纯金属晶体结构

合集下载

结晶与相图铁碳合金工程材料基础知识

结晶与相图铁碳合金工程材料基础知识
2.晶粒大小与控制措施
20钢
F+P基体+G球
(1)增加过冷度 随着过冷度的增加,形核率和长大速度都会增加,但形核率增加比长大速度增加要快,所以产生的晶核数目增加。因此,通过加快冷却速度,即增加过冷度,可使晶粒细化。 (2)变质处理 在金属液中加入变质剂(高熔点的固体微粒),以增加结晶核心的数目,从而细化晶粒,这种方法称变质处理,变质处理在生产中应用广泛,特别对体积大的金属很难获得大的过冷度时,采用变质处理可有效地细化晶粒。 (3)附加振动等 在金属结晶时、施以机械振动、电磁振动、超声波振动等方法,可使金属在结晶初期形成的晶粒破碎,以增加晶核数目,起到细化晶粒的目的。
三、金属铸锭的组织
[合金]:由两种或两种以上的金属元素或金属与非金属元素组成的、具有金属特征的物质称为合金。 [组元]:组成合金最基本的、独立的单元称为组元。根据组元数目的多少,可将合金分为二元合金、三元合金等。 [相]:合金中的相是指有相同的结构,相同的物理、化学性能,并与该系统中其余部分有明显界面分开的均匀部分。固态下只有一个相的合金称为单相合金;由两个或两个以上相组成的合金称为多相合金。合金的的相结构主要有固溶体和金属化合物。 [显微组织]:在显微镜下观察到的组成相的种类、大小、形态和分布称为显微组织,简称组织,因此相是组成组织的基本物质。
(2)金属化合物 [金属化合物]:是合金中各组元间发生相互作用而形成的具有金属特性的一种新相,其晶体结构一般比较复杂,而且不同于任一组成元素的晶体类型。它的组成一般可用分子式来表示,如铁碳合金中的Fe3C(渗碳体)。 [金属化合物性能]:一般熔点高,性能硬而脆。当它呈细小颗粒均匀分布于固溶体基体上时,能使合金的强度、硬度、耐磨性等提高,这一现象称为弥散强化,因此,合金中的金属化合物是不可缺少的强化相;但由于金属化合物的塑性、韧性差,当合金中的金属化合物数量多或呈粗大、不均匀分布时,会降低合金的力学性能。 合金的组织可以是单相固溶体,但由于其强度不够高,其应用具有局限性;绝大多数合金的组织是固溶体与少量金属化合物组成的混合物。

金属材料的结构与组织纯金属的晶体结构金属

金属材料的结构与组织纯金属的晶体结构金属

3.气相
气相是陶瓷内部残留的孔 洞,其成因复杂,影响因素 多。陶瓷根据气孔率分为致 密陶瓷、无开孔陶瓷和多孔 陶瓷。除多孔陶瓷外,气孔 对陶瓷的性能不利,它降低 了陶瓷的强度,常常是造成 裂纹的根源(图2-28),所以 应尽量降低气孔率。一般普 通陶瓷的气孔率为5 %~10% ; 特种陶瓷在5 %以下;金属陶 瓷则要求低于0.5 %。
• 根据溶质原子在溶剂中所处位置不同,固溶体可分为间隙 固溶体和置换固溶体两大类。 (1)间隙固溶体 如图2-10(a)所示。 (2)置换固溶体 如图2-10(b)所示。
图2-10 晶格结构模型
2.1.4 金属材料的组织
1.组织的概念 2.组织的决定因素 3.组织与性能的关系 • 不同组织结构的材料具有不同的性能
图2-18为高聚物在不同加载速度时的应力应变。高聚 物大都服从这种规律。
图2-17 非晶态高聚物在不同温度时的图2-18 高聚物在不同加载速度时的
应力-应变曲线
应力-应变曲线
黏弹性:应变与应力同步发生,或应变与应力同时 达到平衡,如图2-19(a)所示。
应变不仅决定于应力,而且决定于应力作用的速 率。即应变不随作用力即时建立平衡,而有所滞后, 如图2-19(b)所示。
综上所述,金 属材料的成分、 工艺、组织结构 和性能之间有着 密切的关系。
图2-11 两种晶粒大小不同的纯铁示意图
2.2 高分子材料的结构与性能
• 2.2.1 高分子材料的结构 • 1.大分子链的构成 • (1)化学组成 • 组成大分子链的化学元素,主要是碳、氢、氧,
另外还有氮、氯、氟、硼、硅、硫等,其中碳是 形成大分子链的主要元素。 • 大分子链根据组成元素不同可分为三类,即碳链 大分子、杂链大分子和元素链大分子。

第一章-金属的晶体结构(共118张PPT)可修改全文

第一章-金属的晶体结构(共118张PPT)可修改全文
(3) 不需最小整数化; (4) 〔1 1 1〕
B面:
(1) 该面与z轴平行,因此x=1,y=2, z=∞; (2) 1/x=1,1/y=1/2,1/z=0; (3) 最小整数化1/x=2,1/y=1,1/z=0; (4) 〔2 1 0〕
C面:
(1) 该面过原点,必须沿y轴进行移动,因此x= ∞ ,y=-1,z=∞ (2) 1/x=0,1/y=-1,1/z=0; (3) 不需最小整数化;(4) 〔0 1 0〕
晶胞在三维空间的重复构成点阵
〔4〕晶格常数
在晶胞中建立三维坐标体系, 描述出晶胞的形状与大小
晶胞参数- 晶格常数:a、b、c 棱间夹角:α、β、γ
2 晶系与布拉菲点阵
依据点阵参数 的不同特点划分为七种晶系
(1) 三斜晶系
α≠β≠γ≠90° a≠ b≠ c
复杂单胞 底心单斜
(2) 单斜晶系
α=γ=90°≠β a≠ b≠ c
3 原子半径: r 2 a
4 配位数= 12
4
5 致密度= nv/V=(4×3πr3/4)/a3=0.74
γ-Fe(912~1394℃)、Cu、Ni、Al、Ag 等
——塑性较高
面心立方晶胞中原子半径与晶 格常数的关系
a
r 2a 4
(三)密排六方结构〔 h.c.p〕 〔 了解〕
金属:Zn、Mg、Be、α-Ti、α-Co等
具有光泽:吸收了能量从被激发态回到基态时所 产生的幅射;
良好的塑性:在固态金属中,电子云好似是 一种流动的万能胶,把所有的正离子都结合 在一起,所以金属键并不挑选结合对象,也 无方向性。当一块金属的两局部发生相对位 移时,金属正离子始终“浸泡〞在电子云中, 因而仍保持着金属键结合。这样金属便能经 受较大的变形而不断裂。

1 纯金属的晶体结构

1  纯金属的晶体结构

金属的晶体结构
常见的晶体结构有以下三种: 1、体心立方晶格(bcc) 2、面心立方晶格(fcc) 3、密排六方晶格(hcp) 这三种晶格的原子排列不同,因此它们的性 能也不同.一般来讲,体心立方结构的材料,其强 度高而塑性相对低一些;面心立方结构的材料, 其强度低而塑性好;密排六方结构的材料,其强 度与塑性均低.
Z
c
X a

b
Y
a、 b、 c —晶格常数(点阵常数) 、 、 — 夹角
金属的晶体结构
4.晶体结构的表征
由于不同晶型的晶体或同一晶格中,相应原子的
排列的情况不同,晶胞特征参数不同,故机械性能及
相应的其它性能有很大的差异。
2、晶胞原子数
晶胞特 征参数 3、原子半径 4、配位数 5、致密度
自然界的绝大多数物质在固态下为晶体, 只有少数为非晶体,所有的金属都是晶体。
一、 晶体的基本知识
2.晶格与晶胞
金属的晶体结构
晶格——将晶体的原子几何化成一点,用一系列平行直 线连接起来,构成一空间格架叫晶格。
晶体模型
晶格
晶胞
组成晶格的最小几何单元体 将晶体的原子看成是刚性小球
金属的晶体结构
3.晶胞的表示方法
a
体心立方晶体模型
体心立方晶格
a
原子半径: 晶胞原子数: 配位数: 致密度:
r ( 3 / 4) a
2a
4 K n r 3 / V 3 2 (4 / 3) ( 3 / 4a)3 a3
0.68=68%
n =1/8×8 + 1 = 2 Z=8
2.面心立方晶格:fcc
金属的晶体结构
0.74=74%
两个简单六方晶格穿插 在一起构成密排六方晶格

金属的晶体结构

金属的晶体结构

面心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:
③原子半径
面心立方晶格示意图
具有面心立方晶格 的金属有铝、铜、镍、 金、银、γ-铁等。
④致密度:0.74(74%)
第一节 金属的晶体结构
(2)密排六方晶格(胞)
金属原子分布在立方体的八个角上和六个面的中心。 面中心的原子与该面四个角上的原子紧靠。
体心立方晶胞特征: ①晶格常数:a=b=c,α=β=γ=90° ②晶胞原子数:一个体心立方晶胞所 含的原子数为2个。
体心立方晶格示意图 具有体心立方晶格
的金属有钼、钨、钒、 α-铁等。
第一节 金属的晶体结构
(1)体心立方晶格(胞)
体心立方晶胞特征: ③原子半径:晶胞中相距最近的两个原子之间距离的一半,或晶胞中原子 密度最大的方向上相邻两原子之间距离的一半称为原子半径(r原子)。
1.增大金属的过冷度 原理:一定体积的液态金属中,若成核速率N越大,则结晶后的晶粒
越多,晶粒就越细小;晶体长大速度G越快,则晶粒越粗。 随着过冷度的增加,形核速率和长大速度均会增大。但当过冷度超
过一定值后,成核速率和长大速度都会下降。对于液体金属,一般不会 得到如此大的过冷度,通常处于曲线的左边上升部分。所以,随着过冷 度的增大,成核速率和长大速度都增大,但前者的增大更快,因而比值 N/G也增大,结果使晶粒细化。
二、纯金属的晶体结构
晶体中原子(离子或分子)规则排列的方式称为晶体结构。 通过金属原子(离子)的中心划出许多空间直线,这些直线将形成空间格架。 这种格架称为晶格。晶格的结点为金属原子(或离子)平衡中心的位置。
晶体
晶格
第一节 金属的晶体结构
二、纯金属的晶体结构

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

均匀长大
树枝状长大
2-2
晶粒度
实际金属结晶后形成多晶体,晶粒的大小对力学性能影响很大。 晶粒细小金属强度、塑性、韧性好,且晶粒愈细小,性能愈好。
标准晶粒度共分八级, 一级最粗,八级最细。 通过100倍显微镜下的 晶粒大小与标准图对 照来评级。
2-2
• 影响晶粒度的因素
• (1)结晶过程中的形核速度N(形核率) • (2)长大速度G(长大率)
面心立方晶 格
912 °C α - Fe
体心立方晶 格
1600
温 度
1500 1400
1300
1200
1100
1000
900
800
700 600 500
1534℃ 1394℃
体心立方晶格
δ - Fe
γ - Fe
γ - Fe
912℃
纯铁的冷却曲线
α – Fe
体心立方晶 格
时间
由于纯铁具有同素异构转变的特性,因此,生产中才有可能通过 不同的热处理工艺来改变钢铁的组织和性能。
2-3
• 铁碳合金—碳钢+铸铁,是工业应用最广的合金。 含碳量为0.0218% ~2.11%的称钢 含碳量为 2.11%~ 6.69%的称铸铁。 Fe、C为组元,称为黑色金属。 Fe-C合金除Fe和C外,还含有少量Mn 、Si 、P 、 S 、 N 、O等元素,这些元素称为杂质。
2-3
• 铁和碳可形成一系列稳定化合物: Fe3C、 Fe2C、 FeC。 • 含碳量大于Fe3C成分(6.69%)时,合金太脆,已无实用价值。 • 实际所讨论的铁碳合金相图是Fe- Fe3C相图。
2-2
物质从液态到固态的转变过程称为凝固。 材料的凝固分为两种类型:

金属的结构与性能

金属的结构与性能

金属的结构与性能⏹纯金属的晶体结构⏹合金的晶体结构纯金属的晶体结构晶体——原子排列长程有序有周期熔点一定材料晶体原子排列长程有序,有周期非晶体——原子排列短程有序,无周期。

性能呈各向异性,一定条件下晶体和非晶体可互相转化。

石英玻璃(非晶体)石英晶体(晶体)一、纯金属的晶体结构(一)晶体的基本概念晶格与晶胞●晶格:用假想的直线将原子中心连接起来所形成的三维空间1、晶格与晶胞用假想的线将原子中心连接起来所形成的维空间格架。

直线的交点(原子中心)称结点。

由结点形成的空间。

点的阵列称空间点阵●晶胞:能代表晶格原子排列规律的最小几何单元。

结点晶体晶胞晶格(空间点阵)晶格与晶胞晶格常数:立方•晶胞各边尺寸a、b、c。

六方•各棱间夹角α、β、γ。

2 晶系:四方●根据晶胞参数不同,将晶体分为七种晶系。

以上的金属具有立方晶系和六方晶系菱方●90%以上的金属具有立方晶系和六方晶系。

=====90︒正交●立方晶系:a b c,αβγ90●六方晶系:a1=a2=a3≠c,α=β=90︒,γ=120︒单斜三斜3原子半径:晶胞中原子密度最大方向上相邻原子间距的一半。

4 晶胞原子数:一个晶胞内所包含的原子数目。

5 配位数:晶格中与任一原子距离最近且相等的原子数目。

6晶胞中原子本身6 致密度:晶胞中原子本身所占的体积百分数。

K=nv’/V=Vrn 334π⨯(二)、金属中常见的晶格类型体心立方晶格面心立方晶格密排六方晶格(bcc)(fcc)(hcp)(二)、金属中常见的晶格类型 1. 体心立方晶格(Body Centered Cubic Lattice, BCC)晶胞原子数晶格常数:a (a =b =c )1/8×8+1=2体心立方结构(b.c.c)原子半径:a 43r 致密度晶格常数:a (a =b =c )晶胞原子数6=41/8×8+1/2×64c晶格常数:a (a =b ), cc/a=1.633晶胞原子数121/2236c/a 1.6331/6×12+1/2×2+3=6a21r =:原子半径配位数:12K ’/V 07474%致密度:K=nv’/V ≈0.74=74%金属中常见晶格类型的基本参数晶格类型体心立方(bcc )面心立方(fcc )密排六方(hcp )晶胞结构a =b =ca =b =c90a =b c/a =1.633α=β=γ=90℃α=β=γ=90℃α=β=90℃γ=120℃晶胞常数晶胞内原子数原子半径致密度配位数0.680.740.7481212α‐Fe 、Mo 、W 、V 、Cr 、β‐Tiγ‐Fe 、Al 、Cu 、Ni 、Au 、AgMg 、Cd 、Zn 、Be 、Ca 、α‐Ti典型金属(三)、立方晶系晶面、晶向表示方法●晶体中一系列原子组成的面称晶面●任意两原子之间的连线称为原子列,其方向称为晶向。

第二章 金属的晶体结构

第二章 金属的晶体结构

晶向指数简化确定方法
1 确定三维坐标系:所求晶向的起点为原点,棱 边以长度为坐标轴的长度单位。 2 求坐标:求所求晶向距起 点最近的原子在三个坐标轴 方向上的坐标值。 3 化最简整数,加方括号。 形式为 [uvw] ,坐标中出现 负值,在数字上方冠负号。
晶向指数的例子
所有平行的晶向,都 具有相同的晶向指数
内蒙古科技大学高等职业技术学院
(111) (111) (111) (111) {1 1 1}晶面族:
(111) (111) (111) (111)
(111)
(111)
(111)
(111)
内蒙古科技大学高等职业技术学院
3.4 晶向指数与晶面指数的联系

当某一晶向[uvw]位于或平行于某一晶面(hkl) 时,必须满足:hu+kv+lw=0。 [100]//(010);[110]位于(111)上 当某一晶向[uvw]垂直 于某一晶面(hkl) 时,必须满足:u=h, v=k,w=l。 [111]⊥(111); [010] ⊥(010)
晶面指数的例子

立方晶系中一些重要晶面的晶面指数
内蒙古科技大学高等职业技术学院
二、晶面族
晶面族:原子排列相同但空间位向不同 的所有晶面,以{hkl}表示。 立方晶系中的晶面族: {1 0 0}:(100)+(010)+(001)

内蒙古科技大学高等职业技术学院
{1 1 0}晶面族:
(110) (101) (011) (110) (101) (011)
基本概念

为了便于确定和区别晶体中不同方位的晶向和晶 面,国际上通用密勒指数(Miller indices)来统 一标定晶向指数与晶面指数。 晶面指数(indices of crystal plane ): 表示晶面的符号。 晶向指数(indices of crystal orientation): 表示晶向的符号。

常见九种典型的晶体结构

常见九种典型的晶体结构

二八面体结构的O层
每个配位离子被两个八 面体共用,分给每个八 面体样子-1/2价电荷,6 个共-3价,因此八面体 阳离子为+3价。
结构单元层及基本类型 T层和O层的不同堆积方式构成了层状结构硅酸盐的结构单元层: 1∶1型(TO型):1层T层和1层O层,代表矿物是高岭石。 2∶1型(TOT型):2层T层夹1层O层,代表矿物是滑石。
LiMn2O4锂电材料
9 层状硅酸盐结构
四面体层(T)和八面体层(O) T层 [SiO4]共3个角顶成六方网层,第4个角顶(活性氧)朝向 同一方向;在六方网孔中心、与活性氧同高度处存在一个OH。
半径 1.3A
O层 两个T层活性氧相向、错开一定距离做紧密堆积,阳离 子充填八面体孔隙,形成O层。
反萤石型结构
球键图
阳离子四面体配位 阴离子立方体配位
反萤石型结构可看作:阴离子做立方最紧密堆积,阳离 子充填在全部的四面体空隙中。
结构类型 物质名称 萤石(CaF2)
萤石型结 氯化锶(SrCl2)

氯化钡(BaCl2)
氟化铅(PbF2)
氧化钾(K2O)
反萤石型 结构
氧化钠(Na2O)
氧化锂(Li2O)
物质名称 化学式
a0/nm
H D / g/cm3
颜色 熔点(℃)
主要用途
特点
金刚石
单晶硅

α锡
C
Si
Ge
Sn
0.3567 0.5431 0.5623
0.6489
10
7
6
5
3.51
2.336
5.47
5.77
无色
黑色
淡灰色
白色
3550

金属材料的晶体结构与结晶

金属材料的晶体结构与结晶
1.2 合金的晶体结构与结晶
1.1.1 合金的晶体结构
合金是指由两种或两种以上的金属元素或由金属元素与非金属元素 组成的具有金属特性的物质。
组成合金的最基本的、独立的单元称为组元。由两个组元组成的合 金称为二元合金,由三个组元组成的合金称为三元合金,由三个以上组 元组成的合金称为多元合金。
合金中结构相同、成分相同和性能一致,并以界面相互隔开的组成 部分称为相。只有一种相组成的合金为单相合金,由两种或两种以上相 组成的合金为多相合金。用金相观察方法,在金属及合金内部看到的相 的形态、数量、大小和分布及相间结合状态称为显微组织。
非晶体
晶体
金属材料的晶体结构与结晶
1.晶体结构的基本知识
图2-1 晶体结构示意图
金属材料的晶体结构与结晶
1.常见的金属晶格类型 常见的金属晶格类型包括体心立方晶格、面心立方晶格和密排六方
晶格三大类。 1)体心立方晶格 body—centered cubic lattice 特点:b 较好。如:<912℃ Fe, Cr, Mo, V等。 含有2个原子体积组成。
图2-7 刃型位错示意图
金属材料的晶体结构与结晶
(3)面缺陷。面缺陷是指在晶体中呈面状分布(在两个方向上尺寸很大,在第 三个方向上尺寸很小)的缺陷。常见的面缺陷是晶界和亚晶界。
晶界是位向不同的晶粒间的过渡区,其宽度为5~10个原子间距。晶界区域的晶 粒的位向通过晶界的协调逐步过渡到相邻晶粒的位向,如图2-8(a)所示。亚晶界 是由位向相差很小的亚晶粒组成的,如图2-8(b)所示。晶界和亚晶界的原子排列 都不规则,会产生晶格畸变。因此,晶界和亚晶界均可提高金属的强度,改善塑性 和韧性。
图2-10 液态金属的结晶过程示意图
金属材料的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

机械工程材料 第二章 金属的晶体结构与结晶

2-3 根据组元数, 一般分为二元相图、三元相图。 三元相图
Fe-C二元相 图
2-3 同素异构转变 有些物质在固态下其晶格类型会随温度变化而发生变化,这 种现象称为同素异构转变。 锡,四方结构的白锡在13℃下转变为金刚石立方结构的灰 锡。 同素异构转变同样也遵循形核、长大的规律,但它是一个 固态下的相变过程,即固态相变。 除锡之外,铁、锰、钴、钛等也都存在着同素异构转变。
位错密度增加,能提高金属强度。
2-1
(3)面缺陷
呈面状分布的缺陷,主要是晶界和亚晶界。 晶体缺陷产生晶格畸变,使金属的强度、硬度提高,韧性下降。
2-1
二、合金的晶体结构 1.合金的基本概念
合金:两种或两种以上的金属与金属,或金属与非金属经一定方法合成的 具有金属特性的物质。 例如,钢和生铁是Fe与C的合金,黄铜是Cu和Zn的合金。 组元:组成合金最基本的物质。可以是元素,也可以是化合物。 黄铜的组元是铜和锌;青铜的组元是铜和锡。铁碳合金中的Fe3C,镁硅合 金中的Mg2Si。 合金系:组元不变,当组元比例发生变化,可配制出一系列不同成分、不 同性能的合金,这一系列的合金构成一个“合金系统”,简称合金系。
2-1
(2)金属化合物
合金组元间发生相互作用而形成一种具有金属特性的物质。
1.正常价化合物:如Mg2Si, Mg2Sn, Mg2Pb, Cu2Se等。
2.电子化合物:不遵守原子价规律,但有一定的电子浓度的化合物。
如Cu3Al, CuZn3, Cu5Zn8等。
3.间隙化合物:由过渡族金属元素与碳、氮、氢、硼等原子半径较
通常在钢中加入铝、钒,向铸铁液中加入硅铁合金。
(3)机械振动、超声振动、电磁搅拌: 使结晶过程中形成的枝晶折断裂碎,增加晶核数,达到细化晶粒的目的。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
例如玻璃经高温长期加热能形成所谓的晶态玻璃璃,而液态金属快速冷却的可获 得非晶态的固态金属(也就是所说的金属玻璃)。
晶态和非晶态的转变,物质的性能也会发生极大的改变。 例如非晶态金属的强度、硬度会有很大提高,因此人们利用(晶态和非晶态的转 变,物质的性能也会发生极大的改变),这一性质开发出了具有特殊用途的材料满足 特殊场合的应用。 金属是由金属键结合,其内部的金属离子在空间有规则的排列,因此固态金属一 般情况下是晶体。
13
14
提示:
由于原子排列紧密程度不一样,当金属从面心立方晶格向体心立方晶 格转变时,体积会发生变化;这就是钢在淬火时因相变而发生体积变化的 原因; 面心立方晶格中的空隙半径比体心立方晶格空隙半径大,对于具有同素 异构转变的金属其意义重大,如化学热处理中增大碳的固溶度; 不同晶体结构中原子排列的方式不同, 将会使它们的形变能力不同;
两个晶面一般用一个晶面指数(111)来表示。 2.晶面族
在立方晶系中, 由于原子的排列具有高度的对称性, 往往 存在许多原子排列完全相同但在空间位向不同(即不平行)的晶
zz
(111) D
C
(1 1 1)
A
B
(110)
面, 这些晶面总称为晶面族, 用大括号表示, 即{hkl}。
E
Hy
在立方晶胞中 (111), (1 11), (1 1 1), (11 1) 同属{111}晶面族。 可用下式表示: {111} (111) (1 11) (1 1 1) (11 1)
(11 1) o
F
x
Hy
(1 11) 24
G
常见晶面的晶面指数
zz
1
(234) C 4 1
o3
1
B
y
2
A
x
zz
D (110)
A
C B
o
F
x
Hy
G
zz
D (001) A
(100) o
C
B (010)
Hy
F
G
x
zz
D (111)
A
C
B (1 1 1)
o
Hy
F
G
x
25
二. 立方晶系的晶向表示方法
立方晶系的晶向指数采用几何学中由方向指数表示直线方向的方法来表示。
对立方晶系: {hkl} (hkl) (h kl) (hkl) (hkl ) (hlk) (h lk) (hl k) (hlk )
F
x
(100)
G
zz
(111) D
C (1 1 1)
(khl) (khl) (kh l) (khl )
A
B
(klh) (klh) (kl h) (klh ) (lhk) (l hk) (lh k) (lhk ) (lkh) (l kh) (lkh) (lkh )
21
22
23
1.平行晶面
晶面指数的一般标记为(hkl)。(hkl)实际表示一组原子排列相同的平行晶面。晶面的截距
可以为负数, 在指数上加负号, 如 (111) 。若某个晶面(hkl)的指数都乘以-1, 则得到晶
面 (h kl ) , 则晶面(hkl)与(h kl ) 属于一组平行晶面, 如晶面DFH(111)与晶面ACG (1 1 1), 这
10
11
2. 面心立方晶胞(格) (F.C.C.晶格)(原子如何排列) 金属原子分布在立方体的八个角上和六个面的中心。面中心的原子与该
面四个角上的原子紧靠。具有这种晶格的金属有铝(Al)、铜(Cu)、镍 (Ni)、金(Au)、银(Ag)、γ-铁(γ-Fe,912℃~1394 ℃)等。
面心立方晶胞
晶胞在三维空间的重复排列构成晶格。 晶胞的基本特性即反映该晶体结构(晶格)的 特点。 晶胞的几何特征可以用晶胞的三条棱边长a、b、 c和三条棱边之间的夹角α、β、γ等六个参数来 描述。其中a、b、c 、α、β、γ 为晶格常数。 金属的晶格常数一般为: 1×10-10 m~7×10-10 m。
晶体 晶格
距离c来表达, 两相邻侧面之间的夹角为120°, 侧面与底
面之间的夹角为90°。
(2)晶胞原子数(个) 1 12 1 2 3 6
6
2
(3)原子半径
r原子

1 2
a
密排六方晶胞
(4)致密度 0.74 (74%) (5)空隙半径
四面体空隙半径为: r四=0.225r原子,八面体空隙半径为: r八=0.414r原子 (6)配位数 12
以图中的晶向为例, 说明晶向指数的标定过程:
zz
(1)设定一空间坐标系, 原点在待定晶向的一结点上。
4 3
r原3 子

4
(5)空隙半径 a3

4( 3
2 a)3 4 4 a3
74%
四面体空隙半径为: 八面体空隙半径为: (6)配位数 12
r四=0.225r原子 r八=0.414r原子
配位数为晶格中与任一个原子相距最近且距离相等的原子数目。配位数越大, 原子排列紧
密程度就越大。面心立方晶格的配位数为12。
15
3. 密排六方晶胞(格) (H.C.P.晶格) (原子如何排列)
十二个金属原子分布在六方体的十二个角上, 在上下底面的中心
各分布一个原子, 上下底面之间均匀分布三个原子。具有这种晶格的
金属有镁(Mg)、镉(Cd)、锌(Zn)、铍(Be)等。
密排六方晶胞的特征:
(1)晶格常数 用底面正六边形的边长a和两底面之间的
4 3
r原3 子

2
a3

4 ( 3
3 a)3 2 4 a3
0.68 68%
(5)空隙半径 若在晶胞空隙中放入刚性球,则能放入球的最大半径为空隙半径。体心立方
晶胞中有两种空隙。
四面体空隙半径为: r四=0.29r原子 八面体空隙半径为: r八=0.15r原子
(6)配位数 配位数为晶格中与任一个原子相距最近且距离相等的原子数目。配位数越大, 原 子排列紧密程度就越大。体心立方晶格的配位数为8。
12
面心立方晶=β=γ=90°
(2)晶胞原子数 (个)
18 1 6 4
82
(3)原子半径
r原子
2a 4
(4)致密度 0.74 (74%)晶胞中所包含的原子所占有的体积与该晶胞体积之比称为致密度(也 称密排系数)。致密度越大, 原子排列紧密程度越大。
体心立方晶格的晶胞中,八个原子处于立方体的角上,一个原子处于立方体的中 心,角上八个原子与中心原子紧靠。具有体心立方晶格的金属有钼(Mo)、钨(W)、 钒(V)、α-铁(α-Fe,<912℃)等。
体心立方晶胞
8
体心立方晶胞特征:
(1)晶格常数 a=b=c, α=β=γ=90°
(2)晶胞原子数 在体心立方晶胞中, 每个角上的原子在晶格中同时属于8个相邻的晶胞,因 而每个角上的原子属于一个晶胞仅为1/8, 而中心的那个原子则完全属于这个晶胞 ,所以一个 体心立方晶胞所含的原子数为2个。
质点在空间有周期性的重复排列。 相同的指点在空间周期性地重复出现称为长程有序排列; 非晶体内部的质点排列不规则,至多有些局部的短程有序排列。
液体中的原子处于紧密排列状态,但不存在长程的周期排列,从物质的质点排列 是否规则而言,固态的非晶体实际上是一种过冷状态的液体,只是其物理性质与通常 意义上的液体不同。
3
晶体与非晶体内部结构的不同,造成两者性能上的一些重要差异。 (1)冷却或熔化时晶体有一定的凝固点或熔点(即固体和液体之间转变的临界温
度) (2)晶体和非晶体另一个重要的差异是:单晶体具有各向异性,(多晶体由于晶
粒之间原子排列具有一定的位向差因此宏观上表现出各向同性),而非晶体的性能则 不因方向而异。 晶体和非晶体在一定条件下可以互相转化,
正离子和电子气之间产生强烈的静电吸引力,使全部离子结合起来。这种结合 力就叫做金属键。
5
晶体中原子(离子或分子)规则排列的方式称为 晶体结构。 通过金属原子(离子)的中心划出许多空间直 线,这些直线将形成空间格架。这种格架称为晶格。 晶格的结点为金属原子(或离子)平衡中心的位置。 能反映该晶格特征的最小组成单元称为晶胞。
1
材料加工工艺
化学成分
组织结构 材料结构
性能
应用
原子内部结构 原子聚集状态
材料的多相结构
纤维组织
单纯依据材料结构某一方面(如结合键)不足以完全预测或说明材料的性能, 要全面解读材料性能与结构间的关系,必须从以上四方面深入研究
2
晶体与非晶体
固态物质按其内部的原子(离子或分子)的聚集状态分为晶体和非晶体两大类。 其根本区别是晶体的质点(原子、离子、分子)在空间成规则的排列,即相同的
16
17
1.1.3 晶体中的晶面和晶向 不同晶面晶向上原子排列不同,因此在不同晶面和不同晶向上材料特性不同。 在分析、研究有关晶体的生长、变形、相变以及性能等方面的问题时,常常涉及到晶体中
某些原子所构成的方向和平面。 在晶体学中通过晶体中原子中心的平面叫做晶面, 通过原子中心的直线为原子列,其所代表的方向叫做晶向。
第1章 材料的结构与性能 内容提要:
本章介绍金属材料的结构与组织,包括纯金属的晶体结构、晶体缺陷和合金的结构、金属材 料的组织。
介绍金属材料的工艺性能、机械性能和理化性能。 学习目标:
本章重点掌握金属材料的晶体结构、晶体缺陷和合金的结构,了解金属材料的组织及性能。 学习建议:
1.晶体结构部分应弄清三种常见金属的晶体结构及其特点,应充分发挥空间想象力。 2.晶面指数及晶向指数的确定在学习时会感到困难。应掌握常见的晶面和晶向的表示方法, 需要多练多画。
相关文档
最新文档