信号与系统实验报告汇总

合集下载

信号与系统实验报告总结

信号与系统实验报告总结

信号与系统实验实验一常用信号的观察方波:正弦波:三角波:在观测中,虚拟示波器完全充当实际示波器的作用,在工作台上连接AD1为示波器的输入,输入方波、正弦波、三角波信号时,可在电脑上利用软件观测到相应的波形,其纵轴为幅值可通过设置实现幅值自动调节以观测到最佳大小的波形,其横轴为时间,宜可通过设置实现时间自动调节以观测到最佳宽度的波形。

实验四非正弦周期信号的分解与合成方波DC信号:DC信号几乎没有,与理论相符合,原信号没有添加偏移。

方波基波信号:基波信号为与原方波50Hz信号相对应的频率为50Hz的正弦波信号,是方波分解的一次谐波信号。

方波二次谐波信号:二次谐波信号频率为100Hz为原方波信号频率的两倍,幅值较一次谐波较为减少。

方波三次谐波信号:三次谐波信号频率为150Hz为原方波信号的三倍。

幅值较一二次谐波大为减少。

方波四次谐波信号:四次谐波信号的频率为200Hz为原方波信号的四倍。

幅值较三次谐波再次减小。

方波五次谐波信号:五次谐波频率为250Hz为原方波信号的五倍。

幅值减少到0.3以内,几乎可以忽略。

综上可知:50Hz方波可以分解为DC信号、基波信号、二次、三次、四次、五次谐波信号…,无偏移时即无DC信号,DC信号幅值为0。

分解出来的基波信号即一次谐波信号频率与原方波信号频率相同,幅值接近方波信号的幅值。

二次谐波、三次谐波、四次谐波、五次谐波依次频率分别为原方波信号的二、三、四、五倍,且幅值依次衰减,直至五次谐波信号时几乎可以忽略。

可知,方波信号可分解为多个谐波。

方波基波加三次谐波信号:基波叠加上三次谐波信号时,幅值与方波信号接近,形状还有一定差异,但已基本可以看出叠加后逼近了方波信号。

方波基波加三次谐波信号加五次谐波信号:基波信号、三次谐波信号、五次谐波信号叠加以后,比基波信号、三次谐波信号叠加后的波形更加接近方波信号。

综上所述:方波分解出来的各次谐波以及DC信号,叠加起来以后会逼近方波信号,且叠加的信号越多,越是接近方波信号。

《信号与系统》实验报告(完整版)

《信号与系统》实验报告(完整版)

《信号与系统》实验报告(完整版)长江大学电工电子实验中心电路与系统(2)实验报告姓名高文昌班级电信10909班序号06指导教师黄金平老师成绩实验名称:连续信号的绘制一、实验目的1.掌握用Matlab 绘制波形图的方法,学会常见波形的绘制。

2.掌握用Matlab 编写函数的方法。

3.周期信号与非周期信号的观察。

加深对周期信号的理解。

二、实验内容1、用MATLAB 画出下列信号的波形。

(a) ][cos )(1t t f ε=; (b) )]2()2([2||)(2--+=t t t t f εε; (c) )]2()([sin )(3t t t t f ---=εεπ; (d) )sgn()()(24t t G t f =; (e) )2()(265-=t Q t G f ; (f) )sin(|)|2()(6t t t f πε-= (a )t=linspace(-10,10,400);f1=u(cos(t));figure(1),myplot(t,f1)xlabel('Time(sec)'),ylabel('f1(t)')(b)t=linspace(-4,4,400);f2=abs(t)/2.*(u(t+2)-u(t-2)); figure(2),myplot(t,f2)xlabel('Time(sec)'),ylabel('f2(t)');(c)t=linspace(-1,3,400);f3=sin(pi*t).*(u(-t)-u(2-t)); figure(3),myplot(t,f3)xlabel('Time(sec)'),ylabel('f3(t)')(d)t=linspace(-2,2,400); f4=sign(t).*rectpuls(t,2); figure(4),myplot(t,f4)xlabel('Time(sec)'),ylabel('f3(t)')(e)t=linspace(-1,4,400);f5=rectpuls(t,6).*tripuls(t-2,4); figure(5),myplot(t,f5)xlabel('Time(sec)'),ylabel('f5(t)')(f)t=linspace(-4,4,400); f6=u(2-abs(t)).*sin(pi*t) figure(6),myplot(t,f6)xlabel('Time(sec)'),ylabel('f6(t)')2、用基本信号画出图2.1-10中的信号。

《信号与系统》课程实验报告

《信号与系统》课程实验报告

《信号与系统》课程实验报告《信号与系统》课程实验报告一图1-1 向量表示法仿真图形2.符号运算表示法若一个连续时间信号可用一个符号表达式来表示,则可用ezplot命令来画出该信号的时域波形。

上例可用下面的命令来实现(在命令窗口中输入,每行结束按回车键)。

t=-10:0.5:10;f=sym('sin((pi/4)*t)');ezplot(f,[-16,16]);仿真图形如下:图1-2 符号运算表示法仿真图形三、实验内容利用MATLAB实现信号的时域表示。

三、实验步骤该仿真提供了7种典型连续时间信号。

用鼠标点击图0-3目录界面中的“仿真一”按钮,进入图1-3。

图1-3 “信号的时域表示”仿真界面图1-3所示的是“信号的时域表示”仿真界面。

界面的主体分为两部分:1) 两个轴组成的坐标平面(横轴是时间,纵轴是信号值);2) 界面右侧的控制框。

控制框里主要有波形选择按钮和“返回目录”按钮,点击各波形选择按钮可选择波形,点击“返回目录”按钮可直接回到目录界面。

图1-4 峰值为8V,频率为0.5Hz,相位为180°的正弦信号图1-4所示的是正弦波的参数设置及显示界面。

在这个界面内提供了三个滑动条,改变滑块的位置,滑块上方实时显示滑块位置代表的数值,对应正弦波的三个参数:幅度、频率、相位;坐标平面内实时地显示随参数变化后的波形。

在七种信号中,除抽样函数信号外,对其它六种波形均提供了参数设置。

矩形波信号、指数函数信号、斜坡信号、阶跃信号、锯齿波信号和抽样函数信号的波形分别如图1-5~图1-10所示。

图1-5 峰值为8V,频率为1Hz,占空比为50%的矩形波信号图1-6 衰减指数为2的指数函数信号图1-7 斜率=1的斜坡信号图1-8 幅度为5V,滞后时间为5秒的阶跃信号图1-9 峰值为8V,频率为0.5Hz的锯齿波信号图1-10 抽样函数信号仿真途中,通过对滑动块的控制修改信号的幅度、频率、相位,观察波形的变化。

信号与系统实验实验报告

信号与系统实验实验报告

信号与系统实验实验报告一、实验目的本次信号与系统实验的主要目的是通过实际操作和观察,深入理解信号与系统的基本概念、原理和分析方法。

具体而言,包括以下几个方面:1、掌握常见信号的产生和表示方法,如正弦信号、方波信号、脉冲信号等。

2、熟悉线性时不变系统的特性,如叠加性、时不变性等,并通过实验进行验证。

3、学会使用基本的信号处理工具和仪器,如示波器、信号发生器等,进行信号的观测和分析。

4、理解卷积运算在信号处理中的作用,并通过实验计算和观察卷积结果。

二、实验设备1、信号发生器:用于产生各种类型的信号,如正弦波、方波、脉冲等。

2、示波器:用于观测输入和输出信号的波形、幅度、频率等参数。

3、计算机及相关软件:用于进行数据处理和分析。

三、实验原理1、信号的分类信号可以分为连续时间信号和离散时间信号。

连续时间信号在时间上是连续的,其数学表示通常为函数形式;离散时间信号在时间上是离散的,通常用序列来表示。

常见的信号类型包括正弦信号、方波信号、脉冲信号等。

2、线性时不变系统线性时不变系统具有叠加性和时不变性。

叠加性意味着多个输入信号的线性组合产生的输出等于各个输入单独作用产生的输出的线性组合;时不变性表示系统的特性不随时间变化,即输入信号的时移对应输出信号的相同时移。

3、卷积运算卷积是信号处理中一种重要的运算,用于描述线性时不变系统对输入信号的作用。

对于两个信号 f(t) 和 g(t),它们的卷积定义为:\(f g)(t) =\int_{\infty}^{\infty} f(\tau) g(t \tau) d\tau \在离散时间情况下,卷积运算为:\(f g)n =\sum_{m =\infty}^{\infty} fm gn m \四、实验内容及步骤实验一:常见信号的产生与观测1、连接信号发生器和示波器。

2、设置信号发生器分别产生正弦波、方波和脉冲信号,调整频率、幅度和占空比等参数。

3、在示波器上观察并记录不同信号的波形、频率和幅度。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告
实验名称:信号与系统实验
一、实验目的:
1.了解信号与系统的基本概念
2.掌握信号的时域和频域表示方法
3.熟悉常见信号的特性及其对系统的影响
二、实验内容:
1.利用函数发生器产生不同频率的正弦信号,并通过示波器观察其时域和频域表示。

2.通过软件工具绘制不同信号的时域和频域图像。

3.利用滤波器对正弦信号进行滤波操作,并通过示波器观察滤波前后信号的变化。

三、实验结果分析:
1.通过实验仪器观察正弦信号的时域表示,可以看出信号的振幅、频率和相位信息。

2.通过实验仪器观察正弦信号的频域表示,可以看出信号的频率成分和幅度。

3.利用软件工具绘制信号的时域和频域图像,可以更直观地分析信号的特性。

4.经过滤波器处理的信号,可以通过示波器观察到滤波前后的信号波形和频谱的差异。

四、实验总结:
通过本次实验,我对信号与系统的概念有了更深入的理解,掌
握了信号的时域和频域表示方法。

通过观察实验仪器和绘制图像,我能够分析信号的特性及其对系统的影响。

此外,通过滤波器的处理,我也了解了滤波对信号的影响。

通过实验,我对信号与系统的理论知识有了更加直观的了解和应用。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告目录1. 内容概要 (2)1.1 研究背景 (3)1.2 研究目的 (4)1.3 研究意义 (4)2. 实验原理 (5)2.1 信号与系统基本概念 (7)2.2 信号的分类与表示 (8)2.3 系统的分类与表示 (9)2.4 信号与系统的运算法则 (11)3. 实验内容及步骤 (12)3.1 实验一 (13)3.1.1 实验目的 (14)3.1.2 实验仪器和设备 (15)3.1.4 实验数据记录与分析 (16)3.2 实验二 (16)3.2.1 实验目的 (17)3.2.2 实验仪器和设备 (18)3.2.3 实验步骤 (19)3.2.4 实验数据记录与分析 (19)3.3 实验三 (20)3.3.1 实验目的 (21)3.3.2 实验仪器和设备 (22)3.3.3 实验步骤 (23)3.3.4 实验数据记录与分析 (24)3.4 实验四 (26)3.4.1 实验目的 (27)3.4.2 实验仪器和设备 (27)3.4.4 实验数据记录与分析 (29)4. 结果与讨论 (29)4.1 实验结果汇总 (31)4.2 结果分析与讨论 (32)4.3 结果与理论知识的对比与验证 (33)1. 内容概要本实验报告旨在总结和回顾在信号与系统课程中所进行的实验内容,通过实践操作加深对理论知识的理解和应用能力。

实验涵盖了信号分析、信号处理方法以及系统响应等多个方面。

实验一:信号的基本特性与运算。

学生掌握了信号的表示方法,包括连续时间信号和离散时间信号,以及信号的基本运算规则,如加法、减法、乘法和除法。

实验二:信号的时间域分析。

在本实验中,学生学习了信号的波形变换、信号的卷积以及信号的频谱分析等基本概念和方法,利用MATLAB工具进行了实际的信号处理。

实验三:系统的时域分析。

学生了解了线性时不变系统的动态响应特性,包括零状态响应、阶跃响应以及脉冲响应,并学会了利用MATLAB进行系统响应的计算和分析。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、信号的时域基本运算1.连续时间信号的时域基本运算两实验之一实验分析:输出信号值就等于两输入信号相加(乘)。

由于b=2,故平移量为2时,实际是右移1,符合平移性质。

两实验之二心得体会:时域中的基本运算具有连续性,当输入信号为连续时,输出信号也为连续。

平移,伸缩变化都会导致输出结果相对应的平移伸缩。

2.离散时间信号的时域基本运算两实验之一实验分析:输出信号的值是对应输入信号在每个n值所对应的运算值,当进行拉伸变化后,n值数量不会变,但范围会拉伸所输入的拉伸系数。

两实验之二心得体会:离散时间信号可以看做对连续时间信号的采样,而得到的输出信号值,也可以看成是连续信号所得之后的采样值。

二、连续信号卷积与系统的时域分析1.连续信号卷积积分两实验之一实验分析:当两相互卷积函数为冲激函数时,所卷积得到的也是一个冲激函数,且该函数的冲激t值为函数x,函数y冲激t值之和。

两实验之二心得体会:连续卷积函数每个t值所对应的卷积和可以看成其中一个在k值取得的函数与另外一个函数相乘得到的一个分量函数,并一直移动k值直至最后,最后累和出来的最终函数便是所得到的卷积函数。

3.RC电路时域积分两实验之一实验分析:全响应结果正好等于零状态响应与零输入响应之和。

两实验之二心得体会:具体学习了零状态,零输入,全响应过程的状态及变化,与之前所学的电路知识联系在一起了。

三、离散信号卷积与系统的时域分析1.离散信号卷积求和两实验之一实验分析:输出结果的n值是输入结果的k号与另一个n-k的累和两实验之二心得体会:直观地观察到卷积和的产生,可以看成连续卷积的采样形式,从这个方面去想,更能深入地理解卷积以及采样的知识。

2.离散差分方程求解两实验之一实验分析:其零状态响应序列为0 0 4 5 7.5,零输入响应序列为2 4 5 5.5 5.75,全状态响应序列为2 4 9 10.5 13.25,即全状态=零输入+零状态。

两实验之二心得体会:求差分方程时,可以根据全状态响应是由零输入输入以及零状态相加所得,分开来求,同时也加深了自己对差分方程的求解问题的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验报告:信号与系统实验一、实验目的1.了解信号与系统的基本概念和性质;2.掌握离散信号、连续信号的采样过程;3.理解信号的基本操作和系统的基本特性。

二、实验原理1.信号的分类:(1)连续时间信号:在每个时间点上都有定义;(2)离散时间信号:只在一些时间点上有定义。

2.信号的基本操作:(1)加法运算:将两个信号相加;(2)乘法运算:将两个信号相乘;(3)位移运算:将信号移动到不同的时间点;(4)缩放运算:对信号进行放大或缩小。

3.系统的基本特性:(1)时域特性:包括冲击响应、阶跃响应和频率特性等;(2)频域特性:包括幅频特性和相频特性等。

三、实验器材1.信号发生器2.示波器3.示波器探头4.计算机四、实验步骤1.连续信号采样(1)将信号发生器输出设置为正弦波信号;(2)通过示波器探头将信号输入计算机;(3)在计算机上设置适当的采样频率,对信号进行采样;(4)在示波器上观察到采样后的信号。

2.离散信号生成(1)在计算机上用MATLAB生成一个离散信号;(2)通过示波器探头将信号输入示波器;(3)在示波器上观察到生成的离散信号。

3.信号加法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的加法运算;(3)通过示波器探头将加法运算后的信号输入示波器,观察信号的叠加效果。

4.信号乘法运算(1)选择两个不同的信号并输入计算机;(2)在计算机上进行信号的乘法运算;(3)通过示波器探头将乘法运算后的信号输入示波器,观察信号的相乘效果。

五、实验结果与分析1.连续信号采样在设置适当的采样频率后,可以观察到信号在示波器上的采样图像。

信号的采样率过低会导致信号的失真,采样率过高则会造成资源的浪费。

2.离散信号生成通过MATLAB生成的离散信号能够在示波器上直观地观察到信号的序列和数值。

3.信号加法运算通过将两个信号进行加法运算后,可以观察到信号在示波器上的叠加效果。

加法运算能够实现信号的混合和增强等效果。

信号与系统课程实验报告

信号与系统课程实验报告

合肥工业大学宣城校区《信号与系统》课程实验报告专业班级学生姓名《信号与系统》课程实验报告一实验名称一阶系统的阶跃响应姓名系院专业班级学号实验日期指导教师成绩一、实验目的1.熟悉一阶系统的无源和有源电路;2.研究一阶系统时间常数T的变化对系统性能的影响;3.研究一阶系统的零点对系统响应的影响。

二、实验原理1.无零点的一阶系统无零点一阶系统的有源和无源电路图如图2-1的(a)和(b)所示。

它们的传递函数均为:10.2s1G(s)=+(a) 有源(b) 无源图2-1 无零点一阶系统有源、无源电路图2.有零点的一阶系统(|Z|<|P|)图2-2的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:10.2s1)0.2(sG(s)++=,⎪⎪⎪⎪⎭⎫⎝⎛++=S611S161G(s)(a) 有源(b) 无源图2-2 有零点(|Z|<|P|)一阶系统有源、无源电路图3.有零点的一阶系统(|Z|>|P|)图2-3的(a)和(b)分别为有零点一阶系统的有源和无源电路图,它们的传递函数为:1s10.1sG(s)=++(a) 有源(b) 无源图2-3 有零点(|Z|>|P|)一阶系统有源、无源电路图三、实验步骤1.打开THKSS-A/B/C/D/E型信号与系统实验箱,将实验模块SS02插入实验箱的固定孔中,利用该模块上的单元组成图2-1(a)(或(b))所示的一阶系统模拟电路。

2.实验线路检查无误后,打开实验箱右侧总电源开关。

3.将“阶跃信号发生器”的输出拨到“正输出”,按下“阶跃按键”按钮,调节电位器RP1,使之输出电压幅值为1V,并将“阶跃信号发生器”的“输出”端与电路的输入端“Ui”相连,电路的输出端“Uo”接到双踪示波器的输入端,然后用示波器观测系统的阶跃响应,并由曲线实测一阶系统的时间常数T。

4.再依次利用实验模块上相关的单元分别组成图2-2(a)(或(b))、2-3(a)(或(b))所示的一阶系统模拟电路,重复实验步骤3,观察并记录实验曲线。

信号与系统实验报告5

信号与系统实验报告5

信号与系统实验报告5信号与系统实验报告5引言信号与系统是电子工程领域中的重要学科,它研究信号的产生、传输和处理过程,以及系统对信号的响应和影响。

在本次实验中,我们将探索信号与系统的一些基本概念和实际应用。

一、信号的分类与特性信号是信息的载体,可以是连续的或离散的。

根据信号的性质,我们可以将其分为模拟信号和数字信号。

模拟信号是连续变化的,可以用连续函数表示;而数字信号是离散的,以数字的形式表示。

在实验中,我们使用了示波器观察了不同类型的信号。

通过观察信号的波形、频谱和功率谱密度等特性,我们能够了解信号的频率、幅度和相位等信息。

二、系统的响应与特性系统是对信号进行处理或传输的装置或环境。

系统可以是线性的或非线性的,可以是时不变的或时变的。

在实验中,我们使用了滤波器作为系统模型来研究系统的响应和特性。

通过改变滤波器的截止频率,我们观察到不同频率的信号在系统中的响应差异。

我们还通过调整系统参数,如增益和相位延迟,来研究系统的线性性质和时不变性质。

三、信号与系统的应用信号与系统在现实生活中有着广泛的应用。

在通信领域,我们可以利用信号与系统的知识来设计和优化无线电、光纤通信和卫星通信等系统。

在音频处理领域,我们可以利用信号与系统的方法来实现音频的降噪、音效增强和语音识别等功能。

此外,信号与系统在图像处理、生物医学工程和控制系统等领域也有着重要的应用。

通过对信号的采集、处理和分析,我们能够从中提取有用的信息,并对系统进行建模和控制。

结论通过本次实验,我们深入了解了信号与系统的基本概念和实际应用。

我们学习了信号的分类与特性,系统的响应与特性,以及信号与系统在各个领域的应用。

这些知识不仅对我们理解和应用电子工程学科具有重要意义,也为我们今后的学习和研究提供了坚实的基础。

信号与系统是一门复杂而又有趣的学科,它涉及了数学、物理和工程等多个领域的知识。

通过不断学习和实践,我们能够更好地理解和应用信号与系统的理论,为解决实际问题提供有效的方法和工具。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告在现代科学与工程领域中,信号与系统是一个至关重要的研究方向。

信号与系统研究的是信号的产生、传输和处理,以及系统对信号的响应和影响。

在这个实验报告中,我们将讨论一些关于信号与系统实验的内容,以及实验结果的分析和讨论。

实验一:信号的采集与展示在这个实验中,我们学习了信号的采集与展示。

信号是通过传感器或其他仪器采集的电压或电流的变化,可以是连续的或离散的。

我们使用示波器和数据采集卡来采集信号,并在计算机上进行展示和分析。

实验二:线性时不变系统的特性线性时不变系统是信号与系统中的重要概念。

在这个实验中,我们通过观察系统对不同的输入信号作出的响应来研究系统的特性。

我们使用信号发生器产生不同的输入信号,并观察输出信号的变化。

通过比较输入信号和输出信号的频谱以及幅度响应,我们可以了解系统的频率响应和幅频特性。

实验三:系统的时域特性分析在这个实验中,我们将研究系统的时域特性。

我们使用了冲击信号和阶跃信号作为输入信号,观察输出信号的变化。

通过测量系统的冲击响应和阶跃响应,我们可以了解系统的单位冲激响应和单位阶跃响应。

实验四:卷积与系统的频域特性在这个实验中,我们学习了卷积的概念和系统的频域特性。

卷积是信号与系统中的重要运算,用于计算系统对输入信号的响应。

我们通过使用傅里叶变换来分析系统的频域特性,观察输入信号和输出信号的频谱变化。

实验五:信号的采样与重构在这个实验中,我们研究了信号的采样与重构技术。

信号的采样是将连续时间的信号转换为离散时间的过程,而信号的重构是将离散时间的信号恢复为连续时间的过程。

我们使用数据采集卡来对信号进行采样,并使用数字滤波器来进行信号的重构。

通过观察信号的采样和重构结果,我们可以了解采样率对信号质量的影响。

实验六:系统的稳定性与性能在这个实验中,我们研究了系统的稳定性与性能。

系统的稳定性是指系统对输入信号的响应是否有界,而系统的性能是指系统对不同频率信号的响应如何。

我们使用极坐标图和Nyquist图来分析系统的稳定性和性能,通过观察图形的变化来评估系统的性能。

信号与系统测试实验报告总结

信号与系统测试实验报告总结

学院:电子工程学院班级:姓名:学号:信号与系统测试实验总结当前,科学技术都向两极化发展,既向微观发展又向宏观发展。

各学科之间既高度综合又高度分化。

这就要求了我们当代的大学生既要有坚实的理论基础,又还必须具备极强的动手能力和解决各种实际问题的能力。

而这个学期所开展的信号与系统测试的实验课程给我提供了一个很好的机会和平台。

本学期的第八周到十二周期间,我们有幸做了四次信号与系统测试实验。

这四次实验分别为:信号的分类与观察、非正弦周期信号的频谱分析、信号的抽样与恢复(PAM)和模拟滤波器实验。

通过四次印象深刻的实验,不仅在理论上加深了我的理论概念知识,更是通过实践锻炼我们的动手能力,学会使用示波器、信号发生器、频谱仪、信号与系统试验箱等实验仪器。

由于第一次做实验,所以对于实验室里面的很多仪器都感到很新奇,给我留下的印象也很是深刻。

我们目前学的信号与系统基本都是一些数学理论内容,实在是抽象的紧,缺乏和实际的联系。

而这门课程的关键就是在于补充这一方面,让我们的理论和实际得到一定印证。

第一次实验中,实验过程比较简单,稍微复杂的是在于函数图像的绘制上。

而实验之后的理论计算则是让我费了一番功夫,这也让我体会到了理论和实际结合的重要性。

第二个实验是非正弦信号的频谱分析。

在这次试验中,我们接触到了频谱仪这个很重要的工具。

这一次实验中,实验的操作很简单,但实验的原理倒是颇为复杂,这也导致我们进行理论计算时十分的麻烦。

第三次实验做了信号的抽样与恢复。

这是一个很有意义的实验,它向我们展示了现代通信技术的基础,也正是它才使得信息可以有效地传递。

这次实验,我们主要通过矩形脉冲对正弦信号进行抽样,再把它还原回来,最后用还原的图形与原图形对比,分析实验并总结。

试验中,抽样后的波形不稳定,很难根据示波器上的图形进行图形描绘,老师便告诉了我们一个办法,即用手机把图形拍下来再进行绘制,这一环节中,老师如果不醒那么早,让我们自己去思考寻找解决办法将是更好的一个考验。

信号与系统分析实验报告

信号与系统分析实验报告

信号与系统分析实验报告信号与系统分析实验报告引言:信号与系统分析是电子工程领域中的重要课程之一,通过实验可以更好地理解信号与系统的基本概念和原理。

本实验报告将对信号与系统分析实验进行详细的描述和分析。

实验一:信号的采集与重构在这个实验中,我们学习了信号的采集与重构。

首先,我们使用示波器采集了一个正弦信号,并通过数学方法计算出了信号的频率和幅值。

然后,我们使用数字信号处理器对采集到的信号进行重构,并与原始信号进行比较。

实验结果表明,重构后的信号与原始信号非常接近,证明了信号的采集与重构的有效性。

实验二:线性系统的时域响应本实验旨在研究线性系统的时域响应。

我们使用了一个线性系统,通过输入不同的信号,观察输出信号的变化。

实验结果显示,线性系统对于不同的输入信号有不同的响应,但都遵循线性叠加的原则。

通过分析输出信号与输入信号的关系,我们可以得出线性系统的传递函数,并进一步研究系统的稳定性和频率响应。

实验三:频域特性分析在这个实验中,我们研究了信号的频域特性。

通过使用傅里叶变换,我们将时域信号转换为频域信号,并观察信号的频谱。

实验结果显示,不同频率的信号在频域上有不同的分布特性。

我们还学习了滤波器的设计和应用,通过设计一个低通滤波器,我们成功地去除了高频噪声,并得到了干净的信号。

实验四:系统辨识本实验旨在研究系统的辨识方法。

我们使用了一组输入信号和对应的输出信号,通过数学建模的方法,推导出了系统的传递函数。

实验结果表明,通过系统辨识可以准确地描述系统的特性,并为系统的控制和优化提供了基础。

结论:通过本次实验,我们深入学习了信号与系统分析的基本概念和原理。

实验结果证明了信号的采集与重构的有效性,线性系统的时域响应的线性叠加原则,信号的频域特性和滤波器的设计方法,以及系统辨识的重要性。

这些知识和技能对于我们理解和应用信号与系统分析具有重要的意义。

通过实验的实际操作和分析,我们对信号与系统的理论有了更深入的理解,为我们今后的学习和研究打下了坚实的基础。

信号与系统实验报告,(范文大全)

信号与系统实验报告,(范文大全)

信号与系统实验报告,(范文大全)第一篇:信号与系统实验报告,实验三常见信号得MATLAB 表示及运算一、实验目得1。

熟悉常见信号得意义、特性及波形 2.学会使用 MATLAB 表示信号得方法并绘制信号波形3、掌握使用MATLAB 进行信号基本运算得指令 4、熟悉用MAT LAB 实现卷积积分得方法二、实验原理根据MATLAB 得数值计算功能与符号运算功能,在MATLAB中,信号有两种表示方法,一种就是用向量来表示,另一种则就是用符号运算得方法。

在采用适当得MATLAB 语句表示出信号后,就可以利用MATLAB中得绘图命令绘制出直观得信号波形了。

1、连续时间信号从严格意义上讲,MATLAB并不能处理连续信号。

在MATLAB 中,就是用连续信号在等时间间隔点上得样值来近似表示得,当取样时间间隔足够小时,这些离散得样值就能较好地近似出连续信号。

在 MAT LAB 中连续信号可用向量或符号运算功能来表示。

⑴向量表示法对于连续时间信号,可以用两个行向量 f 与 t 来表示,其中向量t 就是用形如得命令定义得时间范围向量,其中,为信号起始时间,为终止时间,p 为时间间隔。

向量 f 为连续信号在向量t所定义得时间点上得样值.⑵符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍得符号函数专用绘图命令ezplot()等函数来绘出信号得波形。

⑶得常见信号得 M ATLA B表示单位阶跃信号单位阶跃信号得定义为:方法一:调用 H eaviside(t)函数首先定义函数 Heaviside(t)得m函数文件,该文件名应与函数名同名即Heaviside、m.%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为yfunction y= H eaviside(t)y=(t>0);%定义函数体,即函数所执行指令%此处定义t>0 时y=1,t<=0 时y=0,注意与实际得阶跃信号定义得区别.方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号得函数,即s te pfun()函数,它就是用数值计算法表示得单位阶跃函数.其调用格式为: st epfun(t,t0)其中,t 就是以向量形式表示得变量,t0 表示信号发生突变得时刻,在t0以前,函数值小于零,t0以后函数值大于零。

信号与系统的实验报告

信号与系统的实验报告

信号与系统的实验报告信号与系统的实验报告引言:信号与系统是电子工程、通信工程等领域中的重要基础学科,它研究的是信号的传输、处理和变换过程,以及系统对信号的响应和特性。

在本次实验中,我们将通过实际操作和数据分析,深入了解信号与系统的相关概念和实际应用。

实验一:信号的采集与重构在这个实验中,我们使用了示波器和函数发生器来采集和重构信号。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和幅度,我们可以观察到信号的不同特性,比如频率、振幅和相位等。

然后,我们将示波器上的信号通过数据采集卡进行采集,并使用计算机软件对采集到的数据进行处理和重构。

通过对比原始信号和重构信号,我们可以验证信号的采集和重构过程是否准确。

实验二:信号的时域分析在这个实验中,我们使用了示波器和频谱分析仪来对信号进行时域分析。

首先,我们通过函数发生器产生了一个方波信号,并将其连接到示波器上进行观测。

通过调整函数发生器的频率和占空比,我们可以观察到方波信号的周期和占空比等特性。

然后,我们使用频谱分析仪对方波信号进行频谱分析,得到信号的频谱图。

通过分析频谱图,我们可以了解信号的频率成分和能量分布情况,进而对信号的特性进行深入研究。

实验三:系统的时域响应在这个实验中,我们使用了函数发生器、示波器和滤波器来研究系统的时域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到滤波器上进行输入。

然后,我们通过示波器观测滤波器的输出信号,并记录下其时域波形。

通过改变滤波器的参数,比如截止频率和增益等,我们可以观察到系统对信号的响应和滤波效果。

通过对比输入信号和输出信号的波形,我们可以分析系统的时域特性和频率响应。

实验四:系统的频域响应在这个实验中,我们使用了函数发生器、示波器和频谱分析仪来研究系统的频域响应。

首先,我们通过函数发生器产生了一个正弦信号,并将其连接到系统中进行输入。

然后,我们通过示波器观测系统的输出信号,并记录下其时域波形。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告一、实验目的信号与系统是电子信息类专业的一门重要基础课程,通过实验可以更深入地理解信号与系统的基本概念和原理,掌握信号的分析与处理方法,提高实践动手能力和解决实际问题的能力。

本次实验的目的主要包括以下几个方面:1、熟悉信号的表示与运算,包括连续时间信号和离散时间信号。

2、掌握线性时不变系统的特性和分析方法。

3、学会使用实验设备和软件工具进行信号的产生、采集、分析和处理。

4、培养观察、分析和总结实验结果的能力,以及撰写实验报告的规范和能力。

二、实验设备与软件本次实验使用的设备和软件主要有:1、计算机一台2、 MATLAB 软件三、实验内容与步骤(一)连续时间信号的表示与运算1、生成常见的连续时间信号,如正弦信号、余弦信号、方波信号、三角波信号等。

在MATLAB 中,使用`sin`、`cos`函数可以生成正弦和余弦信号,例如:`t = 0:001:10; y = sin(2pit); plot(t,y);`可以生成一个频率为 1Hz 的正弦信号。

使用`square`函数可以生成方波信号,`sawtooth`函数可以生成三角波信号。

2、对连续时间信号进行基本运算,如加法、减法、乘法和微分、积分等。

信号的加法和减法可以直接将对应的函数相加或相减,例如:`y1 = sin(2pit); y2 = cos(2pit); y = y1 + y2; plot(t,y);`实现了正弦信号和余弦信号的加法。

乘法运算可以通过相应的函数相乘实现。

微分和积分可以使用`diff`和`cumtrapz`函数来完成。

(二)离散时间信号的表示与运算1、生成常见的离散时间信号,如单位脉冲序列、单位阶跃序列、正弦序列等。

单位脉冲序列可以通过数组的定义来实现,例如:`n = 0:10; x =1,zeros(1,10); stem(n,x);`单位阶跃序列可以通过逻辑判断来生成。

正弦序列使用`sin`函数结合离散时间变量生成。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告实验一,连续时间信号和离散时间信号的时域分析。

本实验旨在通过对连续时间信号和离散时间信号的时域分析,加深对信号与系统的理解。

首先我们将连续时间信号和离散时间信号分别进行采样和重构,然后进行时域分析,得出相应的结论。

实验步骤:1. 连续时间信号的采样和重构。

我们选取了一段正弦信号作为连续时间信号,通过模拟采样和重构的过程,我们得到了采样后的离散时间信号,并将其进行重构,得到了重构后的连续时间信号。

2. 离散时间信号的采样和重构。

同样地,我们选取了一段离散时间信号,进行了模拟采样和重构的过程,得到了采样后的离散时间信号,并将其进行重构,得到了重构后的离散时间信号。

实验结果与分析:1. 连续时间信号的时域分析。

通过对连续时间信号的采样和重构,我们发现在一定条件下,采样后的离散时间信号能够完美地重构成原始的连续时间信号。

这说明连续时间信号的信息是完整的,没有丢失。

2. 离散时间信号的时域分析。

对于离散时间信号的采样和重构,我们也得到了类似的结论,即在一定条件下,采样后的离散时间信号能够完美地重构成原始的离散时间信号。

结论与总结:通过本次实验,我们对连续时间信号和离散时间信号的时域分析有了更深入的了解。

我们明白了采样和重构的过程,并且得出了结论,在一定条件下,采样后的信号能够完美地重构成原始信号。

这对于我们理解信号与系统的基本原理具有重要的意义。

实验二,信号的傅里叶变换。

本实验旨在通过对信号的傅里叶变换,了解信号在频域上的特性,并掌握信号的频谱分析方法。

实验步骤:1. 连续时间信号的傅里叶变换。

我们选取了不同类型的连续时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

2. 离散时间信号的傅里叶变换。

同样地,我们选取了不同类型的离散时间信号,进行了傅里叶变换,观察并记录了其频谱特性。

实验结果与分析:1. 连续时间信号的频谱分析。

通过对连续时间信号的傅里叶变换,我们发现不同类型的信号在频域上有着不同的频谱特性,有些信号的频谱集中在低频段,而有些信号的频谱集中在高频段。

信号与系统 实验报告

信号与系统 实验报告

信号与系统实验报告信号与系统实验报告一、引言信号与系统是电子信息工程领域中的重要基础课程,通过实验可以加深对于信号与系统理论的理解和掌握。

本次实验旨在通过实际操作,验证信号与系统的基本原理和性质,并对实验结果进行分析和解释。

二、实验目的本次实验的主要目的是:1. 了解信号与系统的基本概念和性质;2. 掌握信号与系统的采样、重建、滤波等基本操作;3. 验证信号与系统的时域和频域特性。

三、实验仪器与原理1. 实验仪器本次实验所需的主要仪器有:信号发生器、示波器、计算机等。

其中,信号发生器用于产生不同类型的信号,示波器用于观测信号波形,计算机用于数据处理和分析。

2. 实验原理信号与系统的基本原理包括采样定理、重建定理、线性时不变系统等。

采样定理指出,对于带限信号,为了能够完全恢复原始信号,采样频率必须大于信号最高频率的两倍。

重建定理则是指出,通过理想低通滤波器可以将采样得到的离散信号重建为连续信号。

四、实验步骤与结果1. 采样与重建实验首先,将信号发生器输出的正弦信号连接到示波器上,观察信号的波形。

然后,将示波器的输出信号连接到计算机上,进行采样,并通过计算机对采样信号进行重建。

最后,将重建得到的信号与原始信号进行对比,分析重建误差。

实验结果显示,当采样频率满足采样定理时,重建误差较小,重建信号与原始信号基本一致。

而当采样频率不满足采样定理时,重建信号存在失真和混叠现象。

2. 系统特性实验接下来,通过调节示波器和信号发生器的参数,观察不同系统对信号的影响。

例如,将示波器设置为高通滤波器,通过改变截止频率,观察信号的低频衰减情况。

同样地,将示波器设置为低通滤波器,观察信号的高频衰减情况。

实验结果表明,不同系统对信号的频率特性有着明显的影响。

高通滤波器会使低频信号衰减,而低通滤波器则会使高频信号衰减。

通过调节滤波器的参数,可以实现对信号频率的选择性衰减。

五、实验分析与讨论通过本次实验,我们对信号与系统的基本原理和性质有了更深入的理解。

信号与系统实验报告

信号与系统实验报告

信号与系统实验报告信号与系统实验报告引言信号与系统是电子与通信工程领域中的重要基础课程,通过实验可以更好地理解信号与系统的概念、特性和应用。

本实验报告旨在总结和分析在信号与系统实验中所获得的经验和结果,并对实验进行评估和展望。

实验一:信号的采集与重构本实验旨在通过采集模拟信号并进行数字化处理,了解信号采集与重构的原理和方法。

首先,我们使用示波器采集了一个正弦信号,并通过模数转换器将其转化为数字信号。

然后,我们利用数字信号处理软件对采集到的信号进行重构和分析。

实验结果表明,数字化处理使得信号的重构更加准确,同时也提供了更多的信号处理手段。

实验二:滤波器的设计与实现在本实验中,我们学习了滤波器的基本原理和设计方法。

通过使用滤波器,我们可以对信号进行频率选择性处理,滤除不需要的频率分量。

在实验中,我们设计了一个低通滤波器,并通过数字滤波器实现了对信号的滤波。

实验结果表明,滤波器能够有效地滤除高频噪声,提高信号的质量和可靠性。

实验三:系统的时域和频域响应本实验旨在研究系统的时域和频域响应特性。

我们通过输入不同频率和幅度的信号,观察系统的输出响应。

实验结果表明,系统的时域响应可以反映系统对输入信号的时域处理能力,而频域响应则可以反映系统对输入信号频率成分的处理能力。

通过分析系统的时域和频域响应,我们可以更好地理解系统的特性和性能。

实验四:信号的调制与解调在本实验中,我们学习了信号的调制与解调技术。

通过将低频信号调制到高频载波上,我们可以实现信号的传输和远距离通信。

实验中,我们使用调制器将音频信号调制到无线电频率上,并通过解调器将其解调回原始信号。

实验结果表明,调制与解调技术可以有效地实现信号的传输和处理,为通信系统的设计和实现提供了基础。

结论通过本次信号与系统实验,我们深入了解了信号的采集与重构、滤波器的设计与实现、系统的时域和频域响应以及信号的调制与解调等基本概念和方法。

实验结果表明,信号与系统理论与实践相结合,可以更好地理解和应用相关知识。

信号与系统实验报告-(常用信号的分类与观察)

信号与系统实验报告-(常用信号的分类与观察)

实验一:信号的时域分析一、实验目的1.观察常用信号的波形特点及产生方法2.学会使用示波器对常用波形参数的测量二、实验仪器1.信号与系统试验箱一台(型号ZH5004)2.40MHz双踪示波器一台3.DDS信号源一台三、实验原理对于一个系统特性的研究,其中重要的一个方面是研究它的输入输出关系,即在一特定的输入信号下,系统对应的输出响应信号。

因而对信号的研究是对系统研究的出发点,是对系统特性观察的基本手段与方法。

在本实验中,将对常用信号和特性进行分析、研究。

信号可以表示为一个或多个变量的函数,在这里仅对一维信号进行研究,自变量为时间。

常用信号有:指数信号、正弦信号、指数衰减正弦信号、复指数信号、Sa(t)信号、钟形信号、脉冲信号等。

1、信号:指数信号可表示为f(t)=Ke at。

对于不同的a取值,其波形表现为不同的形式,如下图所示:图1―1 指数信号2、信号:其表达式为f(t)=Ksin(ωt+θ),其信号的参数:振幅K、角频率ω、与初始相位θ。

其波形如下图所示:图1-2 正弦信号3、指数衰减正弦信号:其表达式为其波形如下图:图1-3 指数衰减正弦信号4、Sa(t)信号:其表达式为:。

Sa(t)是一个偶函数,t= ±π,±2π,…,±nπ时,函数值为零。

该函数在很多应用场合具有独特的运用。

其信号如下图所示:图1-4 Sa(t)信号5、钟形信号(高斯函数):其表达式为:其信号如下图所示:图1-5 钟形信号6、脉冲信号:其表达式为f(t)=u(t)-u(t-T),其中u(t)为单位阶跃函数。

其信号如下图所示:7、方波信号:信号为周期为T,前T/2期间信号为正电平信号,后T/2期间信号为负电平信号,其信号如下图所示U(t)四、实验内容及主要步骤下列实验中信号产生器的工作模式为111、指数信号观察通过信号选择键1,设置A组输出为指数信号(此时信号输出指示灯为000000)。

用示波器测量“信号A组”的输出信号。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

实验三 常见信号的MATLAB 表示及运算一、实验目的1.熟悉常见信号的意义、特性及波形2.学会使用MATLAB 表示信号的方法并绘制信号波形 3. 掌握使用MATLAB 进行信号基本运算的指令 4. 熟悉用MATLAB 实现卷积积分的方法二、实验原理根据MATLAB 的数值计算功能和符号运算功能,在MA TLAB 中,信号有两种表示方法,一种是用向量来表示,另一种则是用符号运算的方法。

在采用适当的MA TLAB 语句表示出信号后,就可以利用MA TLAB 中的绘图命令绘制出直观的信号波形了。

1.连续时间信号从严格意义上讲,MATLAB 并不能处理连续信号。

在MATLAB 中,是用连续信号在等时间间隔点上的样值来近似表示的,当取样时间间隔足够小时,这些离散的样值就能较好地近似出连续信号。

在MATLAB 中连续信号可用向量或符号运算功能来表示。

⑴ 向量表示法对于连续时间信号()f t ,可以用两个行向量f 和t 来表示,其中向量t 是用形如12::t t p t =的命令定义的时间范围向量,其中,1t 为信号起始时间,2t 为终止时间,p 为时间间隔。

向量f 为连续信号()f t 在向量t 所定义的时间点上的样值。

⑵ 符号运算表示法如果一个信号或函数可以用符号表达式来表示,那么我们就可以用前面介绍的符号函数专用绘图命令ezplot()等函数来绘出信号的波形。

⑶ 常见信号的MATLAB 表示 单位阶跃信号单位阶跃信号的定义为:10()0t u t t >⎧=⎨<⎩方法一: 调用Heaviside(t)函数首先定义函数Heaviside(t) 的m 函数文件,该文件名应与函数名同名即Heaviside.m 。

%定义函数文件,函数名为Heaviside,输入变量为x,输出变量为y function y= Heaviside(t)y=(t>0); %定义函数体,即函数所执行指令%此处定义t>0时y=1,t<=0时y=0,注意与实际的阶跃信号定义的区别。

方法二:数值计算法在MATLAB 中,有一个专门用于表示单位阶跃信号的函数,即stepfun( )函数,它是用数值计算法表示的单位阶跃函数()u t 。

其调用格式为:stepfun(t,t0)其中,t 是以向量形式表示的变量,t0表示信号发生突变的时刻,在t0以前,函数值小于零,t0以后函数值大于零。

有趣的是它同时还可以表示单位阶跃序列()u k ,这只要将自变量以及取样间隔设定为整数即可。

符号函数符号函数的定义为:10sgn()1t t t >⎧=⎨-<⎩在MA TLAB 中有专门用于表示符号函数的函数sign() ,由于单位阶跃信号 (t)和符号函数两者之间存在以下关系:1122()sgn()t t ε=+,因此,利用这个函数就可以很容易地生成单位阶跃信号。

2.离散时间信号离散时间信号又叫离散时间序列,一般用()f k 表示,其中变量k 为整数,代表离散的采样时间点(采样次数)。

在MATLAB 中,离散信号的表示方法与连续信号不同,它无法用符号运算法来表示,而只能采用数值计算法表示,由于MATLAB 中元素的个数是有限的,因此,MATLAB 无法表示无限序列;另外,在绘制离散信号时必须使用专门绘制离散数据的命令,即stem()函数,而不能用plot()函数。

单位序列()k δ单位序列()k δ)的定义为10()0k k k δ=⎧=⎨≠⎩单位阶跃序列()u k单位阶跃序列()u k 的定义为10()0k u k k ≥⎧=⎨<⎩3.卷积积分两个信号的卷积定义为:1212()()()()()y t f t f t f f t d τττ∞-∞=*∆-⎰MATLAB 中是利用conv 函数来实现卷积的。

功能:实现两个函数1()f t 和2()f t 的卷积。

格式:g=conv(f1,f2)说明:f1=f 1(t),f2=f 2(t) 表示两个函数,g=g(t)表示两个函数的卷积结果。

三、实验内容1.分别用MATLAB 的向量表示法和符号运算功能,表示并绘出下列连续时间信号的波形: ⑴ 2()(2)()tf t e u t -=- ⑵ []()cos()()(4)2tf t u t u t π=--(1) t=-1:0.01:10;t1=-1:0.01:-0.01; t2=0:0.01:10;f1=[zeros(1,length(t1)),ones(1,length(t2))]; f=(2-exp(-2*t)).*f1; plot(t,f)axis([-1,10,0,2.1])syms t;f=sym('(2-exp(-2*t))*heaviside(t)'); ezplot(f,[-1,10]);(2)t=-2:0.01:8;f=0.*(t<0)+cos(pi*t/2).*(t>0&t<4)+0.*(t>4); plot(t,f)syms t;f=sym('cos(pi*t/2)*[heaviside(t)-heaviside(t-4)] '); ezplot(f,[-2,8]);2.分别用MATLAB 表示并绘出下列离散时间信号的波形: ⑵ []()()(8)f t k u k u k =-- ⑶ ()sin()()4k f k u k π= (2) t=0:8; t1=-10:15;f=[zeros(1,10),t,zeros(1,7)]; stem(t1,f)axis([-10,15,0,10]);(3) t=0:50;t1=-10:50;f=[zeros(1,10),sin(t*pi/4)]; stem(t1,f)axis([-10,50,-2,2])3.已知两信号1()(1)()f t u t u t =+-,2()()(1)f t u t u t =--,求卷积积分12()()()g t f t f t =*,并与例题比较。

t1=-1:0.01:0; t2=0:0.01:1; t3=-1:0.01:1; f1=ones(size(t1)); f2=ones(size(t2)); g=conv(f1,f2);subplot(3,1,1),plot(t1,f1); subplot(3,1,2),plot(t2,f2); subplot(3,1,3),plot(t3,g);与例题相比较,g(t)的定义域不同,最大值对应的横坐标也不同。

4.已知{}{}12()1,1,1,2,()1,2,3,4,5f k f k ==,求两序列的卷积和 。

N=4; M=5;L=N+M-1; f1=[1,1,1,2]; f2=[1,2,3,4,5]; g=conv(f1,f2); kf1=0:N-1; kf2=0:M-1; kg=0:L-1;subplot(1,3,1),stem(kf1,f1,'*k');xlabel('k'); ylabel('f1(k)');grid onsubplot(1,3,2),stem(kf2,f2,'*k');xlabel('k'); ylabel('f2(k)');grid onsubplot(1,3,3);stem(kg,g,'*k');xlabel('k'); ylabel('g(k)');grid on实验心得:第一次接触Mutlab 这个绘图软件,觉得挺新奇的,同时 ,由于之前不太学信号与系统遇到一些不懂的问题,结合这些图对信号与系统有更好的了解。

实验四 连续时间信号的频域分析一、 实验目的1.熟悉傅里叶变换的性质 2.熟悉常见信号的傅里叶变换3.了解傅里叶变换的MATLAB 实现方法二、 实验原理从已知信号()f t 求出相应的频谱函数()F j ω的数学表示为:()F j ω()j t f t e dt ω∞--∞=⎰傅里叶反变换的定义为:1()()2j t f t F j e d ωωωπ∞-∞=⎰在MA TLAB 中实现傅里叶变换的方法有两种,一种是利用MATLAB 中的Symbolic MathToolbox 提供的专用函数直接求解函数的傅里叶变换和傅里叶反变换,另一种是傅里叶变换的数值计算实现法。

1.直接调用专用函数法①在MATLAB 中实现傅里叶变换的函数为:F=fourier( f ) 对f(t)进行傅里叶变换,其结果为F(w) F =fourier(f,v) 对f(t)进行傅里叶变换,其结果为F(v) F=fourier( f,u,v ) 对f(u)进行傅里叶变换,其结果为F(v) ②傅里叶反变换f=ifourier( F ) 对F(w)进行傅里叶反变换,其结果为f(x) f=ifourier(F,U) 对F(w)进行傅里叶反变换,其结果为f(u) f=ifourier( F,v,u ) 对F(v)进行傅里叶反变换,其结果为f(u) 注意: (1)在调用函数fourier( )及ifourier( )之前,要用syms 命令对所有需要用到的变量(如t,u,v,w )等进行说明,即要将这些变量说明成符号变量。

对fourier( )中的f 及ifourier( )中的F 也要用符号定义符sym 将其说明为符号表达式。

(2)采用fourier( )及fourier( )得到的返回函数,仍然为符号表达式。

在对其作图时要用ezplot( )函数,而不能用plot()函数。

(3)fourier( )及fourier( )函数的应用有很多局限性,如果在返回函数中含有δ(ω)等函数,则ezplot( )函数也无法作出图来。

另外,在用fourier( )函数对某些信号进行变换时,其返回函数如果包含一些不能直接表达的式子,则此时当然也就无法作图了。

这是fourier( )函数的一个局限。

另一个局限是在很多场合,尽管原时间信号f (t )是连续的,但却不能表示成符号表达式,此时只能应用下面介绍的数值计算法来进行傅氏变换了,当然,大多数情况下,用数值计算法所求的频谱函数只是一种近似值。

2、傅里叶变换的数值计算实现法严格说来,如果不使用symbolic 工具箱,是不能分析连续时间信号的。

采用数值计算方法实现连续时间信号的傅里叶变换,实质上只是借助于MATLAB 的强大数值计算功能,特别是其强大的矩阵运算能力而进行的一种近似计算。

傅里叶变换的数值计算实现法的原理如下:对于连续时间信号f(t),其傅里叶变换为: ()F j ω0()lim()j tj n n f t edt f n e ωωττττ∞∞---∞→=-∞==∑⎰其中τ为取样间隔,如果f(t)是时限信号,或者当|t|大于某个给定值时,f(t)的值已经衰减得很厉害,可以近似地看成是时限信号,则上式中的n 取值就是有限的,假定为N ,有: ()F j ω1()N j n n f n eωτττ--==∑若对频率变量ω进行取样,得:()()k F k F j ω=1()0k N j n n f n e k M ωτττ--==<<∑通常取:02k k k MM ωπωτ==,其中0ω是要取的频率范围,或信号的频带宽度。

相关文档
最新文档