f (x )的极值;(3)当a =1时,若直线l :y =kx -1与曲线y =f (x )没有公共点,求k 的最大值. 解:(1)由f (x )=x -1+a e x ,得f ′(x )=1-aex ,又曲线y =f (x )在点(1,f (1))处的切线平行于x 轴,所以f ′(1)=0,即1-ae =0,解之得a =e.(2)f ′(x )=1-aex ,①当a ≤0时,f ′(x )>0,f (x )为(-∞,+∞)上的增函数,所以函数f (x )无极值. ②当a >0时,令f ′(x )=0,得e x=a ,x =ln a .当x ∈(-∞,ln a )时,f ′(x )<0;当x ∈(ln a ,+∞)时,f ′(x )>0, 所以f (x )在(-∞,ln a )上单调递减,在(ln a ,+∞)上单调递增, 故f (x )在x =ln a 处取得极小值,且极小值为f (ln a )=ln a ,无极大值.综上,当a ≤0时,函数f (x )无极值;当a >0时,f (x )在x =ln a 处取得极小值ln a ,无极大值.(3)当a =1时,f (x )=x -1+1e x .令g (x )=f (x )-(kx -1)=(1-k )x +1ex ,则直线l :y =kx -1与曲线y =f (x )没有公共点,等价于方程g (x )=0在R 上没有实数解.当k >1时,g (0)=1>0,g (1k -1)=-1+1e 1k -1<0, 又函数g (x )的图象在定义域R 上连续,由零点存在定理,可知g (x )=0至少有一实数解,与“方程g (x )=0在R 上没有实数解”矛盾,故k ≤1.当k =1时,g (x )=1e x >0,知方程g (x )=0在R 上没有实数解.所以k 的最大值为1.。

高中数学-选修1-1试题及答案

高中数学-选修1-1试题及答案

高中数学试题选修1—1一、选择题:(每小题5分,共50分)1.已知P :2+2=5,Q:3>2,则下列判断错误的是( )A.“P 或Q ”为真,“非Q ”为假;B.“P 且Q ”为假,“非P ”为真 ;C.“P 且Q ”为假,“非P ”为假 ;D.“P 且Q ”为假,“P 或Q ”为真2.在下列命题中,真命题是( )A. “x=2时,x 2-3x+2=0”的否命题;B.“若b=3,则b 2=9”的逆命题;C.若ac>bc,则a>b;D.“相似三角形的对应角相等”的逆否命题3.已知P:|2x -3|<1, Q:x(x -3)<0, 则P 是Q 的( )A.充分不必要条件;B.必要不充分条件 ;C.充要条件 ;D.既不充分也不必要条件4.平面内有一长度为2的线段AB 和一动点P,若满足|PA|+|PB|=8,则|PA|的取值范围是( )A.[1,4];B.[2,6];C.[3,5 ];D. [3,6].5. 函数f(x)=x 3-ax 2-bx+a 2,在x=1时有极值10,则a 、b 的值为( )A.a=3,b=-3或a=―4,b=11 ;B.a=-4,b=1或a=-4,b=11 ;C.a=-1,b=5 ;D.以上都不对6.曲线f(x)=x 3+x -2在P 0点处的切线平行于直线y=4x -1,则P 0点坐标为( )A.(1,0);B.(2,8);C.(1,0)和(-1,-4);D.(2,8)和(-1,-4)7.函数f(x)=x 3-ax+1在区间(1,+∞)内是增函数,则实数a 的取值范围是( )A.a<3 ;B.a>3 ;C.a ≤3;D.a ≥38.若方程15222=-+-ky k x 表示双曲线,则实数k 的取值范围是( ) A.2<k<5 ; B.k>5 ; C.k<2或k>5; D.以上答案均不对9.函数y=xcosx -sinx 在下面哪个区间内是增函数( )A.()23,2ππ; B.)2,(ππ; C.)25,23(ππ; D.)3,2(ππ 10.已知双曲线13622=-y x 的焦点为F 1、F 2,点M 在双曲线上,且MF 1⊥x 轴,则F 1到直线F 2M 的距离为( )A.563;B.665 ;C.56 ;D.65 二、填空题:(每小题5分,共25)11.双曲线的渐近线方程为y=x 43±,则双曲线的离心率为________ 12.函数f(x)=(ln2)log 2x -5x log 5e(其中e 为自然对数的底数)的导函数为_______13.与双曲线14522-=-y x 有相同焦点,且离心率为0.6的椭圆方程为________14.正弦函数y=sinx 在x=6π处的切线方程为____________ 15.过抛物线y 2=4x 的焦点,作倾斜角为4π的直线交抛物线于P 、Q 两点,O 为坐标原点,则∆POQ 的面积为_________三、解答题: (每题15分,共75分)16.命题甲:“方程x 2+mx+1=0有两个相异负根”,命题乙:“方程4x 2+4(m -2)x+1=0无实根”,这两个命题有且只有一个成立,试求实数m 的取值范围。

高中数学 学期综合测评(一)(含解析)新人教A版高二选修1-1数学试题

高中数学 学期综合测评(一)(含解析)新人教A版高二选修1-1数学试题

学期综合测评(一)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,满分150分,考试时间120分钟.第Ⅰ卷 (选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分) 1.若函数f (x )的导数为-2x 2+1,则f (x )可以等于( ) A .-2x 3+1 B .x +1 C .-4x D .-23x 3+x答案 D解析 选项A 中函数的导数为f ′(x )=-6x 2;选项B 中函数的导数为f ′(x )=1;选项C 中函数的导数为f ′(x )=-4;选项D 中函数的导数为f ′(x )=-2x 2+1.故选D.2.给出下列三个命题:①“全等三角形的面积相等”的否命题; ②“若lg x 2=0,则x =-1”的逆命题;③“若x ≠y 或x ≠-y ,则|x |≠|y |”的逆否命题. 其中真命题的个数是( )A .0B .1C .2D .3答案 B解析 对于①,否命题是“不全等的三角形的面积不相等”,它是假命题;对于②,逆命题是“若x =-1,则lg x 2=0”,它是真命题;对于③,逆否命题是“若|x |=| y |,则x =y 且x =-y ”,它是假命题,故选B.3.若集合P ={1,2,3,4},Q ={x |x ≤0或x ≥5,x ∈R },则P 是綈Q 的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件答案 A解析 ∵Q ={x |x ≤0或x ≥5,x ∈R }, ∴綈Q ={x |0<x <5,x ∈R }, ∴P ⇒綈Q ,但綈Q ⇒/P ,∴P 是綈Q 的充分不必要条件,选A.4.已知命题p :∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≥0,则綈p 是( ) A .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 B .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)≤0 C .∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 D .∀x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0 答案 C解析 因为全称命题p :∀x ∈M ,p (x )的否定綈p 是特称命题:∃x 0∈M ,綈p (x 0),所以綈p :∃x 1,x 2∈R ,(f (x 2)-f (x 1))(x 2-x 1)<0,故选C.5.已知命题p :∃x 0∈R ,x 0-2>lg x 0,命题q :∀x ∈R ,sin x <x ,则( )A .命题p ∨q 是假命题B .命题p ∧q 是真命题C .命题p ∧(綈q )是真命题D .命题p ∨(綈q )是假命题 答案 C解析 对于命题p :取x =10,则有10-2>lg 10, 即8>1,故命题p 为真命题; 对于命题q ,取x =-π2,则sin x =sin ⎝ ⎛⎭⎪⎫-π2=-1, 此时sin x >x ,故命题q 为假命题,因此命题p ∨q 是真命题,命题p ∧q 是假命题, 命题p ∧(綈q )是真命题,命题p ∨(綈q )是真命题, 故选C.6.我们把离心率之差的绝对值小于12的两条双曲线称为“相近双曲线”.已知双曲线C :x 24-y 212=1,则下列双曲线中与C 是“相近双曲线”的为( ) A .x 2-y 2=1 B .x 2-y 22=1C .y 2-2x 2=1 D.y 29-x 272=1 答案 B解析 双曲线C 的离心率为2,对于A ,其离心率为2,不符合题意;对于B ,其离心率为3,符合题意;对于C ,其离心率为62,不符合题意;对于D ,其离心率为3,不符合题意.故选B.7.从双曲线x 2a 2-y 2b2=1(a >0,b >0)的左焦点F 1引圆x 2+y 2=a 2的切线,切点为T .延长F 1T交双曲线右支于P 点,若M 为线段F 1P 的中点,O 为坐标原点,则|MO |-|MT |与b -a 的大小关系为( )A .|MO |-|MT |>b -aB .|MO |-|MT |=b -aC .|MO |-|MT |<b -aD .不确定 答案 B解析 ∵F 1T 是圆的切线, ∴OT ⊥TF 1,∵|OF 1|=c ,|OT |=a ,∴|F 1T |=|OF 1|2-|OT |2=c 2-a 2=b . 设接双曲线的右焦点为F 2, 连接PF 2,则|OM |=12|PF 2|,又∵|F 1M |=|MP |,|PF 1|-|PF 2|=2a , ∴12|PF 1|-12|PF 2|=a , ∴|PM |-|OM |=a , ∴b +|TM |-|OM |=a , ∴|OM |-|TM |=b -a ,故选B.8.函数y =x 2e x的单调递减区间是( ) A .(-1,2)B .(-∞,-1)与(1,+∞)C .(-∞,-2)与(0,+∞)D .(-2,0) 答案 D解析 y ′=(x 2e x )′=2x e x +x 2e x =x e x (x +2).∵e x >0,∴x e x(x +2)<0,即-2<x <0,故函数y =x 2e x的单调递减区间是(-2,0).故选D.9.设函数f (x )在R 上可导,其导函数为f ′(x ),且函数f (x )在x =-2处取得极小值,则函数y =xf ′(x )的图象可能是( )答案 C解析 因为f (x )在x =-2处取得极小值,所以在x =-2附近的左侧f ′(x )<0,当x <-2时,xf ′(x )>0;在x =-2附近的右侧f ′(x )>0,当-2<x <0时,xf ′(x )<0,故选C.10.把一个周长为12 cm 的长方形围成一个圆柱,当圆柱的体积最大时,该圆柱底面周长与高的比为( )A .1∶2B .1∶πC .2∶1D .2∶π答案 C解析 设圆柱的高为x ,底面半径为r ,则r =6-x 2π,圆柱体积V =π⎝ ⎛⎭⎪⎫6-x 2π2x =14π(x 3-12x 2+36x )(0<x <6),V ′=34π(x -2)(x -6).当x =2时,V 最大.此时底面周长为6-x =4,4∶2=2∶1,故选C.11.如图,F 1、F 2是椭圆x 2a 2+y 2b 2=1(a >b >0)的两焦点,P 是椭圆上任一点,过一焦点引∠F 1PF 2的外角平分线的垂线,则垂足Q 的轨迹为( )A .圆B .椭圆C .双曲线D .抛物线答案 A解析 延长垂线F 1Q 交F 2P 的延长线于点A ,在等腰三角形APF 1中,|PF 1|=|AP |,从而|AF 2|=|AP |+|PF 2|=|PF 1|+|PF 2|=2a ,所以|OQ |=12|AF 2|=a .12.已知抛物线C :y 2=8x 的焦点为F ,准线与x 轴的交点为K ,点A 在C 上且|AK |=2|AF |,则△AFK 的面积为( )A .4B .8C .16D .32答案 B解析 ∵抛物线C :y 2=8x 的焦点为F (2,0),准线为x =-2,∴K (-2,0).设A (x 0,y 0),如右图所示,过点A 向准线作垂线,垂足为B ,则B (-2,y 0).∵|AK |=2|AF |, 又|AF |=|AB |=x 0-(-2)=x 0+2, ∴由|BK |2=|AK |2-|AB |2,得y 20=(x 0+2)2, 即8x 0=(x 0+2)2,解得x 0=2,y 0=±4.∴△AFK 的面积为12|KF |·|y 0|=12×4×4=8,故选B.第Ⅱ卷 (非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)13.命题“∃x ∈{正实数},使x <x ”的否定为________,是________(填“真”或“假”)命题.答案 ∀x ∈{正实数},使x ≥x 假解析 原命题的否定为“∀x ∈{正实数},使x ≥x ”,是假命题.14.如图,椭圆的中心在坐标原点,当FB →⊥A B →时,此类椭圆称为“黄金椭圆”,可推算出“黄金椭圆”的离心率e =________.答案5-12解析 设椭圆方程为x 2a 2+y 2b2=1(a >b >0),由题意得⎩⎨⎧|AB |2=a 2+b 2,|BF |=b 2+c 2=a ,|AF |=a +c ,∵B F →⊥B A →,∴|AB |2+|BF |2=|AF |2,∴(a +c )2=a 2+b 2+a 2, ∴c 2+ac -a 2=0.∴e 2+e -1=0,又0<e <1, ∴e =5-12. 15.已知y =f (x )是奇函数,当x ∈(0,2)时,f (x )=ln x -ax ⎝ ⎛⎭⎪⎫a >12,当x ∈(-2,0)时,f (x )的最小值为1,则a 的值等于________.答案 1解析 ∵f (x )是奇函数,∴f (x )在(0,2)上的最大值为-1. 当x ∈(0,2)时,f ′(x )=1x -a ,令f ′(x )=0得x =1a.又a >12,∴0<1a<2.当f ′(x )>0时,x <1a ,f (x )在⎝ ⎛⎭⎪⎫0,1a 上递增;当f ′(x )<0时,x >1a,f (x )在⎝ ⎛⎭⎪⎫1a ,2上递减.∴f (x )max =f ⎝ ⎛⎭⎪⎫1a =ln 1a -a ·1a=-1,∴ln 1a=0,得a =1.16.已知直线y =k (x +2)(k >0)与抛物线C :y 2=8x 相交于A ,B 两点,F 为抛物线C 的焦点.若|FA |=2|FB |,则k 等于________.答案223解析 设A (x 1,y 1),B (x 2,y 2)由⎩⎪⎨⎪⎧y =k x +2,y 2=8x ,得k 2x 2+(4k 2-8)x +4k 2=0.∴x 1+x 2=42-k2k 2,x 1x 2=4.由抛物线定义得|AF |=x 1+2,|BF |=x 2+2, 又∵|AF |=2|BF |,∴x 1+2=2x 2+4,∴x 1=2x 2+2,代入x 1x 2=4,得x 22+x 2-2=0, ∴x 2=1或-2(舍去),∴x 1=4, ∴42-k2k 2=5,∴k 2=89,经检验Δ>0,又∵k >0,∴k =223.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知集合A ={x |x 2-3x +2≤0},集合B ={y |y =x 2-2x +a },集合C ={x |x 2-ax -4≤0},命题p :A ∩B =∅,命题q :A ⊆C .(1)若命题p 为假命题,某某数a 的取值X 围; (2)若命题p ∧q 为假命题,某某数a 的取值X 围. 解 ∵y =x 2-2x +a =(x -1)2+a -1≥a -1,∴B ={y |y ≥a -1},A ={x |x 2-3x +2≤0}={x |1≤x ≤2},C ={x |x 2-ax -4≤0}. (1)由命题p 是假命题,可得A ∩B ≠∅,即得a -1≤2,∴a ≤3.(2)∵“p ∧q 为假命题”,则其反面为“p ∧q 为真命题”, ∴p ,q 都为真命题,即A ∩B =∅且A ⊆C ,∴有⎩⎪⎨⎪⎧a -1>2,1-a -4≤0,4-2a -4≤0,解得a >3.∴实数a 的取值X 围为a ≤3.18.(本小题满分12分)已知命题p :∃x 0∈[-1,1],满足x 20+x 0-a +1>0,命题q :∀t ∈(0,1),方程x 2+y 2t 2-2a +2t +a 2+2a +1=1都表示焦点在y 轴上的椭圆,若命题p∨q 为真命题,p ∧q 为假命题,某某数a 的取值X 围.解 因为∃x 0∈ [-1,1],满足x 20+x 0-a +1>0,所以只需(x 20+x 0-a +1)max >0,即3-a >0,所以命题p 真时,a <3.因为∀t ∈(0,1),方程x 2+y 2t 2-2a +2t +a 2+2a +1=1都表示焦点在y 轴上的椭圆,所以t 2-(2a +2)t +a 2+2a +1>1,t 2-(2a +2)t +a 2+2a >0,即(t -a )[t -(a +2)]>0,对t ∈(0,1)恒成立,只需a +2≤0或a ≥1,得a ≤-2或a ≥1, 所以命题q 为真时,a ≤-2或a ≥1.因为p ∨q 为真命题,p ∧q 为假命题,所以p ,q 两个命题一真一假. 若p 真q 假,则⎩⎪⎨⎪⎧a <3,-2<a <1,所以-2<a <1.若p 假q 真,则⎩⎪⎨⎪⎧a ≥3,a ≤-2或a ≥1,所以a ≥3.综上所述:a 的取值X 围是(-2,1)∪[3,+∞). 19.(本小题满分12分)设函数f (x )=x 3-kx 2+x (k ∈R ). (1)当k =1时,求函数f (x )的单调区间;(2)当k <0时,求函数f (x )在[k ,-k ]上的最小值m 和最大值M . 解 f ′(x )=3x 2-2kx +1. (1)当k =1时,f ′(x )=3x 2-2x +1=3⎝ ⎛⎭⎪⎫x -132+23>0, ∴f (x )在R 上单调递增.(2)当k <0时,f ′(x )=3x 2-2kx +1,其开口向上,对称轴x =k3,且过点(0,1).①当Δ=4k 2-12=4(k +3)(k -3)≤0, 即-3≤k <0时,f ′(x )≥0,f (x )在[k ,-k ]上单调递增.∴m =f (x )min =f (k )=k ,M =f (x )max =f (-k )=-2k 3-k .②当Δ=4k 2-12>0,即k <-3时,令f ′(x )=0 得x 1=k +k 2-33,x 2=k -k 2-33,且k <x 2<x 1<0.∴m =min{f (k ),f (x 1)},M =max{f (-k ),f (x 2)}.又f (x 1)-f (k )=x 31-kx 21+x 1-k =(x 1-k )(x 21+1)>0, ∴m =f (k )=k ,又f (x 2)-f (-k )=x 32-kx 22+x 2-(-k 3-k ·k 2-k )=(x 2+k )[(x 2-k )2+k 2+1]<0, ∴M =f (-k )=-2k 3-k .综上,当k <0时,f (x )的最小值m =k , 最大值M =-2k 3-k .20.(本小题满分12分)设椭圆C 1与抛物线C 2的焦点均在x 轴上,C 1的中心及C 2的顶点均为原点,从每条曲线上各取两点,将其坐标记录于下表:(1)求曲线C 1,C 2(2)设直线l 过抛物线C 2的焦点F ,l 与椭圆交于不同的两点M ,N ,当OM →·ON →=0时,求直线l 的方程.解 (1)由题意,可知点(-2,0)是椭圆的左顶点,再根据椭圆上点的横、纵坐标的取值X 围,知点⎝ ⎛⎭⎪⎫2,22在椭圆上. 设椭圆C 1的标准方程为x 2a 2+y 2b2=1(a >b >0),由此可得a =2,24+⎝ ⎛⎭⎪⎫222b 2=1,∴b 2=1,∴椭圆C 1的标准方程为x 24+y 2=1.由点(3,-23),(4,-4)在抛物线C 2上,知抛物线开口向右. 设其方程为y 2=2px (p >0),∴12=6p ,∴p =2, ∴抛物线C 2的标准方程为y 2=4x .(2)由(1),知F (1,0).当直线l 的斜率不存在时,l 的方程为x =1.由⎩⎪⎨⎪⎧x =1,x 24+y 2=1,得l 与椭圆C 1的两个交点为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32,∴OM →·ON →=14≠0,∴直线l 的斜率存在.设直线l 的方程为y =k (x -1)(k ≠0),M (x 1,y 1),N (x 2,y 2).由⎩⎪⎨⎪⎧y =k x -1,x 24+y 2=1,消去y ,得(1+4k 2)x 2-8k 2x +4k 2-4=0,Δ=64k 4-4(1+4k 2)(4k 2-4)=48k 2+16>0,x 1+x 2=8k 21+4k 2,x 1x 2=4k 2-41+4k 2.∵OM →·ON →=0,∴x 1x 2+y 1y 2=x 1x 2+k (x 1-1)·k (x 2-1)=(1+k 2)·x 1x 2-k 2(x 1+x 2)+k 2=(1+k 2)·4k 2-41+4k 2-k 2·8k 21+4k2+k 2=0,解得k =±2,∴直线l 的方程为2x -y -2=0或2x +y -2=0.21.(本小题满分12分)设函数f (x )=a3x 3+bx 2+cx +d (a >0),且方程f ′(x )-9x =0的两个根分别为1,4.若f (x )在(-∞,+∞)内无极值点,求a 的取值X 围.解 由f (x )=a3x 3+bx 2+cx +d ,得f ′(x )=ax 2+2bx +c .因为f ′(x )-9x =0,即ax 2+2bx +c -9x =0的两个根分别为1,4,所以⎩⎪⎨⎪⎧a +2b +c -9=0,16a +8b +c -36=0.(*)由于a >0,所以“f (x )=a3x 3+bx 2+cx +d 在(-∞,+∞)内无极值点”等价于“f ′(x )=ax 2+2bx +c ≥0在(-∞,+∞)内恒成立”.由(*)式得2b =9-5a ,c =4a . 又Δ=(2b )2-4ac =9(a -1)(a -9).由⎩⎪⎨⎪⎧a >0,Δ=9a -1a -9≤0,得1≤a ≤9,即a 的取值X 围是[1,9].22.(本小题满分12分)如图,抛物线E :y 2=4x 的焦点为F ,准线l 与x 轴的交点为A .点C 在抛物线E 上,以C 为圆心,|CO |为半径作圆,设圆C 与准线l 交于不同的两点M ,N .(1)若点C 的纵坐标为2,求|MN |; (2)若|AF |2=|AM |·|AN |,求圆C 的半径. 解 (1)抛物线y 2=4x 的准线l 的方程为x =-1. 由点C 的纵坐标为2,得点C 的坐标为(1,2), 所以点C 到准线l 的距离d =2,又|CO |=5, 所以|MN |=2|CO |2-d 2=25-4=2.(2)设C ⎝ ⎛⎭⎪⎫y 204,y 0,则圆C 的方程为 ⎝ ⎛⎭⎪⎫x -y 2042+(y -y 0)2=y 4016+y 20,即x 2-y 202x +y 2-2y 0y =0.由x =-1,得y 2-2y 0y +1+y 202=0,设M (-1,y 1),N (-1,y 2),则⎩⎪⎨⎪⎧Δ=4y 2-4⎝ ⎛⎭⎪⎫1+y 202=2y 20-4>0,y 1y 2=y 22+1.由|AF |2=|AM |·|AN |,得|y 1y 2|=4, 所以y 202+1=4,解得y 0=±6,此时Δ>0.所以圆心C 的坐标为⎝ ⎛⎭⎪⎫32,6或⎝ ⎛⎭⎪⎫32,-6,从而|CO |2=334,|CO |=332,即圆C 的半径为332.word - 11 - / 11。

高中数学选修1_1全册习题(答案详解)

高中数学选修1_1全册习题(答案详解)

目录:数学选修1-1第一章常用逻辑用语 [基础训练A组]第一章常用逻辑用语 [综合训练B组]第一章常用逻辑用语 [提高训练C组]第二章圆锥曲线 [基础训练A组]第二章圆锥曲线 [综合训练B组]第二章圆锥曲线 [提高训练C组]第三章导数及其应用 [基础训练A组]第三章导数及其应用 [综合训练B组]第三章导数及其应用 [提高训练C组](数学选修1-1)第一章 常用逻辑用语[基础训练A 组]一、选择题1.下列语句中是命题的是( )A .周期函数的和是周期函数吗?B .0sin 451=C .2210x x +->D .梯形是不是平面图形呢?2.在命题“若抛物线2y ax bx c =++的开口向下,则{}2|0x ax bx c φ++<≠”的逆命题、否命题、逆否命题中结论成立的是( )A .都真B .都假C .否命题真D .逆否命题真3.有下述说法:①0a b >>是22a b >的充要条件. ②0a b >>是ba 11<的充要条件. ③0ab >>是33a b >的充要条件.则其中正确的说法有( )A .0个B .1个C .2个D .3个 4.下列说法中正确的是( )A .一个命题的逆命题为真,则它的逆否命题一定为真B .“a b >”与“ a c b c +>+”不等价C .“220a b +=,则,a b 全为0”的逆否命题是“若,a b 全不为0, 则220a b +≠”D .一个命题的否命题为真,则它的逆命题一定为真5.若:,1A a R a ∈<, :B x 的二次方程2(1)20x a x a +++-=的一个根大于零,另一根小于零,则A 是B 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件6.已知条件:12p x +>,条件2:56q x x ->,则p ⌝是q ⌝的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件二、填空题1.命题:“若a b ⋅不为零,则,a b 都不为零”的逆否命题是 。

高中数学选修1-1测试题与答案

高中数学选修1-1测试题与答案

数学试题(选修1-1)一.选择题(本大题共12小题,每题3分,共36分) 1. “21sin =A ”是“︒=30A ”的〔 〕 A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件2. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为〔 〕A .2B .3C .5D .73.假设椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为〔 〕A .116922=+y xB .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否认是〔 〕A .不存在3210x R x x ∈-+,≤B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 5.双曲线121022=-y x 的焦距为〔 B 〕 A .22 B .24 C .32 D .346. 设x x x f ln )(=,假设2)(0='x f ,则=0x 〔 〕A . 2eB . eC . ln 22D .ln 26. 假设抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为〔 〕 A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于〔 〕A B C .12 D .13 8..函数344+-=x x y 在区间[]2,3-上的最小值为〔 〕A .72B .36C .12D .09.设曲线2ax y =在点〔1,a 〕处的切线与直线062=--y x 平行,则=a 〔 〕A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是〔 〕 A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.抛物线x y 102=的焦点到准线的距离是〔 〕A .25B .5C .215 D .10 13.假设抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为〔 〕。

高中数学人教A版选修1-1章末综合测评1含答案

高中数学人教A版选修1-1章末综合测评1含答案

章末综合测评(一)常用逻辑用语(时间120分钟,总分值150分)一、选择题(本大题共12小题,每题5分,共60分,在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.“经过两条相交直线有且只有一个平面〞是()A.全称命题B.特称命题C.p∨q形式D.p∧q形式【解析】此命题暗含了“任意〞两字,即经过任意两条相交直线有且只有一个平面.【答案】 A2.(20xx·湖南高考)设x∈R,那么“x>1”是“x3>1”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】由于函数f(x)=x3在R上为增函数,所以当x>1时,x3>1成立,反过来,当x3>1时,x>1也成立.因此“x>1〞是“x3>1”的充要条件,应选C.【答案】 C3.(20xx·湖北高考)命题“∀x∈R,x2≠x〞的否认是()A.∀x∉R,x2≠x B.∀x∈R,x2=xC.∃x∉R,x2≠x D.∃x∈R,x2=x【解析】全称命题的否认,需要把全称量词改为特称量词,并否认结论.【答案】 D4.全称命题“∀x ∈Z,2x +1是整数〞的逆命题是( )A .假设2x +1是整数,那么x ∈ZB .假设2x +1是奇数,那么x ∈ZC .假设2x +1是偶数,那么x ∈ZD .假设2x +1能被3整除,那么x ∈Z【解析】 易知逆命题为:假设2x +1是整数,那么x ∈Z .【答案】 A5.命题p :对任意x ∈R ,总有|x |≥0;q :x =1是方程x +2=0的根.那么以下命题为真命题的是( )A .p ∧¬qB .¬p ∧qC .¬p ∧¬qD .p ∧q【解析】 命题p 为真命题,命题q 为假命题,所以命题¬q 为真命题,所以p ∧¬q 为真命题,应选A.【答案】 A6.(20xx·皖南八校联考)命题“全等三角形的面积一定都相等〞的否认是( )A .全等三角形的面积不一定都相等B .不全等三角形的面积不一定都相等C .存在两个不全等三角形的面积相等D .存在两个全等三角形的面积不相等【解析】 命题是省略量词的全称命题.易知选D.【答案】 D7.原命题为“假设a n +a n +12<a n ,n ∈N +,那么{a n }为递减数列〞,关于其逆命题,否命题,逆否命题真假性的判断依次如下,正确的选项是( )A .真,真,真B .假,假,真C .真,真,假D .假,假,假【解析】 从原命题的真假入手,由于a n +a n +12<a n ⇔a n +1<a n ⇔{a n }为递减数列,即原命题和逆命题均为真命题,又原命题与逆否命题同真同假,那么逆命题、否命题和逆否命题均为真命题,选A.【答案】 A8.给定两个命题p ,q .假设¬p 是q 的必要而不充分条件,那么p 是¬q 的( )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件【解析】 q ⇒¬p 等价于p ⇒¬q ,¬pD ⇒/ q 等价于¬qD ⇒/ p .故p 是¬q 的充分而不必要条件.【答案】 A9.一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根的充分不必要条件是( )A .a <0B .a >0C .a <-1D .a >1【解析】 一元二次方程ax 2+4x +3=0(a ≠0)有一个正根和一个负根⇔3a <0,解得a <0,故a <-1是它的一个充分不必要条件.【答案】 C10.设集合U ={(x ,y )|x ∈R ,y ∈R },A ={(x ,y )|2x -y +m >0},B ={(x ,y )|x +y -n ≤0},那么点P (2,3)∈A ∩(∁U B )的充要条件是( )【导学号:26160027】A .m >-1,n <5B .m <-1,n <5C .m >-1,n >5D .m <-1,n >5【解析】 ∵P (2,3)∈A ∩(∁U B ),∴满足⎩⎪⎨⎪⎧ 2×2-3+m >0,2+3-n >0,故⎩⎪⎨⎪⎧m >-1,n <5. 【答案】 A11.以下命题中为真命题的是( )A .∃x 0∈R ,e x 0≤0B .∀x ∈R,2x >x 2C .a +b =0的充要条件是a b =-1D .a >1,b >1是ab >1的充分条件【解析】 对于∀x ∈R ,都有e x >0,应选项A 是假命题;当x =2时,2x =x 2,应选项B 是假命题;当a b =-1时,有a +b =0,但当a +b =0时,如a =0,b =0时,a b 无意义,应选项C 是假命题;当a >1,b >1时,必有ab >1,但当ab >1时,未必有a >1,b >1,如当a =-1,b =-2时,ab >1,但a 不大于1,b 不大于1,故a >1,b >1是ab >1的充分条件,选项D 是真命题.【答案】 D12.以下命题中真命题的个数为( )①命题“假设x =y ,那么sin x =sin y 〞的逆否命题为真命题;②设α,β∈⎝ ⎛⎭⎪⎫-π2,π2,那么“α<β 〞是“tan α<tan β 〞的充要条件;③命题“自然数是整数〞是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否认是“∃x 0∈R ,x 20+x 0+1<0.〞A .1B .2C .3D .4【解析】 ①命题“假设x =y ,那么sin x =sin y 〞为真命题,所以其逆否命题为真命题;②因为x ∈⎝ ⎛⎭⎪⎫-π2,π2 时,正切函数y =tan x 是增函数,所以当α,β∈⎝ ⎛⎭⎪⎫-π2,π2时,α<β⇔tan α<tan β,所以“α<β〞是“tan α<tan β〞的充要条件,即②是真命题;③命题“自然数是整数〞是全称命题,省略了“所有的〞,故③是真命题;④命题“∀x ∈R ,x 2+x +1<0”的否认是“∃x 0∈R ,x 20+x 0+1≥0”,故④是假命题.【答案】 C二、填空题(本大题共4小题,每题5分,共20分,将答案填在题中的横线上)13.设p :x >2或x <23;q :x >2或x <-1,那么¬p 是¬q 的________条件.【解析】 ¬p :23≤x ≤2.¬q :-1≤x ≤2.¬p ⇒¬q ,但¬qD ⇒/ ¬p .∴¬p 是¬q 的充分不必要条件.【答案】 充分不必要14.假设命题“对于任意实数x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,那么实数a 的取值范围是________.【解析】 假设对于任意实数x ,都有x 2+ax -4a >0,那么Δ=a 2+16a <0,即-16<a <0;假设对于任意实数x ,都有x 2-2ax +1>0,那么Δ=4a 2-4<0,即-1<a <1,故命题“对于任意实数x ,都有x 2+ax-4a >0且x 2-2ax +1>0”是真命题时,有a ∈(-1,0).而命题“对于任意实数 x ,都有x 2+ax -4a >0且x 2-2ax +1>0”是假命题,故a ∈(-∞,-1]∪[0,+∞).【答案】 (-∞,-1]∪[0,+∞)15.给出以下四个命题:①“假设xy =1,那么x ,y 互为倒数〞的逆命题;②“相似三角形的周长相等〞的否命题;③“假设b ≤-1,那么关于x 的方程x 2-2bx +b 2+b =0有实数根〞的逆否命题;④假设sin α+cos α>1,那么α必定是锐角.其中是真命题的有________.(请把所有真命题的序号都填上).【解析】 ②可利用逆命题与否命题同真假来判断,易知“相似三角形的周长相等〞的逆命题为假,故其否命题为假.④中α应为第一象限角.【答案】 ①③16.p :-4<x -a <4,q :(x -2)(3-x )>0,假设¬p 是¬q 的充分条件,那么实数a 的取值范围是________.【解析】 p :a -4<x <a +4,q :2<x <3,∵¬p 是¬q 的充分条件(即¬p ⇒¬q ),∴q ⇒p ,∴⎩⎪⎨⎪⎧a -4≤2,a +4≥3,∴-1≤a ≤6. 【答案】 [-1,6]三、解答题(本大题共6小题,共70分.解容许写出文字说明,证明过程或演算步骤)17.(本小题总分值10分)指出以下命题的构成形式,并写出构成它的命题:(1)36是6与18的倍数;(2)方程x2+3x-4=0的根是x=±1;(3)不等式x2-x-12>0的解集是{x|x>4或x<-3}.【解】(1)这个命题是p∧q的形式,其中p:36是6的倍数;q:36是18的倍数.(2)这个命题是p∨q的形式,其中p:方程x2+3x-4=0的根是x =1;q:方程x2+3x-4=0的根是x=-1.(3)这个命题是p∨q的形式,其中p:不等式x2-x-12>0的解集是{x|x>4};q:不等式x2-x-12>0的解集是{x|x<-3}.18.(本小题总分值12分)写出以下命题的逆命题、否命题、逆否命题,并判断其真假.(1)全等三角形一定相似;(2)末位数字是零的自然数能被5整除.【解】(1)逆命题:假设两个三角形相似,那么它们一定全等,为假命题;否命题:假设两个三角形不全等,那么它们一定不相似,为假命题;逆否命题:假设两个三角形不相似,那么它们一定不全等,为真命题.(2)逆命题:假设一个自然数能被5整除,那么它的末位数字是零,为假命题;否命题:假设一个自然数的末位数字不是零,那么它不能被5整除,为假命题;逆否命题:假设一个自然数不能被5整除,那么它的末位数字不是零,为真命题.19.(本小题总分值12分)写出以下命题的否认并判断真假:(1)所有自然数的平方是正数;(2)任何实数x都是方程5x-12=0的根;(3)∀x∈R,x2-3x+3>0;(4)有些质数不是奇数.【解】(1)所有自然数的平方是正数,假命题;否认:有些自然数的平方不是正数,真命题.(2)任何实数x都是方程5x-12=0的根,假命题;否认:∃x0∈R,5x0-12≠0,真命题.(3)∀x∈R,x2-3x+3>0,真命题;否认:∃x0∈R,x20-3x0+3≤0,假命题.(4)有些质数不是奇数,真命题;否认:所有的质数都是奇数,假命题.20.(本小题总分值12分)(2016·汕头高二检测)设p:“∃x0∈R,x20-ax0+1=0”,q:“函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞)〞,假设“p∨q〞是假命题,务实数a的取值范围.【解】由x20-ax0+1=0有实根,得Δ=a2-4≥0⇒a≥2或a≤-2.因为命题p为真命题的范围是a≥2或a≤-2.由函数y=x2-2ax+a2+1在x∈[0,+∞)上的值域为[1,+∞),得a≥0.因此命题q为真命题的范围是a≥0.根据p∨q为假命题知:p,q均是假命题,p为假命题对应的范围是-2<a<2,q为假命题对应的范围是a<0.这样得到二者均为假命题的范围就是⎩⎨⎧-2<a <2,a <0⇒-2<a <0. 21.(本小题总分值12分)(2016·惠州高二检测)设命题p :实数x 满足x 2-4ax +3a 2<0,其中a >0;命题q :实数x 满足x 2-5x +6≤0.(1)假设a =1,且p ∧q 为真,务实数x 的取值范围;(2)假设p 是q 成立的必要不充分条件,务实数a 的取值范围.【解】 (1)由x 2-4ax +3a 2<0,得(x -3a )·(x -a )<0,又a >0,所以a <x <3a ,当a =1时,1<x <3,即p 为真命题时,实数x 的取值范围是1<x <3,由x 2-5x +6≤0得2≤x ≤3,所以q 为真时,实数x 的取值范围是2≤x ≤3.假设p ∧q 为真,那么2≤x <3,所以实数x 的取值范围是[2,3).(2)设A ={x |a <x <3a },B ={x |2≤x ≤3},由题意可知q 是p 的充分不必要条件,那么B A ,所以⎩⎨⎧0<a <2,3a >3⇒1<a <2,所以实数a 的取值范围是(1,2). 22.(本小题总分值12分)二次函数f (x )=ax 2+x ,对任意x ∈[0,1],|f (x )|≤1恒成立,试务实数a 的取值范围. 【导学号:26160028】【解】 由f (x )=ax 2+x 是二次函数,知a ≠0.|f (x )|≤1⇔-1≤f (x )≤1⇔-1≤ax 2+x ≤1,x ∈[0,1],①当x =0,a ≠0时,①式显然成立;当x ∈(0,1]时,①式化为-1x 2-1x ≤a ≤1x 2-1x ,当x ∈(0,1]时恒成立.设t =1x ,那么t ∈[1,+∞),所以-t 2-t ≤a ≤t 2-t .令f (t )=-t 2-t =-⎝ ⎛⎭⎪⎫t +122+14,t ∈[1,+∞), 所以f (t )max =-2.令g (t )=t 2-t =⎝ ⎛⎭⎪⎫t -122-14,t ∈[1,+∞), 所以g (t )min =0.所以只需-2≤a ≤0.综上所述,实数a 的取值范围是[-2,0).。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学试题(选修1-1)一.选择题(本大题共12小题,每小题3分,共36分) 1. “21sin =A ”是“︒=30A ”的( ) A .充分而不必要条件 B .必要而不充分条件C . 充分必要条件D . 既不充分也不必要条件2. 已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( )A .2B .3C .5D .73.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y xB .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 4.命题“对任意的3210x x x ∈-+R ,≤”的否定是( )A .不存在3210x R x x ∈-+,≤B .存在3210x R x x ∈-+,≤ C .存在3210x R x x ∈-+>, D .对任意的3210x R x x ∈-+>, 5.双曲线121022=-y x 的焦距为( B ) A .22 B .24 C .32 D .346. 设x x x f ln )(=,若2)(0='x f ,则=0x ( )A . 2eB . eC . ln 22D .ln 26. 若抛物线22y px =的焦点与椭圆22162x y +=的右焦点重合,则p 的值为( ) A .2- B .2 C .4- D .47.已知椭圆的长轴长是短轴长的2倍,则椭圆的离心率等于( )A B C .12 D .13 8..函数344+-=x x y 在区间[]2,3-上的最小值为( )A .72B .36C .12D .09.设曲线2ax y =在点(1,a )处的切线与直线062=--y x 平行,则=a ( )A . 1B .21C . 21- D . 1- 10.抛物线281x y -=的准线方程是 ( ) A . 321=x B .2=y C . 321=y D .2-=y 11.双曲线19422-=-y x 的渐近线方程是( ) A .x y 32±= B .x y 94±= C .x y 23±= D .x y 49±= 12.抛物线x y 102=的焦点到准线的距离是( )A .25B .5C .215 D .10 13.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。

A .(7,B .(14,C .(7,±D .(7,-±14.函数3y x x =+的递增区间是( )A .),0(+∞B .)1,(-∞C .),(+∞-∞D .),1(+∞二.填空题(本大题共4小题,每小题4分,共16分)13.函数1)(23+++=mx x x x f 是R 上的单调函数,则m 的取值范围为 . 14. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB = _____________15.已知双曲线11222-=-+ny n x n = . 16..若双曲线1422=-my x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________.17.曲线x y ln =在点(,1)M e 处的切线的斜率是_________,切线的方程为_______________;18.函数5523--+=x x x y 的单调递增区间是___________________________。

三.解答题(本大题共5小题,共40分)17(本小题满分8分)已知函数8332)(23+++=bx ax x x f 在1x =及2x =处取得极值.(1) 求a 、b 的值;(2)求()f x 的单调区间.18(本小题满分10分) 求下列各曲线的标准方程(1)实轴长为12,离心率为32,焦点在x 轴上的椭圆; (2)抛物线的焦点是双曲线14491622=-y x 的左顶点.19.设12,F F 是双曲线116922=-y x 的两个焦点,点P 在双曲线上,且01260F PF ∠=, 求△12F PF 的面积。

20.已知函数23bx ax y +=,当1x =时,有极大值3;(1)求,a b 的值;(2)求函数y 的极小值。

21.已知函数32()f x x ax bx c =+++在23x =-与1x =时都取得极值 (1)求,a b 的值与函数()f x 的单调区间(2)若对[1,2]x ∈-,不等式2()f x c <恒成立,求c 的取值范围。

已知椭圆193622=+y x ,求以点)2,4(P 为中点的弦所在的直线方程.20(本小题满分10分)统计表明,某种型号的汽车在匀速行驶中每小时的耗油量y (升)关于行驶速度x (千米/小时)的函数解析式可以表示为:)1200(880312800013≤<+-=x x x y .已知甲、乙两地相距100千米.(1)当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地要耗油多少升?(2)当汽车以多大的速度匀速行驶时,从甲地到乙地耗油最少?最少为多少升?21(本小题满分10分)已知双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点为)0,2(1-F 、)0,2(2F 点)7,3(P 在双曲线C 上.(1)求双曲线C 的方程;(2)记O 为坐标原点,过点Q (0,2)的直线l 与双曲线C 相交于不同的两点E 、F ,若△OEF的面积为求直线l 的方程.参考答案一.选择题(本大题共12小题,每小题3分,共36分)1-6 BBCDBD 7-12 ACABCB二.填空题(本大题共4小题,每小题4分,共16分)13. ),31[+∞ 14. 8 15. 12-或24 16. ①、③, ②、④.三.解答题(本大题共5小题,共48分)17(本小题满分8分)解:(1)由已知b ax x x f 366)(2++='因为)(x f 在1=x 及2=x 处取得极值,所以1和2是方程0366)(2=++='b ax x x f 的两根故3-=a 、4=b(2)由(1)可得81292)(23++-=x x x x f )2)(1(612186)(2--=+-='x x x x x f当1<x 或2>x 时,0)(>'x f ,)(x f 是增加的;当21<<x 时,0)(<'x f ,)(x f 是减少的。

所以,)(x f 的单调增区间为)1,(-∞和),2(+∞,)(x f 的单调减区间为)2,1(.18 (本小题满分10分)解:(1)设椭圆的标准方程为)0(12222>>=+b a by a x 由已知,122=a ,32==a c e 20,4,6222=-===∴c a b c a 所以椭圆的标准方程为1203622=+y x . (2)由已知,双曲线的标准方程为116922=-y x ,其左顶点为)0,3(- 设抛物线的标准方程为)0(22>-=p px y , 其焦点坐标为)0,2(p -,则32=p 即6=p 所以抛物线的标准方程为x y 122-=. 19(本题满分10分)解:设以点)2,4(P 为中点的弦的两端点分别为),(11y x A 、),(22y x B ,由点A 、B 在椭圆193622=+y x 上得 19362121=+y x 19362222=+y x 两式相减得:093622212221=-+-y y x x 即)()(422212221x x y y --=- ))(())((421212121x x x x y y y y -+-=-+∴ 显然21x x =不合题意,21x x ≠∴ 由4,82121=+=+y y x x 21448)(421212121-=⨯-=++-=--=∴y y x x x x y y k AB 所以,直线AB 的方程为)4(212--=-x y 即所求的以点)2,4(P 为中点的弦所在的直线方程为082=-+y x .20(本小题满分10分)(I )当40=x 时,汽车从甲地到乙地行驶了5.240100=小时, 耗油5.175.2)840803401280001(3=⨯+⨯-⨯(升) 答:当汽车以40千米/小时的速度匀速行驶时,从甲地到乙地耗油5.17升.(2)当速度为x 千米/小时时,汽车从甲地到乙地行驶了x100小时,设耗油量为)(x h 升, 依题意得)1200(41580012801100)88031280001()(3≤<-+=⋅+-=x x x x x x h 则 )1200(64080800640)(2332≤<-=-='x x x x x x h 令0)(='x h 得 80=x当)80,0(∈x 时,0)(<'x h ,)(x h 是减函数;当)120,80(∈x 时,0)(>'x h ,)(x h 是增函数.故当80=x 时,)(x h 取到极小值25.11)80(=h因为)(x h 在]120,0(上只有一个极值,所以它是最小值.答:当汽车以80千米/小时的速度匀速行驶时,从甲地到乙地耗油最少,最少为25.11升.21(本小题满分10分)解:(Ⅰ)由已知2=c 及点)7,3(P 在双曲线C 上得⎪⎩⎪⎨⎧=+=+1)7(34222222b a b a 解得2,222==b a 所以,双曲线C 的方程为12222=-y x . (Ⅱ)由题意直线l 的斜率存在,故设直线l 的方程为2+=kx y 由⎪⎩⎪⎨⎧=-+=122222y x kx y 得 064)1(22=---kx x k 设直线l 与双曲线C 交于),(11y x E 、),(22y x F ,则1x 、2x 是上方程的两不等实根, 012≠-∴k 且0)1(241622>-+=∆k k 即32<k 且12≠k ①这时 22114k k x x -=+,22116k x x --=⋅ 又2222121212121=-=-⨯⨯⨯=-⋅=∆x x x x x OQ S OEF 即 84)(21221=-+x x x x 8124)14(222=-+-∴k k k 所以 222)1(3-=-∴k k 即0224=--k k 0)2)(1(22=-+∴k k又012>+k 022=-∴k 2±=∴k 适合①式所以,直线l 的方程为22+=x y 与22+-=x y .另解:求出EF 及原点O 到直线l 的距离212k d +=,利用2221=⋅=∆d EF S OEF 求解.或求出直线2+=kx y 与x 轴的交点)2,0(kM -,利用 22)(21212121=-=-=-⋅=∆x x k x x k y y OM S OEF 求解。

相关文档
最新文档