第八讲 等量代换

合集下载

等量代换课件

等量代换课件

1千克
方法一:
方法二:
• 4×4=16(个) • 大家想一想,这两个4分别代表的是什么?
方法三:
1千克
1千克
= 1千克
1千克
1个西瓜的质量=16个苹果的质量
动手操作
• 请你用自己喜欢的方法来解决这个问题。
• 温馨提示:①用学具摆一摆;

②用文字写一写;

③用符号画一画;

④用算式算一算等。
做一做:
张大伯和王大爷商定
王大爷和李大哥 只羊
2头牛 = ? 只羊
16只羊
6
16只羊
4
2×4×2=16(只)
1、
1只鸡和1只鸭,谁重一些?
2、你知道△、○代表什么数? (1)△ + ○=240 △= ○ +○ +○ △=( 180 ) ○=( 60 )
怎样才能称 出大象的体
重呢?
例2:
11 千千 克克
千1 千1 克克
千克 千克 1 1
千克 千克 1 1
千克 千克 1 1
1 千1 克千 克
1个西瓜的质量=4千克
111 1 千千千 千 克克克 克
4个苹果的质量=1千克
1 千 克
1千克 1千克 1千克 1千克
1个西瓜的质 量=16个苹 果的质量
(2) △ + △ + △ +○ +○ =41
△ + △ + △ +○ +○ +△+ △ = 59
△=( ) ○=( )
3
• 百货商店运来300双球鞋,分别装在2个 木箱,6个纸箱里,如果2个纸箱同1个 木箱装的鞋一样多,每个木箱和纸箱各 装多少双球鞋?

《等量代换》ppt课件

《等量代换》ppt课件
21
22
动手操作
1.请你用自己喜欢的方法来解 决这个问题。 温馨提示:①用学具摆一摆;
②用文字写一写; ③用符号画一画; ④用算式算一算等。 2.看哪个小组完成任务最好。
23
24
自我挑战
6根胡萝卜换2个大萝卜,9个大萝卜 换3棵大白菜。6棵大白菜换多少根胡萝卜?25
6根
2个大
9个大
3棵
6棵
?5根4根
26
1 只 猪 和 1 只 羊 谁 重 些 ?
27
生活中的 “等量代换”
28
早在中国古代没有出现货币之前,人 们通过物物交换的方式来获得自己想要的 物品。
29
在电玩城里人们用人民币换取游戏币,通过
玩游戏获取游戏卡,再用一定数量的游戏卡换取
相应的礼品。
30
一个西瓜重多少千克小猪的体重小狗的体重小兔的体重1只小猪的质量2只小狗的质量1只小狗的质量3只小兔的质量动手操作1
等量代换
1
大象有多重? 我有办法。
2
3
4
一个西瓜重多少千克?
5
6
?个苹果
7
森林动物园的小动 物在玩跷跷板游戏
8
9
10
现在,你能用( )和( )是相等的,说一句话吗?
11
+ + + + + + =40
=( 6 )
=( 5)
17
远古时候的等量代换
用4个番薯可以换2棵大白菜。 用8棵大白菜可以换2斤米。 用2只鸡可以换10斤米。
老爷爷:我今天带了一只鸡,可以换些什么呢 ?
18
19
小猪的体重 >小狗的体重>小兔的体重
20

四年级奥数第八讲等量代换

四年级奥数第八讲等量代换

第八讲等量代换知识要点定义:用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分)叫做等量代换。

它是数学中一种基本的思想方法,也是代数思想方法的基础,不仅有着广泛的应用,而且是今后进一步学习数学的基础,是一个非常重要的知识点,甚至到了大学都会使用。

一般地在解决实际应用中,依据中介量,把两种或三种量转化成一种量进行运算,以便解决一些复杂的问题。

芝麻开门同学们知道曹冲称象的故事吗?三国时期,外国使者进贡给曹操一头大象。

曹操很高兴,对大臣们说:“有谁能称出大象的重量吗?”有的大臣说:“可以用一杆大称来称。

”可是到哪能找到这么大的称呢?有的大臣说:“把大象宰了,然后一块一块称。

”这样能行吗?就在大家一筹莫展的时候,曹操七岁小儿子曹冲说:“我有办法。

”曹操说:“你小孩子能有什么办法啊?”曹冲说:“先把大象拉倒一条大船上,沿船和水相接的地方做一个记号。

再把大象拉上岸,在这条船上装石头,到记号处停止,然后称出石头的重量也就是大象的重量。

”曹操听了很高兴,让人按照这种方法果然称出了大象的重量。

同学们,你们知道吗?曹冲称象就是运用了“等量代换”的思想。

经典范例例1 已知:甲= +乙=+ +丙= +甲 = 乙 = 丙求: = ()个思路解析:有乙=丙,可得 =把甲中的“”换成“”可得甲=9个再由甲=丙 9个=6个 +得 =3个答: =3个例2 学校购进一批足球和排球。

买5个足球和3个排球共540元,一个足球的价格是一个排球的3倍。

一个足球和一个排球各是多少元?思路解析:一个足球的价格是一个排球的3倍,可知一个足球就相当于3个排球。

进行等量代换,5个足球=3×5排球。

买5个足球和3个排球共540元,就相当于3×5+3个排球等于540元。

这样就可以计算出排球的价格。

解:540÷(3×5+3)=30(元)30×3=90(元)答:一个排球30元,一个足球90元。

小学三年级趣味数学(思维训练)课程第八讲 等量代换

小学三年级趣味数学(思维训练)课程第八讲 等量代换

第八讲等量代换在曹冲称象的故事中,为什么大象的重量可以换成一船石块的重量呢?因为两次船下沉后被水面淹没的深度一样。

只有当大象与一船石头一样重(重量相等)时,船才会被淹没到一样深。

在这个故事中,就是运用了“等量代换”的思考方法,两个完全相等的量,可以互相替换。

例1◎+◎+□=25 (1)□=◎+◎+◎ (2)◎=?□=?分析:把两个算式编号为(1)式、(2)式。

把(1)式中的□用(2)式中的三个◎代换,可得◎+◎+◎+◎+◎=25也就是◎×5=25解:◎=25÷(2+3)=5□=5+5+5=15随堂练习想一想下面的符号代表什么数:已知:☆+☆+○ =35,○=☆+☆+☆+☆+☆☆代表(),○代表()。

例2百货店运来300双球鞋,分别装在2个木箱、6个纸箱里。

如果2个纸箱同1个木箱装的球鞋一样多,想一想:每个木箱和每个纸箱各装多少双球鞋?分析:根据“2个纸箱同1个木箱装的球鞋一样多”,把木箱换成纸箱,也就是说,把300双球鞋全部用纸箱装,不用木箱装。

根据已知条件,2个木箱里的球鞋刚好装满4个纸箱,再加上原来已装好的6个纸箱,一共是10个纸箱。

这样,题目就变为“把300双球鞋平均装在10个纸箱里,平均每个纸箱装多少双球鞋?”可以求出每个纸箱装多少双鞋,也就能求出一个木箱能装多少双鞋。

解300÷(2×2+6)=300÷10=30(双)30×2=60(双)答:每个纸箱里装30双球鞋,每个木箱里装60双球鞋。

随堂练习:妈妈在超市买了6盒牛奶和5包饼干,一共用去了27元,已知3盒牛奶的价钱与2包饼干的价钱相等。

你会算算1盒牛奶和1盒饼干各需要多少元吗?拓展训练1、一筐苹果等于两筐梨,两筐梨等于四筐樱桃,两筐苹果等于多少筐樱桃?2、一只大象的重量等于四只猴的重量,两只猴的重量等于四只鼠的重量,一只象的重量等于几只鼠的重量?3、小明的钱加两元等于小红的钱减去3元,小红的钱比小明的钱多多少元?不好意思,只想得到这么多了.将就用吧!4、食品柜中的大中小三种瓶子都装着果汁,每只小瓶装1千克,每只大瓶装的是中瓶的2倍,1只中瓶装的是小瓶的3倍,食品柜有三层,每层装的果汁的总重相等,这只食品柜每层各装了多少千克果汁?。

《数学下册等量代换》课件

《数学下册等量代换》课件

Part
02
等量代换的原理
代数原理
代数表达式
等量代换在代数中表现为 等式的传递性,即如果 a=b且b=c,那么a=c。
变量替换
在解决某些数学问题时, 可以将一个变量替换为另 一个等价的变量,以简化 问题。
方程的化简
通过等量代换,可以将复 杂的方程式化简为更简单 的形式,便于求解。
几何原理
面积和体积的等量代换
《数学下册等量代换 》ppt课件
• 等量代换概念 • 等量代换的原理 • 等量代换的练习题 • 等量代换在实际生活中的应用 • 等量代换的注意事项
目录
Part01Fra bibliotek等量代换概念
等量代换的定义
总结词
等量代换是指用一个量代替与其等量的另一个量,而量值保 持不变。
详细描述
等量代换是数学中一个基本的概念,它表示当两个量具有相 同的数值时,可以用其中一个量来代替另一个量,而不会改 变整体的数值。例如,在数学公式中,如果两个量具有相同 的数值,则它们可以互相替换。
总结词
等量代换的实例包括用苹果代替橘子计算水果总量、 用水代替牛奶配制食品以及用变量代替常量进行代数 运算。
详细描述
等量代换的实例在生活中非常常见。例如,如果我们有 相同数量的苹果和橘子,可以用苹果的数量来代替橘子 的数量,从而计算出水果的总数量。在烹饪中,如果需 要用水代替牛奶配制食品,由于水的量值与牛奶相同, 因此不会改变食品的口感和营养成分。在代数运算中, 我们经常使用变量来代替常量进行运算,以便更好地理 解和解决问题。这些实例都体现了等量代换在日常生活 和数学中的广泛应用。
数学问题中的等量代换
总结词
在数学问题中,等量代换是一种常见的 解题方法,可以帮助我们简化问题并找 到解决方案。

等量代换课件ppt

等量代换课件ppt

?个苹果
1111 千克千克千克千克
1 千克
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
情景二
1只猴子可以换2只兔子
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
怎样才能称 出大象的体
重呢?
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用
经营者提供商品或者服务有欺诈行为 的,应 当按照 消费者 的要求 增加赔 偿其受 到的损 失,增 加赔偿 的金额 为消费 者购买 商品的 价款或 接受服 务的费 用

小学数学概念-等量代换ppt课件

小学数学概念-等量代换ppt课件

10
1千克 1千克 1千克 1千克
可编辑课件PPT
11
1千克 1千克 1千克
可编辑课件PPT
12
1千克 1千克
可编辑课件PPT
13
1千克
可编辑课件PPT
14
1个西瓜的重量=16个苹果的重量
可编辑课件PPT
15
11 11 克 千克 千克 千克 千
11 11 克 千克 千克 千克 千
1个西瓜的重量 = 16个苹果的重量
可编辑课件PPT
16
总结
从以上这些例子中,我们发现了重量相等、 价钱相等… …这些相等的量之间都可以代 换,并且能解决生活中的许多问题。等量 代换是一种非常重要的数学思想方法,对 我们今后的学习有非常大的帮助!
可编辑课件PPT
17
谢谢大家
可编辑课件PPT
18
此课件下载可自行编辑修改,此课件供参考! 部分内容来源于网络,如有侵权请与我联系删除!感谢你的观看!
换成
1瓶3元的可乐=3瓶1元的矿泉水
可编辑课件PPT
4
举例(三)
可编辑课件PPT
5
可编辑课件PPT
6
1千克 1千克 1千克 1千克
可编辑课件PPT
7
可编辑课件PPT
8
1千克
可编辑课件PPT
9
Hale Waihona Puke 两个重量相等的物体可以互相代换
1千克 1千克 1千克 1千克
1千克
怎么代换呢?
?个
可编辑课件PPT
等量代换
明日之星小组
可编辑课件PPT
1
定义
• 等量代换:用一种量(或一种量的一部 分)来代替和它相等的另一种量(或另 一种量的一部分)。

小学数学《等量代换》课件

小学数学《等量代换》课件


11、人总是珍惜为得到。2021/6/302021/6/302021/6/30Jun-2130-Jun-21

12、人乱于心,不宽余请。2021/6/302021/6/302021/6/30Wednesday, June 30, 2021

13、生气是拿别人做错的事来惩罚自 己。2021/6/302021/6/302021/6/302021/6/306/30/2021

14、抱最大的希望,作最大的努力。2021年6月30日 星期三 2021/6/302021/6/302021/6/30

15、一个人炫耀什么,说明他内心缺 少什么 。。2021年6月 2021/6/302021/6/302021/6/306/30/2021

16、业余生活要有意义,不要越轨。2021/6/302021/6/30June 30, 2021
可以换
8
因为 所 又以 因为
可以换 可可以以换换
所以
2021/6/20
可以换
9
1个汉堡能换4个蘑菇,3个蘑
菇能换6块巧克力,1个汉堡能
换几块巧克力?
=?
2021/6/20
10
2021/6/20
可以换 可以换
可以换
?
11
2021/6/20
可以换 可以换
可以换
12
一三下年人级民:币数的学认广识角 初中
X+2y=5 4x+3y=12
2021/6/20
13
一只鸡和一只鸭谁重一些呢?
2021/6/20
14
2021/6/20
15

9、 人的价值,在招收诱惑的一瞬间被决定 。2021/6/302021/6/30Wednes day, June 30, 2021

等量代换教学课件

等量代换教学课件

等量代换教学课件等量代换教学课件等量代换,用一种量(或一种量的一部分)来代替和它相等的另一种量(或另一种量的一部分)。

下面是小编为你带来的等量代换教学课件,欢迎阅读。

教学设计:1、结合具体问题,初步体会等量代换的思想方法。

2、经历探究实际问题的过程,在解决实际问题的过程中体会等量代换的思想。

3、能用等量代换的思想方法解决简单的实际问题,培养应用意识。

教学重点:体会等量代换的思想方法教具、学具:多媒体课件学具卡片教学过程:课前谈话:找同学给大家讲一讲“曹冲称象”的故事。

讲完之后问学生两个问题:1、为什么要将大象换成石头?为什么要在船舷上划线?2、为什么往船上放石头的时候要让船下沉到画线的地方?曹冲用到的方法,在数学上叫做等量代换。

(板书课题)过渡语:曹冲解决这个问题的时候只是一个只有9岁的孩子,和你们的年龄几乎一样。

今天这节课你们将面临和曹冲类似的问题,你们有信心解决这些问题吗?一、创设情境,提出问题谈话:你们家里没有米面粮油了,会怎么办?(用钱去买)在比曹冲称象还要早很多的年代,那时候货币还没有产生,人们想要获得生活物品只能用以物换物的形式进行。

这不,有2个人来到了交易场所。

咱们瞧瞧去。

课件出示:第一个原始人牵着一头牛语音:我想换几只羊来养,好用羊毛纺线,做衣服。

字幕:换羊第二个原始人赶着一群羊语音:我家的羊太多了,放不过来了,我想把他们换出去一些,但是不换牛,我家的牛够用了。

字幕:不换牛暂停、提问:他们两个能进行交换吗?为什么?导语:就在二人为难的时候,转机出现了。

播放:第三个原始人赶着几头猪语音:我家的猪太多了,没有太多的粮食喂它们,我想换点不吃粮食的动物养一养,牛羊都可以。

字幕:换牛羊都可以提问:这回他们可以交换了吗?师:经过协商他们达成了这样一个交换协议:一头牛换两头猪,一头猪换3只羊。

课件出示:图片一头牛可以换几只羊?(这些信息以及问题都呈现在课件上)二、探究问题,感受思想1、解决“一头牛可以换多少只羊的问题” 。

三年级数学等量代换课件

三年级数学等量代换课件

首先需要仔细阅读题目,理解题意,明确需要解决的问题和已知条件。
分析问题
根据题目描述,找出等量关系,用已知的量来代替未知的量。
建立等量关系
利用等量关系进行计算,得出最终结果。
计算求解
最后需要验证答案是否正确,可以通过重新计算或检查等量关系来实现。
验证答案
03
在学习其他科目时运用等量代换
例如,在化学中,可以通过等量代换将不同物质的分子量进行比较。
理解等量代换需要明确等价关系,即两个量在数值上相等,可以互相替换。
总结词
等量代换的理解需要明确等价关系,即两个量在数值上相等,可以互相替换。例如,在加法或乘法中,如果两个量等值,则可以用其中一个量替换另一个量,而不会改变结果。
详细描述
VS
等量代换在日常生活中有着广泛的应用,如购物时比较价格、计算物品重量等。
观察法
归纳法
反证法
数形结合法
01
02
03
04
通过观察题目中的等量关系,找出规律,简化问题。
通过对多个例子的观察和归纳,总结出等量代换的规律。
在解题过程中,通过反证来证明某个结论的正确性。
将数量关系和图形结合起来,通过图形直观地表示数量关系。
题目一:一个西瓜的质量等于四个菠萝的质量,一个菠萝的质量等于三个苹果的质量,一个苹果的质量是150克,问一个西瓜的质量是多少?
三年级数学等量代换课件
目录
CONTENTS
等量代换的定义与理解等量代换的原理与运用解决等量代换问题的方法与技巧等量代换的实际案例分析总结与回顾
等量代换的定义与理解
总结词
等量代换是指用一个量代替与其等值的另一个量,而保持数值不变的过程。
详细描述

等量代换ppt课件课件

等量代换ppt课件课件

THANKS
感谢观看
代数式中的等量代换技巧
掌握代数式中的等量代换技巧,如合并同类项、提取公因式、分式的通分等,能够提高代数运算的效率和准确性。
复杂图形中的等量代换
图形中的等量代换
在几何图形中,可以通过等量代换来 证明某些性质或关系。例如,在三角 形中,可以通过等量代换证明某些边 或角的关系。
图形中的等量代换技巧
掌握图形中的等量代换技巧,如利用 相似三角形的性质、利用平行四边形 的性质等,能够提高几何证明的效率 和准确性。
数表达式在替换后仍然相等。
图形中的等量代换
在几何图形中,等量代换通常是指通过替换图形中的某些部分,使其变为另一个等 面积或等周长的图形。
例如,在三角形中,可以通过等量代换将一个边替换为与其相邻的两段相等的小段, 从而形成一个新的三角形。
在进行图形中的等量代换时,需要注意保持图形的整体性质不变,如面积、周长等。
03
等量代换的方法与技巧
代数表达式中的等量代换方法
01
代数表达式中的等量代换
在代数表达式中,如果两个量相等,可以用一个量代替另一个量,从而
简化表达式。例如,在方程中,如果两个未知数相等,可以互相替换。
02 03
具体操作
在代数表达式中,如果两个量相等,可以将其中一个量用另一个量表示, 从而简化表达式。例如,如果$a = b$,则可以将$a$替换为$b$或将 $b$替换为$a$。
生活中的等量代换
在生活中,我们经常需要将一种物品或事物等价地替换成另一种物品或事物。例如,在购 物时,我们可以用一种物品的价格来估算另一种物品的价格。
具体操作
在生活中,如果两种物品或事物的价格相等或相似,可以用一种物品的价格来估算另一种 物品的价格。例如,在购物时,如果知道苹果的价格,可以用苹果的价格来估算梨的价格 。

《等量代换》教学设计

《等量代换》教学设计

《等量代换》教学设计《等量代换》教学设计范文(精选3篇)作为一位杰出的老师,有必要进行细致的教学设计准备工作,编写教学设计有利于我们科学、合理地支配课堂时间。

那么你有了解过教学设计吗?以下是店铺整理的《等量代换》教学设计范文(精选3篇),希望能够帮助到大家。

《等量代换》教学设计1教学目标:1、知识目标:在动手操作、解决问题的过程中体会等量代换的思想。

2、能力目标:在数学活动中,进一步发展学生的动手操作能力、初步逻辑推理能力、语言表达能力、运用数学知识解决问题的能力。

3、情感目标:在丰富的数学情境中,让学生感受到学数学、用数学的乐趣。

教学重、难点:理解等式之间的关系、进行等式之间的换算。

教学过程:一、创设情境,引导观察,感知等量代换。

1、运用学具,开展拼图游戏。

师:小朋友们,你们玩过拼图游戏吗?生:玩过。

师:现在请同学们自己动手拼一个材料中所给的长方形。

请拼好的同学,先在小组内交流一下你的拼法。

(1)请你说说你是用几个什么图形拼成一个长方形的?生1:我是用两个梯形和两个三角形拼成一个长方形的。

(请学生上来摆)(2)有不同的拼法吗?生2:我是用六个三角形拼成的。

(请学生上来摆)(黑板上展示两种拼法)2、观察、思考、交流,体会等量代换思想。

师:你们刚才有各种各样的拼法,其实归纳起来就两种:一种是用两个梯形和两个三角形拼成一个长方形,还有一种是用六个三角形拼成一个长方形。

(一个长方形=六个三角形)师:如果老师想把那两个梯形替换成三角形需要几个,请同学们动手摆一下。

摆好的同学请把手举起来。

生:我用四个三角形替换了两个梯形。

师:有不同答案吗?师:同学们真棒!看来大部分同学都对的,由此我们可以得出两个梯形=四个三角形。

师:我们通过替换也得出一长方形=六个三角形3、揭示课题。

师小结:刚才,同学们在换的过程当中,就已经运用了一种数学思想等量代换(板书课题)等量代换的例子在生活中有很多,比如说:一张十元的钱可以等值代换10张一元的钱。

三年级数学《等量代换》说课稿(通用6篇)

三年级数学《等量代换》说课稿(通用6篇)

三年级数学《等量代换》说课稿三年级数学《等量代换》说课稿(通用6篇)作为一位兢兢业业的人民教师,总不可避免地需要编写说课稿,说课稿有助于顺利而有效地开展教学活动。

如何把说课稿做到重点突出呢?下面是小编为大家整理的三年级数学《等量代换》说课稿,仅供参考,大家一起来看看吧。

三年级数学《等量代换》说课稿篇1说教材:“等量代换”是指一个量用与它相等的量去代替,它是数学中一种基本的思想方法,也是代数思想方法的基础。

通过跷跷板平衡的原理,解决一些简单的问题,使学生初步体会等量代换的数学思想方法,为以后学习简单的代数知识做准备,等量代换的理论是比较系统的、抽象的思想方法,在这节课中只是让学生通过生活中容易理解的题材,初步体会这种思想方法,为后继学习打下基础。

说学生:由于“等量代换”需要抽象地想象替换,对还处在以具体形象思维为主,逐步向抽象思维过渡的三年级学生来说,有一定的困难。

在解决问题的过程中,应边引导边让学生在经历中感悟,在具体的情境中体验什么是等量,等量可以怎样代换,让学生亲历解决问题的整个探究过程,在这一过程中感知、体验等量代换的数学思想。

说教学目标:1、初步认识等量代换的数学思想,学会根据已知信息寻找事物间的等量关系,能解决日常生活中常见的简单问题。

2、通过观察、猜测、操作、交流、验证等活动,能用一个相等的量去代换另一个量,初步体验等量代换的数学思想方法。

3、在丰富的学习活动中培养学生有序地、全面地思考问题、提出问题并解决问题的意识和合作学习的习惯。

培养学生的推理能力和语言表达能力,发展学生的思维。

4、经历解决问题的过程,感受等量代换与生活的密切联系及应用价值;体验成功,增强自信心。

说教学重点难点:重点使学生初步体会等量代换的思想方法。

难点:能应用等量代换的思想解决问题。

设计理念:三个大的环节。

一是,结合典故,引出等量代换的思想;二是,创设情境,将等量代换不同类型的三种情况,融入到三个不同的情境中,使学生在快乐的氛围中,逐步体会等量代换的思想方法;三是,图形之间的代换,从实物过渡到图形。

等量代换是什么意思

等量代换是什么意思

等量代换是什么意思
等量代换的定义:用一种量(或一种量的一部)来代替和它相等的另一种量(或另一种量的一部分),它是数学中一种基本的思想方法,也是代数思想方法的基础,狭义的等量代换思想用等式的性质来体现就是等式的传递性。

等式的性质
性质一:等式两边同时加上相等的数或式子。

两边依然相等,就像天平的两端保持平衡一样,在天平的两端加上或者减去同样重量的物品。

天平两端依然保持平衡。

性质二:等式两边同时乘或除相等且不为零的数或式子。

两边依然相等,就像在天平两端同时缩小或者放大相同倍数的物品,天平两端依然保持平衡。

性质三:等式两边同时乘方或开方,两边依然相等,天平两端的物品同时成倍数增加或者减去一半,天平两端依然保持平衡.这就是等式的性质。

《等量代换》 知识清单

《等量代换》 知识清单

《等量代换》知识清单一、什么是等量代换等量代换是数学中一种非常重要的思想方法。

简单来说,就是用一种量(或一种量的一部分)来代替和它相等的另一种量。

比如说,我们知道一个苹果的重量等于两个橘子的重量,而两个橘子的重量又等于三个草莓的重量。

那么通过这样的关系,我们就可以得出一个苹果的重量等于三个草莓的重量。

这就是等量代换的基本概念。

等量代换的核心在于“相等”这个概念。

只有当两种量在某种程度上是相等的,我们才能够进行代换。

二、等量代换的应用场景1、解决数学问题在数学的各种题型中,等量代换都有着广泛的应用。

例如,在求解方程时,如果方程中有多个未知数,我们可以通过已知的等量关系,将其中一个未知数用其他未知数表示出来,从而简化方程,便于求解。

又如,在几何图形中,当已知某些线段或角度之间的等量关系时,我们可以通过代换来求出未知的线段长度或角度大小。

2、日常生活中的应用等量代换不仅仅在数学课堂上有用,在日常生活中也随处可见。

比如,去超市购物,我们知道一瓶大瓶饮料的价格等于两瓶小瓶饮料的价格,那么在比较购买哪种更划算时,就可以运用等量代换的思想。

再比如,在装修房屋时,如果知道一块大瓷砖的面积等于两块小瓷砖的面积,那么在计算所需瓷砖数量时,也能用到等量代换。

三、等量代换的基本原理1、等式的性质等量代换的基础是等式的性质。

等式两边同时加上或减去同一个数,等式仍然成立;等式两边同时乘以或除以同一个非零数,等式仍然成立。

2、等价关系等量代换所依据的是量与量之间的等价关系。

这种等价关系可能是通过测量、计算或者已知的定理、规律等确定的。

四、等量代换的步骤1、确定等量关系首先,需要仔细观察和分析题目中给出的各种量之间的关系,找出明确的等量关系。

2、选择代换对象根据等量关系,确定要进行代换的量。

通常选择比较容易代换且能够简化问题的量。

3、进行代换计算将选定的量用与之相等的量进行代换,然后进行相应的计算或推理。

4、检查结果完成代换和计算后,要检查结果是否符合题目要求,是否合理。

等量代换六年级知识点

等量代换六年级知识点

等量代换六年级知识点等量代换是数学中一个重要的概念,尤其在六年级的数学学习中扮演着重要的角色。

在这篇文章中,我们将探讨等量代换的定义、性质以及其在六年级的数学知识点中的应用。

一、等量代换的定义等量代换是指在数学运算中,将一个数或者表达式用与其等值的数或者表达式替代,使得等式保持不变。

等量代换的核心思想是“用等值的代替原来的”。

通过等量代换,我们可以简化复杂的运算,推导出更简洁的公式。

二、等量代换的性质1. 等量代换保持等式的成立性。

即,如果两个数或者表达式等值,那么它们可以相互等量代换。

2. 等量代换在运算过程中不改变等式的结果。

换句话说,等式两边分别进行等量代换后,结果仍然相等。

三、等量代换在六年级数学中的应用1. 代数式的等量代换在六年级中,我们开始接触代数式,学习如何进行等量代换。

例如,当我们需要计算某个代数式的值时,可以将其中的变量替换为具体的数值,从而得到结果。

例如,我们要计算代数式 A = 3x + 5,在 x = 2 的情况下的值。

我们可以通过等量代换,将 x 替换为 2,计算得到 A = 3 * 2 + 5 = 11。

2. 整数四则运算中的等量代换在六年级学习整数四则运算时,等量代换可以帮助我们简化计算过程。

例如,计算两个整数的和时,我们可以通过等量代换将其中一个整数改为相反数的减法运算。

例如,计算 7 + (-5) 的结果时,我们可以将其等量代换为 7 - 5,得到的结果便是 2。

3. 分数运算中的等量代换六年级还学习了分数运算,等量代换也适用于分数的计算。

例如,在计算分数的加减法时,我们可以通过等量代换将其转化为相同分母的运算,从而简化计算过程。

例如,计算 1/4 + 2/3 的结果时,我们可以通过等量代换将其转化为 3/12 + 8/12,得到的结果为 11/12。

4. 代数方程中的等量代换等量代换在解代数方程时也扮演着重要的角色。

当我们碰到复杂的方程时,可以通过等量代换将方程中的变量替换为更简单的形式,从而更容易求解方程。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第二天,曹操让曹冲安排车辆把用来称象的石头拉到 工地上。 3. 曹冲算了一下:如果去时步行,回来时坐车,需要 90分钟;如果往返都坐车,只需要30分钟;如果往 返都步行,需要多长时间?
4. 曹冲用大小两种车运石头,大车运了9次,小车运 了10次,一共运了132吨,大车3次运的石头等于 小车4次运的石头。大、小车的载重量各是多少吨?
练习:大胆闯关5
第三站:取剑 例3. 宴会结束后,曹操把曹冲带到一个藏宝屋。曹 操对曹冲说:“这里有很多宝剑和宝刀,你可以任 选一样,但得回答我的一个问题。”曹冲说:“没 问题!” 曹操说:“3把同样的宝刀和20把同样的宝剑,一 共价值134两银子;同样的3把宝刀和16把宝剑,一 共价值118两银子。宝刀和宝剑的单价各是多少两银 子?” 练习:大胆闯关6、7
大胆闯关 宴会上,厨师上了一些水果:有苹果、梨、橙子, 还有新鲜的西瓜呢! 1. 曹冲把4个同样重量的苹果和5个同样重量的西 瓜一起称了一下,一共重832克,并且每个西瓜的 重量是每个苹果重量的12倍。问:每个苹果和每个 西瓜各重多少克?
2. 一个大臣先取出5个同样重量的橙子和6个同样重量的 梨,一共重500克;又取出5个同样重量的橙子和9个同样 重量的梨,一共重650克。你知道每个橙子和每个梨的重 量分别是多少克吗?
第八讲 曹冲称象 —等量代换
第一站:倒酒 例1. 群宴时,曹丞相让曹冲给大家倒酒。于是,曹冲就 把720毫升酒倒入6个小杯和1个大杯,正好都倒满。大 杯的容量是小杯的3倍,小杯和大杯各可以装多少毫升酒?
练习:大胆闯关1
第二站:奖赏 例2. 曹操为了把宴会搞得更加隆重,他对每个大 臣都进行了赏赐。他给每个文官奖励4只羊,每个 武官奖励2只猪。 如果5头同样的小猪和17只同样的小羊总共价值 384文钱,且1只小猪和3只小羊的价钱相等。问: 每只小猪和每只小羊各是多少文钱?
5. 学校用280元买了10个大福娃和8个小福娃奖励给 数学竞赛获奖的同学。已知每个大福娃的价钱相当 于2个小福娃的价钱,大福娃和小福娃的单价各多 少钱?
6. 同学们去公园划船,如果租6条大船和4条小船可坐 52人;如果租4条大船和4条小船可坐40人,那么 每条大船比每条小船多坐多少人?
7. 喜羊羊买了4个足球和5个篮球共花了492元,懒 羊羊买了同样的4个足球和2个篮球共花了312元, 每个足球、篮球各多少元?
相关文档
最新文档