高一数学基本初等函数提高训练及答案

合集下载

高一数学基本初等函数提高训练及答案

高一数学基本初等函数提高训练及答案

数学1(必修)第二章 基本初等函数(1)一、选择题1 函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( ) A41 B 21 C2 D 4 2 已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( ) A (0,1) B (1,2) C (0,2)D ∞[2,+) 3 对于10<<a ,给出下列四个不等式①)11(log )1(log a a a a +<+ ②)11(log )1(log a a a a +>+ ③a a a a 111++< ④a a a a 111++>其中成立的是( )A ①与③B ①与④C ②与③D ②与④4 设函数1()()lg 1f x f x x =+,则(10)f 的值为( )A 1B 1-C 10D 101 5 定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个 偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( )A ()g x x =,()lg(10101)x x h x -=++B lg(101)()2x x g x ++=,x lg(101)()2x h x +-= C ()2x g x =,()lg(101)2x x h x =+- D ()2x g x =-, lg(101)()2x x h x ++= 6 若ln 2ln 3ln 5,,235a b c ===,则( ) A a b c << B c b a <<C c a b <<D b a c <<二、填空题1 若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________2 若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________3 函数y =______;值域是______4 若函数()11x m f x a =+-是奇函数,则m 为__________5 求值:22log 3321272log 8-⨯+=__________ 三、解答题1 解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++(2)2(lg )lg 1020x x x +=2 求函数11()()142x x y =-+在[]3,2x ∈-上的值域 3 已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小 4 已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭, ⑴判断()f x 的奇偶性; ⑵证明()0f x >(数学1必修)第二章 基本初等函数(1)参考答案一、选择题1 B 当1a >时1log 21,log 21,,2a a a a a ++==-=与1a >矛盾; 当01a <<时11log 2,log 21,2a a a a a ++==-=; 2 B 令[]2,0,0,1u ax a =->是的递减区间,∴1a >而0u >须恒成立,∴min 20u a =->,即2a <,∴12a <<;3 D 由10<<a 得111,11,a a a a<<+<+②和④都是对的; 4 A 11(10)()1,()(10)1,(10)(10)111010f f f f f f =+=-+=-++ 5 C ()()(),()()()()(),f x g x h x f x g x h x g x h x =+-=-+-=-+6 C a b c =====二、填空题1 (1,)+∞ 2210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩,得1a > 2 []0,1 221ax x ++须取遍所有的正实数,当0a =时,21x +符合条件;当0a ≠时,则0440a a >⎧⎨∆=-≥⎩,得01a <≤,即01a ≤≤3 [)[)0,,0,1+∞ 111()0,()1,022x x x -≥≤≥;11()0,01()1,22x x >≤-<4 2 ()()11011x x m m f x f x a a --+=+++=--5 19 293(3)18lg1019-⨯-+=+=三、解答题1 解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 33121x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+= 10,x =1或10,经检验10,x =1或10为所求 2 解:21111()()1[()]()14222x x x x y =-+=-+ 而[]3,2x ∈-,则11()842x ≤≤ 当11()22x =时,min 34y =;当1()82x =时,max 57y = ∴值域为3[,57]43 解:3()()1log 32log 21log 4x x x f x g x -=+-=+, 当31log 04x +>,即01x <<或43x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =; 当31log 04x +<,即413x <<时,()()f x g x < 4 解:(1)1121()()212221x x x x f x x +=+=⋅-- 2121()()221221x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数 (2)21()221x x x f x +=⋅-,当0x >,则210x ->,即()0f x >; 当0x <,则210x -<,即()0f x >,∴()0f x >。

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案

高中数学基本初等函数图像题专题训练含答案姓名:__________ 班级:__________考号:__________一、选择题(共20题)1、函数的图象大致是 ( )A .B .C .D .2、已知函数的图象如图所示,则该函数的解析式可能是()A .B .C .D .3、函数在区间上的图象大致是()A . B .C .D .4、函数的图象大致为()A .B .C .D .5、 A . B .C .D .6、下列图象中不能作为函数的是()A .B .C .D .7、设函数满足对,都有,且在上单调递增,,,则函数的大致图象是()A .B .C .D .8、若方程在区间有解,则函数图象可能是()A .B .C .D .9、函数的图象大致为()A .B .C .D .10、函数的大致图象为()A .B .C .D .11、函数,图象大致为A. B .C .D .12、函数的图象大致是()A .B .C .D .13、已知函数,,则的图象不可能是()A .B .C .D .14、函数的图像可能是()A .B .C .D .15、函数的图像大致为()A .B .C .D .16、函数的图象大致为A .B .C .D .17、函数在其定义域上的图象大致为()A .B .C .D .18、函数的图象大致形状是()A .B .C .D .19、已知,函数与的图象可能是()A .B .C .D .20、函数的图象大致为()A .B .C .D .============参考答案============一、选择题1、B【解析】【分析】根据题意,先分析函数的奇偶性,排除AC ,再判断函数在上的符号,排除 D ,即可得答案.【详解】∵ f ( x ) 定义域 [ - 1 , 1 ] 关于原点对称,且,∴ f ( x ) 为偶函数,图像关于y 轴对称,故AC 不符题意;在区间上,,,则有,故 D 不符题意, B 正确.故选: B .2、D【解析】【分析】根据函数的图象结合函数的定义域,复合函数的奇偶性,利用排除法,即可得到结果 . 【详解】由图象可知函数是奇函数,函数和由复合函数的奇偶性可知,这两个函数为偶函数,故排除 A , C ;对于函数,由于时,,此时无意义,所以函数不经过原点,故 B 错误;故 D 满足题意.故选: D.3、A【解析】【分析】先判断函数的奇偶性,再由,进而得到正确选项 .【详解】∵ 函数,故函数为奇函数,排除 BD ;,可排除 C.故选: A.4、 B【分析】根据函数的奇偶性可排除 C ,再根据的符号即可排除 AD ,即可得出答案.【详解】解:函数的定义域为R ,因为,所以函数是偶函数,故排除 C ;,故排除 A ;,故排除 D.故选: B.5、【分析】首先确定函数的奇偶性,然后结合函数在处的函数值排除错误选项即可确定函数的图象 .【详解】因为,则,即题中所给的函数为奇函数,函数图象关于坐标原点对称,据此可知选项CD 错误;且时,,据此可知选项B 错误 .故选: A.【点睛】函数图象的识辨可从以下方面入手: (1) 从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2) 从函数的单调性,判断图象的变化趋势.(3) 从函数的奇偶性,判断图象的对称性.(4) 从函数的特征点,排除不合要求的图象.利用上述方法排除、筛选选项.6、 B【分析】根据函数的定义可知,对于x 的任何值y 都有唯一的值与之相对应,分析图象即可得到结论.【详解】由函数的定义可知,对定义域内的任意一个自变量x 的值,都有唯一的函数值y 与其对应,故函数的图象与直线x =a 至多有一个交点,图 B 中,存在x =a 与函数的图象有两个交点,不满足函数的定义,故 B 不是函数的图象.故选: B7、 A【分析】判断的奇偶性排除 BD ,再由当时,得出答案 .【详解】令,则函数为偶函数,故排除 BD当时,,则,故排除 C故选: A【点睛】关键点睛:本题关键是采用排除法,由奇偶性排除 BD ,再由当时,排除 C.8、 D【分析】由题意可得在区间上,能够成立,结合所给的选项,得出结论【详解】解:方程在区间上有解,在区间上,能够成立,结合所给的选项,只有 D 选项符合.故选: D .9、 A【分析】由条件判断函数为奇函数,且在为负数,从而得出结论 .【详解】,因此函数为奇函数,图像关于原点对称排除;当时,,,因此.故选:.【点睛】本题主要考查的是函数图像的应用,奇偶性的应用,根据奇偶函数的对称性进行判断是解决本题的关键,是中档题 .10、 A【分析】判断函数的奇偶性和对称性的关系,利用极限思想进行求解即可【详解】解:函数,,,,则函数为非奇非偶函数,图象不关于 y 轴对称,排除 C , D ,当,排除 B ,故选 A【点睛】本题主要考查函数图象的识别和判断,利用函数的对称性以及极限思想是解决本题的关键11、 D【分析】根据函数的奇偶性和函数图像上的特殊点对选项进行排除,由此得出正确选项 .【详解】,故函数为奇函数,图像关于原点对称,排除选项 .由排除选项 . 由,排除 C 选项,故本小题选 D.【点睛】本小题主要考查函数图像的识别,考查函数的奇偶性的判断方法,属于基础题 .12、 C【分析】根据函数的奇偶性和值域即可判断 .【详解】所以为偶函数,所以图象关于轴对称,故排除 B ,当时,故排除 A ,当时,故排除 D故选: C .13、 D【分析】先分析出为偶函数 . ,其图像关于y 轴对称,即可得到答案 .【详解】定义域为 R.因为,所以为偶函数 . ,其图像关于y 轴对称,对照四个选项的图像,只能选 D.故选 :D14、 B【分析】根据、分类讨论的图象,利用导函数研究它在各个区间上的单调性,分别判断两个区间某一部份的单调性即可得到它的大致图象;【详解】1 、当时,,即,令,则,∴ 时,即单调递增,故,∴ 此时,,即在单调递增,故排除D 选项;2 、当时,,令,则,∴ ,,故有即,所以,∴ 在上,而,故在上一定有正有负,则有B 正确;故选: B【点睛】本题考查了利用导数研究函数单调性,并确定函数的大致图象,注意按区间分类讨论,以及零点、极值点的讨论15、 B【分析】由函数为偶函数可排除 AC ,再由当时,,排除 D ,即可得解.【详解】设,则函数的定义域为,关于原点对称,又,所以函数为偶函数,排除 AC ;当时,,所以,排除 D.故选: B.16、 C【分析】由可排除 A 、 D ;再利用导函数判断在上的单调性,即可得出结论 . 【详解】因为,故排除 A 、 D ;,令,在是减函数,,在是增函数,,存在,使得,单调递减,单调递增,所以选项 B 错误,选项 C 正确.故选: C【点睛】本题考查由解析式选择函数图象的问题,利用导数研究函数单调性是解题的关键,考查学生逻辑推理能力,是一道中档题 .17、 D【分析】求函数的定义域 , 判断函数的奇偶性和对称性, 利用排除法, 进行判断即可【详解】函数的定义域为.因为,,所以是奇函数,图象关于原点对称,排除 A,B ;当,,排除 C.故选 :D.18、 D【分析】利用排除法,先判断函数的奇偶性,再取特殊值即可判断【详解】解:函数的定义域为,因为,所以为偶函数,所以其图像关于轴对称,所以排除 A ,B ,因为,所以排除 C ,故选: D19、 B【分析】根据函数的定义域,判断两个函数的单调性,即可求解 .【详解】,函数在上是增函数,而函数定义域为,且在定义域内是减函数,选项 B 正确》故选 :B.【点睛】本题考查函数的定义域、单调性,函数的图像,属于基础题 .20、 A【分析】分析函数的奇偶性,并结合函数的解析式知:当时,即可确定大概函数图象 . 【详解】根据题意,设,其定义域为,有,则为奇函数,其图象关于原点对称,排除 C 、 D ,当时,,,必有,排除 B ,故选: A.【点睛】关键点点睛:分析函数的奇偶性与函数值符号,应用间接法确定函数图象 .。

人教版高中数学必修一《基本初等函数》章末复习提升及解答

人教版高中数学必修一《基本初等函数》章末复习提升及解答

知识点一指数函数y=a x(a>0且a≠1)的图象与性质一般地,指数函数y=a x(a>0且a≠1)的图象与性质如下表所示:注意(1)对于a>1与0<a<1,函数值的变化是不同的,因而利用性质时,一定要注意底数的范围,通常要用到分类讨论思想.(2)a >1时,a 值越大,图象向上越靠近y 轴,递增速度越快;0<a <1时,a 值越小,图象向上越靠近y 轴,递减速度越快.(3)在同一坐标系中有多个指数函数图象时,图象的相对位置与底数大小有如下关系:在y 轴右侧,图象从上到下相应的底数由大变小;在y 轴左侧,图象从下到上相应的底数由大变小.即无论在y 轴的左侧还是右侧,底数按逆时针方向变大.这一性质可通过令x =1时,y =a 去理解,如图.知识点二 对数函数y =log a x (a >0且a ≠1)的图象与性质知识点三 对数函数与指数函数的关系对数函数y =log a x (a >0且a ≠1)与指数函数y =a x (a >0且a ≠1)互为反函数,其图象关于直线y =x 对称.(如图)知识点四 幂函数y =x α的性质(1)所有的幂函数在(0,+∞)上都有定义,并且图象都过点(1,1); (2)如果α>0,则幂函数的图象过原点,并且在区间[0,+∞)上为增函数;(3)如果α<0,则幂函数的图象在区间(0,+∞)上是减函数,在第一象限内,当x 从右边趋向于原点时,图象在y 轴右方无限地逼近y 轴,当x 从原点趋向于+∞时,图象在x 轴上方无限地逼近x 轴;(4)当α为奇数时,幂函数为奇函数;当α为偶数时,幂函数为偶函数.题型一 有关指数、对数的运算问题指数与指数运算、对数与对数运算是两个重要的知识点,不仅是本章考查的重要题型,也是高考的必考内容.指数式的运算首先要注意化简顺序,一般负指数先转化成正指数,根式化为指数式;其次若出现分式,则要注意把分子、分母因式分解以达到约分的目的.对数运算首先要注意公式应用过程中范围的变化,前后要等价;其次要熟练地运用对数的三个运算性质,并根据具体问题合理利用对数恒等式和换底公式等.换底公式是对数计算、化简、证明常用的公式,一定要掌握并灵活运用.例1 (1)化简:4133223384-+a a b b a÷⎝ ⎛⎭⎪⎫1-23b a ×3ab ; (2)计算:2log 32-log 3329+log 38-5log 325. 解 (1)原式=1111333311111122333333(8)(2)2()2-⨯⨯++-a a b aa b b a b a ab=11113333(8)8-⨯⨯=-a a b a a b a b(2)原式=log 34-log 3329+log 38-52log 35=log 3(4×932×8)-52log 35=log 39-9=2-9=-7.跟踪训练1 (1681)34-+log 354+log 345=________.答案278解析 (1681)34-+log 354+log 345=(23)-3+log 31=278+0=278.题型二 函数的图象函数图象是高考考查的重点内容,在历年高考中都有涉及.考查形式有知式选图、知图造式、图象变换以及用图象解题.函数图象形象地显示了函数的性质,利用数形结合有时起到事半功倍的效果.例2 函数y =⎝⎛⎭⎫12x+1的图象关于直线y =x 对称的图象大致是( )答案 A解析 函数y =⎝⎛⎭⎫12x +1的图象如图所示,关于y =x 对称的图象大致为A 选项对应图象.跟踪训练2 函数y =xax|x |(0<a <1)的图象的大致形状是( )答案 D解析 当x >0时,y =xa x |x |=a x .又0<a <1,可排除A 、C ;当x <0时,y =xa x|x |=-a x .又0<a <1,可排除B. 题型三 比较大小比较几个数的大小问题是指数函数、对数函数和幂函数的重要应用,其基本方法是:将需要比较大小的几个数视为某类函数的函数值,其主要方法可分以下三种:(1)根据函数的单调性(如根据一次函数、二次函数、指数函数、对数函数、幂函数的单调性),利用单调性的定义求解;(2)采用中间量的方法(实际上也要用到函数的单调性),常用的中间量如0,1,-1等; (3)采用数形结合的方法,通过函数的图象解决. 例3 设a =log 213,b =⎝⎛⎭⎫130.2,c =231,则( )A.a <b <cB.c <b <aC.c <a <bD.b <a <c答案 A解析 a =log 213<0,0<b =⎝⎛⎭⎫130.2<1,c =231>1,故有a <b <c . 跟踪训练3 设a =log 2π,b =log 21π,c =π-2,则( )A.a >b >cB.b >a >cC.a >c >bD.c >b >a 答案 C解析 因为π>2,所以a =log 2π>1,所以b =log 21π<0.因为π>1,所以0<π-2<1,即0<c <1.所以a >c >b .题型四 换元法的应用换元法的作用是利用整体代换,将问题转化为常见问题.本章中,常设u =log a x 或u =a x ,转化为一元二次方程、二次函数等问题.要注意换元后u 的取值范围. 例4 求函数y =f (x )=-(12)2x -4(12)x +5的值域.解 函数的定义域是R .设u =(12)x ,由于x ∈R ,则u ∈(0,+∞).则有y =-u 2-4u +5=-(u +2)2+9. ∵u ∈(0,+∞),∴y ∈(-∞,5), 故函数y =f (x )的值域是(-∞,5).跟踪训练4 已知实数x 满足-3≤log 21x ≤-12,求函数y =(log 2x 2)·(log 2x4)的值域.解 y =(log 2x 2)·(log 2x4)=(log 2x -1)(log 2x -2)=(log 2x )2-3log 2x +2.∵-3≤log 21x ≤-12,∴12≤log 2x ≤3.令t =log 2x ,则t ∈[12,3],y =t 2-3t +2=(t -32)2-14,∴t =32时,y min =-14;t =3时,y max =2.故函数的值域为[-14,2].分类讨论思想应用指数函数y =a x 和对数函数y =log a x 的图象和性质时,若底数含有字母,要特别注意对底数a >1和0<a <1两种情况的讨论.例5 函数y =a 2x +2a x -1(a >0,且a ≠1)在区间[-1,1]上有最大值14,求a 的值. 解 y =(a x )2+2a x -1=(a x +1)2-2.令a x =t ,则y =(t +1)2-2,对称轴方程为t =-1. ①当a >1时,因为-1≤x ≤1,所以1a ≤a x ≤a ,即1a ≤t ≤a ,函数图象在对称轴右侧,是单调递增的, 所以当t =a 时有最大值,所以(a +1)2-2=14, 所以a =3.②当0<a <1时,因为-1≤x ≤1,所以a ≤a x ≤1a ,即a ≤t ≤1a ,函数图象在对称轴右侧,是单调递增的,所以当t =1a 时有最大值,所以(1a +1)2-2=14,所以a =13.所以a 的值为3或13.跟踪训练5 已知偶函数f (x )在x ∈[0,+∞)上是增函数,f ⎝⎛⎭⎫12=0,求不等式f (log a x )>0(a >0,且a ≠1)的解集.解 ∵f (x )是偶函数,且f (x )在[0,+∞)上是增函数, 又f ⎝⎛⎭⎫12=0,∴f (x )在(-∞,0)上是减函数,f ⎝⎛⎭⎫-12=0. 故若f (log a x )>0,则有log a x >12或log a x <-12.①当a >1时,由log a x >12或log a x <-12,得x >a 或0<x <a a. ②当0<a <1时,由log a x >12或log a x <-12,得0<x <a 或x >a a. 综上可知,当a >1时,f (log a x )>0的解集为⎝⎛⎭⎫0,a a ∪(a ,+∞);当0<a <1时,f (log a x )>0的解集为(0,a )∪⎝⎛⎭⎫a a ,+∞.。

高一基本初等函数习题(有答案)

高一基本初等函数习题(有答案)

1.若函数)10(log )(<<=a x x f a 在区间]2,[a a 上的最大值是最小值的3倍,则a 的值为( )A .42B .22C .41D .21 2.若函数)1,0)((log ≠>+=a a b x y a 的图象过两点(1,0)-和(0,1),则( )A .2,2a b ==B .2a b ==C .2,1a b ==D .a b ==3.已知x x f 26log )(=,那么)8(f 等于( )A .34B .8C .18D .21 4.函数lg y x =( )A . 是偶函数,在区间(,0)-∞ 上单调递增B . 是偶函数,在区间(,0)-∞上单调递减C . 是奇函数,在区间(0,)+∞ 上单调递增D .是奇函数,在区间(0,)+∞上单调递减5.已知函数=-=+-=)(.)(.11lg )(a f b a f xx x f 则若( ) A .b B .b - C .b 1 D .1b- 6.函数()log 1a f x x =-在(0,1)上递减,那么()f x 在(1,)+∞上( )A .递增且无最大值B .递减且无最小值C .递增且有最大值D .递减且有最小值1.若a x f x x lg 22)(-+=是奇函数,则实数a =_________。

2.函数()212()log 25f x x x =-+的值域是__________.3.已知1414log 7,log 5,a b ==则用,a b 表示35log 28= 。

4.设(){}1,,lg A y xy =, {}0,,B x y =,且A B =,则x = ;y = 。

5.计算:()()5log 22323-+ 。

6.函数x x e 1e 1y -=+的值域是__________. 三、解答题2.解方程:(1)192327x x ---⋅= (2)649x x x += 3.已知,3234+⋅-=x x y 当其值域为[1,7]时,求x 的取值范围。

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

人教版高中数学必修一《基本初等函数》全章小结复习及同步练习(含答案)

.
( 2)培养学生数形结合的思想观念及抽象思维能力
.
二 .重点、难点
重点:指数函数与对数函数的性质。 难点:灵活运用函数性质解决有关问题。
三、学法与教具
1、学法:讲授法、讨论法。
2、教具:投影仪。 四、教学设想
1、回顾本章的知识结构
整数指数幂 有理数指数幂 无理数指数幂
定义 图象与性质
指数 指数函数
11. 光线每通过一块玻璃板其强度要损失 10%,设光线原来的强度为
的性质 .
作业: P90
A组
37
P91B组34必修 1 第二章《基本初等函数(Ⅰ) 》同步练习
(时间: 60 分钟,满分: 100 分)
班别
座号
姓名
成绩
一、选择题 (本大题共 10 小题,每小题 5 分,共 50 分) 1. 下列计算中正确的是
A. x3 x3 x6
B. (3a 2b 3) 2
9a4b 9
小结:底数相同的指数函数与对数函数关于
y x 对称,它们之间还有一个关系式子:
a log a N N (a 1,a 0, N 0)
1x
例 3:已知 f ( x)
log a 1
(a x
0且 a
1)
( 1)求 f (x) 的定义域
( 2)求使 f ( x) 0 的 x 的取值范围
1x
分析:( 1)要求 f (x)
7. 若 a、 b 是任意实数,且 a b ,则
2
2
A. a b
ab
B. 2
0
C. lg( a b) 0
()
a
b
1
1
D.
2
2
8. 函数 f ( x) log a x ( 2 ≤ x≤)的最大值比最小值大 1,则 a 的值

数学高考复习基本初等函数专题强化练习(附答案)

数学高考复习基本初等函数专题强化练习(附答案)

数学高考复习基本初等函数专题强化练习(附答案)初等函数包括代数函数和逾越函数,以下是基本初等函数专题强化练习,希望对考生温习数学有协助。

1.(文)(2021江西文,4)函数f(x)=(aR),假定f[f(-1)]=1,那么a=()A. -1B.-2C.1D.2[答案] A[解析] f(-1)=2-(-1)=2,f(f(-1))=f(2)=4a=1,a=.(理)(2021新课标理,5)设函数f(x)=那么f(-2)+f(log212)=()A.3B.6C.9D.12[答案] C[解析] 考察分段函数.由得f(-2)=1+log24=3,又log2121,所以f(log212)=2log212-1=2log26=6,故f(-2)+f(log212)=9,应选C.2.(2021哈三中二模)幂函数f(x)的图象经过点(-2,-),那么满足f(x)=27的x的值是()A. B.C. D.[答案] B[解析] 设f(x)=x,那么-=(-2),=-3,f(x)=x-3,由f(x)=27得,x-3=27,x=.3.(文)命题p1:函数y=2x-2-x在R上为增函数,p2:函数y=2x+2-x在R上为减函数.那么在命题q1:p1p2,q2:p1p2,q3:(p1)p2和q4:p1(p2)中,真命题是()A.q1,q3B.q2,q3C.q1,q4D.q2,q4[答案] C[解析] y=2x在R上是增函数,y=2-x在R上是减函数,y=2x-2-x在R上是增函数,所以p1:函数y=2x-2-x在R上为增函数为真命题,p2:函数y=2x+2-x在R上为减函数为假命题,故q1:p1p2为真命题,q2:p1p2是假命题,q3:(p1)p2为假命题,q4:p1(p2)是真命题.故真命题是q1、q4,应选C.[点拨] 1.由指数函数的性质首先判别命题p1、p2的真假是解题关键,再由真值表可判定命题q1、q2、q3、q4的真假.2.考察指、对函数的单调性是这一局部高考命题的主要考察方式之一.经常是判别单调性;单调性讨论参数值或取值范围;依据单调性比拟数的大小等.(理)实数a、b,那么2a2b是log2alog2b的()A.充沛不用要条件B.必要不充沛条件C.充要条件D.既不充沛也不用要条件[答案] B[解析] 由y=2x为增函数知,2ab;由y=log2x在(0,+)上为增函数知,log2alog2ba0,a/ a0,但a0ab,应选B.4.(文)(2021湖南理,5)设函数f(x)=ln(1+x)-ln(1-x),那么f(x)是()A.奇函数,且在(0,1)上是增函数B.奇函数,且在(0,1)上是减函数C.偶函数,且在(0,1)上是增函数D.偶函数,且在(0,1)上是减函数[答案] A[解析] 考察函数的性质.由得-10,a1,xR)叫指数函数函数y=logax(a0,a1,x0)叫对数函数值域 (0,+) (-,+) 图象性质 (1)y(2)图象恒过点(0,1);(3)a1,当x0时,y当x0时,00时,01;(4)a1,在R上y=ax为增函数;00;(2)图象恒过点(1,0);(3)a1,当x1时,y当01时,y当00;(4)a1,在(0,+)上y=logax为增函数;0f(x)g(x),且f(x)=axg(x)(a0,且a1),+=.假定数列{}的前n项和大于62,那么n的最小值为()A.6B.7C.8D.9[答案] A[思绪剖析] 经过审题可以发现,标题中多处触及的方式,x=1时,即,x=-1时,即,x=n时,即,又=ax,故这是解题的切入点,结构函数F(x)=,那么效果迎刃而解.[解析] 令F(x)=,那么F(x)=ax,F(x)=0,F(x)单调递增,a1.∵F(1)+F(-1)=+==a+,a=2,F(x)=2x,{F(n)}的前n项和Sn=21+22++2n==2n+1-262,2n+164,n+16,n5,n的最小值为6.7.以下函数图象中不正确的选项是()[答案] D[解析] 由指数函数、对数函数的图象与性质知A、B正确,又C是B中函数图象位于x轴下方局部沿x轴翻折到x轴上方,故C正确.y=log2|x|=是偶函数,其图象关于y轴对称,故D错误. 8.(文)假定存在正数x使2x(x-a)1成立,那么a的取值范围是()A.(-,+)B.(-2,+)C.(0,+)D.(-1,+)[答案] D[解析] 由题意得,ax-()x (x0),令f(x)=x-()x,那么f(x)在(0,+)上为增函数,f(x)f(0)=-1,a-1,应选D.(理)定义在R上的偶函数f(x)在[0,+)上是增函数,且f()=0,那么不等式f(logx)0的解集是()A.(0,)B.(2,+)C.(0,)(2,+)D.(,1)(2,+)[答案] C[解析] 解法1:偶函数f(x)在[0,+)上为增函数,f(x)在(-,0)上为减函数,又f()=0,f(-)=0,由f(logx)0得,logx或logx-,02,应选C.解法2:f(x)为偶函数,f(logx)0化为f(|logx|)0,f(x)在[0,+)上为增函数,f()=0,|logx|,|log8x|,log8x 或log8x-,x2或01,那么g(x)=x+lnx1,00且a1)的图象恒过点(0,-2);命题q:函数f(x)=lg|x|(x0)有两个零点.那么以下说法正确的选项是()A.p或q是真命题B.p且q是真命题C.p为假命题D.q为真命题[答案] A[解析] f(0)=a0-2=-1,p为假命题;令lg|x|=0得,|x|=1,x=1,故q为真命题,pq为真,pq为假,p为真,q为假,应选A.(理)函数f(x)=(其中aR),函数g(x)=f[f(x)]+1.以下关于函数g(x)的零点个数的判别,正确的选项是()A.当a0时,有4个零点;当a0时,有2个零点,当a=0时,有有数个零点B.当a0时,有4个零点;当a0时,有3个零点,当a=0时,有2个零点C.当a0时,有2个零点;当a0时,有1个零点D.当a0时,有2个零点;当a=0时,有1个零点[答案] A[解析] 取a=1,令x+=-1得x=-,令log2x=-1得,x=.令x+=-得x=-2,令log2x=-得x=2-,令log2x=得x=,令x+=得x=0,由此可扫除C、D;令a=0,得f(x)=由log2x=-1得x=,由f(x)=知,对恣意x0,有f(x)=,故a=0时,g(x)有有数个零点.11.(文)(2021中原名校第二次联考)函数y=f(x+)为定义在R 上的偶函数,且当x时,f(x)=()x+sinx,那么以下选项正确的选项是()A.f(3)f(f(3),f(2)f(3),应选A.(理)函数f(x)=x3+ax2+bx+c,以下结论中错误的选项是()A.x0R,f(x0)=0B.函数y=f(x)的图象是中心对称图形C.假定x0是f(x)的极小值点,那么f(x)在区间(-,x0)单调递减D.假定x0是f(x)的极值点,那么f (x0)=0[答案] C[解析] 由题意得,f(x)=3x2+2ax+b,该函数图象启齿向上,假定x0为极小值点,如图,f(x)的图象应为:故f(x)在区间(-,x0)不单调递减,C错,应选C.12.如图,过原点O的直线与函数y=3x的图象交于A,B两点,过B作y轴的垂线交函数y=9x的图象于点C,假定AC 恰恰平行于y轴,那么点A的坐标为()A.(log94,4)B.(log92,2)C.(log34,4)D.(log32,2)[答案] D[解析] 此题考察指数函数的图象与性质,难度中等.设A(x1,3x1),B(x2,3x2),那么C(x1,3x2)在函数y=9x的图象上,所以3x2=9x1,所以x2=2x1 .又O,A,B共线,所以= ,联立解得x1=log32,故点A的坐标为(log32,2),应选D.[易错剖析] 此题易犯两个错误:一是不能将直线与指数函数图象相交于A,B两点转化为OA,OB的斜率相等;二是不能运用指数的运算法那么求解.普通地,解指数方程时,将方程两边化为同底,或许应用指数式化为对数式的方法求解.二、填空题13.(文)函数f(x)=在区间[-1,m]上的最大值是1,那么m 的取值范围是________.[答案] (-1,1][解析] f(x)=2-x-1=()x-1在[-1,0]上为减函数,在[-1,0]上f(x)的最大值为f(-1)=1,又f(x)=x在[0,m]上为增函数,在[0,m]上f(x)的最大值为,f(x)在区间[-1,m]上的最大值为1,或-11,那么m的取值范围是________.[答案] (-,0)(2,+)[解析] 当m0时,由f(m)1得,log3(m+1)1,m+13,m当m0时,由f(m)1得,3-m1.-m0,m0.综上知m0或m2.16.(文)函数f(x)=假定函数g(x)=f(x)-m有3个零点,那么实数m的取值范围是________.[答案] (0,1)[解析] 函数f(x)的图象如下图:当0a-7对一切正整数n都成立,那么正整数a的最大值为________.[剖析] 要求正整数a的最大值,应先求a的取值范围,关键是求出代数式+++的最小值,可将其视为关于n的函数,经过单调性求解.[解析] 令f(n)=+++(nN*),对恣意的nN*,f(n+1)-f(n)=++-=0,所以f(n)在N*上是增函数.又f(1)=,对一切正整数n,f(n)a-7都成立的充要条件是a-7,所以a,故所求正整数a的最大值是8.[点拨] 此题是结构函数法解题的很好的例证.假设对数列求和,那就会悬崖勒马.此题结构函数f(n),经过单调性求其最小值处置了不等式恒成立的效果.应用函数思想解题必需从不等式或等式中结构出函数关系并研讨其性质,才干使解题思绪灵敏变通.基本初等函数专题强化练习及答案的全部内容就是这些,更多精彩内容请考生关注查字典数学网。

高中数学 第二章 基本初等函数(Ⅰ)2.2.1.2 对数的运算课后提升训练 新人教A版必修1

高中数学 第二章 基本初等函数(Ⅰ)2.2.1.2 对数的运算课后提升训练 新人教A版必修1

对数的运算(30分钟60分)一、选择题(每小题5分,共40分)1.(2017·大同高一检测)2log32-log3+log38的值为( )A. B.2 C.3 D.【解析】选B.原式=log322-log332+log39+log38=log34+log38- log332+2=log332-log332+2=2. 【补偿训练】(2017·杭州高一检测)2log510+log50.25= ( )A.0B.1C.2D.4【解析】选C.2log510+log50.25=log5100+log50.25=log525=2.2.下列各式中正确的个数是( )①log a(b2-c2)=2log a b-2log a c;②(log a3)2=2log a3;③=lg5.A.0B.1C.2D.3【解析】选A.由对数的运算性质和换底公式知,它们均不正确.3.(2017·黑龙江高一检测)已知lg2=a,lg3=b,则log36等于( )A. B. C. D.【解析】选B.log36===.4.若log5·log36·log6x=2,则x等于( )A.9B.C.25D.【解题指南】利用对数的换底公式将原式中的对数转化为常用对数,再计算.【解析】选D.由换底公式,得··=2,所以-=2.所以lgx=-2lg5=lg.所以x=.5.声强级L I(单位:dB)由公式L I=10lg给出,其中I为声音强度(单位:W/m2).交响音乐会坐在铜管乐前的声音强度约为 5.01×10-2W/m2,则其声强级为(其中lg5.01≈0.7) ( )A.99dBB.100dBC.107dBD.109dB【解析】选 C.当I=5.01×10-2时,其声强级为L I=10lg=10lg(5.01×1010)=10(lg5.01+10)≈107(dB).6.(2017·大连高一检测)若lna,lnb是方程3x2-6x+2=0的两个根,则的值等于( )A. B. C.4 D.【解析】选 A.由根与系数的关系,得lna+lnb=2,lna·lnb=,所以=(lna-lnb)2=(lna+lnb)2-4lna·lnb=22-4×=.7.(2017·北京高一检测)函数f(x)=log a x(a>0且a≠1),若f(x1x2…x n)=16,则f()+f()+…+f()的值等于( )A.2log216B.32C.16D.8【解析】选B.f(x)=log a x,f(x1x2…x n)=16,所以log a(x1x2…x n)=16,所以f()+f()+…+f()=log a+log a+…+log a=2(log a x1+log a x2+…+log a x n)=2log a(x1x2…x n)=32.8.(2017·武汉高一检测)已知2m=5n=10,则+= ( )A.0B.1C.2D.3【解析】选B.因为2m=5n=10,所以m=log210,n=log510,即=lg2,=lg5,故+=lg2+lg5=1.二、填空题(每小题5分,共10分)9.已知f(x)=lgx,若f(ab)=1,则f(a2)+f(b2)=________.【解析】因为f(ab)=1,所以lg(ab)=1,即lga+lgb=1,所以f(a2)+f(b2)=lga2+lgb2=2(lga+lgb)=2.答案:210.若lg3=a,lg5=b,那么lg=________.【解析】lg=lg4.5=lg=lg=(lg5+lg9-1)=(2a+b-1). 答案:三、解答题11.(10分)(2017·兰州高一检测)计算下列各式的值:(1)log535+2lo-log5-log514.(2)[(1-log63)2+log62·log618]÷log64.【解析】(1)原式=log535+log550-log514+2lo=log 5+lo2=log553-1=2.(2)原式=[(log66-log63)2+log62·log6(2×32)]÷log64=÷log622=[(log62)2+(log62)2+2log62·log63]÷2log62=log62+log63=log6(2×3)=1.【能力挑战题】已知2lg(x+y)=lg2x+lg2y,则log2=________.【解析】因为2lg(x+y)=lg2x+lg2y,所以lg(x+y)2=lg(4xy),所以(x+y)2=4xy,所以(x-y)2=0,所以x=y,所以=1,所以log2=log21=0. 答案:0。

高一数学基本初等函数提高训练

高一数学基本初等函数提高训练

数学1(必修)基本初等函数(1)--提高训练C 组 一、选择题1.函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,则a 的值为( )A .41B .21 C .2 D .42.已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是( )A . (0,1)B . (1,2)C . (0,2)D . ∞[2,+)3.对于10<<a ,给出下列四个不等式①)11(log )1(log aa a a +<+ ②)11(l o g )1(l o g aa a a +>+ ③aaaa111++< ④aaaa111++>其中成立的是( )A .①与③B .①与④C .②与③D .②与④ 4.设函数1()()lg 1f x f x x=+,则(10)f 的值为( )A .1B .1-C .10D .101 5.定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么( ) A .()g x x =,()lg(10101)x x h x -=++B .lg(101)()2x x g x ++=,x lg(101)()2xh x +-=C .()2x g x =,()lg(101)2x xh x =+-D .()2xg x =-, lg(101)()2x x h x ++=6.若ln 2ln 3ln 5,,235a b c ===,则( ) A .a b c << B .c b a << C .c a b << D .b a c <<二、填空题1.若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________。

2.若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________。

基本初等函数练习题与答案

基本初等函数练习题与答案

5.
1
3x 3x 3x 3x 3, x 1 1 3x
6.

x
|
x

1

,y
|
y

0,
且y

1
2x
1
0,
x

1

y

1
8 2 x 1

0, 且y
1

2
2
7. 奇函数 f (x) x2 lg(x x2 1) x2 lg(x x2 1) f (x)
84 411
212 222
212 (1 210 )
3. 2 原式 log2 5 2 log2 51 log2 5 2 log2 5 2
4. 0 (x 2)2 ( y 1)2 0, x 2且y 1, logx ( yx ) log2 (12 ) 0
4.若函数
f
(x)
1
m ax 1
是奇函数,则 m
为__________。
5.求值:
2
27 3

2log2 3
log2
1 8

2 lg(
3
5
3
5 ) __________。
三、解答题
1.解方程:(1) log4 (3 x) log0.25 (3 x) log4 (1 x) log0.25 (2x 1)

log a
(1
1 a
)

log a
(1

a)

log a
(1

1 a
)
③ a1a

人教版高中数学必修一《基本初等函数》课后提升练习及答案

人教版高中数学必修一《基本初等函数》课后提升练习及答案

第二章 基本初等函数(Ⅰ)2.1 指数函数2.1.1 根式与分数指数幂1.27的平方根与立方根分别是( ) A .3 3,3 B .±3 3,3 C .3 3,±3 D .±3 3,±3 2.44(2)-的运算结果是( )A .2B .-2C .±2D .不确定3.若a 2-2a +1=a -1,则实数a 的取值范围是( ) A .[1,+∞) B .(-∞,1) C .(1,+∞) D .(-∞,1] 4.下列式子中,正确的是( ) A.416=±2 B.364-=-4 C.66(3)-=-3D .55(2)-=25.下列根式与分数指数幂的互化中,正确的是( ) A .-x =12()x -(x >0) B.26y =13y (y <0)C .34x -=341x ⎛⎫⎪⎝⎭(x >0)D .13x -=-3x (x ≠0)6.设a ,b ∈R ,下列各式总能成立的是( ) A .(3a -3b )3=a -b B.2244()a b +=a 2+b 2 C.44a -44b =a -b D.88()a b +=a +b7.计算:()n n a b -+()n n a b +(a <b <0,n >1,n ∈N *).8.化简:6+4 2+6-4 2=__________.9.化简:44(3.14π)-+55()a b-+66(π10)π10--=()A.1 B.-1 C.3 D.-310.已知a,b是方程x2-6x+4=0的两根,且a>b>0,求a-ba+b的值.2.1.2 指数幂的运算1.化简1327125-⎛⎫⎪⎝⎭的结果是( )A.35B.53 C .3 D .52.计算[(-2)2]12-的值为( )A. 2 B .- 2C.22 D .-22 3.若(1-2x )12-有意义,则x 的取值范围是( )A .x ∈RB .x ∈R ,且x ≠12C .x >12D .x <124.设a ≥0,计算369a 2·639a 2的结果是( ) A .a 8 B .a 4 C .a 2 D .a5.211.533[(0.027)]-的值为( ) A.103 B .3 C .-13D .66.计算:(-1.8)0+(1.5)-2×23338⎛⎫⎪⎝⎭+329=________.73322114423()a b ab b a b a⋅8.化简:a b 3b a 3a 2b=__________. 9.若x >0,则(2x 14+332)(2x 14-332)-4x12-(x -x 12)=__________.10.已知f (x )=e x-e -x,g (x )=e x+e -x(e =2.718…). (1)求[f (x )]2-[g (x )]2的值;(2)设f (x )f (y )=4,g (x )g (y )=8,求g (x +y )g (x -y )的值.2.1.3指数函数及其图象1.下列以x为自变量的函数中,是指数函数的是()A.y=(-4)x B.y=λx(λ>1)C.y=-4x D.y=a x+2(a>0,且a≠1)2.y=2x+2-x的奇偶性为()A.奇函数B.偶函数C.既是偶函数又是奇函数D.既不是奇函数也不是偶函数3.函数f(x)=1-2x的定义域是()A.(-∞,0] B.[0,+∞)C.(-∞,0) D.(-∞,+∞)4.已知0<a<1,b<-1,则函数f(x)=a x+b的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限5.如图K2-1-1所示的韦恩图中,A,B是非空集合,定义集合A#B为阴影部分所表示的集合.若x,y∈R,A={x|y=2x-x2},B={y|y=3x(x>0)},则A#B为()图K2-1-1A.{x|0<x<2}B.{x|1<x≤2}C.{x|0≤x≤1或x≥2}D.{x|0≤x≤1或x>2}6.函数y=a|x|(a>1)的图象是()A B C D7.求函数y=16-4x的值域.8.已知f(x)是偶函数,且当x>0时,f(x)=10x,则当x<0时,f(x)=()A.10x B.10-xC.-10x D.-10-x9.对于函数f(x)定义域中任意的x1,x2(x1≠x2),有如下结论:①f (x 1+x 2)=f (x 1)·f (x 2); ②f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2<0;④f (x 1)-1x 1<0(x 1≠0);⑤f (-x 1)=1f (x 1).当f (x )=⎝⎛⎭⎫12x时,上述结论中,正确结论的序号是____________.10.(1)当x >0时,函数f (x )=(a 2-1)x的值总大于1,求实数a 的取值范围;(2)对于任意实数a ,函数y =a x -3+3的图象恒过哪一点?2.1.4 指数函数的性质及其应用1.⎝⎛⎭⎫1323,34,⎝⎛⎭⎫13-2的大小关系是( ) A.⎝⎛⎭⎫1323<⎝⎛⎭⎫13-2<34 B.⎝⎛⎭⎫1323<34<⎝⎛⎭⎫-132 C.⎝⎛⎭⎫13-2<⎝⎛⎭⎫1323<34 D.⎝⎛⎭⎫13-2<34<⎝⎛⎭⎫13232.若⎝⎛⎭⎫122a +1<⎝⎛⎭⎫123-2a,则实数a 的取值范围为( )A .(1,+∞) B.⎝⎛⎭⎫12,+∞ C .(-∞,1) D.⎝⎛⎭⎫-∞,12 3.下列选项中,函数y =|2x-2|的图象是( )4.函数y =a x在[0,1]上的最大值与最小值之和为3,则函数y =3a x -1在[0,1]上的最大值为( )A .6B .1C .3 D.325.(2014年四川泸州二模)已知在同一直角坐标系中,指数函数y =a x 和y =b x 的图象如图K2-1-2,则下列关系中正确的是( )图K2-1-2A .a <b <1B .b <a <1C .a >b >1D .b >a >16.下列函数中,既是偶函数,又在(0,+∞)上单调递增的函数是( ) A .y =x 3 B .y =|x |+1C .y =-x 2+1D .y =2-|x |7.已知函数f (x )=⎩⎪⎨⎪⎧⎝⎛⎭⎫12x (x ≥4),f (x +1) (x <4),求f (3)的值.8.设函数f (x )=⎩⎪⎨⎪⎧2-x, x ∈(-∞,1),x 2, x ∈[1,+∞).若f (x )>4,则x 的取值范围是________________.9.函数f (x )=2213x x-⎛⎫⎪⎝⎭的值域为__________.10.已知f (x )=10x-10-x10x +10-x.(1)判断函数f (x )的奇偶性;(2)证明f (x )是定义域内的增函数; (3)求f (x )的值域.2.2 对数函数2.2.1 对数与对数运算1.下列各组指数式与对数式互化,不正确的是( ) A .23=8与log 28=3B .1327-=13与log 2713=-13C .(-2)5=-32与log -2(-32)=5D .100=1与lg1=02.已知函数f (x )=log 2(x +1),若f (a )=1,则a =( ) A .0 B .1 C .2 D .33.以下四个命题:①若log x 3=3,则x =9;②若log 4x =12,则x =2;③若3logx =0,则x =3;④若15log x =-3,则x =125.其中是真命题的个数是( )A .1个B .2个C .3个D .4个4.方程3log 2x =14的解是( )A .x =19B .x =33C .x = 3D .x =95.若f (e x )=x ,则f (e)=( ) A .1 B .e e C .2e D .06.设集合P ={3,log 2a },Q ={a ,b },若P ∩Q ={0},则P ∪Q =( ) A .{3,0} B .{3,0,1} C .{3,0,2} D .{3,0,1,2}7.求下列各式中x 的取值范围: (1)log (x -1)(x +2); (2)log (x +3)(x +3).8.设f (x )=⎩⎪⎨⎪⎧lg x ,x >0,10x ,x ≤0,则f [f (-2)]=__________.9.已知23a =49(a >0) ,则23log a =__________.10.(1)若f (log 2x )=x ,求f ⎝⎛⎭⎫12的值;(2)若log 2[log 3(log 4x )]=0,log 3[log 4(log 2y )]=0,求x +y 的值.2.2.2 对数的性质及其应用1.计算log 23·log 32的结果为( ) A .1 B .-1 C .2 D .-22.(2013年陕西)设a ,b ,c 均为不等于1的正实数,则下列等式中恒成立的是( ) A .log a b ·log c b =log c a B .log a b ·log c a =log c b C .log a bc =log a b ·log a c D .log a (b +c )=log a b +log a c3.(2014年四川泸州一模)2lg2-lg 125的值为( )A .1B .2C .3D .44.lg12.5-lg 58+lg0.5=( )A .-1B .1C .2D .-25.若log 513·log 36·log 6x =2,则x =( )A .9 B.19C .25 D.1256.设2a =5b =m ,且1a +1b=2,则m =( )A.10 B .10 C .20 D .1007.计算:lg2·lg 52+lg0.2·lg40.8.已知lg2=a ,lg3=b ,用a ,b 表示log 1245=______________. 9.已知log 83=p ,log 35=q ,以含p ,q 的式子表示lg2.10.已知lg a和lg b是关于x的方程x2-x+m=0的两个根,而关于x的方程x2-(lg a)x -(1+lg a)=0有两个相等的实根.求实数a,b和m的值.2.2.3 对数函数及其性质(1)1.若log 2a <0,⎝⎛⎭⎫12b>1,则( ) A .a >1,b >0 B .a >1,b <0 C .0<a <1, b >0 D .0<a <1, b <02.(2014年广东揭阳一模)已知集合A ={x |y =lg(x +3)},B ={x |x ≥2},则下列结论正确的是( )A .-3∈AB .3∉BC .A ∪B =BD .A ∩B =B3.函数y =log 2x 与y =log 12x 的图象关于( )A .x 轴对称B .y 轴对称B .原点对称 D .直线y =x 对称4.函数y =1log 0.5(4x -3)的定义域为( )A.⎝⎛⎭⎫34,1B.⎝⎛⎭⎫34,+∞ C .(1,+∞) D.⎝⎛⎭⎫34,1∪(1,+∞)5.若函数f (x )=log a (x +1)(a >0,a ≠1)的定义域和值域都是[0,1],则a =( ) A.13 B. 2 C.22D .2 6.已知a >0,且a ≠1,函数y =a x 与y =log a (-x )的图象只能是图中的( )7.若函数y =log a (x +b )(a >0,a ≠1)的图象过点(-1,0)和(0,1),求a ,b 的值.8.已知A ={x |2≤x ≤π},定义在A 上的函数y =log a x (a >0,且a ≠1)的最大值比最小值大1,则底数a 的值为( )A.2πB.π2C .π-2 D.π2或2π9.设a =log 54,b =(log 53)2,c =log 45,则( ) A .a <c <b B .b <c <a C .a <b <c D .b <a <c10.已知函数f (x )=ln kx -1x -1(k >0).(1)求函数f (x )的定义域;(2)若函数f (x )在区间[10,+∞)上是增函数,求实数k 的取值范围.2.2.4 对数函数及其性质(2)1.已知函数y =a x 与y =log a x (a >0,且a ≠1),下列说法不正确的是( ) A .两者的图象都关于直线y =x 对称B .前者的定义域、值域分别是后者的值域、定义域C .两函数在各自的定义域内的增减性相同D .y =a x 的图象经过平移可得到y =log a x 的图象2.若函数y =f (x )的反函数图象过点(1,5),则函数y =f (x )的图象必过点( ) A .(1,1) B .(1,5) C .(5,1) D .(5,5)3.点(4,16)在函数y =log a x 的反函数的图象上,则a =( ) A .2 B .4 C .8 D .164.已知a =log 23.6,b =log 43.2,c =log 43.6,则( ) A .a >b >c B .a >c >b C .b >a >c D .c >a >b 5.若0<x <y <1,则( ) A .3y <3x B .log x 3<log y 3C .log 4x <log 4y D.⎝⎛⎭⎫14x <⎝⎛⎭⎫14y6.设log a 23<1,则实数a 的取值范围是( )A .0<a <23 B.23<a <1C .0<a <23或a >1D .a >237.在下面函数中,与函数f (x )=lg 1+x1-x有相同奇偶性的是( )A .y =x 3+1B .y =e 0-1e 0+1C .y =|2x +1|+|2x -1|D .y =x +1x8.函数y =ln(4+3x -x 2)的单调递增区间是___________.9.对于函数f (x )定义域中的任意x 1,x 2(x 1≠x 2),有如下结论: ①f (x 1+x 2)=f (x 1)·f (x 2); ② f (x 1·x 2)=f (x 1)+f (x 2); ③f (x 1)-f (x 2)x 1-x 2>0;④f ⎝⎛⎭⎫x 1+x 22<f (x 1)+f (x 2)2.当f (x )=lg x 时,上述结论中,正确结论的序号是____________.10.设f (x )=log 12⎝ ⎛⎭⎪⎫1-ax x -1为奇函数,a 为常数, (1)求a 的值;(2)证明f (x )在(1,+∞)上单调递增;(3)若对于[3,4]上的每一个x 值,不等式f (x )>⎝⎛⎭⎫12x+m 恒成立,求实数m 的取值范围.2.2.5对数函数及其性质(3)1.设a=log132,b=log133,c=⎝⎛⎭⎫120.3,则()A.a<b<c B.a<c<bC.b<c<a D.b<a<c2.将函数y=3x-2的图象向左平移2个单位,再将所得图象关于直线y=x对称后,所得图象的函数解析式为()A.y=4+log3x B.y=log3(x-4)C.y=log3x D.y=2+log3x3.方程log2x=x2-2的实根有()A.3个B.2个C.1个D.0个4.设函数f(x)=log a(x+b)(a>0,a≠1)的图象过点(2,1),其反函数的图象过点(2,8),则a+b=()A.3 B.4C.5 D.65.如图K2-2-1,给出函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2的图象,则与函数y=a x,y=log a x,y=log(a+1)x,y=(a-1)x2依次对应的图象是()图K2-2-1A.①②③④B.①③②④C.②③①④D.①④③②6.函数y=e|ln x|-|x-1|的图象大致是()7.已知函数f(x)=log a(2x+b-1)(a>0,a≠1)的图象如图K2-2-2,则a,b满足的关系是()图K2-2-2A .0<a -1<b <1B .0<b <a -1<1C .0<b -1<a <1D .0<a -1<b -1<18.下列函数的图象中,经过平移或翻折后不能与函数y =log 2x 的图象重合的函数是( )A .y =2xB .y =log 12xC .y =4x2 D .y =log 21x+19.若函数f (x )=log a (x +x 2+2a 2)是奇函数,求a 的值.10.已知函数f (x )=log a (1-x )+log a (x +3)(0<a <1). (1)求函数f (x )的定义域; (2)求方程f (x )=0的解;(3)若函数f (x )的最小值为-4,求a 的值.2.3 幂函数1.所有幂函数的图象都经过的定点的坐标是( ) A .(0,0) B .(0,1)C .(1,1)D .(-1,-1) 2.下列说法正确的是( ) A .y =x 4是幂函数,也是偶函数 B .y =-x 3是幂函数,也是减函数 C .y =x 是增函数,也是偶函数 D .y =x 0不是偶函数3.已知幂函数f (x )的图象经过点⎝⎛⎭⎫2,22,则f (4)的值为( )A .16 B.116C.12D .2 4.下列函数中,既是偶函数,又是在区间(0,+∞)上单调递减的函数为( )A .y =x -2B .y =x -1C .y =x 2D .y =x 135.当x ∈(1,+∞)时,下列函数的图象全在直线y =x 下方的偶函数是( ) A .y =x 12B .y =x -2C .y =x 2D .y =x -16.设a =0.712,b =0.812,c =log 30.7,则( ) A .c <b <a B .c <a <b C .a <b <c D .b <a <c 7.若幂函数y =(m 2-3m +3)x 22m m --的图象不经过坐标原点,求实数m 的取值范围.8.给出函数的一组解析式如下:①y =13x -;②y =23x -;③y =12x -;④y =23x ;⑤y =13x ;⑥y =12x ;⑦y =32x ;⑧y =x 3;⑨y =x -3;⑩y =32x -.回答下列问题: (1)图象关于y 轴对称的函数有__________; (2)图象关于原点对称的函数有__________. 9.请把相应的幂函数图象代号填入表格.①y=23x;②y=x-2;③y=12x;④y=x-1;⑤13431253x10.已知函数f(x)=(m2-m-1)x-5m-3,当m为何值时,f(x)是:(1)幂函数;(2)幂函数,且是(0,+∞)上的增函数;(3)正比例函数;(4)反比例函数;(5)二次函数.第二章 基本初等函数(Ⅰ) 2.1 指数函数2.1.1 根式与分数指数幂 1.B 2.A 3.A4.B 解析:A2;C=|-3|=3;D 错,5=-2.5.C 解析:A 错,-x =-x 12(x >0);B(-y )13(y <0);D 错,x 13-x ≠0). 6.B7.解:当n 为奇数时,原式=a -b +a +b =2a ; 当n 为偶数时,原式=b -a -a -b =-2a .8.4 解析:原式=22+2×2×2+(2)2+22-2×2×2+(2)2 =(2+2)2+(2-2)2 =2+2+2-2=4.9.B 解析:∵3.14<π<10,=π-3.143.14-π=-1=10-ππ-10=-1 1.故原式=-1+1-1=-1.10.解:∵a ,b 是方程x 2-6x +4=0的两根, ∴⎩⎪⎨⎪⎧a +b =6,ab =4. ∵a >b >0,∴⎝ ⎛⎭⎪⎫a -b a +b 2=(a +b )2-4ab a +b +2ab =2010=2. ∴a -b a +b = 2.2.1.2 指数幂的运算 1.B2.C 解析:[(-2)2]12-=(2)122⎛⎫⨯- ⎪⎝⎭=(2)-1=22. 3.D4.C 解析:原式=2936a ⨯⎛⎫ ⎪⎝⎭·2936a ⨯⎛⎫ ⎪⎝⎭=a 2.5.A 解析:原式=⎝⎛⎭⎫3102313323⎛⎫⨯⨯-⨯ ⎪⎝⎭=103. 6.29 解析:原式=1+⎝⎛⎭⎫232×⎝⎛⎭⎫32233⨯+3223⨯ =1+1+27=29.7.解:原式=12323311233()()a b a b ab b a -⋅⋅=113133a+-+·212233b+--=8133a b .解析:原式=⎝ ⎛⎭⎪⎫a b 3 b a 3 a 2b 12=a 12·b 32-·⎝⎛⎭⎫b a 3 a 2b 14=a 12·b 32-·b 14·a 34-⎝⎛⎭⎫a 2b 18=a1324-·b3124-+·a 28b 18-=a1144-+·b5148--=a 0b118-=9.-23 解析:(2x 14+332)(2x 14-332)-4x12-(x -x 12)=4x 12-33-4x 12+4=-23. 10.解:(1)[f (x )]2-[g (x )]2 =[f (x )+g (x )]·[f (x )-g (x )]=2·e x·(-2e -x ) =-4e 0=-4.(2)f (x )f (y )=(e x -e -x )(e y -e -y )=e x +y +e -(x +y )-e x -y -e -(x -y ) =g (x +y )-g (x -y )=4, ①同法可得g (x )g (y )=g (x +y )+g (x -y )=8. ②由①②解方程组⎩⎪⎨⎪⎧g (x +y )-g (x -y )=4,g (x +y )+g (x -y )=8.解得g (x +y )=6,g (x -y )=2, ∴g (x +y )g (x -y )=62=3.2.1.3 指数函数及其图象 1.B 2.B 3.A4.A 解析:g (x )=a x 的图象经过一、二象限,f (x )=a x +b 是将g (x )=a x 的图象向下平移|b |(b <-1)个单位而得,因而图象不经过第一象限.5.D 解析:A ={x |y =2x -x 2}={x |2x -x 2≥0}={x |0≤x ≤2},B ={y |y =3x (x >0)}={y |y >1},则A ∪B ={x |x ≥0},A ∩B ={x |1<x ≤2},根据新运算,得A #B =∁A ∪B (A ∩B )={x |0≤x ≤1或x >2}.故选D.6.B 解析:函数关于y 轴对称.7.解:∵4x >0,∴0≤16-4x <16,∴0≤16-4x <4.8.B 解析:设x <0,则-x >0,f (-x )=10-x ,∵f (x )为偶函数.∴f (x )=f (-x )=10-x .9.①③④⑤ 解析:因为f (x )=⎝⎛⎭⎫12x ,f (x 1+x 2)=122x x +=12x ·22x =f (x 1)·f (x 2),所以①成立,②不成立;显然函数f (x )=⎝⎛⎭⎫12x 单调递减,即f (x 1)-f (x 2)x 1-x 2<0,故③成立;当x 1<0时,f (x 1)>1,f (x 1)-1x 1<0,当x 1>0时,0<f (x 1)<1,f (x 1)-1x 1<0,故④成立;f (-x 1)=⎝⎛⎭⎫121x -=12x =1f (x 1),故⑤成立. 10.解:(1)∵当x >0时,f (x )=(a 2-1)x 的值总大于1, ∴a 2-1>1.∴a 2>2.∴a >2或a <- 2.(2)∵函数y =a x -3的图象恒过定点(3,1),∴函数y =a x -3+3的图象恒过定点(3,4).2.1.4 指数函数的性质及其应用 1.A 2.B3.B 解析:由y =|2x-2|=⎩⎪⎨⎪⎧2x -2, (x ≥1),-2x+2, (x ≤1),分两部分:一部分为y 1=2x -2(x ≥1),只须将y =2x 的图象沿y 轴的负半轴平移2个单位即可,另一部分为y 2=-2x +2(x ≤1),只须将y =2x 的图象对称于x 轴的图象y =-2x ,然后再沿y 轴的正半轴平移2个单位,即可得到y =-2x +2的图象.故选B.4.C 解析:由于函数y =a x 在[0,1]上是单调的,因此最大值与最小值都在端点处取到,故有a 0+a 1=3,解得a =2,因此函数y =3a x -1在[0,1]上是单调递增函数,最大值当x =1时取到,即为3.5.C 解析:很显然a ,b 均大于1;且y =b x 函数图象比y =a x 变化趋势小,故b <a ,综上所述,a >b >1.6.B7.解:f (3)=f (3+1)=f (4)=⎝⎛⎭⎫124=116. 8.(-∞,-2)∪(2,+∞)9.(0,3] 解析:设y =⎝⎛⎭⎫13u ,u =x 2-2x ,∵函数y =⎝⎛⎭⎫13u 是单调减函数,∴函数y =f (x )与u =x 2-2x 增减性相反.∵u 有最小值-1,无最大值,∴y 有最大值⎝⎛⎭⎫13-1=3,无最小值.又由指数函数值域y >0知所求函数的值域为(0,3].10.(1)解:∵f (x )的定义域是R ,且f (-x )=10-x -10x10-x +10x=-f (x ),∴f (x )是奇函数.(2)证法一:f (x )=10x -10-x 10x +10-x =102x -1102x+1=1-2102x +1. 令x 2>x 1,则f (x 2)-f (x 1)=2221101x ⎛⎫- ⎪+⎝⎭-1221101x ⎛⎫- ⎪+⎝⎭=212122222(1010)(101)(101)x x x x ⨯-++, ∵y =10x 为增函数,∴当x 2>x 1时,2210x -1210x >0. 又∵1210x +1>0,2210x +1>0, 故当x 2>x 1时,f (x 2)-f (x 1)>0, 即f (x 2)>f (x 1). ∴f (x )是增函数.证法二:考虑复合函数的增减性.由f (x )=10x -10-x 10x +10-x =1-2102x+1. ∵y =10x 为增函数,∴y =102x +1为增函数,y =2102x +1为减函数,y =-2102x +1为增函数,y =1-2102x +1为增函数.∴f (x )=10x -10-x10x +10-x在定义域内是增函数.(3)解:令y =f (x ).由y =102x -1102x +1,解得102x =1+y1-y.∵102x >0,∴1+y1-y>0,解得-1<y <1.即f (x )的值域为(-1,1).2.2 对数函数2.2.1 对数与对数运算 1.C 2.B 3.B 4.A5.A 解析:令e x =t ,则x =ln t ,∴f (t )=ln t .∴f (e)=lne =1. 6.B 解析:log 2a =0,∴a =1.从而b =0,P ∪Q ={3,0,1}. 7.解:(1)由题意知⎩⎪⎨⎪⎧x +2>0,x -1>0,x -1≠1,解得x >1,且x ≠2.故x 的取值范围为(1,2)∪(2,+∞).(2)由题意知⎩⎪⎨⎪⎧x +3>0,x +3≠1,解得x >-3,且x ≠-2.故x 的取值范围为(-3,-2)∪(-2,+∞).8.-2 解析:∵x =-2<0,∴f (-2)=10-2=1100>0,∴f (10-2)=lg10-2=-2,即f [f (-2)]=-2.9.3 解析:(a 23)32=⎣⎡⎦⎤⎝⎛⎭⎫23232⇒a =⎝⎛⎭⎫233⇒log 23a =log 23⎝⎛⎭⎫233=3. 10.解:(1)令log 2x =t ,则2t=x .因为f (log 2x )=x , 所以f (t )=2t .所以f ⎝⎛⎭⎫12=212= 2.(2)因为log 2[log 3(log 4x )]=0, 所以log 3(log 4x )=1.所以log 4x =3,所以x =43=64. 又因为log 3[log 4(log 2y )]=0. 所以log 4(log 2y )=1.所以log 2y =4.所以y =24=16. 所以x +y =64+16=80.2.2.2 对数的性质及其应用 1.A 2.B 3.B4.B 解析:方法一:原式=lg 10023-lg 1024+lg 12=lg100-lg23-lg10+lg24+lg1-lg2 =lg102-3lg2-1+4lg2-lg2=2-1=1.方法二:原式=lg 12.5×1258=lg10=1.5.D6.A 解析:∵1a +1b=log m 2+log m 5=log m 10=2,∴m 2=10.又∵m >0,∴m =10.7.解:原式=lg2·lg 1022+lg 210·lg(22×10)=lg2(1-2lg2)+(lg2-1)(2lg2+1)=lg2-2(lg2)2+2(lg2)2-2lg2+lg2-1=-1.8.2b +1-a 2a +b 解析:log 1245=lg45lg12=2lg3+lg52lg2+lg3=2b +1-a2a +b.9.解:由log 83=p ,得 lg3lg8=p ,即lg3=3lg2·p . ① 由log 35=q ,得lg5lg3=q ,即1-lg2=lg3·q . ②①代入②中,得1-lg2=3lg2·pq . ∴(3pq +1)lg2=1.∵3pq +1≠0,∴lg2=13pq +1.10.解:∵lg a 和lg b 是关于x 的方程x 2-x +m =0的两个根, ∴lg a +lg b =1, ① lg a ·lg b =m . ②∵关于x 的方程x 2-(lg a )x -(1+lg a )=0有两个相等的实根,∴Δ=(lg a )2+4(1+lg a )=0.∴lg a =-2,即a =1100.将lg a =-2代入①,得lg b =3.∴b =1000.再将lg a =-2,lg b =3代入②,得m =-6.综上所述,a =1100,b =1000,m =-6.2.2.3 对数函数及其性质(1)1.D 解析:由log 2a <0,得0<a <1.由⎝⎛⎭⎫12b>1,得b <0.故选D. 2.D3.A 解析:y =log 12x =-log 2x . 4.A 解析:由⎩⎪⎨⎪⎧log 0.5(4x -3)>0,4x -3>0,解得34<x <1.5.D6.B 解析:y =log a (-x )与y =log a x 关于y 轴对称. 7.a =2,b =2 8.D9.D 解析:∵log 45>1,0<log 54<1,0<log 53<1, ∴(log 53)2<log 54<log 45.∴b <a <c .故选D.10.解:(1)由kx -1x -1>0,得(kx -1)(x -1)>0.又∵k >0,∴⎝⎛⎭⎫x -1k (x -1)>0. 当k =1时,函数f (x )的定义域为{x |x ≠1};由0<k <1时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1或x >1k , 当k >1时,函数f (x )的定义域为⎩⎨⎧⎭⎬⎫x ⎪⎪x <1k 或x >1. (2)f (x )=ln k (x -1)+k -1x -1=ln ⎝ ⎛⎭⎪⎫k +k -1x -1,∵函数f (x )在区间[10,+∞)上是增函数,∴k -1<0,即k <1.又由10k -110-1>0,得k >110.综上所述,实数k 的取值范围为110<k <1.2.2.4 对数函数及其性质(2) 1.D 2.C 3.A4.B 解析:∵a =log 23.6>log 22=1.又∵y =log 4x ,x ∈(0,+∞)为单调递增函数, ∴log 43.2<log 43.6<log 44=1,∴b <c <a . 5.C6.C 解析:由log a 23<1=log a a ,得(1)当0<a <1时,由y =log a x 是减函数,得0<a <23;(2)当a >1时,由y =log a x 是增函数,得a >23,∴a >1.综合(1)(2),得0<a <23或a >1.7.D 解析:f (x )的定义域为(-1,1),且对定义域内任意x ,f (-x )=lg 1-x 1+x =lg ⎝ ⎛⎭⎪⎫1+x 1-x -1=-lg 1+x 1-x=-f (x );又可以验证f ⎝⎛⎭⎫-12≠f ⎝⎛⎭⎫12,因此,f (x )是奇函数但不是偶函数. 用同样的方法可有:y =x 3+1既不是奇函数又不是偶函数;y =e 0-1e 0+1=0(x ∈R )既是奇函数又是偶函数;y =|2x +1|+|2x -1|是偶函数而不是奇函数,只有y =12x -1+12是奇函数但不是偶函数.故选D.8.⎝⎛⎦⎤-1,32 解析:令u (x )=4+3x -x 2,又∵4+3x -x 2>0⇒x 2-3x -4<0,解得-1<x <4.又u (x )=-x 2+3x +4=-⎝⎛⎭⎫x -322+254,对称轴为x =32,开口向下的抛物线;u (x )在⎝⎛⎦⎤-1, 32上是增函数,在⎝⎛⎭⎫32,4上是减函数,又y =ln u (x )是定义域上的增函数,根据复合函数的单调性,y =ln(4+3x -x 2)在⎝⎛⎦⎤-1, 32上是增函数. 9.②③10.(1)解:∵f (x )是奇函数,∴f (-x )=-f (x ).∴log 121+ax -x -1=-log 121-ax x -1⇔1+ax -x -1=x -11-ax >0⇒1-a 2x 2=1-x 2⇒a =±1.检验a =1(舍),∴a =-1.(2)证明:任取x 1>x 2>1,∴x 1-1>x 2-1>0.∴0<2x 1-1<2x 2-1⇒0<1+2x 1-1<1+2x 2-1⇒0<x 1+1x 1-1<x 2+1x 2-1⇒log 12x 1+1x 1-1>log 12x 2+1x 2-1,即f (x 1)>f (x 2).∴f (x )在(1,+∞)内单调递增.(3)解:f (x )-⎝⎛⎭⎫12x>m 恒成立.令g (x )=f (x )-⎝⎛⎭⎫12x.只需g (x )min >m ,用定义可以证g (x )在[3,4]上是增函数,∴g (x )min =g (3)=-98.∴当m <-98时原式恒成立.2.2.5 对数函数及其性质(3)1.D 解析:c =⎝⎛⎭⎫120.3>0,a =log 132<0,b =log 123<0,并且log 132>log 133,所以c >a >b .2.C 解析:y =3x -2的图象向左平移2个单位得到y =3x的图象,其反函数为y =log 3x . 3.B 4.B 5.B 6.D 7.A 8.C 解析:将A 项函数沿着直线y =x 对折即可得到函数y =log 2x .将B 沿着x 轴对折,将D 向下平移1个单位再沿x 轴对折即可.9.22提示:利用奇函数的定义或f (0)=0. 10.解:(1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1.所以函数f (x )的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3), 由f (x )=0,得-x 2-2x +3=1, 即x 2+2x -2=0,x =-1±3. ∵-1±3∈(-3,1),∴方程f (x )=0的解为-1±3.(3)函数可化为f (x )=log a (-x 2-2x +3) =log a [-(x +1)2+4],∵-3<x <1,∴0<-(x +1)2+4≤4.∵0<a <1,∴log a [-(x +1)2+4]≥log a 4, 即f (x )min =log a 4.由log a 4=-4,得a -4=4.∴a =4-14=22.2.3 幂函数 1.C 2.A3.C 解析:设f (x )=x α,则有2α=22,解得α=-12,即f (x )=x 12-,所以f (4)=412-=12. 4.A 5.B 6.B7.解:⎩⎪⎨⎪⎧m 2-3m +3=1,m 2-m -2≤0,解得m =1或m =2.8.(1)②④ (2)①⑤⑧⑨9.依次是E ,C ,A ,G ,B ,D ,H ,F10.解:(1)若f (x )是幂函数,故m 2-m -1=1, 即m 2-m -2=0.解得m =2或m =-1.(2)若f (x )是幂函数且又是(0,+∞)上的增函数,则⎩⎪⎨⎪⎧m 2-m -1=1,-5m -3>0.所以m =-1. (3)若f (x )是正比例函数,则-5m -3=1,解得m =-45.此时m 2-m -1≠0,故m =-45.(4)若f (x )是反比例函数,则-5m -3=-1,则m =-25,此时m 2-m -1≠0,故m =-25.(5)若f (x )是二次函数,则-5m -3=2,即m =-1,此时m 2-m -1≠0,故m =-1. 综上所述,当m =2或m =-1时,f (x )是幂函数;当m =-1时,f (x )既是幂函数,又是(0,+∞)上的增函数;当m =-45时,f (x )是正比例函数;当m =-25时,f (x )是反比例函数;当m =-1时,f (x )是二次函数.。

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)

必修一基本初等函数练习题(含详细答案解析)一、选择题1.对数式log32-(2+3)的值是().A.-1 B.0 C.1 D.不存在1.A解析:log32-(2+3)=log32-(2-3)-1,故选A.2.当a>1时,在同一坐标系中,函数y=a-x与y=log a x的图象是().A B C D2.A解析:当a>1时,y=log a x单调递增,y=a-x单调递减,故选A.3.如果0<a<1,那么下列不等式中正确的是().A.(1-a)31>(1-a)21B.log1-a(1+a)>0C.(1-a)3>(1+a)2D.(1-a)1+a>13.A解析:取特殊值a=21,可立否选项B,C,D,所以正确选项是A.4.函数y=log a x,y=log b x,y=log c x,y=log d x的图象如图所示,则a,b,c,d的大小顺序是().A.1<d<c<a<bB.c<d<1<a<bC.c<d<1<b<aD.d<c<1<a<b4.B解析:画出直线y=1与四个函数图象的交点,它们的横坐标的值,分别为a,b,c,d的值,由图形可得正确结果为B.(第4题)5.已知f (x 6)=log 2 x ,那么f (8)等于( ). A .34 B .8 C .18 D .21 5.D6.如果函数f (x )=x 2-(a -1)x +5在区间⎪⎭⎫⎝⎛121 ,上是减函数,那么实数a 的取值范围是( ).A . a ≤2B .a >3C .2≤a ≤3D .a ≥36.D7.函数f (x )=2-x -1的定义域、值域是( ). A .定义域是R ,值域是RB .定义域是R ,值域为(0,+∞)C .定义域是R ,值域是(-1,+∞)D .定义域是(0,+∞),值域为R7.C+∞).8.已知-1<a <0,则( ).A .(0.2)a <a⎪⎭⎫⎝⎛21<2aB .2a <a⎪⎭⎫⎝⎛21<(0.2)aC .2a <(0.2)a <a⎪⎭⎫⎝⎛21D .a⎪⎭⎫⎝⎛21<(0.2)a <2a8.B9.已知函数f (x )=⎩⎨⎧+-1 log 1≤413> ,,)(x x x a x a a是(-∞,+∞)上的减函数,那么a 的取值范围是( ).A .(0,1)B .⎪⎭⎫ ⎝⎛310,C .⎪⎭⎫⎢⎣⎡3171,D .⎪⎭⎫⎢⎣⎡171,9.C解析:由f (x )在R 上是减函数,∴ f (x )在(1,+∞)上单减,由对数函数单调性,即0上是减函数,为了满足单调区间的定义,f (x )在(-∞,1]上的最小值7a -1要大于等于f (x )在[1,+∞)上的最大值0,才能保证f (x )在R 上是减函数.10.已知y =log a (2-ax )在[0,1]上是x 的减函数,则a 的取值范围是( ). A .(0,1) B .(1,2) C .(0,2) D .[2,+∞)10.B解析:先求函数的定义域,由2-ax >0,有ax <2,因为a 是对数的底,故有a >0且若0<a <1,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )增大,即函数 y =log a (2-ax )在[0,1]上是单调递增的,这与题意不符.若1<a <2,当x 在[0,1]上增大时,2-ax 减小,从而log a (2-ax )减小,即函数 y =log a (2-ax )在[0,1]上是单调递减的.所以a 的取值范围应是(1,2),故选择B . 二、填空题11.满足2-x >2x 的 x 的取值范围是 .11.参考答案:(-∞,0). 解析:∵ -x >x ,∴ x <0.12.已知函数f (x )=log 0.5(-x 2+4x +5),则f (3)与f (4)的大小关系为 . 12.参考答案:f (3)<f (4).解析:∵ f (3)=log 0.5 8,f (4)=log 0.5 5,∴ f (3)<f (4). 13.64log 2log 273的值为_____.14.已知函数f (x )=⎪⎩⎪⎨⎧,≤ ,,>,020log 3x x x x 则⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛91f f 的值为_____.15.函数y =)-(34log 5.0x 的定义域为 .16.已知函数f (x )=a -121+x,若f (x )为奇函数,则a =________. 解析:∵ f (x )为奇函数,三、解答题17.设函数f (x )=x 2+(lg a +2)x +lg b ,满足f (-1)=-2,且任取x ∈R ,都有f (x )≥2x ,求实数a ,b 的值.17.参考答案:a =100,b =10.解析:由f (-1)=-2,得1-lg a +lg b =0 ①,由f (x )≥2x ,得x 2+x lg a +lg b ≥0 (x ∈R ).∴Δ=(lg a )2-4lg b ≤0 ②.联立①②,得(1-lg b )2≤0,∴ lg b =1,即b =10,代入①,即得a =100.18.已知函数f (x )=lg (ax 2+2x +1) .(1)若函数f (x )的定义域为R ,求实数a 的取值范围; (2)若函数f (x )的值域为R ,求实数a 的取值范围.18.参考答案:(1) a 的取值范围是(1,+∞) ,(2) a 的取值范围是[0,1]. 解析:(1)欲使函数f (x )的定义域为R ,只须ax 2+2x +1>0对x ∈R 恒成立,所以有⎩⎨⎧0 <440a -a >,解得a >1,即得a 的取值范围是(1,+∞); (2)欲使函数 f (x )的值域为R ,即要ax 2+2x +1 能够取到(0,+∞) 的所有值.②当a ≠0时,应有⎩⎨⎧0 ≥440a -a =>Δ⇒ 0<a ≤1.当x ∈(-∞,x 1)∪(x 2,+∞)时满足要求(其中x 1,x 2是方程ax 2+2x +1=0的二根).综上,a 的取值范围是[0,1].19.求下列函数的定义域、值域、单调区间: (1)y =4x +2x +1+1; (2)y =2+3231x -x ⎪⎭⎫⎝⎛.19.参考答案:(1)定义域为R .令t =2x (t >0),y =t 2+2t +1=(t +1)2>1, ∴ 值域为{y | y >1}.t =2x 的底数2>1,故t =2x 在x ∈R 上单调递增;而 y =t 2+2t +1在t ∈(0,+∞)上单调递增,故函数y =4x +2x +1+1在(-∞,+∞)上单调递增.20.已知函数f(x)=log a(x+1),g(x)=log a(1-x),其中a>0,a≠1.(1)求函数f(x)-g(x)的定义域;(2)判断f(x)-g(x)的奇偶性,并说明理由;(3)求使f(x)-g(x)>0成立的x的集合.20.参考答案:(1){x |-1<x<1};(2)奇函数;(3)当0<a<1时,-1<x<0;当a>1时,0<x<1.(2)设F(x)=f(x)-g(x),其定义域为(-1,1),且F(-x)=f(-x)-g(-x)=log a(-x+1)-log a(1+x)=-[log a(1+x)-log a(1-x)]=-F(x),所以f(x)-g(x)是奇函数.(3)f(x)-g(x)>0即log a(x+1)-log a(1-x)>0有log a(x+1)>log a(1-x).。

高中数学必修1基本初等函数专项练习(附答案解析)

高中数学必修1基本初等函数专项练习(附答案解析)

高中数学必修1基本初等函数专项练习一、单选题1.降雨量是气象部门观测的重要数据,日降雨量是指一天内降落在地面单位面积雨水层的深度(单位:毫米)。我国古代就有关于降雨量测量方法的记载,古代数学名著《数书九章》中有“天池盆测雨”题:天池盆(圆台形状)盆口直径二尺八寸,盆底直径为一尺二寸,盆深一尺八寸。若盆中积水深九寸,则平地降雨量是几寸(注:一尺等于十寸,一寸等于103厘米)?已知某隧道的积水程度与日降水量的关系如下表所示:如果某天该隧道的日降水量按照“天池盆测雨”题中数据计算,则该隧道的积水程度为( ) A. 一级 B. 二级 C. 三级 D. 四级2.已知函数y=f (x )的图象与函数y=log a x (a >0且a≠1)的图象关于直线y=x 对称,如果函数g (x )=f (x )[f (x )﹣3a 2﹣1](a >0,且a≠1)在区间[0,+∞)上是增函数,那么a 的取值范围是( )A. [0,23] B. [√33, 1) C. [1,√3] D. [32 , +∞)3.已知幂函数 f(x)=x a 的图象经过函数 g(x)=a x−2−12 ( a >0 且 a ≠1 )的图象所过的定点,则幂函数 f(x) 不具有的特性是( )A. 在定义域内有单调递减区间B. 图象过定点 (1,1)C. 是奇函数D. 其定义域是 R 4.“ a 3>b 3 ”是“ log 7a >log 7b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 5.“ lna >lnb ”是“ 1a <1b ”的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D. 既不充分也不必要条件 6.设 a =(53)16,b=(35)−15,c=ln 23 ,则a ,b ,c 的大小关系是( )A. a >b >cB. b >a >cC. b >c >aD. a >c >b 7.已知函数 f(x)=(m 2−m −1)x m 2−4m+3是幂函数,且其图像与 y 轴没有交点,则实数 m = ( )A. 或B.C. D.8.已知x ,y 为正实数,则( )A. 2lgx+lgy =2lgx +2lgyB. 2lg (x+y )=2lgx •2lgyC. 2lgx•lgy =2lgx +2lgyD. 2lg (xy )=2lgx •2lgy 9.下列选项正确的是( )A. log a (x+y )=log a x+log a yB. log a x y = log a xlog ayC. (log a x )2=2log a xD.log a x n=log a √x n10.幂函数f (x )=(m 2﹣m ﹣1)x m 2+m −3 在x ∈(0,+∞)上是减函数,则m=( ) A. ﹣1 B. 2 C. ﹣1或2 D. 1 11.以下不等式中错误的是( )A. log 50.7<log 58.1B. log 0.26>log 0.27C. log 0.15<log 1.23D. log a 4<log a 7(a >0 且 a ≠1)12.若幂函数f (x )的图象过点(16,8),则f (x )<f (x 2)的解集为( ) A. (–∞,0)∪(1,+∞) B. (0,1) C. (–∞,0) D. (1,+∞) 13.下列各式中成立的是( )A. (mn)7=n 7m 17 B. √(−3)412=√−33 C. √x 3+y 34=(x +y)34 D. √√93=√33 14.若2a =5b =100,则下列关系中,一定成立的是( )A. 2a+2b=abB. a+b=abC. a+b=10D. ab=10 15.已知函数f (x )=|2x ﹣a2|,其在区间[0,1]上单调递增,则a 的取值范围为( )A. [0,1]B. [﹣1,0]C. [﹣1,1]D. [﹣12 , 12] 16.函数 f(x)=a 2x−3−5 ( a >0 且 a ≠1 )的图象恒过点( ) A. (32 , -4) B. (32 , -5) C. (0,1) D. (0,−5) 17.下列三个数:a=ln 32-32 , b=lnπ﹣π,c=ln3﹣3,大小顺序正确的是( )A. a >c >bB. a >b >cC. b >c >aD. b >a >c18.对于任意实数x ,符号[x]表示x 的整数部分,即[x]是不超过x 的最大整数,例如[2]=2;[2.1]=2;[-2.2]=-3, 这个函数[x]叫做“取整函数”,它在数学本身和生产实践中有广泛的应用。

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一第二章基本初等函数练习题难题带答案

高一数学必修一基本初等函数一.选择题(共30小题)1.设a=log43,b=log54,c=2﹣0.01,则a,b,c的大小关系为()A.b<a<c B.a<b<c C.a<c<b D.b<c<a2.已知a=3ln2π,b=2ln3π,c=3lnπ2,则下列选项正确的是()A.a>b>c B.c>a>b C.c>b>a D.b>c>a3.函数f(x)=(|x|﹣7)e|x|则()A.B.f(0.76)<f(60.5)<f(log0.76)C.D.4.已知P(x,y)为函数f(x)=图象上一动点,则的最大值为()A.B.C.2D.5.设a=3,b=3log3π,c=πlogπ3,则a,b,c的大小关系为()A.a<b<c B.a<c<b C.c<a<b D.c<b<a6.若a=0.220.33,b=0.330.22,c=log0.330.22,则()A.a>b>c B.b>a>c C.c>a>b D.c>b>a7.已知a,b,c∈R,满足==﹣<0,则a,b,c的大小关系为()A.c>a>b B.a>c>b C.c>b>a D.b>a>c8.已知2a=log2|a|,,c=sin c+1,则实数a,b,c的大小关系是()A.b<a<c B.a<b<c C.c<b<a D.a<c<b9.已知实数a,b,c分别满足2a=﹣a,log0.5b=b,log2c=,那么()A.a<b<c B.a<c<b C.b<c<a D.c<b<a10.已知a=log1213,b=(),c=log1314,则a,b,c的大小关系为()A.a>b>c B.c>a>b C.b>c>a D.a>c>b11.已知a>b>0,ab=1,设,则log x2x,log y2y,log z2z的大小关系为()A.log x2x>log y2y>log z2z B.log y2y>log z2z>log x2xC.log x2x>log z2z>log y2y D.log y2y>log x2x>log z2z12.已知,,c=log23,则a,b,c的大小关系为()A.b>a>c B.a>c>b C.a>b>c D.b>c>a13.下列命题为真命题的个数是()①②③A.0B.1C.2D.314.设,实数c满足e﹣c=lnc,(其中e为自然常数),则()A.a>b>c B.b>c>a C.b>a>c D.c>b>a15.若实数x,y,z满足,则x,y,z的大小关系是()A.x<y<z B.x<z<y C.z<x<y D.z<y<x16.已知x1=ln,x2=e,x3满足e=lnx3,则下列各选项正确的是()A.x1<x3<x2B.x1<x2<x3C.x2<x1<x3D.x3<x1<x217.已知t>1,x=log2t,y=log3t,z=log5t,则()A.2x<3y<5z B.5z<2x<3y C.3y<5z<2x D.3y<2x<5z18.已知定义在R上的函数y=f(x)对任意的x都满足f(x+2)=f(x),当﹣1≤x<1时,f(x)=x3.若函数g(x)=f(x)﹣log a|x|恰有6个不同零点,则a的取值范围是()A.(,]∪(5,7] B.(,]∪(5,7]C.(,]∪(3,5] D.(,]∪(3,5]19.已知函数f(x)=,g(x)=x2﹣2x,设a为实数,若存在实数m,使f(m)﹣2g(a)=0,则实数a的取值范围为()A.[﹣1,+∞)B.(﹣∞,﹣1]∪[3,+∞)C.[﹣1,3] D.(﹣∞,3]20.已知函数y=f(x)(x∈R)满足f(x+2)=2f(x),且x∈[﹣1,1]时,f(x)=﹣|x|+1,则当x∈[﹣10,10]时,y=f(x)与g(x)=log4|x|的图象的交点个数为()A.13B.12C.11D.1021.设a=log46,,,则()A.a>b>c B.b>c>a C.a>c>b D.c>b>a22.已知实数a>0,b>0,a≠1,且满足lnb=,则下列判断正确的是()A.a>b B.a<b C.log a b>1D.log a b<123.设a=π﹣e,b=lnπ﹣1,c=eπ﹣e e,则()A.a<b<c B.b<c<a C.c<b<a D.b<a<c24.若函数f(x)=在区间[2019,2020]上的最大值是M,最小值是m,则M﹣m()A.与a无关,但与b有关B.与a无关,且与b无关C.与a有关,但与b无关D.与a有关,且与b有关25.正数a,b满足1+log2a=2+log3b=3+log6(a+b),则的值是()A.B.C.D.26.已知实数a,b,c,d满足,则(a﹣c)2+(b﹣d)2的最小值为()A.8B.4C.2D.27.函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A,若点A在直线mx+ny+2=0上(其中m,n>0),则的最小值等于()A.10B.8C.6D.428.若m,n,p∈(0,1),且log3m=log5n=lgp,则()A.B.C.D.29.已知a=log2e,b=ln3,c=log,则a,b,c的大小关系为()A.a>b>c B.b>a>c C.c>b>a D.b>c>a30.若函数f(x)=ln(ax2﹣2x+3)的值域为R,则实数a的取值范围是()A.[0,]B.(,+∞)C.(﹣∞,]D.(0,]二.填空题(共6小题)31.已知函数f(x)在R上连续,对任意x∈R都有f(﹣3﹣x)=f(1+x);在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;若f(2a﹣1)<f(3a﹣2),则实数a的取值范围是.32.若存在正数x,y,使得(y﹣2ex)(lny﹣lnx)z+x=0(其中e为自然对数的底数),则实数z的取值范围是33.已知函数f(x)=log2(x+2)与g(x)=(x﹣a)2+1,若对任意的x1∈[2,6),都存在x2∈[0,2],使得f(x1)=g(x2),则实数a的取值范围是.34.已知函数f(x)的图象与函数g(x)=2x关于直线y=x对称,令h(x)=f(1﹣|x|),则关于函数h(x)有以下命题:(1)h(x)的图象关于原点(0,0)对称;(2)h(x)的图象关于y轴对称;(3)h(x)的最小值为0;(4)h(x)在区间(﹣1,0)上单调递增.中正确的是.35.设a,b为非零实数,x∈R,若,则=.36.函数f(x)=log2x在区间[a,2a](a>0)上的最大值与最小值之差为.三.解答题(共4小题)37.已知函数f(x)=的图象关于原点对称,其中a为常数.(1)求a的值;(2)当x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,求实数m的取值范围;(3)若关于x的方程f(x)=(x+k)在[2,3]上有解,求k的取值范围.38.已知函数f(x)=log a(2﹣x)﹣log a(2+x)(a>0且a≠1),且1是函数y=f(x)+x的零点.(1)求实数a的值;(2)求使f(x)>0的实数x的取值范围.39.已知函数f(x)=(a2﹣3a+3)a x是指数函数.(1)求f(x)的解析式;(2)判断函数F(x)=f(x)﹣f(﹣x)的奇偶性,并证明;(3)解不等式log a(1﹣x)>log a(x+2).40.已知f(x)是定义在R上的偶函数,且x≤0时,f(x)=(﹣x+1)(1)求f(3)+f(﹣1);(2)求函数f(x)的解析式;(3)若f(a﹣1)<﹣1,求实数a的取值范围.参考答案与试题解析一.选择题(共30小题)1.【解答】解:因为0=log41<a=log43<log44=1,0<b=log54<log55=1,c=2﹣0.01>2≈0.92,log54=≈0.86,==log43×log45<()2=()2<1,∴a,b,c的大小关系为a<b<c.故选:B.2.【解答】解:,,=,∵6π>0,∴a,b,c的大小比较可以转化为的大小比较.设f(x)=,则f′(x)=,当x=e时,f′(x)=0,当x>e时,f′(x)<0,当0<x<e时,f′(x)>0∴f(x)在(e,+∞)上,f(x)单调递减,∵e<3<π<4∴,∴b>c>a,故选:D.3.【解答】解,60.5>1>0.76>0>log0.76,函数f(x)为偶函数,则,当x>0时,f(x)=(x﹣7)e x,则f′(x)=(x﹣6)e x,易知函数f(x)在(0,6)上单调递减,又,故,即﹣log0.76<6,又,故,即﹣log0.76>3,则0<0.76<1<60.5<﹣log0.76<6,所以f(0.76)>f(60.5)>f(﹣log0.76)=f(log0.76),故选:D.4.【解答】解:设Q(,1),原点O,则=(,1),=(x,y),∴即.∴当OP与f(x)在y轴右侧相切时取最大值,设直线y=kx(k>0)与函数f(x)相切于点P0(x0,y0),y′=k,f′(x)=2x,则,解得.即切点P0(,),∴,即的最大值为.故选:D.5.【解答】解:构造函数f(x)=(x>1),则f′(x)=,当x∈(1,e2)时,f′(x)>0,则f(x)在(1,e2)上为增函数,∴f(π)>f(3),即>,∴>,即3log3π>πlogπ3,则b>c;设g(x)=,则g′(x)=,当x>3时,g′(x)>30ln3﹣1>0,∴g(x)在(3,+∞)上为增函数,则g(π)>g(3)=0,即>π,则3π>π3.又πlogπ3=>.∴a<c<b.故选:B.6.【解答】解:由1>a=0.220.33>0,1>b=0.330.22>0,c=log0.330.22>log0.330.33=1,所以c>a,且c>b;又ln0.220.33=0.33ln0.22,ln0.330.22=0.22ln0.33;不妨设0.33ln0.22<0.22ln0.33,则有<;构造函数f(x)=,x>0,所以f′(x)=,令f′(x)=0,解得x=e;所以x∈(0,e)时,f′(x)>0,f(x)是单调增函数;所以f(0.22)<f(0.33),即<,所以b>a;综上知,c>b>a.故选:D.7.【解答】解:已知a,b,c∈R,令==﹣=﹣1,则:,所以c>1.由于3b>0,且,故lnb<0,解得0<b<1,同理2a>0,且,故lna<0,解得0<a<1.由于0<a<1,0<b<1,==﹣<0,所以2a<3b,故lnb<lna,整理得b<a,所以c>1>a>b>0.故选:A.8.【解答】解:作出函数y=2x和y=log2|x|的图象,由图1可知,交点A的横坐标a<0;作出函数y=和y=的图象,由图2可知,交点B的横坐标0<b<1;作出函数y=x和y=sin x+1的图象,由图3可知,交点C的横坐标c>1所以,a<b<c.故选:B.9.【解答】解:∵log0.5b=﹣log2b=b,∴log2b=﹣b,在同一坐标系内画出函数y=2x,y=﹣x,y=log2x,y=的图象.可知a<0<b<1<c.故选:A.10.【解答】解:=,∵=<1,∴log1314<log1213,且log1314>1,,∴a>c>b.故选:D.11.【解答】解:,=,,∵a>b>0,ab=1,∴a>1>b>0,∴,log2(a+b)<2,∴,∴,∴,又0<,∴,∴log y2y>log z2z>log x2x.故选:B.12.【解答】解:根据指数运算与对数运算的性质,>3,1<<2,1<c=log23<2,设b=,c=log23,由于函数m=log2t为增函数,由于的值接近于4,所以a>b>c.故选:C.13.【解答】解:构造函数f(x)=,x∈(0,+∞),∴,令f'(x)=0得:x=e,∵当x∈(0,e)时,f'(x)>0,f(x)单调递增;当x∈(e,+∞)时,f'(x)<0,f(x)单调递减,∴f(e)>f(3)>f(π),即,故①正确,②错误,构造函数g(x)=,x∈(0,+∞),∵,令g'(x)=0得:x=e,∵当x∈(0,e)时,g'(x)<0,g(x)单调递减;当x∈(e,+∞)时,g'(x)>0,g(x)单调递增,∴g(e)<g(3),即0<,∴ln3<,∴,故③正确,∴真命题的个数是2个,故选:C.14.【解答】解:∵e﹣c>0,∴lnc>0,∴c>1,∴,∴,∴1<c<2,又,∴b>c>a.故选:B.15.【解答】解:设=p,∴p>0,设y1=log2x,y2=log3y,y3=2z,作出3个函数的图象,如图所示:由图可知:z<x<y,故选:C.16.【解答】解:依题意,因为y=lnx为(0,+∞)上的增函数,所以x1=ln<ln1=0;因为y=e x为R上的增函数,且e x>0,所以0<x2=e<e0=1;x3满足e=lnx3,所以x3>0,所以>0,所以lnx3>0=ln1,又因为y=lnx为(0,+∞)的增函数,所以x3>1,综上:x1<x2<x3.故选:B.17.【解答】解:∵t>1,∴lgt>0.又0<lg2<lg3<lg5,∴2x=2>0,3y=3>0,5z=>0,∴=>1,可得5z>2x.=>1.可得2x>3y.综上可得:3y<2x<5z.故选:D.18.【解答】解:首先将函数g(x)=f(x)﹣log a|x|恰有6个零点,这个问题转化成f(x)=log a|x|的交点来解决.数形结合:如图,f(x+2)=f(x),知道周期为2,当﹣1<x≤1时,f(x)=x3图象可以画出来,同理左右平移各2个单位,得到在(﹣7,7)上面的图象,以下分两种情况:(1)当a>1时,log a|x|如图所示,左侧有4个交点,右侧2个,此时应满足log a5≤1<log a7,即log a5≤log a a<log a7,所以5≤a<7.(2)当0<a<1时,log a|x|与f(x)交点,左侧有2个交点,右侧4个,此时应满足log a5>﹣1,log a7≤﹣1,即log a5<﹣log a a≤log a7,所以5<a﹣1≤7.故≤a<综上所述,a的取值范围是:5≤a<7或≤a<,故选:A.19.【解答】解:∵g(x)=x2﹣2x,设a为实数,∴2g(a)=2a2﹣4a,a∈R,∵y=2a2﹣4a,a∈R,∴当a=1时,y最小值=﹣2,∵函数f(x)=,f(﹣7)=6,f(e﹣2)=﹣2,∴值域为[﹣2,6]∵存在实数m,使f(m)﹣2g(a)=0,∴﹣2≤2a2﹣4a≤6,即﹣1≤a≤3,故选:C.20.【解答】解:由题意,函数f(x)满足:定义域为R,且f(x+2)=2f(x),当x∈[﹣1,1]时,f(x)=﹣|x|+1;在同一坐标系中画出满足条件的函数f(x)与函数y=log4|x|的图象,如图:由图象知,两个函数的图象在区间[﹣10,10]内共有11个交点;故选:C.21.【解答】解:,,,∵0<log34<log35<log36,∴,∴a>b>c.故选:A.22.【解答】解:∵lnb=,∴lnb﹣lna=,构造函数∴f(x)=;∴==;∴≥0;∴f(x)在(0,+∞)单调递增.且f(1)=0;当x∈(0,1)时,f(x)<0,当x∈(1.+∞)时f(x)>0;∵a≠1∴当0<a<1时,f(a)<0⇒0即lnb﹣lna<0⇒b<a,∴lnb<lna<0⇒⇒log a b>1,当a>1时,f(a)>0⇒即lnb﹣lna>0⇒b>a,∴lnb>lna>0⇒⇒log a b>1,故选:C.23.【解答】解:∵a=π﹣e>0,b=lnπ﹣1=lnπ﹣lne>0,c=eπ﹣e e>0;设y=lnx,则=,表示了连接两点(π,lnπ),(e,lne)的割线的斜率,而y'=,当x>1时,曲线切线的斜率0<k<1;故0<=<1,故b<a;设y=e x,则=,表示了连接两点(π,eπ),(e,e e)的割线的斜率,而y'=e x,当x>1时,曲线切线的斜率k>1;故=>1,故c>a;故b<a<c;故选:D.24.【解答】解:,令,则y=2019t2+bt+a的最大值是M,最小值是m,而a是影响图象的上下平移,此时最大和最小值同步变大或变小,故M﹣m与a无关,而b是影响图象的左右平移,故M﹣m与b有关,故选:A.25.【解答】解,依题意,设1+log2a=2+log3b=3+log6(a+b)=k,则a=2k﹣1,b=3k﹣2,a+b=6k﹣3,所以=====,故选:A.26.【解答】解:∵实数a,b,c,d满足,∴b=lna,d=c+1.考查函数y=lnx,与y=x+1.∴(a﹣c)2+(b﹣d)2就是曲线y=lnx与直线y=x+1之间的距离的平方值,对曲线y=lnx求导:y′=,与直线y=x+1平行的切线斜率k=1=,解得:x=1,将x=1代入y=lnx得:y=0,即切点坐标为(1,0),∴切点(1,0)到直线y=x+1的距离d==,即d2=2,则(a﹣c)2+(b﹣d)2的最小值为2.故选:C.27.【解答】解:令x+3=1,求得x=﹣2,可得函数y=log a(x+3)﹣1(a>0,且a≠1)的图象恒过定点A(﹣2,﹣1),若点A在直线mx+ny+2=0上(其中m,n>0),则﹣2m﹣n+2=0,即2m+n=2.由基本不等式可得2≥2,即mn≤,即≥2,当且仅当2m=n=1时,取等号.则==≥4,故选:D.28.【解答】解:∵m,n,p∈(0,1),且log3m=log5n=lgp=k,∴lgm,lgn,lgp<0,m=3k,n=5k,p=10k,∴==,==,==,因为,=53=125,所以,同理=5×5=25,=10,所以,所以>0,又因为y=x k(k<0)在(0,+∞)上单调递减,∴即<<.故选:A.29.【解答】解:根据题意,c=log=ln2<lne=1,则c<1,ln3>ln2,∴c<b,a=log2e>log22=1,即a>c,ln3﹣log2e=ln3﹣=,∵2=lne2>ln6=ln2+ln3>2,∴<1,即ln2ln3<1,则ln3﹣log2e=ln3﹣=<0,即ln3<log2e,即a>b,综上a>b>c,故选:A.30.【解答】解:若函数f(x)=ln(ax2﹣2x+3)的值域为R,即有t=ax2﹣2x+3取得一切的正数,当a=0时,t=3﹣2x取得一切的正数,成立;当a<0不成立;当a>0,△≥0即4﹣12a≥0,解得0<a≤,综上可得0≤a≤.故选:A.二.填空题(共6小题)31.【解答】解:由f(﹣3﹣x)=f(1+x)可知函数f(x)关于直线x=﹣1对称;在(﹣∞,﹣1)中任意取两个不相等的实数x1,x2,都有(x1﹣x2)[f(x1)﹣f(x2)]<0恒成立;可知函数f(x)在区间(﹣∞,﹣1)上单调递减,由对称性可知函数f(x)在区间(﹣1,+∞)上单调递增,不妨设f(x)=(x+1)2,则由f(2a﹣1)<f(3a﹣2)可得4a2<(3a﹣1)2,整理得5a2﹣6a+1>0,即(a﹣1)(5a﹣1)>0,解得或a>1,所以实数a的取值范围是.故答案为:.32.【解答】解:则(y﹣2ex)(lny﹣lnx)z+x=0可化为:,令t=,得(t﹣2e)lnt=﹣.令f(t)=(t﹣2e)lnt,(t>0),则f′(t)=g(t)=lnt+1﹣,则g′(t)=,故g(t)为(0,+∞)上的增函数,又因为f′(e)=g(e)=1+1﹣2=0,故当t∈(0,e)时,f′(t)<0,当t>e时,f′(t)>0,所以f(t)在(0,e)上单调递减,在(e,+∞)上单调递增,所以f(t)在(0,+∞)存在最小值f(e)=﹣e,即f(t)的值域为(﹣e,+∞),∴﹣∈(﹣e,+∞),所以z∈(﹣∞,0)∪[,+∞),故填:(﹣∞,0)∪[,+∞),33.【解答】解:∵x1∈[2,6),∴f(2)≤f(x1)<f(6),即2≤f(x1)<3,∴f(x1)的值域为[2,3).g(x)的图象开口向上,对称轴为x=a,(1)若a≤0,则g(x)在[0,2]上是增函数,∴g(0)≤g(x2)≤g(2),即g(x2)的值域为[a2+1,a2﹣4a+5],∴,解得﹣1≤a≤0.(2)若a≥2,则g(x)在[0,2]上是减函数,∴g(2)≤g(x2)≤g(1),即g(x2)的值域为[a2﹣4a+5,a2+1],∴,解得2≤a≤3.(3)若0<a≤1,则g min(x)=g(a)=1,g max(x)=g(2)=a2﹣4a+5,∴g(x)的值域为[1,a2﹣4a+5],∴,解得0.(4)若1<a<2,则g min(x)=g(a)=1,g max(x)=g(0)=a2+1,∴g(x)的值域为[1,a2+1],∴,解得a<2.综上,a的取值范围是[﹣1,0]∪[2,3]∪(0,2﹣)∪(,2)=[﹣1,2﹣]∪[,3].故答案为[﹣1,2﹣]∪[,3].34.【解答】解:由于函数f(x)的图象与函数g(x)=2x关于直线y=x对称,故函数f(x)与函数g(x)=2x互为反函数.故函数f(x)=log2x.∴h(x)=f(1﹣|x|)=log2(1﹣|x|),故函数h(x)是偶函数,图象关于y对称,故(2)正确而(1)不正确.函数h(x)的定义域为(﹣1,1),在(﹣1,0)上是增函数,在(0,1)上是减函数,故(4)正确.故当x=0时,函数h(x)取得最大值为0,故(3)不正确.故答案为②④.35.【解答】解:由成立,得=(sin2x+cos2x)2,化简得:,即,∴,又sin2x+cos2x=1,得,.∴.则==•(sin2x+cos2x)=.故答案为:.36.【解答】解:∵f(x)=log2x在区间[a,2a]上是增函数,∴f(x)max﹣f(x)min=f(2a)﹣f(a)=log22a﹣log2a=1.故答案为:1.三.解答题(共4小题)37.【解答】解:(1)函数f(x)=的图象关于原点对称,∴f(x)+f(﹣x)=0,即+=0,∴()=0,∴=1恒成立,即1﹣a2x2=1﹣x2,即(a2﹣1)x2=0恒成立,所以a2﹣1=0,解得a=±1,又a=1时,f(x)=无意义,故a=﹣1;(2)x∈(1,+∞)时,f(x)+(x﹣1)<m恒成立,即+(x﹣1)<m,∴(x+1)<m在(1,+∞)恒成立,由于y=(x+1)是减函数,故当x=1,函数取到最大值﹣1,∴m≥﹣1,即实数m的取值范围是m≥﹣1;(3)f(x)=在[2,3]上是增函数,g(x)=(x+k)在[2,3]上是减函数,∴只需要即可保证关于x的方程f(x)=(x+k)在[2,3]上有解,下解此不等式组.代入函数解析式得,解得﹣1≤k≤1,即当﹣1≤k≤1时关于x的方程f(x)=(x+k)在[2,3]上有解.38.【解答】解:(1)∵1是函数y=f(x)+x的零点,∴f(1)=﹣1,即log a(2﹣1)﹣log a(2+1)+1=0,即log a3=1,解得a=3.(2)由(1)可知函数f(x)是递增函数,f(x)>0得log3(2﹣x)>log3(2+x),所以:有解得﹣2<x<0,所使f(x)>0的实数x的取值集合为{x|﹣2<x<0}.39.【解答】解:(1)a2﹣3a+3=1,可得a=2或a=1(舍去),∴f(x)=2x;(2)F(x)=2x﹣2﹣x,∴F(﹣x)=﹣F(x),∴F(x)是奇函数;(3)不等式:log2(1﹣x)>log2(x+2),即1﹣x>x+2>0,∴﹣2<x<﹣,解集为{x|﹣2<x<﹣}.40.【解答】解:(I)∵f(x)是定义在R上的偶函数,x≤0时,f(x)=(﹣x+1),∴f(3)+f(﹣1)=f(﹣3)+f(﹣1)=4+2=﹣2﹣1=﹣3;(II)令x>0,则﹣x<0,f(﹣x)=(x+1)=f(x)∴x>0时,f(x)=(x+1),则f(x)=.(Ⅲ)∵f(x)=(﹣x+1)在(﹣∞,0]上为增函数,∴f(x)在(0,+∞)上为减函数∵f(a﹣1)<﹣1=f(1)∴|a﹣1|>1,∴a>2或a<0。

基本初等函数专项训练(含答案)经典题

基本初等函数专项训练(含答案)经典题
(1)假设建立函数y=f(x)模型制定奖励方案,试用数学语言表述该公司对奖励函数f(x)模型的根本要求,并分析函数y= +2是否符合公司要求的奖励函数模型,并说明原因;
(2)假设该公司采用模型函数y= 作为奖励函数模型,试确定最小的正整数a的值.
8、函数 图象上一点P(2,f(2))处的切线方程为 .
(1)写出第x月的需求量f(x)的表达式;
(2)假设第x月的销售量g(x)=
(单位:件),每件利润q(x)元与月份x的近似关系为:q(x)= ,问:该商场销售A品牌商品,预计第几月的月利润到达最大值?月利润最大值是多少?(e6≈403)
6、函数f(x)=x2-(1+2a)x+alnx(a为常数).
(1)当a=-1时,求曲线y=f(x)在x=1处切线的方程;
(Ⅱ) ,令 ,
那么 ,令 ,得x=1(x=-1舍去).
在 内,当x∈ 时, ,∴h(x)是增函数;
当x∈ 时, ,∴h(x)是减函数.
那么方程 在 内有两个不等实根的充要条件是
即 .
9、解:∵ 命题p:函数y=loga(1-2x)在定义域上单调递增,∴ 0<a<1.
又命题q:不等式(a-2)x2+2(a-2)x-4<0对任意实数x恒成立,
①当0<a< 时,由f′(x)>0,又知x>0得0<x<a或 <x<1
由f′(x)<0,又知x>0,得a<x< ,
所以函数f(x)的单调增区间是(0,a)和 ,单调减区间是 ,(10分)
②当a= 时,f′(x)= ≥0,且仅当x= 时,f′(x)=0,
所以函数f(x)在区间(0,1)上是单调增函数.(11分)
当6<x<7时,h′(x)<0,
∴当1≤x<7且x∈N*时,h(x)max=30e6≈12 090,(11分)

2022版数学人教A版必修1基础训练:第二章基本初等函数(Ⅰ)本章复习提升含解析

2022版数学人教A版必修1基础训练:第二章基本初等函数(Ⅰ)本章复习提升含解析

第二章 基本初等函数(Ⅰ)本章复习提升易混易错练易错点1 利用指数、对数运算性质进行运算时忽视公式中的限定条件导致错误 1.()下列结论中正确的个数为( )①当a <0时,(a2)32=a3;②√a n n=|a |(n >0);③函数y =(x-2)12-(3x -7)0的定义域是(2,+∞);④若100a =5,10b =2,则2a +b =1. A.0 B.1 C.2 D.3 2.()计算:(1)5log 25(1-√3)2+3log 9(1+√3)2;(2)√(-8)33+√(√3-2)44-√(2-√3)33.易错点2 研究指数、对数函数时忽视对底数分0<a <1和a >1两种情况讨论导致错误 3.(2019湖北武昌实验中学高一上期中,)若log a 12<2,则a 的取值范围是( )A.(√22,+∞)B.(0,√22) C.(√22,1) D.(0,√22)∪(1,+∞)4.()若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为 . 5.()已知log a (2a +1)<log a (3a -1),其中a >0且a ≠1,求实数a 的取值范围.6.()已知函数f (x )=log a (8-ax )(a >0,且a ≠1).(1)若f (x )<2,求实数x 的取值范围;(2)若f (x )>1在区间[1,2]上恒成立,求实数a 的取值范围.易错点3 研究指数、对数函数时忽视定义域与值域导致错误 7.()已知f (x )是定义在R 上的奇函数,若f (x )在(0,+∞)上是增函数,且f (13)=0,则不等式f (lo g 18x )<0的解集为 ( ) A.(0,12)B.(12,+∞) C.(12,1)∪(2,+∞) D.(0,12)∪(2,+∞) 8.()若函数f (x )=log a (6-ax )在[0,2]上为减函数,则a 的取值范围是( )A.(0,1)B.(1,3)C.(1,+∞)D.[3,+∞) 9.()若函数f (x )=lo g 12(x 2-ax +3a )在区间(2,+∞)上是减函数,则a 的取值范围为( )A.(-∞,4]B.(-4,4]C.[-4,4)D.[-4,4]10.(2020山东枣庄高一上期末,)已知f (x )={3x -4,x >1,3x ,x ≤1,若a <b ,f (a )=f (b ),则a +3b 的取值范围是 .思想方法练一、函数与方程思想在解决函数问题中的应用1.(2019湖北黄冈高一上期末,)已知函数f(x)的定义域为D,若函数f(x)满足:①f(x)在D内是单调函数;②存在区间[a,b],使f(x)在区间[a,b]上的值域为[a2,b 2 ],那么就称函数f(x)为“减半函数”.若函数f(x)=log c(2c x+t)(c>0,且c≠1)是“减半函数”,则t的取值范围为()A.(0,1)B.(0,1]C.(-∞,18) D.(0,18)2.(2020江苏镇江高一期中,)已知函数y=f(x)是二次函数,且满足f(0)=3,f(1)=f(3)=0.(1)求y=f(x)的解析式;(2)求函数y=f(log2x),x∈[2,8]的最小值;(3)若x∈[1,t](t>1),试将y=f(x)的最小值表示成关于t的函数g(t).二、数形结合思想在解决函数问题中的应用3.()如图,函数f(x)的图象为折线ACB,则不等式f(x)≥log2(x+1)的解集是()A.{x|-1<x≤0}B.{x|-1≤x≤1}C.{x|-1<x≤1}D.{x|-1<x≤2}4.()若实数a,b满足a+lg a=8,b+10b=8,则a+b=.5.()已知函数f (x )={|log 2x |,0<x ≤8,x 2-20x +99,x >8,若a ,b ,c ,d 互不相同,且a <b <c <d ,f (a )=f (b )=f (c )=f (d ),则abcd 的取值范围是 .三、分类与整合思想在解决函数问题中的应用 6.()已知函数f (x )={(a -2)x -1,x ≤1,log a x ,x >1,若f (x )在(-∞,+∞)上单调递增,则实数a 的取值范围为 ( ) A.(1,2) B.(2,3) C.(2,3]D.(2,+∞)7.(2019浙江嘉兴一中高一上期中,)设函数f (x )=e |ln x |(e 为自然对数的底数),若x 1≠x 2且f (x 1)=f (x 2),则下列结论一定不成立的是 ( ) A.x 2 f (x 1)>1 B.x 2 f (x 1)<1C.x 2 f (x 1)=1D.x 2 f (x 1)<x 1 f (x 2)8.()设函数f (x )={21-x ,x ≤1,1-log 2x ,x >1,则满足f (x )≤2的x 的取值范围是 .四、转化与化归思想在解决函数问题中的应用 9.(2019吉林省实验中学高一上期中,)定义域为R 的函数f (x ),对任意实数x 均有f (-x )=-f (x ),f (2-x )=f (2+x )成立,若当2<x <4时,f (x )=2x -3+log 2(x -1),则f (-1)= .10.(2020山东菏泽高一上期末联考,)设函数f (x )=1ex +a e x (a 为常数),若对任意x ∈R ,f (x )≥3恒成立,则实数a 的取值范围是 . 11.()若3x =4y =36,则2x +1y= .五、特殊与一般思想在解决函数问题中的应用 12.()设f (x )为定义在R 上的奇函数.当x ≥0时, f (x )=2x +2x +b (b 为常数),则f (-1)= ( ) A.1 B.-1 C.-3 D.313. ()已知定义域为R 的函数f (x )=-2x +b2x+1+a是奇函数,求a ,b 的值.答案全解全析第二章 基本初等函数(Ⅰ)本章复习提升易混易错练1.B 3.D 7.C 8.B9.D1.B ①中,当a <0时,(a 2)32=[(a 2)12]3=(-a )3=-a 3,∴①不正确;②中,若a =-2,n =3,则√(-2)33=-2≠|-2|,∴②不正确;③中,由{x -2≥0,3x -7≠0,得x ≥2且x ≠73,故其定义域为[2,73)∪(73,+∞),∴③不正确;④中,∵100a=5,即102a =5,10b =2,∴102a ×10b =102a +b =10,∴2a +b =1,∴④正确. 2.解析 (1)原式=25log 25(√3-1)+9log 9(1+√3)=√3-1+1+√3=2√3. (2)原式=-8+|√3-2|-(2-√3)=-8+2-√3-2+√3=-8.3.D 当a >1时,由log a 12<2,得log a 12<log a a 2,因此a 2>12,解得a >√22或a <-√22,又a >1,所以a >1;当0<a <1时,由log a 12<2,得log a 12<log a a 2,因此0<a 2<12,解得-√22<a <√22,且a ≠0,又0<a <1,所以0<a <√22.综上,a 的取值范围是0,√22∪(1,+∞).故选D . 易错警示由于对数函数的图象、单调性等受底数a 的影响,所以在底数未知的情况下应先讨论底数与1的大小关系,一般分0<a <1,a >1两种情况. 4.答案12解析 当a >1时,y =a x 与y =log a (x +1)在[0,1]上都是增函数,因此f (x )=a x +log a (x +1)在[0,1]上是增函数,∴f (x )max =f (1)=a +log a 2,f (x )min =f (0)=a 0+log a 1=1,∴a +log a 2+1=a ,∴log a 2=-1=log a 1a ,解得a =12(舍去); 当0<a <1时,y =a x 与y =log a (x +1)在[0,1]上都是减函数,因此f (x )=a x +log a (x +1)在[0,1]上是减函数,∴f (x )max =f (0)=a 0+log a (0+1)=1, f (x )min =f (1)=a +log a 2,∴a +log a 2+1=a ,∴log a 2=-1=log a 1a ,解得a =12. 综上所述,a =12. 易错警示解决与对数函数有关的问题时需注意两点:(1)务必先研究函数的定义域;(2)注意对数自身(如真数、底数的取值)要满足的条件,特别是在研究复合函数的单调性时,除了按照“同增异减”的规律讨论之外,还要特别注意真数大于零. 5.解析 当a >1时,原不等式等价于{2a +1<3a -1,2a +1>0,3a -1>0,所以a >2;当0<a <1时,原不等式等价于{2a +1>3a -1,3a -1>0,2a +1>0,所以13<a <1. 综上所述,a 的取值范围是13,1∪(2,+∞). 6.解析 (1)当a >1时,由f (x )<2,即log a (8-ax )<log a a 2,得0<8-ax <a 2,所以8a -a <x <8a; 当0<a <1时,由f (x )<2=log a a 2,得8-ax >a 2,所以x <8a-a. 因此当a >1时,x 的取值范围是{x|8a -a <x <8a}; 当0<a <1时,x 的取值范围是{x|x <8a-a}. (2)当a >1时,f (x )=log a (8-ax )在[1,2]上是减函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-2a )>1,且在x ∈[1,2]上8-ax >0,即log a (8-2a )>log a a ,且8-2a >0,解得1<a <83. 当0<a <1时,f (x )=log a (8-ax )在[1,2]上是增函数,由f (x )>1在区间[1,2]上恒成立,得f (x )min =log a (8-a )>1,且在x ∈[1,2]上8-ax >0,即log a (8-a )>log a a ,且8-2a >0,所以a >4,且a <4,故a 不存在. 综上可知,实数a 的取值范围是1,83.7.C ∵f (x )是定义在R 上的奇函数,且在(0,+∞)上是增函数,f (13)=0,∴f (x )在(-∞,0)上也为增函数,f (-13)=0.画出f (x )的大致图象如图所示.结合图象,由f (lo g 18x )<0,可得0<lo g 18x <13或lo g 18x <-13,解得12<x <1或x >2,即不等式f (lo g 18x )<0的解集为(12,1)∪(2,+∞).8.B 设u =6-ax ,则函数f (x )由y =log a u ,u =6-ax 复合而成.因为a >0,所以u =6-ax 是减函数,那么函数y =log a u 就是增函数,所以a >1.因为[0,2]为定义域的子集,且u =6-ax 是减函数,所以当x =2时,u =6-ax 取得最小值,所以6-2a >0,解得a <3. 综上,得1<a <3,故选B . 9.D 设u =x 2-ax +3a ,则函数f (x )由y =lo g 12u ,u =x 2-ax +3a 复合而成.因为y =lo g 12u 是减函数,所以u =x 2-ax +3a 在(2,+∞)上单调递增, 从而a 2≤2,解得a ≤4. 又当x ∈(2,+∞)时,u =x 2-ax +3a >0, 所以当x =2时,u =4-2a +3a ≥0, 解得a ≥-4.所以-4≤a ≤4.故选D . 易错警示f (x )在(2,+∞)上为减函数,既要考虑单调性,又要考虑f (x )在(2,+∞)上有意义,解题时注意对数的真数大于0. 10.答案 (-∞,8]解析 依题意,得a ≤1<b ,由f (a )=f (b ),得3a =3b -4,即3b =3a +4. 设S =a +3b =a +3a +4.∵函数S =a +3a +4在(-∞,1]上单调递增, ∴S ≤1+31+4=8,∴S 的取值范围是(-∞,8].思想方法练1.D 3.C 6.C 7.B 12.C1.D 显然f (x )是定义域上的单调递增函数,因此,若f (x )是“减半函数”,则{f (a )=a2,f (b )=b 2,即f (x )=x2有两个不等实根.故根据函数的性质构建关于a ,b 的方程组. log c (2c x+t )=x2,即2c x+t =c x2.令c x2=u ,则u >0,且2u 2-u +t =0.依题意知方程有两个不等正根,换元后构造关于u 的一元二次方程,根据方程根的情况,应用“三个二次”的关系求解. ∴{Δ=1-4×2×t >0,t 2>0,解得0<t <18,故选D . 2.解析 (1)设函数f (x )的解析式为f (x )=ax 2+bx +c (a ≠0),设出函数f (x )=ax 2+bx +c (a ≠0),根据题意,用待定系数法求出函数的解析式. 因为f (0)=c =3,所以f (x )=ax 2+bx +3, 又f (1)=f (3)=0,所以{a +b +3=0,9a +3b +3=0,解得{a =1,b =-4.所以f (x )=x 2-4x +3.(2)令t =log 2x ,∵x ∈[2,8],∴t ∈[1,3]. 则y =t 2-4t +3=(t -2)2-1,t ∈[1,3],用换元法,令t =log 2x ,构造二次函数求最值. 所以当t =2,即x =4时,y min =-1.所以函数y =f (log 2x ),x ∈[2,8]的最小值为-1. (3)f (x )=x 2-4x +3,x ∈[1,t ](t >1),定轴动区间问题,讨论区间端点t 与对称轴的相对位置. ①当1<t ≤2时,f (x )在[1,t ]上单调递减, 所以当x =t 时,f (x )有最小值t 2-4t +3;②当t >2时,f (x )在[1,2]上单调递减,在[2,t ]上单调递增, 所以当x =2时,f (x )有最小值-1,即此时g (t )=-1.综上,g (t )={t 2-4t +3,1<t ≤2,-1,t >2.3.C 作出函数y =log 2(x +1)的图象,如图所示.借助函数的图象求解不等式.在已有折线图中画出函数y =log 2(x +1)的图象,求出交点,以交点为分界点分析不等式的解集.结合图象得,BC 所在直线的解析式为y =-x +2,由{y =-x +2,y =log2(x +1),得{x =1,y =1, ∴不等式f (x )≥log 2(x +1)的解集为{x |-1<x ≤1}.4.答案 8解析 依题意得lg a =8-a ,10b =8-b ,在同一平面直角坐标系内作出函数y =lg x ,y =10x ,y =8-x ,y =x 的图象,如图所示.由图可知,A ,B 的横坐标即为a ,b.由y =lg x 与y =10x 互为反函数知,交点A ,B 关于直线y =x 对称,故a +b =8.作出函数图象,把满足等式的a ,b 转化为函数图象交点的横坐标,结合互为反函数的图象的对称性分析坐标之间的关系. 5.答案 (96,99)解析 画出函数y =f (x )和y =t 的图象,如图所示.设a ,b ,c ,d 分别为y =f (x )的图象与直线y =t 交点的横坐标.画出函数y =f (x )与y =t 的图象,问题转化为有四个交点时,横坐标乘积的范围,结合图象利用函数的性质解决该问题.由图可知,|log 2a |=-log 2a =log 2b ,即a ·b =1,c+d 2=10,且8<c <9,所以abcd =cd =c (20-c ).令g (c )=c (20-c ),8<c <9,因为函数g (c )的图象开口向下,对称轴方程为c =10,所以g (c )在(8,9)上单调递增,g (8)<g (c )<g (9),所以g (c )∈(96,99),即abcd 的取值范围是(96,99). 6.C 因为f (x )在(-∞,+∞)上单调递增,所以{a -2>0,a >1,a -2-1≤0,故2<a ≤3.所以a 的取值范围为(2,3].根据参数a 的不同,分析各段函数的单调性,根据整个函数的单调性,分析各段函数端点处函数值之间的关系. 7.B 由题知, f (x )=e |ln x |={x ,x ≥1,1x,0<x <1.按照自变量x 的不同取值范围把f (x )化为分段函数.由x ≥1时, f (x )=x 是增函数,0<x <1时,f (x )=1x 是减函数知,0<x 1<1≤x 2或0<x 2<1≤x 1. 分析分段函数的单调性,从而确定x 1,x 2分别在两个区间内. 当0<x 1<1≤x 2时, f (x 1)=1x 1, f (x 2)=x 2, ∴x 1x 2=1,∴x 2·f (x 1)=x 2x 1>1,x 1·f (x 2)=x 1·x 2=1,从而x 2 f (x 1)>x 1 f (x 2).此时A 成立. 当0<x 2<1≤x 1时, f (x 2)=1x 2, f (x 1)=x 1, ∴x 1x 2=1,∴x 2 f (x 1)=x 2·x 1=1,x 1·f (x 2)=x 1x 2>1, 从而x 2 f (x 1)<x 1 f (x 2).此时C 、D 成立. 因此无论何种情况,B 一定不成立,故选B . 8.答案 [0,+∞)解析 当x ≤1时,令f (x )≤2,即21-x ≤2,解得x ≥0,所以0≤x ≤1; 当x >1时,令f (x )≤2,即1-log 2x ≤2,解得x ≥12,所以x >1. 综上,x 的取值范围是[0,+∞). 9.答案 -2解析 由题意得,f (-1)=-f (1)=-f (2-1)=-f (2+1)=-f (3)=-[23-3+log 2(3-1)]=-(20+log 22)=-2.要想利用已知式求值,必须把自变量转化为区间(2,4)内的数. 10.答案94,+∞解析 f (x )≥3⇔1e x +a e x ≥3⇔a ≥3e x -1(e x )2.将含参的恒成立问题通过变形转化为有关参数的不等式问题.令t =1e x ,则t >0,则a ≥3t -t 2,①设g (t )=-t 2+3t =-t -322+94,t >0, 则当t =32时,g (t )max =94. 又不等式①恒成立,∴a ≥94, 把参数满足的不等式转化为函数最值问题.故a 的取值范围是94,+∞. 11.答案 1解析 已知3x =4y =36,取以6为底的对数,将指数式化为对数式,得x log 63=y log 64=2, 应用指数与对数关系将指数式转化为对数式.∴2x =log 63,2y=log 64, 即1y =log 62,故2x +1y=log 63+log 62=1. 12.C 由f (x )是定义在R 上的奇函数知, f (0)=20+0+b =0,解得b =-1, 应用定义在R 上的奇函数的性质:f (0)=0,求b. ∴f (-1)=-f (1)=-(21+2-1)=-3,故选C .13.解析 因为f (x )是定义在R 上的奇函数,所以f (0)=0,即-1+b2+a =0,解得b =1,所以f (x )=-2x +12x+1+a .由-f (x )=f (-x ),知--2x +12x+1+a =-2-x+12-x+1+a ,化简,得2x +1+a =2+a ·2x ,即(a -2)(2x -1)=0.由(a -2)(2x -1)=0对任意x ∈R 都成立,得a =2.故a =2,b =1.思维升华在处理函数奇偶性问题时,遇到定义域为R 的奇函数,应用性质f (0)=0,可以快速找到解决问题的突破口,使复杂的问题简单化.。

高一年级数学练习册答案:第二章基本初等函数

高一年级数学练习册答案:第二章基本初等函数

高一年级数学练习册答案:第二章基本初等函数进入到高一阶段,大家的学习压力都是呈直线上升的,因此平时的积累也显得尤为重要,小编高一频道为大家整理了《高一年级数学练习册答案:第二章基本初等函数》希望大家能谨记呦!!2.1指数函数2_指数与指数幂的运算(一)1.B.2.A.3.B.4.y=2_(_∈N).5.(1)2.(2)5.6.8a7.7.原式=|_-2|-|_-3|=-1(_3).8.0.9._._.原式=2y_-y=2._.当n为偶数,且a≥0时,等式成立;当n为奇数时,对任意实数a,等式成立. 2_指数与指数幂的运算(二)1.B.2.B.3.A.4.94.5._4.6.55.7.(1)-∞,32.(2)_∈R|_≠0,且_≠-52.8.原式=52-1+_6+_+1_=_380.9.-9a._.原式=(a-1+b-1)·a-1b-1a-1+b-1=1ab._.原式=1-2-_1+2-_1+2-_1+2-_1-2-_=_-827.2_指数与指数幂的运算(三)1.D.2.C.3.C.4.36.55.5.1-2a.6._5.7.2.8.由8a=23a=_=2-2,得a=-23,所以f(27)=27-23=_.9.47288,_885._.提示:先由已知求出_-y=-(_-y)2=-(_+y)2-4_y=-63,所以原式=_-2_y+y_-y=-33._.23.2_指数函数及其性质(一)1.D.2.C.3.B.4.AB.5.(1,0).6.a>0.7._5.8.(1)图略.(2)图象关于y轴对称.9.(1)a=3,b=-3.(2)当_=2时,y有_小值0;当_=4时,y有_大值6._.a=1._.当a>1时,_2-2_+1>_2-3_+5,解得{_|_>4};当02_指数函数及其性质(二)1.A.2.A.3.D.4.(1).(4)>.5.{_|_≠0},{y|y>0,或y1=π0>0.90.98.8.(1)a=0.5.(2)-4_4>_3>_1._.(1)f(_)=1(_≥0),2_(_an+a-n.2_指数函数及其性质(三)1.B.2.D.3.C.4.-1.5.向右平移_个单位.6.(-∞,0).7.由已知得0.3(1-0.5)_≤0._,由于0.51.91=0.2667,所以_≥1.91,所以2h 后才可驾驶.8.(1-a)a>(1-a)b>(1-b)b.9.8__(1+2%)3≈865(人)._.指数函数y=a_满足f(_)·f(y)=f(_+y);正比例函数y=k_(k≠0)满足f(_)+f(y)=f(_+y)._.34,57.2.2对数函数2_对数与对数运算(一)1.C.2.D.3.C.4.0;0;0;0.5.(1)2.(2)-52.6.2.7.(1)-3.(2)-6.(3)64.(4)-2.8.(1)343.(2)-_.(3)_.(4)2.9.(1)_=z2y,所以_=(z2y)2=z4y(z>0,且z≠1).(2)由_+3>0,2-_0,y>0,_>2y,可求得_y=4.9.略._.4._.由已知得(log2m)2-8log2m=0,解得m=1或_.2_对数与对数运算(三)1.A.2.D.3.D.4.43.5.24.6.a+2b2a.7.提示:注意到1-log63=log62以及log6_=1+log63,可得答案为1.8.由条件得3lg3lg3+2lg2=a,则去分母移项,可得(3-a)lg3=2alg2,所以lg2lg3=3-a2a.9.25._.a=log34+log37=log328∈(3,4)._.1._2对数函数及其性质(一)1.D.2.C.3.C.4._4分钟.5.①②③.6.-1.7.-2≤_≤2.8.提示:注意对称关系.9.对loga(_+a)1时,0a,得_>0._.C1:a=32,C2:a=3,C3:a=1_,C4:a=25._.由f(-1)=-2,得lgb=lga-1①,方程f(_)=2_即_2+lga·_+lgb=0有两个相等的实数根,可得lg2a-4lgb=0,将①式代入,得a=1_,继而b=_._2对数函数及其性质(二)1.A.2.D.3.C.4._,2.5.(-∞,1).6.log2_7.logbab0得_>0.(2)_>lg3lg2.9.图略,y=log_(_+2)的图象可以由y=log__的图象向左平移2个单位得到. _.根据图象,可得0_2对数函数及其性质(三)1.C.2.D.3.B.4.0,_.5._.6.1,53.7.(1)f35=2,f-35=-2.(2)奇函数,理由略.8.{-1,0,1,2,3,4,5,6}.9.(1)0.(2)如log2_._.可以用求反函数的方法得到,与函数y=loga(_+1)关于直线y=_对称的函数应该是y=a_-1,和y=loga_+1关于直线y=_对称的函数应该是y=a_-1._.(1)f(-2)+f(1)=0.(2)f(-2)+f-32+f_+f(1)=0.猜想:f(-_)+f(-1+_)=0,证明略.23幂函数1.D.2.C.3.C.4.①④.5.6.25_1._.④._.258.提示:先求出h=_._.(1)-1.(2)1._._∈R,y=__=1+lga1-lga>0,讨论分子、分母得-1_.(1)a=2.(2)设g(_)=log_(_-2_)-__,则g(_)在[3,4]上为增函数,g(_)>m对_∈[3,4]恒成立,m_.(1)函数y=_+a_(a>0),在(0,a]上是减函数,[a,+∞)上是增函数,证明略.(2)由(1)知函数y=_+c_(c>0)在[1,2]上是减函数,所以当_=1时,y有_大值1+c;当_=2时,y有_小值2+c2._.y=(a_+1)2-2≤_,当a>1时,函数在[-1,1]上为增函数,yma_=(a+1)2-2=_,此时a=3;当0_.(1)F(_)=lg1-__+1+1_+2,定义域为(-1,1).(2)提示:假设在函数F(_)的图象上存在两个不同的点A,B,使直线AB恰好与y轴垂直,则设A(_1,y),B(_2,y)(_1≠_2),则f(_1)-f(_2)=0,而f(_1)-f(_2)=lg1-_1_1+1+1_1+2-lg1-_2_2+1-1_2+2=lg(1-_1)(_2+1)(_1+1)(1-_2)+_2-_1(_1+2)(_2+2)=①+②,可证①,②同正或同负或同为零,因此只有当_1=_2时,f(_1)-f(_2)=0,这与假设矛盾,所以这样的两点不存在.(或用定义证明此函数在定义域内单调递减)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高一数学基本初等函
数提高训练及答案Revised on November 25, 2020
数学1(必修)第二章基本初等函数(1)
一、选择题 1函数]1,0[)1(log )(在++=x a x f a x 上的最大值和最小值之和为a ,
则a 的值为() A 41B 2
1C 2D 4 2已知log (2)a y ax =-在[0,1]上是x 的减函数,则a 的取值范围是() A (0,1B (1,2)C (0,2)D ∞[2,+) 3对于10<<a ,给出下列四个不等式 ①)11(log )1(log a a a a +<+②)11(log )1(log a
a a a +>+ ③a a a a 1
11++<④a a a a 111++>
其中成立的是()
A ①与③
B ①与④
C ②与③
D ②与④ 4设函数1()()lg 1f x f x x
=+,则(10)f 的值为() A B 1-C 10D 1015定义在R 上的任意函数()f x 都可以表示成一个奇函数()g x 与一个
偶函数()h x 之和,如果()lg(101),x f x x R =+∈,那么()
A ()g x x =,()lg(10101)x x h x -=++
B lg(101)()2x x g x ++=,x lg(101)()2
x h x +-= C ()2x g x =,()lg(101)2x x h x =+- D ()2x g x =-,lg(101)()2x x h x ++= 6若ln 2ln 3ln 5,,235
a b c ===,则() A a b c <<B c b a <<
C c a b <<
D b a c <<
二、填空题 1若函数()12log 22++=x ax y 的定义域为R ,则a 的范围为__________ 2若函数()12log 22++=x ax y 的值域为R ,则a 的范围为__________
3函数y =______;值域是______ 4若函数()11
x m f x a =+-是奇函数,则m 为__________
5求值:22log 33
21272log 8-⨯+=__________ 三、解答题 1解方程:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++
(2)2
(lg )lg 1020x x x += 2求函数11()()142x x y =-+在[]3,2x ∈-上的值域 3已知()1log 3x f x =+,()2log 2x g x =,试比较()f x 与()g x 的大小 4已知()()110212x f x x x ⎛⎫=+≠ ⎪-⎝⎭
, ⑴判断()f x 的奇偶性;⑵证明()0f x >
(数学1必修)第二章基本初等函数(1)
参考答案
一、选择题 1B 当1a >时1log 21,log 21,,2
a a a a a ++==-=与1a >矛盾; 当01a <<时11log 2,log 21,2
a a a a a ++==-=; 2B 令[]2,0,0,1u ax a =->是的递减区间,∴1a >而0u >须
恒成立,∴min 20u a =->,即2a <,∴12a <<; 3D 由10<<a 得111,11,a a a a
<<+<+②和④都是对的; 4A 11(10)()1,()(10)1,(10)(10)111010f f f f f f =+=-+=-++
5C ()()(),()()()()(),f x g x h x f x g x h x g x h x =+-=-+-=-+
6C a b c =====二、填空题 1(1,)+∞2
210ax x ++>恒成立,则0440a a >⎧⎨∆=-<⎩,得1a > 2[]0,1221ax x ++须取遍所有的正实数,当0a =时,21x +符合
条件;当0a ≠时,则0440a a >⎧⎨∆=-≥⎩
,得01a <≤,即01a ≤≤ 3[)[)0,,0,1+∞111()0,()1,022x x x -≥≤≥;11()0,01()1,22
x x >≤-< 42()()11011x x m m f x f x a a --+=+++=--
519293(3)18lg1019-⨯-+=+= 三、解答题 1解:(1)40.2540.25log (3)log (3)log (1)log (21)x x x x -++=-++ 33121
x x x x -+=-+,得7x =或0x =,经检验0x =为所求 (2)2
(lg )lg lg lg lg 1020,(10)20x x x x x x x +=+= 10,x =1或10,经检验10,x =1或10为所求 2解:21111()()1[()]()14222
x x x x y =-+=-+ 而[]3,2x ∈-,则11()842
x ≤≤ 当11()22x =时,min 34y =;当1()82
x =时,max 57y = ∴值域为3[,57]4
3解:3()()1log 32log 21log 4
x x x f x g x -=+-=+, 当31log 04
x +>,即01x <<或43x >时,()()f x g x >; 当31log 04x +=,即43x =时,()()f x g x =;
当31log 04
x +<,即413x <<时,()()f x g x < 4解:(1)1121()()212221
x x x x f x x +=+=⋅-- 2121()()221221
x x x x x x f x f x --++-=-⋅=⋅=--,为偶函数 (2)21
()221x x x
f x +=⋅-,当
0x >,则210x ->,即()0f x >;
当0x <,则210x -<,即()0f x >,∴()0f x >。

相关文档
最新文档