人教版实数全章课件
合集下载
人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)
![人教版数学七年级下册 6.3 .1实数 课件(共21张PPT)](https://img.taocdn.com/s3/m/7adafbd2951ea76e58fafab069dc5022aaea461c.png)
9,
•
0.6,
64, 0, 3
0.13
(5)正实数数集合:
9 , 3 5,
64,
,
0.
•
6,
3,
0.13
(6)负实数集合: 3 ,
4
(7) 实数集合: 9 , 3 5, 64,
,
•
0.6,
3, 4
0,
3, 0.13
解:
课堂小结
1. 无理数及实数的概念 无限不循环小数叫做无理数;有理数与无理数统称实数. 2. 实数的分类
5 , 3 , 27 ,11, 9 2 5 4 9 11
它们都可以化 成有限小数或 无限循环小数 的形式
思考1:(1)整数能写成小数的形式吗?3可以看成是3.0吗?
可以 (2)由此你可以得到什么结论?
任何一个有理数都可以写成有限小数或无限循环小数; 反过来,任何有限小数或无限循环小数也都是有理数. 思考2:除了有限小数和无限循环小数,还有什么其他类 型的小数吗?
无限不循环小数 叫做无理数
它们都是无限 不循环小数, 是无理数
π
练一练
把下列各数分别填入相应的集合内:
17 , 4
π
3,
4,
0.101,
, 3
2, 5
64, 2.121, 0.3737737773(相邻两个3之间7的个数逐渐加1)
...
有理数集合
...
无理数集合
有理数和无理数统称实数,实数的分类如下:
(1)按定义分
整数
有理数:
有限小数或无限循环小数
实
分数
数
无理数: 无限不循环小数
含开方开不尽的数
π 含有 的数
人教版《实数》优秀课件初中数学ppt
![人教版《实数》优秀课件初中数学ppt](https://img.taocdn.com/s3/m/4bf88d8c5acfa1c7ab00ccaf.png)
品比赛,小红很高兴,他 想裁出一块面积为25dm2 的正方形画布,画上自己 的得意之作参加比赛,这 块正方形画布的边长应取 多少?你能帮小明算一算 吗?
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
二、推进新课
填表1
正方形的边长 1 正方形的面积 1
3 0.1 9 0.01
思考:你能从表格中发现什么共同点吗?
已知一个正数,求这个正数的平方, 这就是平方运算。
一、创设情境,导入新课 一、创设情境,导入新课 算数平方根的数学符号表示 会用根号表示一个数的算术平方根(重点); 一个正数有两个算术平方根,且互为相反数。 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 第1课时 算术平方根 了解算术平方根的概念; 思考:你从表2中能发现什么? 算术平方根具有双重非负性 算数平方根的数学符号表示 已知一个数的平方,求这个数的运算叫做开平方。 会用根号表示一个数的算术平方根(重点); 了解算术平方根的概念; 问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方 形画布的边长应取多少?你能帮小明算一算吗? 一个正数有两个算术平方根,且互为相反数。 用大小完全相同的250块正方形地板砖,铺一间面积为160 m2的地面,每块地板砖的边长是多少? 第1课时 算术平方根 会用根号表示一个数的算术平方根(重点); 已知一个正数,求这个正数的平方,这就是平方运算。
已知一个数的平方,求这个数的运算叫做开平方。
算数平方根的数学符号表示
所以m+n=2
了解算术平方根的概念;
算术平方根具有双重非负性
问题:学校要举行美术作品比赛,小红很高兴,他想裁出一块面积为25dm2的正方形画布,画上自己的得意之作参加比赛,这块正方
人教版七年级下册数学第六章实数课件:6.3 实数
![人教版七年级下册数学第六章实数课件:6.3 实数](https://img.taocdn.com/s3/m/a37dd17ecf84b9d528ea7a9f.png)
正有理数
正实数
实数
正无理数
0 负实数
负有理数
负无理数
4.实数与数轴上的点是一一对应的.
教学课件 七年级数学下册(RJ)
第六章 实数
6.3 实根(2)
课前预习
带着问题自学课本P54“思考”
1.无理数也有相反数吗?怎么表示? 2.有绝对值吗?怎么表示? 3.有倒数吗?怎么表示?
探究新知
(1) 2的相反数是 ____2___ -π的相反数是____π_____ 0的相反数是____0_____
无理数的概念
所有的数都可以写成有限小数和无限循 环小数的形式吗?
2 =1.41421356237309504880168… 3 5 =1.70997594667669698935310…
π=3.1415926535897932384626…
1.01001000100001…(两个1之间依次多一个0)
解:- 的相反数是 π -3.14的相反数是3.14-π
(2)指出 - 5 ,1- 3 3 分别是什么数的相反数;
(2)- 是 的相反数; 1- 是 -1 的相反数;
例题讲解
(3)求 3 64 的绝对值;
|
|=|-4|=4.
(4)已知一个数的绝对值是 3 ,求这个数。
绝对值为 的数是 或-
实数的运算
35
9
3 4
0.6
(6)实数集合: 9 3 5
0.6
3 4
3 9 3 0.13
64
0.6
3
3
4
0.13
3 9
64 3
3 9
《实数》PPT课件
![《实数》PPT课件](https://img.taocdn.com/s3/m/a4d20ecb9f3143323968011ca300a6c30c22f1b1.png)
即实数可以分为有理数和无理数.
实数
有理数 无理数
无理数和有理数一样,也有正负之分.
如: 是__正__的,
是_负____的.
【正数】 大于0的实数 【负数】 小于0的实数
包括所有的正有理数和正无理数. 包括所有的负有理数和负无理数.
议一议
1.你能把下列各数分别填入相应的集合内吗?
正数集合
负数集合
议一议
77,绝对值 7
.
(3)相反数 -7,倒数 1 ,绝对值7.
7
3.在数轴上作出与 对应的点.
课堂小结
通过今天的学习,说说你的收获和体会?
作业布置
1. 习题2.8.
2.求
的相反数和绝对值.
的相反数为
;绝对值为
.
2.0属于正数吗?属于负数吗?
3.实数还可以怎样分类?
实数的 第一种分类
实数的 第二种分类
实数
有理数 无理数
实数
正实数 0
负实数
Байду номын сангаас
实数的相关概念
在实数范围内 ,相反数、倒数、绝对值的意义 ,和有理数范围 内的相反数、倒数、绝对值的意义完全一样.
与______互为相反数.
与______互为倒数.
_____,
____,
___.
1.在有理数范围内,能进行哪些运算?用哪些运算律? 2.判断下列各式成立吗?
有理数的运算及运算律对实数仍然适用.
想一想
1.
的绝对值是________.
2. a是一个实数,它的相反数是_______.
绝对值是__________________. 当a≠0时,它的倒数是___________.
人教版初中数学实数第1课时课件(共26张PPT)
![人教版初中数学实数第1课时课件(共26张PPT)](https://img.taocdn.com/s3/m/2fd6c767f7ec4afe04a1df3b.png)
2019/2/23
9
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
无理数的诞生
2、探究新知
2019/2/23
10
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
Teaching Process
Teaching Process
2、探究新知
2019/2/23
13
教学过程
单击此处编辑母版标题样式
Teaching Process
2、探究新知
有理数
初中阶段对数的认识范围扩充为 单击此处编辑母版文本样式 第二级 新加入 第三级 第四级 第五级
实数
无理数
有理数和无理数统称实数
思考:实数如何分类?
2019/2/23 14
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标 实 题样式 数(第1课时)
单击此处编辑母版副标题样式
2019/2/23
1
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
2019/2/23
2
教学过程
单击此处编辑母版标题样式 单击此处编辑母版文本样式 第二级 第三级 第四级 第五级
单击此处编辑母版标题样式
Teaching Process
3、运用新知
2单击此处编辑母版文本样式 下列这些数找不到位置,请你帮它找一找
第二级 第三级 第四级 第五级
2019/2/23
有理数集合
无理数集合
17
人教版七年级数学下册第六章《实数》公开课 课件1
![人教版七年级数学下册第六章《实数》公开课 课件1](https://img.taocdn.com/s3/m/cff785306f1aff00bfd51ed4.png)
6.3 实数
Z
L
lb
神奇的π
阿基米德(古希腊)
神奇的π
祖冲之 (南北朝)
刘徽 (魏晋时期)
至2002年底,科学家们用超级计算机已把 的值算到小数点后12411亿位. zxxk
π----无限不循环的数字,无限不循环的 神秘,无限不循环的樂趣,无限不循环 的享受。
很早很早以前,人们就看出,圆的周长 和直经的比是个与圆的大小无关的常 数,并称之为圆周率.
15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
继续探索:
因为
π=3.1415926535897932384626…
, , 2 1
所以像
2
即π的某种形式
的数都是什么数?
常见的一类无理数是:
2. 圆周率π及一些含有π的数
例如: , , 2 1
2
那这种形式的数呢?你们认识他们吗?
1. 0.101001000… (两个“1”之间依次多一个0), 2. 7.2121121112… (两个“2”之间依次多一个1) 3. 5.123112233111222333-----(依次多个123)
17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/202021/7/202021/7/202021/7/20
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
Z
L
lb
神奇的π
阿基米德(古希腊)
神奇的π
祖冲之 (南北朝)
刘徽 (魏晋时期)
至2002年底,科学家们用超级计算机已把 的值算到小数点后12411亿位. zxxk
π----无限不循环的数字,无限不循环的 神秘,无限不循环的樂趣,无限不循环 的享受。
很早很早以前,人们就看出,圆的周长 和直经的比是个与圆的大小无关的常 数,并称之为圆周率.
15、一年之计,莫如树谷;十年之计,莫如树木;终身之计,莫如树人。2021年7月2021/7/202021/7/202021/7/207/20/2021
16、提出一个问题往往比解决一个更重要。因为解决问题也许仅是一个数学上或实验上的技能而已,而提出新的问题,却需要有创造性的想像力,而且标志着科学的真正进步。2021/7/202021/7/20July 20, 2021
继续探索:
因为
π=3.1415926535897932384626…
, , 2 1
所以像
2
即π的某种形式
的数都是什么数?
常见的一类无理数是:
2. 圆周率π及一些含有π的数
例如: , , 2 1
2
那这种形式的数呢?你们认识他们吗?
1. 0.101001000… (两个“1”之间依次多一个0), 2. 7.2121121112… (两个“2”之间依次多一个1) 3. 5.123112233111222333-----(依次多个123)
17、儿童是中心,教育的措施便围绕他们而组织起来。2021/7/202021/7/202021/7/202021/7/20
2、Our destiny offers not only the cup of despair, but the chalice of opportunity. (Richard Nixon, American President )命运给予我们的不是失望之酒,而是机会之杯。二〇二一年六月十七日2021年6月17日星期四 3、Patience is bitter, but its fruit is sweet. (Jean Jacques Rousseau , French thinker)忍耐是痛苦的,但它的果实是甜蜜的。10:516.17.202110:516.17.202110:5110:51:196.17.202110:516.17.2021 4、All that you do, do with your might; things done by halves are never done right. ----R.H. Stoddard, American poet做一切事都应尽力而为,半途而废永远不行6.17.20216.17.202110:5110:5110:51:1910:51:19 5、You have to believe in yourself. That's the secret of success. ----Charles Chaplin人必须相信自己,这是成功的秘诀。-Thursday, June 17, 2021June 21Thursday, June 17, 20216/17/2021
实数课件人教版数学七年级下册3
![实数课件人教版数学七年级下册3](https://img.taocdn.com/s3/m/a4b589146ad97f192279168884868762caaebb9d.png)
填空:设a,b,c是任意实数,则
(1)a+b = b+a (2)(a+b)+c = a+(b+c) (3)a+0 = 0+a = a
(加法交换律); (加法结合律);
;
(4)a+(-a) = (-a)+a = 0
;
(5)ab = ba
(乘法交换律);
(6)(ab)c =a(bc) (乘法结合律);
(1)( 3 2) 2;
(2)3 3 2 3.
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
在实数运算中,当遇到无理数并且需要求出结果的近似值时, 可以按照所要求的精确度用相应的近似有限小数去代替无理 数,再进行计算.
例3 计算(结果保留小数点后两位):
(1)规定用符号[m]表示实数 m 的整数部分,例如:[23 ]=0,[ 6 ]=2, 按此规定[ 10 +1]的值为__4__;
(2)若 7 的整数部分为 a,小数部分为 b,且|c|= 7 ,求 c(a-b)- 4(c-2)的值.
解:(2)∵ 4 < 7 < 9 ,即 2< 7 <3,∴a=2,b= 7 -2, ∴a-b=2-( 7 -2)=4- 7 ,∵|c|= 7 ,∴c=± 7 .当 c= 7 时,原式= 7 (4- 7 )-4( 7 -2)=4 7 -7-4 7 +8=1;当 c =- 7 时,原式=- 7 (4- 7 )-4(- 7 -2)=-4 7 +7+ 4 7 +8=15,即 c(a-b)-4(c-2)的值为 15 或 1
(乘法对于加法的分配律),
在进行实数的运算时,有理数的运算法则及运算性质等同样适用.
七年级数学人教版下册第六章6.3.1实数及其分类课件
![七年级数学人教版下册第六章6.3.1实数及其分类课件](https://img.taocdn.com/s3/m/8586f21004a1b0717ed5dd5c.png)
101 001 000 1…(相邻两个1之间0的个数逐次加1), A.无理数包括正无理数、0和负无理数
正有理数
有
理
数
0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};
∵
,∴
是有理数.∵
,
8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8
,
1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介
正有理数
有
理
数
0
负 有 理 数
8, ,-4.
限小数或无限循环小数的形式.
正数:{ ,…};
∵
,∴
是有理数.∵
,
8, ,…};
合作探究
知识点 1 无理数
探究 我们知道有理数包括整数和分数,请把下列分数写成 小数的形式,你有什么发现?
3
2
(相邻两个1之间0的个数逐次加1), 3 9
,-
.
有理数:{ -7,0.32, 1 ,3.14·,0,…}; 2
3
无理数:{ 8 , 1 ,0.101 001 000 1…(相邻两个1 2
之间0的个数逐次加1), 3 9 ,- ,…}; 2
正实数:{ 0.32,1 3
,3.14·,
8
,
1 2
这样的无限不循环小数.
例1 下列各数:3.141 59, 3 8 ,0.131 131 113…(每相
邻两个3之间依次多1个1),-π,
2 5 ,
1 7
中,无
理数有( B )
A.1个
B.2个
C.3个
D.4个
导引:∵3.141 59是有限小数,∴3.141 59是有理数.
∵ 3 8 2 ,∴ 3 8 是有理数.∵ 25 5 ,
人教版数学七年级下册
第六章
6.3.1 实数及其分类
学习目标
1.了解无理数和实数的概念以及实数的分 类。
2.知道实数与数轴上的点具有一一对应的 关系。
复习导入
…};
(1)如图,OA=OB,数轴上点A对应的数是什么?它介
人教版七年级数学下册全册第六章《实数》PPT课件
![人教版七年级数学下册全册第六章《实数》PPT课件](https://img.taocdn.com/s3/m/36e41770de80d4d8d05a4f22.png)
… 0.25 0.790 6 2.5 7.906 25 79.06 250 …
规律:被开方数的小数点向右每移动 2 位,它的 算术平方根的小数点就向右移动 1 位;被开方数 的小数点向左每移动 2 位,它的算术平方根的小 数点就向左移动 1 位.
(2)用计算器计算 3(精确到0.001),并利用你在(1) 中发现的规律说出 0.03, 300, 30 000 的近似值,你 能根据 3 的值说出 30 是多少吗?
2.会求非负数的算术平方根,掌握算术平方根的非负 性.(重点、难点)
导入新课
历史感悟
毕达哥拉斯(公元前570年~公元前500年) 公元前500多年古希腊的哲学家、数学家、天文学家。
导入新课
万物皆数
导入新课
情境引入 学校要举行美术作品比赛,小明很高兴,他想
裁出一块面积为25dm2的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应取多少? 你能帮小明算一算吗?
所以这个数是3或-3. 会不会是巧合呢?
解:设每块地板砖的边长为x m.由题意得
240x2 60, x2 1 . 4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
拓展提升
已知:|x+2y|+ 3x 7 (5y z)2 0
求x-3y+4z的值. 解:由题意得:
3x 7 0, x 2y 0,5y z 0,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
当堂练习
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数 是_a_2_;和这个自然数相邻的下一个自然数是 a2+1 .
规律:被开方数的小数点向右每移动 2 位,它的 算术平方根的小数点就向右移动 1 位;被开方数 的小数点向左每移动 2 位,它的算术平方根的小 数点就向左移动 1 位.
(2)用计算器计算 3(精确到0.001),并利用你在(1) 中发现的规律说出 0.03, 300, 30 000 的近似值,你 能根据 3 的值说出 30 是多少吗?
2.会求非负数的算术平方根,掌握算术平方根的非负 性.(重点、难点)
导入新课
历史感悟
毕达哥拉斯(公元前570年~公元前500年) 公元前500多年古希腊的哲学家、数学家、天文学家。
导入新课
万物皆数
导入新课
情境引入 学校要举行美术作品比赛,小明很高兴,他想
裁出一块面积为25dm2的正方形画布,画上自己的得 意之作参加比赛,这块正方形画布的边长应取多少? 你能帮小明算一算吗?
所以这个数是3或-3. 会不会是巧合呢?
解:设每块地板砖的边长为x m.由题意得
240x2 60, x2 1 . 4
x 1 1 0.5 42
故每块地板砖的边长是0.5 m.
拓展提升
已知:|x+2y|+ 3x 7 (5y z)2 0
求x-3y+4z的值. 解:由题意得:
3x 7 0, x 2y 0,5y z 0,
所以正数 t 4 2 (秒). 即铁球到达地面需要2秒.
当堂练习
1.填空:(看谁算得又对又快) (1) 一个数的算术平方根是3,则这个数是 9 . (2) 一个自然数的算术平方根为a,则这个自然数 是_a_2_;和这个自然数相邻的下一个自然数是 a2+1 .
人教版七年级数学下册第六章实数全章优质教学课件
![人教版七年级数学下册第六章实数全章优质教学课件](https://img.taocdn.com/s3/m/a965245d26fff705cc170ad6.png)
三 、研学教材
认真阅读课本第40页内容,完成下 面练习并体验知识点的形成过程.
三、研学教材
知识点一 算术平方根的概念
问题:学校要举行美术作品比赛,小欧 想裁出一块面积为25dm2的正方形画布 ,画上自己的得意之作参加比赛,这 块正方形画布的边长应取多少?
分析: ∵( 5 )2=25 ∴这个正方形画布的边长应取
(3)∵( 3)2= 32 ∴32的算术平方根 是__3___ 即 32 =___3___;
2、求下列各式的值:
(1)
1
;(2)
9 25
;(3)
22
解:(1)∵12=1
∴ 1 =1
9
(2) 25 3 2 9
解:(2)∵ 5 = 25
∴ 9= 3
(3) 22
25 5
解:(3)∵(2)2=22
∴ 2 2 =2
温馨提示:正数和0统称非负数.
练一练
1、你能根据等式:122=144,说出144的 算术平方根是多少吗?用等式表示出来
解:∵122=___1_4_4__ ∴__1_4_4__的算术平方根是12,
即 144 =___1_2_____
2、225的算术平方根是__1_5,0的 算术平方根是__0___.
思考: 2 它到底是个多大的数? 因为 12 =_1__, 2 2 =__4_,所以1< 2 <2 因为 1.42= _1_._96_,1.52=_2_.2_5_, 所以__1_.4_< 2 <__1_._5_;......
事实上, 2 =1.414 213 562 373..., 它是一个无限不循环小数.
引导学生读懂数学书
四、归纳小课件结制作:李周林
《实数》PPT课件
![《实数》PPT课件](https://img.taocdn.com/s3/m/d6d212fa58f5f61fb7366673.png)
1 , 5 , 42
4, 9
0,
3 8,
3 2, 7, , 2, 20 , 3
5, 0.3737737773
有理数集合
无理数集合
有理数和无理数 统称实数.
实数的分类:
有限小数及无限循环小数
整数
实 数
有理数
分数
正整数
0 自然数 负整数
正分数
无理数
负分数 正无理数
负无理数
4.带根号的数都是无理数。( ×) 5.无理数一定都带根号。( ×)
6.两个无理数之积不一定是无理数。( )
7.两个无理数之和一定是无理数。(× )
把下列各数填入相应的集合内:
9 3 5 64
(1)有理数集合: 9
0.6
64
0.6
3
4
3 4
3 9 3 0.13 3 0.13
(1) 5 π ;(2) 3 2 解:(1) 5 π 2.236+3.142 5.38 (2) 3 2 1.7321.414 2.45
注意:计算过程中要多保留一位!
6、 3.14是 3.14 ,绝对值是 3.1。4
7、1 3 3 的绝对值是 3 3 1 。
7
3
,3 2
实数有
3 22 , 1 , , 3
2 ,0. ,
9 , 3 8,0
73
例:
6的相反数是 ___6____
π-3.14的相反数是__3_._1_4_-_π__
5是__5__的相反数, 1- 3 3是 _3_3__1_ 的相反数;
3 64的绝对值是 _4_______
3.3实数 课件(人教版八年级上册) (7)
![3.3实数 课件(人教版八年级上册) (7)](https://img.taocdn.com/s3/m/da40bc8bec3a87c24028c459.png)
求下列各数的算术平方根与平方根与立方根. 请做课本P63 2、3 求下列各式的值. 请做课本P63 4
注意这两种 题型的书写 格式区别
练习: 1、若一个数的算术平方根是4,则这个数的 平方根是_____.
2、(-4)2平方根是______, 3、若一个数的平方根是2m-4与3m-1,则这个 数是_____.
2
解答题
• 1如图,长方形ABCD中有两个正方形,大 正方形的面积是75cm2,小正方形的面积是 27cm2,求阴影部分的面积。
A G B E F C D
解答题
• 2如图,等边三角形ABC的周长是6,BD是 AC边上的中线,E是BC延长线是的一点, 且CE=CD,求三角形BDE的周长。
A D B C E
算术平方根
平方根
立方根
一个数x满足x3=a (x有唯一值)
文字 一个正数x满足x2=a 一个数x满足x2=a (x有两个值) 概念 (x只有一个值) 表示 符号
“ ”表示a的算 术平方根,其结果 永不为负
3
数学 意义 共同 点
a
“ a ”表示a的平 方根,其结果一正一 负
“3 ”表示a的立方 根,其结果只有一个, 正数的立方根是正,负 数的立方根为负
(2 3 1)
2
50 8 21
实数的运算
实数的乘除、乘方、加减运算 关于化简: 最简算术平方根:两不含…… 如:它们是不是最简算术平方根,如果不是请 把它化成最简形式。 9 2 13 0.25 28 18 18 7
实数的运算
实数的乘除、乘方、加减运算 加减法则: 同类算术平方根:被开方数相同的算术平方根 如: 40 5
a
“ 与 ”根号下面的a都一定是 非负数,即只有非负数才有平方根或算术平 方根;最后结果能化简的要化简。
人教版七年级数学课件《实数的相关概念及分类》
![人教版七年级数学课件《实数的相关概念及分类》](https://img.taocdn.com/s3/m/78b85fbedbef5ef7ba0d4a7302768e9951e76e29.png)
3.14-π.
3
3
3
3
(2)因为-(- 5)= 5,-( 3-1)=1- 3,所以,- 5,1- 3分别是 5, 3-1的相反数.
3
3
3
(3)因为 −64=- 64 =-4,所以| −64|=|-4|=4.
(4)因为| 3|= 3,|- 3|= 3,所以绝对值是 3的数是 3或- 3.
针对练习
人教版数学七年级下册
± 11
右
12.数轴上表示-3.14的点在表示-π的点的______侧.
13.若将三个数- 3, 7, 11表示在数轴上,其中能被如图所示
7
的墨迹覆盖的数是______.
达标检测
人教版数学七年级下册
14.请将图中数轴上标有字母的各点与下列实数对应起来:
3
解:A:-3,B:-2.5,C: 3,D:2 2,E: 15.
正实数
实数
正无理数
0
负有理数
负实数
负无理数
小结梳理
人教版数学七年级下册
事实上,每一个无理数都可以用数轴上的一个点表示出来.
当数的范围从有理数扩充到实数以后,实数与数轴上的点是一一对应的,
即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个
点都表示一个实数.
与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的
圆上的一点由原点到达点O',点O'对应的数是多少?
OO'的长是这个圆的周长π,所以点O'的坐标为π.
无理数π可以用数轴上的点来表示出.
知识精讲
人教版数学七年级下册
如图,以单位长度为边长画一个正方形,以原点为圆心,
正方形对角线为半径画弧,与正半轴的交点就表示 2,与负半轴
3
3
3
3
(2)因为-(- 5)= 5,-( 3-1)=1- 3,所以,- 5,1- 3分别是 5, 3-1的相反数.
3
3
3
(3)因为 −64=- 64 =-4,所以| −64|=|-4|=4.
(4)因为| 3|= 3,|- 3|= 3,所以绝对值是 3的数是 3或- 3.
针对练习
人教版数学七年级下册
± 11
右
12.数轴上表示-3.14的点在表示-π的点的______侧.
13.若将三个数- 3, 7, 11表示在数轴上,其中能被如图所示
7
的墨迹覆盖的数是______.
达标检测
人教版数学七年级下册
14.请将图中数轴上标有字母的各点与下列实数对应起来:
3
解:A:-3,B:-2.5,C: 3,D:2 2,E: 15.
正实数
实数
正无理数
0
负有理数
负实数
负无理数
小结梳理
人教版数学七年级下册
事实上,每一个无理数都可以用数轴上的一个点表示出来.
当数的范围从有理数扩充到实数以后,实数与数轴上的点是一一对应的,
即每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个
点都表示一个实数.
与规定有理数的大小一样,对于数轴上的任意两个点,右边的点所表示的
圆上的一点由原点到达点O',点O'对应的数是多少?
OO'的长是这个圆的周长π,所以点O'的坐标为π.
无理数π可以用数轴上的点来表示出.
知识精讲
人教版数学七年级下册
如图,以单位长度为边长画一个正方形,以原点为圆心,
正方形对角线为半径画弧,与正半轴的交点就表示 2,与负半轴
人教版七年级下册 第六章 实数 6.3 实数 课件(共16张PPT)
![人教版七年级下册 第六章 实数 6.3 实数 课件(共16张PPT)](https://img.taocdn.com/s3/m/d65fc3730b4c2e3f57276380.png)
3 1.7320
3 5 1.710
5 2.2360 3 7 1.913
3.14159265
无限不循环小数
无限不循环小数叫无理数
我们把这类无限不循环的小数叫做无理数。
☆无理数的特征:
1.圆周率及一些含有 的数 2 1
2.开方开不尽数 2、3 5
注意:带根号 的数不一定 是无理数
3
2
0.5050050005 (每两个5之间依次增加一个 0)
正有理数: 9 , __________________;
正无理数:_0_.5_0_5_0_0_5_0_0_0_5___,_3_3__, ;
3
1
负有理数: 8 , ____________3______;
,
正无理数: 5 2 __________________;
2 ___2___ ______ 0 _0___
a是一个实数,它的相反数为 -a
一个正实数的绝对值是它本身; 一个负实数的绝对值是它的相反数; 0的绝对值是0
1、正实数的绝对值是 它本身 ,0的绝对值是 0 , 负实数的绝对值是它的相反数 .
2、 3 的相反数是 3 ,绝对值是
3、一个数的绝对值是 p ,则这个数是 2
4、比较大小:-7 大于 50
3.
p 2
.
5、绝对值等于 5 的数是 5 。
(1)( 3 2) 2; (2)3 3 2 3
解:(1)( 3 2) 2 3 2 2 3
(2)3 3 2 3 (3 2) 3 5 3
解:由题知,a010 a
2 实数: __5_, _9_,_3__8,__13_,_0._•_,_0_,_2__,0_.5_0_5_0_050005 , 3 3
2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)
![2020人教版七年级数学下册第六章6.3实数(1)实数的概念课件(共32张PPT)](https://img.taocdn.com/s3/m/7ae0cd0c2b160b4e777fcf04.png)
6,
••
, 1. 2 3,
22 , 36
2
7
1.232232223 (两个3之间依次多一个 2)
有理数是:1.
•
2
•
3
22
,7
36
无理数是: 6
,,
2
1.232232223 ,(两个3之间依次多一个 2)
思考:无理数一般有哪些形式?
(1)像 7, 3, 12 的开不尽方的数是无理数。
020
002
000
02…是无
理数吗?
1.57079632679...
2
它们都是无限 不循环小数,
2.02002000200002…
是无理数
常见的一些无理数:
(1)含 π 的一些数;
(2)含开不尽方的数; (3)有规律但不循环的小数,如1.01001000100001…
例:判断下列数哪些是有理数?哪些是无理数?
人教版七年级数学 下册
6.3 实 数 第1课时 实数的概念
1.了解实数的意义,并能将实数按要求进 行准确的分类;
2.熟练掌握实数大小的比较方法;(重点) 3.了解实数和数轴上的点一一对应,能用 数轴上的点 表示无理数.(难点)
认真阅读课本中6.3 实数的 内容,完成下面练习并体验知 识点的形成过程。
• 这个矛盾说明, 2 不能写成分数的形式, 即 2 不是有理数。
• 实际上, 2 是无限不循环小数。
实数的概念:
在前面的学习中,我们知道,许多数的平方根和 立方根都是无限不循环小数,它们不能化成分数.我 们给无限不循环小数起个名字,叫“无理数”.有理 数和无理数统称为实数.
思考:
6.3.1实数-人教版七年级数学下册课件
![6.3.1实数-人教版七年级数学下册课件](https://img.taocdn.com/s3/m/9c77f7743069a45177232f60ddccda38376be1d9.png)
你能求出下列各数的相反数、倒数和绝对值吗?
限 47 限 设点C表示的实数为x,则点A到点C的距离为-1-x,
5 . 8 7 5 2.会在实数范围内求一个数的相反数、倒数、绝对值.
小 8 循 思考: 是无理数吗?2.
反过来,数轴上的每一点都表示一个实数,即实数和数轴上的点是一一对应的。
数 环 ⑤无理数一定都带根号.
(√) (√) (√) (× ) (× ) (√) (× ) (√)
2、把下列各数分别填在相应的集合里
22 , 3.1415926, 7, 8, 3 2 , 0.6, 0,
7 36 ,
,
3
..
1.652,
0.3131131113
有理数集合
无理数集合
4. 下列说法不正确的是 A.|3-π|= 3-π C.2的相反数是-2
|-π|=___π_____,|3-π|=__π_-__3___.
2.我们在有理数范围内学过的运算法则和运算律是 否在实数范围内还能继续用呢?
在实数范围内,相反数、倒数、绝对值的意义和有理 数范围内的相反数、倒数、绝对值的意义完全一样。
学以致用 知行并进
你能求出下列各数的相反数、 倒数和绝对值吗?
7.如图所示,数轴上A,B两点表示的数分别为-1 和 3 ,点B关于点A的对称点为C,求点C所表示的 实数.
解:∵数轴上A,B两点表示的数分别为-1和 3 , ∴点B到点A的距离为1+ 3 ,则点C到点A的距离为 1+ 3 , 设点C表示的实数为x,则点A到点C的距离为-1-x, ∴-1-x=1+ 3 , ∴x=-2- 3
02002000200002… 有理数和无理数统称为实数
它们都是无限不循环小数,是无理数
人教版八年级数学上册课件实数
![人教版八年级数学上册课件实数](https://img.taocdn.com/s3/m/c30308f7f61fb7360b4c65c3.png)
2 求A点的纵坐标. 解: 由已知可得 OB 5 , ∆OAB的OB边上的高为|y|.
∵S∆OAB=
1 ∴ × 2
∴| y |=
∴y =±
10 2
∵点A在第一象限
5 ×
2 2
|y|=
10 2
∴A点的纵坐标是 2
拓广探索
解:
(1)围成的四边形ABCD是长方形.
(2)由已知AB=5-2=3,AD= 2 2 2
5.所有的实数都可以用数轴上的点表示,反过来, 数轴上所有的点都表示实数。( ) 6.无理数都是无限不循环小数。( ) 7.两个无理数之积不一定是无理数。( )
8.两个无理数之和一定是无理数。(
×)
练习:把下列各数分别填入相应的集合中: 22 3 2, , 3.14159265 7 , 8, , 7 0.6, 0, 36, 3 .
热烈欢迎各位老师莅临我 班指导工作!
思路一:
开方包括开平方与开立方, 通过开平方可以求一个非负实数的 平方根; 通过开立方可以求一个实数的立方 根, 你所能够画出的知识结构图是:
思路一
开方包括开平方与开立方,通过开平方可以求一个非负实数的平方 根;通过开立方可以求一个实数的立方根,画出的知识结构图是:
Байду номын сангаас
综合运用
P184
解:将h=1.5代入公式s2=16.88h,得 s2=25.32, s
25.32 ≈5.03(km)
将h=35代入公式s2=16.88h,得 s2=590.8, s 590.8 ≈24.31.03(km)
综合运用
解:
∴圆的周长C1=2 r =2
设圆的半径为r cm,正方形的边长为a cm. 由题意,得 r2=2 , a2=2 ∴r = 2 , a = 2
实数ppt课件人教版
![实数ppt课件人教版](https://img.taocdn.com/s3/m/f0ad7c2d9a6648d7c1c708a1284ac850ad020497.png)
实数与复数的关系和转换
实数与复数的关系
实数是特殊的复数,即虚部为0的复数。实 数在复数域中占据了原点附近的区域。
实数与复数的转换
在数学表达上,任何实数都可以视为复数, 只需将其虚部设为0即可。同样地,任何复 数也可以视为实数的扩展,只需将其虚部消 去即可。
THANKS FOR WATCHING
感谢您的观看
绝对值和符号
根据实数的绝对值大小和正负符号,可以将实数分为正数、负数、零和绝对值相 等但符号不同的数等。
03 实数的运算
加法运算
总结词
加法运算的基本性质
详细描述
实数的加法运算满足交换律和结合律,即a+b=b+a和(a+b)+c=a+(b+c)。加法运算还有负数和零的加法性质, 即a+(-a)=0和a+0=a。
过极限来描述。
实数的收敛性和极限理论是数学 分析的基础,它们在解决各种数
学问题中发挥着重要的作用。
实数的其他性质和定理
实数具有完备性,这意味着实数集合 具有一些特殊的性质,使得实数集合 在加法、减法、乘法和除法等运算下 是封闭的。
实数还具有一些其他的性质和定理, 例如实数的有序性、阿基米德性质等 等,这些性质和定理在数学分析和实 数理论中有着广泛的应用。
实数的表示方法
十进制表示法
实数可以用小数或分数形式表示,如 2.5、1/3等。
分数形式表示法
实数可以用分数形式表示,如2/3、 3/4等。
实数的性质和运算,可以确定任意两个实数之间
的大小关系。
实数的四则运算
实数可以进行加、减、乘、除四 则运算,运算规则与有理数相同
实数ppt课件人教版
【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt
![【新】人教版七年级数学下册第六章《 实 数》公开课课件.ppt](https://img.taocdn.com/s3/m/bbc67a070b1c59eef9c7b455.png)
famous sights. If I'd gone alone, I couldn't have seen nearly as much, because I wouldn't have known my way about. 。2020年12月15日星期二2020/12/152020/12/152020/12/15
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
【预习导学】
②用一张硬纸片前一个半径为1cm的小圆,计算圆的周长,周长是有理 数还是无理数?如何在数轴上表示圆的周长呢?
归纳总结:实数与数轴上的点是 一一对应的 ,即任何一个都可以用数轴上的一 个点来表示;反过来,数轴上的每一个点都表示一个实数。数轴上的任意两个 点,右边的点表示的数总比左边的点表示的数 大 。
1、有理数的运算法则及运算律同样适用于实数的运算;当 遇到无理数并需要求出结果的近似值时,应按照要求的精 确度用相应的近似有限小数去代替无理数,再进行计算。
9、春去春又回,新桃换旧符。在那桃花盛开的地方,在这醉人芬芳的季节,愿你生活像春天一样阳光,心情像桃花一样美丽,日子像桃子一样甜蜜。 2020/12/152020/12/15Tuesday, December 15, 2020
【预习导学】
一、自学指导 1、自学1:自学课本P53-54页,完成54页“探究”,掌握实数的相关概念,理解实数与
数轴上的点的对应关系,完成下列填空。5分钟 归纳总结: 有理数 和 无理数 统称实数。 实数按正负分可分为 正实数 、 0 、 负实数 。
点拨精讲:带根号的不一定都是无理数;所有的无限循环小数都可以化成分数。
解:没有最大的实数,没有最小的实数,绝对值最小的实数是0. 2、设a是最小的自然数,b是最大的负整数,c是绝对值最小的实数,求
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例4
说出下列各式的意义,并求它们的值:
49 () 1 36 ; () 2 0.81; () 3 . 9
7.思考
如果知道一个数的算术平方根就可以 立即写出它的负的平方根,为什么?
8.归纳小结
你能总结一下平方根与算术平方根的 概念的区别与联系吗?
平方根与算术平方根的比较
平方根 如果一个数的平 方等于a,这个数 定义不同 就叫做a的平方根 个数不同 正数a的平方根有 两个 用 表示 算术平方根 如果一个正数x的平方 等于a,那么这个正数 就叫做a的算术平方根 正数a的算术平方根 有一个 用 表示
3
3 ( 4) ( 3) ; (5)3 2 ; 64
3 3
活动四 自主探究,延伸知识 1. 探究填空:
因为 8 =____, 8 =_____; = 所以 3 _____ 3 8. 8 因为 =____, =_____; -3 -3 3 3 所以 27 _____ 27
求平方根
1
1
4
9
4
9
3 3
1 1 2 2
3 3
两图中的运算有什么关系呢?
3.例题解析 求下列各数的平方根: 9 1 () 1 100 ;() 2 ; () 3 0.25 ; () 4 2 ; () 5 0. 16 4 例1
3.例题解析 例2 判断下列说法是否正确,并说明理由. (1)49的平方根是7; (2)2是4的平方根;
(3)-5是25的平方根;
(4)64的平方根是 8 ;
(5)-16的平方根是-4.
4.归纳数的平方根的特征 正数的平方根有什么特点?
正数的平方根有两个,它们互为相反数; 0的平方根是多少?
0的平方根就是0 ; 负数有平方根吗? 负数没有平方根.
为什么?
5.平方根的表示
正数a的算术平方根
正数a的算术平方根的相反数 (即正数a的负的平方根) 正数a的平方根
a的立方根用
3
a表示
a
表示
2、平方根的性质 (1)一个正数有两个平方根, 这两个平方根互为相反数 (2)0的平方根还是0 (3)负数没有平方根 3、平方根的求法: 如求4的平方根: ∵ (±2)2 = 4 ∴4的平方根是±2 即 4 2
2、立方根的性质 (1)正数的立方根还是正数 (2)0的平方根还是0 (3)负数的立方根还是负数
3
4 3 5 (2) (_____)
64 64 , 3 125 125
4 5 _____
2.求下列各数的立方根: (1)27,(2)- 3 ,(3) -0.008 (4)343 3 8
例2. 下列式子表示什么意义? 你能求出它们的值吗?
27 (1) 64; (2)3 125; (3)3 ; 64
互
立方
逆
开立方
3 活动二 积极思考,探索新知
1. 探究
(1) 因为2 =8,所以8的立方根是( ); (2) 因为( )33 =0.125,所以0.125的立方是( ); 0.5 0.5 (3)因为( ) =0,所以0的立方根是( ); 33 (4)因为 (0 ) =-8,所以-8的立方根是( ); 0 3 (5)因为( ) =- -,所以-- 的立方根 是( )3 .
2
5 6
是
25 36
的一个平方根.(√ )
X)
⑶6
(4) 25 的平方根是±5. ( )
X
2.求出下列各数的平方根. ⑴0.04 ⑵
81 121 1 4
⑷ 256
(5) 21
2
(1) 0.04 0.2
(2)
81 9 121 11
25 5 (3) 4 2
(4) 256 16, 16 4
3、立方根的求法: 如求8的立方根: ∵ 23 = 8 ∴8的立方根是2 即
3
82
课堂小结
相同点: ①0的平方根、立方根都只有一个是0 ②平方根、立方根都是开方的结果。 不同点: ①定义不同 ②个数不同 ③表示方法不同 ④被开方数的取值范围不同
活动六 作业训练,提升能力
必做题:
1.启东作业本P34-35
记作 记作 记作
例如:
读作 “正、负根号a”
9的平方根是±3,用符号语言表达为:
9 3
25的平方根是±5,用符号语言表达为: 25 5
6.例题解析
例3 判断下列各式计算是否正确,并说明理由.
(1) 4 2; (2) 4 2; (3) 4 2.
6.例题解析
求一个数的立方根的运算,叫做开立方.
立方和开立方互为逆运算
你会区别下列数的意义吗?
a , a , a a 表示a的算术平方根
3
a
3
表示a的平方根或a的二次方根 表示a的立方根或a的三次方根
a
4.跟踪练习
教材习题6.2复习巩固第1、2题.
5
. 议一议:
你能说出数的平方根性质与数的立方根性质有什么不同吗?
8 27
8 27
333Βιβλιοθήκη 2探究题中正数、0和负数的立方根各有什么特点?
2.说一说:
观察练习题中正数、0和负数的立方根各有什么特点?
正数的立方根是正数, 负数的立方根是负数, 0的立方根是0.
3. 自主探究
如何表示一个数的立方根?
一个数a的立方根可以表示为: 根指数 3
a
被开方数
读作:三次根号 a , 其中a是被开方数,3是根指数,不能省略.
3 3 3
-2
-2
27
=
3 27.
2. 猜一猜
你能从上述问题中总结出互为相反数的 两个数a与-a的立方根的关系吗?
活动五 归纳小结,深化新知:
1、平方根的定义:如果 一个数的平方等于a,那 1、立方根的定义:如果 一个数的立方等于a,那
么这个数叫做a的平方根。
a的平方根用±
么这个数叫做a的立方根。
6.提出问题 能否用两个面积为1的小正方形 拼成一个面积为2的大正方形?
6.提出问题 能否用两个面积为1 dm2的小正方形 拼成一个面积为2 dm2的大正方形?
6.提出问题 能否用两个面积为1 dm2的小正方形 拼成一个面积为2 dm2的大正方形?
6.提出问题 拼成的这个面积为 2 dm2 的大正方形的 边长应该是多少呢? 解: 设大正方形的边长为x dm, 则 x2 2 由算术平方根的定义, 得 x 2. ? 所以大正方形的边长为 2 dm.
平方根 正数 0
有两个且 互为相反数
0
立方根
有一个且 是正数
0
负数
没有平方根
有一个且 是负数
活动三 应用新知,形成技能
• 例1
(4)
求下列各数的立方根.
(3)-0.064.
(1)8 ; (2)
1 ; 27
10 2 27
1.举一反三:
3 -5 (1) (_____)
-5 125, 125 _____
1
1
9
16
4
36
6
4 25
2 5
3
(2)你能指出它们的共同特点吗? 都是已知一个正数的 平方,求这个正数.
2.总结概念 一般地,如果一个正数的平方等于 a, 2 即 x a,那么这个正数 x 叫做 a 的算术
a 的算术平方根记为 a ,读作 平方根.
“根号 a ”, a 叫做被开方数.
规定:0的算术平方根是0 ,也就是说, 若 x2 a( x 0),则 x a . 例如,由于 52 25 ,5是25的算术平方根, 即 25 5 .
3.例题解析 例1 求下列各数的算术平方根:
49 100 ;(2) ;(3) 0.0001 . ( 1) 64
4.练习 求下列各式的值:
9 (1) 1 ;(2) ;(3) 42 ;(4) 0 . 25 解:(1) 1 1 ;
9 3 ( 2) ; 25 5
(3) 42 4 ; ( 4) 0 0 .
人教版实数全章课件
6.1 .1算术平方根
1.情境导入 学校要举行美术作品比赛, 你想裁出一块面积为25 dm2的正 方形画布,画上自己的得意之作 参加比赛,这块正方形画布的边 长应取多少? 请你说一说解决问题的思路.
1.情境导入 (1)若正方形的面积如下,请填表:
正方形的
面积/dm2 正方形的 边长/dm
5.提出问题
被开方数的大小与对应的算术平 方根的大小之间有什么关系呢?
-4有算术平方根吗?什么数才有 算术平方根?
6.例题解析
例2 下列各式是否有意义,为什么?
1 4 ;(3) 3 ;(4) (1)4 ;(2) . 2 10
2
解: (1)无意义; (3)有意义;
(2)有意义; (4)有意义.
选做题:
1-13
2.启东作业本P34-35
14-16
3.如果3x+16的立方根是4,求2x+4的算术平方根.
4.若 x 5 3 y 6 0, 求x y的值.
3
思考:
任意找一个数,利用计算器对它进行 开立方再对得到的立方根进行开立方, ……如此进行下去你有什么发现?
区
别 符号不同
1.平方根包括算术平方根,算术平方根是平方根中非 负的那一个. 2.存在条件相同.只有非负数才有平方根和算术平方 联系 根. 3.0的平方根和算术平方根均为0
探究性质 深化概念
例5. 求下列各式的值.
(1) 36 (2) 0.81
0.81的负的平方根
49 (3) 9
49 的平方根 9
平方根的概念,给出平方根的概念吗?