谷氨酸发酵

合集下载

谷氨酸发酵

谷氨酸发酵
谷氨酸发酵
谷氨酸发酵是利用微生物的糖代谢和氨基酸 代谢来生产谷氨酸。 一. 谷氨酸生物合成代谢途径 以葡萄糖为碳源的代谢途径分两阶段: (一)由葡萄糖转变成-酮戊二酸 主要经历EMP、TCA。 (二)由-酮戊二酸转变成谷氨酸 由谷氨酸脱氢酶进行还原氨基化。
二. 谷氨酸生产菌的主要生化特点 在正常情况下,机体各代谢中间物形成一种 平衡,故-酮戊二酸不会大量积途 径加以控制,使其代谢途径不同于常,筛选优良 菌株是非常关键的,一般应具有特殊的生化特点: (一) -酮戊二酸脱氢酶活力极低或缺失 阻止-酮戊二酸转变成琥珀酸而大量积累。
2
(二)谷氨酸脱氢酶活力高且不被低浓度产物谷氨 酸抑制,加快谷氨酸的合成。
(三)细胞膜对谷氨酸的通透性好,使生成的谷氨 酸及时分泌到细胞外,减少细胞内谷氨酸浓度, 避免抑制作用产生。一般采取生物素亚适量,控 制细胞膜的合成,其饥饿状态造成膜通透性好。 (四)减弱乙醛酸循环也是提高以葡萄糖为碳源生 产谷氨酸转化率的方法之一。
2分子乙酰CoA 进入TCA生成 ATP = 20个
异柠檬酸裂解酶
乙醛酸
苹果酸合酶
乙酰辅酶A
琥珀酸
1
三. 环境条件对谷氨酸发酵的影响
有了优良菌株,还要控制一定条件,造成适于谷氨酸 高产的特定环境: 1. 供氧量要适中:供氧不足,丙酮酸转变成乳酸, -酮 戊二酸生成减弱;供氧过多,NADH过度被氧化,使 -酮戊二酸还原氨基化减弱。 2. 氨量(氨水或尿素)适中:不足时,还原氨基化减 弱;过量时,形成谷氨酰胺,使谷氨酸产量下降。 3. pH:中性或弱碱性有利。 4. 磷酸盐:适量,过高促进EMP和Val生成。 5. 生物素:亚适量,提高细胞膜的通透性。

(完整版)谷氨酸发酵

(完整版)谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。

谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:➢第1阶段是菌体生长阶段;➢第2阶段是产酸阶段,谷氨酸得以大量积累。

(完整版)谷氨酸发酵

(完整版)谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。

谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:➢第1阶段是菌体生长阶段;➢第2阶段是产酸阶段,谷氨酸得以大量积累。

论述谷氨酸发酵的原理

论述谷氨酸发酵的原理

论述谷氨酸发酵的原理
谷氨酸发酵是一种利用微生物如大肠杆菌(Escherichia coli)进行合成谷氨酸的生物工艺过程。

原理如下:
1. 微生物选择:在谷氨酸发酵中,经常选择大肠杆菌作为发酵菌。

大肠杆菌具有高产谷氨酸的能力,并且生长速度较快,适应性强。

2. 培养基准备:谷氨酸发酵的培养基需提供适合微生物生长和发酵所需的营养物质,如碳源、氮源、矿物盐和辅助因子等。

常用的碳源包括葡萄糖、淀粉等,氮源则可以是氨基酸、蛋白质等。

此外,还可添加特定的辅助因子如磷酸、镁离子等。

3. 发酵过程:将所选的微生物接种到预先准备好的培养基中,进行发酵过程。

在发酵过程中,微生物利用碳源和氮源进行生长和代谢,并分泌出所需的酶以转化底物产生目标产物谷氨酸。

4. 发酵控制:为了提高谷氨酸的产量和质量,发酵过程需要进行严格的控制。

这包括控制发酵温度、pH值、氧气供给和搅拌速度等。

适当调节这些因素可以提高微生物的生长速度和代谢产物的积累。

5. 谷氨酸提取和纯化:发酵结束后,需将谷氨酸从发酵液中提取出来,并进行纯化。

一般通过离心、过滤和浓缩等步骤,将目标产物分离提取。

接下来,通过
晶体化、离子交换层析等方法,进行纯化和分离,得到高纯度的谷氨酸。

总之,谷氨酸发酵的原理是利用适宜的菌种和培养基,通过微生物的生长和代谢过程,合成谷氨酸。

发酵过程需要进行严格的控制,以提高产量和质量,最终通过提取和纯化得到高纯度的谷氨酸。

谷氨酸的发酵和提取工艺综述

谷氨酸的发酵和提取工艺综述

⾕氨酸的发酵和提取⼯艺综述综述:⾕氨酸的发酵与提取⼯艺第⼀部分⾕氨酸概述⾕氨酸⾮⼈体所必需氨基酸,但它参与许多代谢过程,因⽽具有较⾼的营养价值,在⼈体内,⾕氨酸能与⾎氨结合⽣成⾕氨酰胺,解除组织代谢过程中所产⽣的氨毒害作⽤,可作为治疗肝病的辅助药物,⾕氨酸还参与脑蛋⽩代谢和糖代谢,对改进和维持脑功能有益。

另外,众所周知的⾕氨酸钠盐即味精有很强烈的鲜味,是重要的调味品。

1996、1997、1998年味精年产量分别为55.0万吨、56.64万吨、59.03万吨。

尽管如此,我国⼈均年消耗味精量还只有400g左右,⽽台湾省已达2000g。

因此,中国将是世界上最⼤的潜在味精消费市场,也就是说,味精⽣产会稳步发展。

这也意味着⾕氨酸的⽣产不断在扩⼤[1]。

⾕氨酸⽣产⾛到今天就⽣产技术⽽⾔已有了长⾜进步,⽆论是规模还是产能都今⾮昔⽐,与此同时各⼚家还在追求完美, 这是⾏业进步的动⼒,也是⽣存之所需。

实际上⽣产⼯艺是与时俱进的,没有瑕疵的⼯艺是不存在的。

如:配⽅及提取⽅法现在是多种多样,有单⼀⽤纯⽣物素的,也有⽤⽢蔗糖蜜加纯⽣物素的, 还有加⽟⽶浆⼲粉或麸⽪⽔解液及⾖粕⽔解液等等;提取⽅法有:等电-离交、等电-离交-转晶、连续等点-转晶等等[2]。

本综述简述⾕氨酸⽣产的流程及发酵机制,着重介绍⾕氨酸的提取⼯艺。

第⼆部分⾕氨酸⽣产原料及其处理⾕氨酸发酵的主要原料有淀粉、⽢蔗糖蜜、甜菜糖蜜、醋酸、⼄醇、正烷烃(液体⽯蜡)等。

国内多数⾕氨酸⽣产⼚家是以淀粉为原料⽣产⾕氨酸的,少数⼚家是以糖蜜为原料进⾏⾕氨酸⽣产的,这些原料在使⽤前⼀般需进⾏预处理。

(⼀)糖蜜的预处理⾕氨酸⽣产糖蜜预处理的⽬的是为了降低⽣物素的含量。

因为糖蜜中特别是⽢蔗糖蜜中含有过量的⽣物素,会影响⾕氨酸积累。

故在以糖蜜为原料进⾏⾕氨酸发酵时,常常采⽤⼀定的措施来降低⽣物素的含量,常⽤的⽅法有以下⼏种:(1)活性炭处理法; (2)⽔解活性炭处理法;(3)树脂处理法。

谷氨酸发酵的工艺流程

谷氨酸发酵的工艺流程

谷氨酸发酵的工艺流程
《谷氨酸发酵的工艺流程》
谷氨酸是一种重要的氨基酸,广泛应用于食品、医药和化工等领域。

发酵工艺是生产谷氨酸的主要方法之一,下面将介绍谷氨酸发酵的工艺流程。

1. 选择菌株:选择适合发酵生产的菌株是谷氨酸发酵工艺的第一步。

通常采用属于放线菌属或棒状杆菌属的菌株进行发酵。

这些菌株具有较高的谷氨酸产量和较好的耐受性。

2. 发酵培养基的配制:发酵培养基是支撑谷氨酸发酵的重要基础。

一般包括碳源、氮源、无机盐、生长因子等组成成分。

常用的碳源包括葡萄糖、麦芽糖等,氮源包括氨基酸、尿素等。

3. 发酵条件控制:发酵过程中的温度、pH值、氧气供应等条件都会影响谷氨酸的产量。

通常采用恒温发酵,温度一般控制在28-32摄氏度。

同时控制好培养基的pH值,通常在6.5-7.5之间。

氧气供应也是非常重要的,通过控制搅拌速度和通气量来保证充足的氧气供应。

4. 发酵过程监测:在发酵过程中需要对微生物生长、培养基中各种成分的消耗和产物的生成进行持续监测。

通过检测微生物生长曲线和培养基中各成分的浓度变化来掌握发酵情况,及时调整发酵条件以提高产量。

5. 发酵产物的提取与精制:发酵结束后,需要对发酵产物进行
提取和精制。

通常采用离心、过滤等方法将微生物分离,然后通过酸碱调节、浓缩、结晶等工艺步骤来得到纯净的谷氨酸产物。

通过以上工艺流程,谷氨酸发酵生产可以实现高效、稳定的产量,并且能够得到高纯度的产物,满足市场需求。

氨基酸类药物的发酵生产—谷氨酸的发酵生产

氨基酸类药物的发酵生产—谷氨酸的发酵生产

生物素的来源:氨基酸生产上可以作为生物素来源的原料 有玉米浆、麸皮水解液、糖蜜及酵母水解液等,通常选取 几种混合使用。例如,许多工厂选择纯生物素、玉米浆、 糖蜜这三种物质来配制培养基。各种原料来源及加工工艺 不同,所含生物素的量不同。玉米浆含生物素500μg/kg, 麸皮含生物素300μg/kg,甘蔗糖蜜含生物素1500μg/kg。
操作简单 周期长,占地面积大。
直接常温等电点法工艺流程
发酵液
起晶中和点(pH4-4.5) 育晶(2h)
盐酸
菌体及细小的 谷氨酸晶体
等电点搅拌pH3-3.22 静置沉降4-6h 离心分离
成品
母液
干燥
湿谷氨酸晶体
2、离子交换法
可用阳离子交换树脂来提取吸附在树脂上的谷氨 酸阳离子,并可用热碱液洗脱下来,收集谷氨酸 洗脱流分,经冷却、加盐酸调pH 3.0~3.2进行结 晶,之后再用离心机分离即可得谷呈棒形或短杆形; 革兰氏阳性菌,无鞭毛,无芽孢;不能运动; 需氧性的微生物; 生物素缺陷型; 脲酶强阳性; 不分解淀粉、纤维素、油脂、酪蛋白、明胶等;
发酵中菌体发生明显形态变化,同时细胞膜渗透性改变; 二氧化碳固定反应酶系强; 异柠檬酸裂解酶活力欠缺或微弱,乙醛酸循环弱; α-酮戊二酸氧化能力微弱; 柠檬酸合成酶、乌头酸酶、异柠檬酸脱氢酶、谷氨酸脱氢酶活
有机氮丰富有利于长菌,因此谷氨酸发酵前期要 求一定量的有机氮,通常在基础培养基中加入适 量的有机氮,在发酵过程中流加尿素、液氨或氨 水来补充无机氮。
(3)无机盐
磷酸盐 :工业生产上可用K2HPO4·3H2O、KH2PO4、 Na2HPO4·12H2O、NaH2PO4·2H2O等磷酸盐,也可用磷酸。 过高:代谢转向合成缬氨酸。 过低:菌体生长缓慢。

谷氨酸发酵知识完全总结

谷氨酸发酵知识完全总结

谷氨酸的性质及基本介绍147.129261.538主要用途简介:(一)食品工业:谷氨酸钠俗称味精,是重要的鲜味剂,对香味具有增强作用。

(二)日用化妆品:谷氨酸作为营养药物可用于皮肤和毛发。

N—酰基谷氨酸钠系列产品是由谷氨酸缩合而成的性能优良的阴离子表面活性剂,广泛用于化妆品、香皂、牙膏、香波、泡沫浴液、洗洁净等产品中。

焦谷氨酸钠(味精脱水生成的产物)具有极强的吸湿性,能保持皮肤湿润,防止干燥,并增强皮肤和毛发的柔软和弹力。

日本己有以谷氨酸钠(或谷氨酸)为原料生产的高级人造革、化妆品和洗涤剂等产品。

(三)医药行业:谷氨酸作有较高的营养价值,医学上主要用于治疗肝性昏迷,还用于改善儿童智力发育。

(四)农业:谷氨酸与某些激素配合,可制成柑桔增甜剂;还可作为微肥的载体,在氮磷钾基本满足的条件下,作为叶面喷洒的微肥具有投入少、效益高等特点。

谷氨酸钠既是西红柿保护性杀菌剂,又是防治果树腐烂病的特效杀菌剂。

氨基酸铜是目前生产上良好的杀菌剂,有机铜比无机铜的应用效果好。

特殊说明:(一)谷氨酸晶体为白色结晶或结晶性粉末,味微酸。

(二)吸湿性温度50℃,其临界湿度在90%以上。

谷氨酸生产水平与市场分析生产水平:谷氨酸棒状杆菌-生物素敏感型高产菌株:采用生物素亚适量工艺,发酵32h,产酸达140g/L以上,糖酸转化率达62%以上,国内同类研究的领先水平。

谷氨酸棒状杆菌-谷氨酸温度敏感型突变株:在最佳发酵条件下,发酵24h,产酸达到160g/L,糖酸转化率达72%,国际同类研究的先进水平。

市场分析:我国味精工业的产量稳居世界第一位,2007年全国味精产量达190万吨。

味精工厂的味精平均销售价格为7,800元/吨,成本为7,000元/吨。

按照上述产量计算,我国味精工业中纯味精的总产值约150亿元,加上相当于上述总值30%的副产品(主要是饲料蛋白、化肥、液态肥料)的产出,我国味精工业年生产总值约为200亿元人民币。

从市场需求来看,2007年国内谷氨酸年产量约190万吨,国内人均消费味精仅1kg,与日本、香港、台湾、东南亚等国家及地区的味精消费水平(1.5kg)相比,还是较低的。

谷氨酸发酵实验报告

谷氨酸发酵实验报告

一、实验目的1. 了解谷氨酸发酵的基本原理和过程。

2. 掌握谷氨酸发酵实验的操作方法。

3. 通过实验验证谷氨酸发酵过程中还原糖的消耗和谷氨酸的生成情况。

4. 分析发酵条件对谷氨酸发酵的影响。

二、实验原理谷氨酸发酵是一种典型的微生物发酵过程,主要利用谷氨酸棒杆菌在适宜的培养基和条件下,将糖类物质转化为谷氨酸。

发酵过程中,还原糖的消耗和谷氨酸的生成是衡量发酵是否正常的重要指标。

三、实验材料与仪器1. 实验材料:- 谷氨酸棒杆菌菌种- 葡萄糖- 酵母提取物- 牛肉膏- 磷酸氢二钠- 氯化钠- 琼脂- pH试纸- 还原糖检测试剂盒- 谷氨酸检测试剂盒- 恒温摇床- 恒温水浴锅- 721分光光度计2. 实验仪器:- 烧杯- 玻璃棒- 移液管- 试管- 离心机- 电子天平四、实验步骤1. 培养基制备:- 称取酵母提取物10g、牛肉膏5g、葡萄糖20g、磷酸氢二钠2g、氯化钠1g,加入100mL蒸馏水溶解,定容至1000mL。

- 将培养基分装至锥形瓶中,121℃高压灭菌15分钟。

2. 菌种活化:- 将谷氨酸棒杆菌菌种接种于装有适量培养基的锥形瓶中,37℃恒温培养24小时。

3. 发酵实验:- 将活化后的菌液以1%的接种量接种于装有100mL培养基的锥形瓶中,置于恒温摇床中,37℃、150r/min振荡培养。

- 每隔2小时取样,测定还原糖和谷氨酸的含量。

4. 数据处理:- 根据还原糖和谷氨酸的测定结果,绘制糖耗曲线和谷氨酸生成曲线。

- 分析发酵条件对谷氨酸发酵的影响。

五、实验结果与分析1. 糖耗曲线:实验过程中,还原糖含量随时间逐渐降低,说明谷氨酸棒杆菌在发酵过程中不断消耗葡萄糖。

2. 谷氨酸生成曲线:实验过程中,谷氨酸含量随时间逐渐增加,说明谷氨酸棒杆菌在发酵过程中不断合成谷氨酸。

3. 发酵条件对谷氨酸发酵的影响:- 温度:37℃时,谷氨酸发酵效果较好。

- pH值:pH值在6.5-7.0时,谷氨酸发酵效果较好。

谷氨酸发酵的因素级控制

谷氨酸发酵的因素级控制

pH发生变化的主要原因是培养基中营养 成分的利用和代谢产物的积累。 如当谷氨酸棒状杆菌利用糖类物质不断 生成谷氨酸时,培养液的pH就会下降。 而碱性物质的消耗和氨的生成等则会导 致培养液的pH上升。
pH:前期pH(7.5~8.0),中后期pH7.0~7.6。 通过采用流加尿素,氨水或液氨等办法调节 pH,补充氮源。
pH值 值
1) pH值对谷氨酸产生菌生长的影响
谷氨酸产生菌象其它微生物一样, 有最适生长 pH值范围, 当高于或低于这个值时:(1) 菌体内 的酶受到抑制, 菌体新陈代谢受阻, 生长停滞; (2) 菌体细胞膜所带电荷发生改变, 从而改变 细胞膜的渗透性, 影响菌体对营养的吸收和代 谢产物的排出; (3) 影响培养基组分和中间代 谢产物的离解, 从而影响菌体对这些物质的利 用。
1.1氨酸生产菌种
谷氨酸生产菌为谷氨酸棒杆菌、乳糖发 酵短杆菌、黄色短杆菌。革兰氏阳性菌, 菌体为球形、短杆至棒状,不同形状芽 孢,没有鞭毛,不能运行,需要生物素 作为生长因子,在通气条件下才能生产 谷氨酸。
1.2生产原料
玉米、小麦、甘薯、大米等,其中 甘薯和淀粉最为常用。大米进行浸泡磨 浆,再调成15°Bé,调PH6.0,加细菌 a-淀粉酶在85℃进行液化,液化30min 后,加糖化酶在60℃条件下糖化24h, 过滤后可供配制培养基。
生物素亚适量时,菌体代谢失调, 细胞膜通透性增强,细胞内的谷氨酸 能及时排出,有利于谷氨酸的积累, 发酵液内由菌体细胞排除谷氨酸能 达总氨基酸92%左右。因此,要根据 发酵时期来控制生物素的含量。
供氧
过量:NADPH的再氧化能力会加强,使 α-KGA的还原氨基化受到影响,不利于 GA 的生成。 供氧不足:积累大量的乳酸,使发酵液 的pH值下降,不利于GA的产生,同时, 一部分葡萄糖转成了乳酸,影响了糖酸 转化率,降低了产物的提出率。

谷氨酸发酵及工艺流程

谷氨酸发酵及工艺流程

pH控制
•发酵过程中产物的积累导致pH下降,而氮源的流 加导致pH的升高,发酵中当pH值进行控制既8h前 pH7.0-7.6;8h后pH7.2-7.3,,20-24h期间pH7.07.1,24-35h期间pH6.5-6.6.尿素流加总量为4%
糖液流加
•从第10h开始每隔4h补糖一次,每次补入1%的水解 糖液,在发酵26h前补入4%的水解糖液。
清洗仪器
• 放罐:到放罐标准后,及时放罐。经过发酵约35h 后,后残糖在1%以下且糖耗缓慢或残糖<0.5%, 菌量增长(OD)值缓慢时,便可放罐,放罐操作 同取样。排放液需灭菌处理才可进入下水道 • 清洗:放罐后,将发酵罐清洗干净,关闭所有电 源 • 粗提:用浓硫酸将发酵液pH调至谷氨酸的等电点 (pH3.15),用等电点法进行谷氨酸的粗提。
发酵培养基的制备
• 发酵培养基:按下列培养基配方制发酵培养基, 并按70%装液量装于小型发酵罐中,离位灭菌, 121℃实罐灭菌20min,冷却备用。 • 葡萄糖10%,玉米浆0.1-0.15%,Na2HPO4 0.17%, KCL 0.12%,MgSO4 0.04%,用NaOH溶液调pH7.20 于110℃灭菌20min冷却备用。 • 流加试剂:将40%尿素溶液、1%水解糖液、4%水解 糖液分别装入流加瓶中,121℃15min备用
发酵过程中,需注意完成下列工作
• 注意发酵罐运转是否正常,检查各控制参数是否在适合的范围内,遇 有故障及时排除。 • 每两小时取样一次,每次取样80ml,取样时,用量筒准确取流出的培 养液80ml,对号倒入三角瓶中,封口,来丌及测定的样液要立即放入 冰箱保存 • 每2小时记录发酵过程温度、pH、OD、通风、转速的测定数值,并 记录操作情况。 • OD值测定方法:均匀取样5ml于编号试管中,用空白发酵液稀释至一 定浓度,在722分光光度计上测定A600,根据菌体浓度不吸光度之间 关系的标准曲线换算出菌体浓度;其余发酵于2000r/min条件下离心 分离10min,上清夜入编号三角瓶,用于测糖 • 还原糖测定:用菲林快速定糖法。 • 菌体形态观察:革兰氏染色,油镜观察菌形、革兰氏染色结果以及有 无杂菌污染

谷氨酸发酵的工艺流程

谷氨酸发酵的工艺流程

谷氨酸发酵的工艺流程谷氨酸是一种重要的生物体中的氨基酸,广泛应用于食品添加剂、保健品和生化制药等领域。

谷氨酸的工业生产主要采用微生物发酵的方法,下面将介绍一种常见的谷氨酸发酵工艺流程。

1. 菌种培养:选用高产谷氨酸的菌株,如乳杆菌属、大肠杆菌等。

先将菌株接种到培养基中培养,再将培养好的菌液接种到发酵罐中进行扩大培养。

菌种培养的条件包括适宜的温度、pH值、培养基组成等。

2. 发酵罐的准备:通常采用不锈钢发酵罐,选择适宜的体积和搅拌速度。

发酵罐内要保持无菌状态,并可以自动控制温度、pH值、溶氧量等参数。

3. 发酵工艺参数设定:设定适宜的温度和pH值,一般发酵温度为30-37摄氏度,pH值为6-7。

通过自动控制系统实时监测和调控这些参数,保证发酵过程的正常进行。

4. 发酵过程:首先将适量的底物加入发酵罐中,底物包括主碳源、氮源、矿物元素等。

然后将菌种接种进入发酵罐,并继续搅拌保持良好的氧气传递。

发酵过程中,微生物利用底物产生代谢产物,包括谷氨酸。

5. 收获和提取:发酵过程一般持续3-5天,当菌体处于最佳生长阶段时,收获发酵液。

发酵液需要经过后处理,包括澄清、浓缩、精制等步骤。

澄清可以通过离心或滤过等方式进行。

浓缩可以利用蒸发、真空浓缩等方法进行。

精制包括溶剂提取、结晶、脱色等步骤,以提高谷氨酸的纯度。

6. 产品包装和贮存:将精制后的谷氨酸产品进行包装,通常采用铝箔袋或塑料瓶。

包装完成后,产品需要进行质量检验,并储存于低温、干燥、密封的环境中,以延长产品的保质期。

以上就是谷氨酸发酵的工艺流程。

随着生物技术的不断发展,谷氨酸发酵工艺也在不断改进,以提高谷氨酸的产量和纯度。

同时,工艺的经济性、环保性也是发酵工艺改进的重要方面,以实现可持续发展。

谷氨酸发酵主要影响因素及其控制

谷氨酸发酵主要影响因素及其控制

谷氨酸发酵的主要影响因素包括微生物、营养物质、pH值、温度和压力等。 首先,微生物是谷氨酸发酵的关键因素。不同种类的微生物具有不同的生长特性 和代谢途径,因此选择适合的微生物种类对谷氨酸发酵至关重要。其次,营养物 质是微生物生长和谷氨酸合成的基础。碳源、氮源、无机盐等营养成分的种类和 浓度都会影响发酵过程。
谷氨酸发酵主要影响因素及其 控制
基本内容
谷氨酸发酵是一种广泛应用于食品、医药和化工等领域的重要生物发酵过程。 在此过程中,微生物利用各种营养物质进行生长繁殖,并产生谷氨酸。了解谷氨 酸发酵的主要影响因素及其控制方法对于提高发酵效率、优化工艺具有重要意义。 本次演示将就谷氨酸发酵的影响因素及控制方法进行详细论述。
参考内容
基本内容
谷氨酸发酵是一种重要的生物过程,用于生产谷氨酸盐,如谷氨酸钠(味精 的主要成分)。在这个过程中,微生物,主要是谷氨酸棒状杆菌,利用糖或其他 碳水化合物作为碳源,并产生谷氨酸作为主要产物。这个过程需要精密的设备管 理以确保效率和产量。本次演示将讨论谷氨酸发酵设备管理的现状和发展趋势。
pH值是调节微生物生长和代谢的重要因素,不同pH值条件下,微生物的生长 速率和谷氨酸的合成量会有所不同。此外,温度和压力也会影响微生物的生长和 代谢,进而影响谷氨酸发酵过程。
针对上述影响因素,可采取以下控制方法以提高谷氨酸发酵效率:
1、优化工艺:通过调整培养基成分、优化发酵条件,提高谷氨酸产量。例 如,可以通过优化碳源、氮源的比例,为微生物提供最佳的生长环境;通过调节 pH值,控制微生物生长和谷氨酸合成;通过控制温度和压力,维持良好的发酵环 境。
3、清洁与卫生管理
谷氨酸发酵设备的清洁和卫生管理对于产品的质量和设备的运行至关重要。 为此,大多数企业都采用先进的清洁和消毒系统,以确保设备和管道的清洁,防 止微生物污染。

2谷氨酸发酵机制

2谷氨酸发酵机制

谷氨酸脱氢酶活力很强,同时NADPH +H+再氧化能力弱,使到琥珀酸的反应受 阻,在过量NH4+存在时,经氧化还原共轭 的氨基化反应而生成谷氨酸。生成的谷氨 酸不形成蛋白质而分泌到菌体外。由于谷 氨酸产生菌不利用菌体外的谷,故谷氨酸 成为最终产物。
2.2.1 优先合成与反馈调节
黄色短杆菌的谷氨酸代谢调节机制如图 2-3所示,以它为例说明以葡萄糖为原料生物 合成谷氨酸主要存在的代谢调节方式。
(三)乙醛酸循环的作用
由于三羧酸循环的缺陷(α-酮戊二酸脱 氢酶活力微弱,即α-酮戊二酸氧化能力微 弱),为了获得能量和产生生物合成反应所 需的中间产物,在谷氨酸发酵的菌体生长 期,需要异柠檬酸裂解酶催化反应,走乙 醛酸循环途径。
乙醛酸循环中关键酶是异柠檬酸裂解酶 和苹果酸合成酶,它们催化的反应如下:
在谷氨酸发酵过程中,菌体生长期的 最适条件和谷氨酸生成积累期的最适条件 是不一样的。在菌体生长之后,理想的发 酵应按图2-1由葡萄糖生物合成谷氨酸的理 想途径进行,即四碳二羧酸是100%通过 CO2固定反应供给,理论糖酸转化率为81.7 %。
倘若固定反应完全不起作用,丙酮酸在丙 酮酸脱氢酶的催化作用下脱氢脱羧全部氧化成 乙酰CoA,通过乙醛酸循环(异柠檬酸裂解生成 琥珀酸和乙醛酸)供给四碳二羧酸(琥珀酸),反 应如下:
细胞所处的能量状态用ATP、ADP和AMP之 间的关系来表示,称为能荷(energy charge)。能 荷计算公式为:
从上式可以看出,能荷是细胞所处能量状态 的一个指标。当细胞内的ATP全部转化为 AMP时, 能荷值为0;当AMP全部转化为ATP时,能荷值 为1。可见能荷值在0和1之间变动。已知大多数 细胞的能荷处于0~0.95之间,处于一种动态平 衡。

谷氨酸发酵

谷氨酸发酵

前言氨基酸是构成蛋白质的基本单位,是人体及动物的重要营养物质,氨基酸产品广泛应用于食品、饲料、医药、化学、农业等领域。

谷氨酸是一种重要的氨基酸,我们吃的味精就是以谷氨酸为原料生成的。

1957年以前,人们用酸法水解小麦面筋或大豆蛋白来制取L- 谷氨酸。

1957年,人们分离得到了产生谷氨酸的菌种,接着又进行了大量的研究工作,大规模发酵谷氨酸得以成功[1]。

谷氨酸发酵法的建立,对初级代谢产物微生物法生产的研究起到了极大的推动作用。

在谷氨酸发酵法成功的激励之下,各种研究项目得以展开。

谷氨酸单钠现已完全由发酵法生产,主要用于食品调味剂——味精的生产,其产量已超过400000吨。

味精的现状和前景味精近年来已成为人们普遍使用的一种调味品,其消费量在国内呈上升趋势。

味精产量增长较快。

2001年味精产量91.28万吨,2002年1--6月产量累计53.04万吨,比上年同期增长17.92%。

味精是一种强碱弱酸盐,它在水溶液中可以完全电离变成谷氨酸离子和钠离子。

谷氨酸是氨基酸的一种,氨基酸是构成蛋白质的基本单位,是人体和动物的重要营养物质。

谷氨酸一钠被人体吸收以后,同样也是电离成谷氨酸离子和钠离子而分别参加人体的代谢活动。

所以味精作为调味剂除了能增加食品的美味外,它在人体中具有特殊的生理作用。

(1)谷氨酸在人体内通过转氨酶的作用将其分子中的氨基转移给丙氨酮酸,形成丙氨酸。

(2)谷氨酸与血液中的氨形成无毒的谷氨酰氨,使血液中的氨的浓度下降,减少氨中毒的危险性。

(3)谷氨酸在体内与胱氨酸、甘氨酸结合形成谷胱甘肽。

这个化合物是一种很有效的抗氧化剂,对于延续衰老,促进疾病恢复均有好处。

能够分解体内代谢过程中所产生的过氧化物,避免肌体遭受过氧化物的侵害,有利于维持身体健康。

(4)谷氨酸在体内能够形成V-氨基丁酸,它是一种神经递质,帮助神经的传导;有人说,味精补脑,其道理恐怕就是基于这种物质的形成。

中国调味品行业在空前繁荣和发展的同时,也处在大转变、大整合和大发展时期。

谷氨酸发酵

谷氨酸发酵

1)生物素营养缺陷型⏹作用机制:生物素是脂肪酸生物合成最初反应的关键酶乙酰CoA羧化酶的辅酶,参与了脂肪酸的合成,进而影响脂肪酸的合成.当磷脂合成量少到正常的1/2左右时,细胞变形,Glu向膜外泄漏.⏹控制关键:使用该类突变株必须限制发酵培养基中生物素亚适量(5-10 g/L).在发酵初期(0-8小时),细胞正常生长,当生物素耗尽后,在菌的再次倍增时,开始出现异常形态细胞,即完成了细胞从生长型到积累型转换.2)油酸营养缺陷型⏹作用机制:油酸营养缺陷型丧失了合成油酸的能力,通过控制油酸使磷脂合成量减少到正常量的1/2左右.⏹控制关键:保证在培养基中油酸亚适量,完成细胞从生长型到生产型的转换.(3)添加表面活性剂⏹添加表面活性剂(如吐温60)或不饱和脂肪酸(C16-18),也能造成细胞渗漏,积累谷氨酸.⏹机理:两者在脂肪酸合成时对生物素有拮抗作用,导致磷脂合成不足,形成不完整的细胞膜.⏹关键:控制好脂肪酸或表面活性剂的时间和浓度,必须在药剂加入后,在这些药剂存在下进行分裂,形成产酸型细胞.(4)添加青霉素⏹机理:青霉素抑制谷氨酸生产菌细胞壁后期的合成,细胞膜在失去保护,在渗透压的作用下受损,向外泄露谷氨酸.⏹控制关键:一般在进入对数生长期的早期(3-6小时)添加.添加青霉素后倍增的菌体不能合成完整的细胞壁,完成细胞功能的转换.谷氨酸发酵强制控制工艺⏹为了稳产,克服培养基原料中某些成分不易控制带来的影响,在谷氨酸发酵时可采取“强制控制”的方法,如:“高生物素高吐温”或“高生物素高青霉素”的方法.⏹控制方法:在发酵培养基中预先配加一定量(过量)的纯生物素,大大地削弱每批原料中生物素含量变化的影响,高生物素、大接种量能促进菌体迅速增殖.再在菌体倍增的早期加入相对高的吐温或青霉素,形成产酸型细胞.固定其它条件,确保高产稳产。

谷氨酸发酵⏹ 1.适应期:尿素分解出氨使pH上升.糖不利用.2-4h.措施:接种量和发酵条件控制使适应期缩短.⏹ 2.对数生长期:糖耗快,尿素大量分解使pH上升,氨被利用pH又迅速下降.溶氧急剧下降后维持在一定水平.菌体浓度迅速增大,菌体形态为排列整齐的八字形.不产酸.12h.措施:及时供给菌体生长必须的氮源及调节pH,在pH7.5-8.0时流加尿素;维持温度30- 32℃⏹ 3.菌体生长停止期:谷氨酸合成.措施:提供必须的氨及pH维持在7.2-7.4.大量通**,控制温度34-37 ℃.⏹ 4.发酵后期:菌体衰老,糖耗慢,残糖低.措施:营养物耗尽酸浓度不增加时,及时放罐.发酵周期一般为30h.二、谷氨酸发酵的生化过程⏹(1)是代谢控制发酵的典型代表⏹(2)是目前代谢控制发酵中,在理论与实践上最成熟的……⏹整个过程可简单的分为2 个阶段:第1阶段是菌体生长阶段;第2阶段是产酸阶段,谷氨酸得以大量积累。

谷氨酸发酵

谷氨酸发酵
的麦汁。 E、对麦汁进行灭菌,消灭麦汁中的各种菌类,特别是
乳酸菌。
5.麦汁预冷却和冷却
预冷却:分离煮沸过程中产生的热凝固物。
回旋沉淀槽是最常用的预冷却方法。
冷却:通过麦汁冷却器,迅速冷却至发酵所
需的温度,同时析出冷凝固物(指温度在70℃以 上为溶解状态,但降至70℃以下开始析出的物质 )的过程。
五、啤酒发酵工艺

接种 试管倾斜放置等斜面凝固 超净台 开启三十分钟后,通风5分钟后方可进行操作。 从冷冻的菌体中用接种针挑取一定的菌种 ,Z 字型接种到试管斜面
上。
一、谷氨酸菌种的制备
培养 将试管放入28度 恒温培养箱中培养,每天注意观察记录。
扩大培养 斜面生长大约三天左右。菌种开始长出,然后接种到250ml锥 形瓶液体培养基中 ,28℃ 150转 摇床培养。
麦芽粉 ,比例为4g麦芽粉对应10ml麦芽汁,保证麦芽汁浓 度在8~12。。将麦芽粉和水混匀, 在电炉上加热至 70℃保 持半小时左右。静置取上清液, 加入2%琼脂粉,加热煮 沸,搅拌均匀。 灭菌
• 将培养基液分装入 若干个试管中,注意不能超过试管体积 的三分之一,然后用绵花塞住。放入高压灭菌锅 121℃、 20分钟灭菌处理。
2. 糖化制成麦汁
糖化:利用麦芽所含的各种水解酶,在适宜的条
件下,将麦芽中不溶性高分子物质(淀粉、蛋白质 、半纤维及其中间分解产物),逐步分解成低分子 可溶性物质的过程。
过程包括:淀粉分解、蛋白质分解、B-葡聚糖分
解、酸的形成和多酚物质的变化。
3.麦汁过滤
目的:糖化结束后,应在最短的时间内,将
糖化醪液中的原料溶出物和非溶性的麦槽分离, 以得到澄清的麦汁和良好的浸出物收得率。
啤酒中所含的成分很多,除水外,还有其它近 600种成分,其中主要有: 1、酒精 2、浸出物 3、二氧化碳 4、挥发性成分
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

谷氨酸发酵目前工业上应用的谷氨酸产生菌有谷氨酸棒状杆菌、乳糖发酵短杆菌、散枝短杆菌、黄色短杆菌、噬氨短杆菌等。

我国常用的菌种有北京棒状杆菌、纯齿棒状杆菌等。

谷氨酸除用于制造味精外,还可以用来治疗神经衰弱以及配制营养注射液等。

我国的谷氨酸发酵虽然在产量、质量等方面有了较大的提高,但与国外先进水平相比还存在一定差距。

主要表现在:设备陈旧,规模小,自控水平、转化率和提取率低,易受噬菌体污染,废水污染问题尚未完全解决等。

一、菌种的选育主要通过基因突变、基因工程、细胞工程得到优良的菌种。

可以从自然界中先分离出相应的菌种,再用物理或化学的方法使菌种产生突变,从突变个体中筛选出符合生产要求的优良菌种。

在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。

研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。

因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,以提高细胞膜对谷氨酸的通透性,如生物素缺陷型菌种的选育。

1.谷氨酸生产菌的生化特征1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低.2. 谷氨酸脱氢酶活性强.3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱.4. 异柠檬酸裂解酶活力微弱.5. 不利用谷氨酸.6. 耐高糖耐高谷氨酸 .7. CO2固定能力强.8 .解除谷氨酸反馈抑制.9. 具有向胞外分泌谷氨酸的能力.2.谷氨酸产生菌棒杆菌属:北京棒杆菌钝齿棒杆菌谷氨酸棒杆菌短杆菌属:黄色短杆菌产氨短杆菌小杆菌属:嗜氨小杆菌节杆菌属:球形节杆菌3.共同点:1. α-酮戊二酸氧化能力微弱: α-酮戊二酸脱氢酶丧失或活性低.2. 谷氨酸脱氢酶活性强.3. 还原性辅酶Ⅱ(NADPH+H+)进入呼吸链能力缺陷或微弱.4. 异柠檬酸裂解酶活力微弱.5. 不利用谷氨酸.6. 耐高糖耐高谷氨酸 .7. CO2固定能力强.8 .解除谷氨酸反馈抑制.9. 具有向胞外分泌谷氨酸的能力.谷氨酸棒状杆菌谷氨酸棒状杆菌(Corynebacterium glutamicum)是好氧细菌,可用于微生物发酵工程生产谷氨酸来制取谷氨酸钠(味精),谷氨酸棒状杆菌在发酵过程中要不断地通入无菌空气,并通过搅拌使空气形成细小的气泡,迅速溶解在培养液中(溶氧);在温度为摄氏30到37度,pH为7到8的情况下,经28到32小时,培养液中会生成大量的谷氨酸。

在谷氨酸生产中,培养基中碳氮比为4:1时,菌体大量繁殖而产生的谷氨酸少;当碳氮比为3:1时,菌体繁殖受抑制,但谷氨酸的合成量大增。

在发酵过程中,当pH呈酸性时,谷氨酸棒状杆菌就会生成乙酰谷氨酰胺;当溶氧不足时,生成的代谢产物就会是乳酸或琥珀酸。

二、合成途径:谷氨酸棒状杆菌在一定的条件下能够利用环境中的葡萄糖来合成谷氨酸。

谷氨酸的生物合成途径大致是:葡萄糖经糖酵解(EMP途径)和己糖磷酸支路(HMP途径)生成丙酮酸,再氧化成乙酰辅酶A(乙酰COA),然后进入三羧酸循环,生成α-酮戊二酸。

α-酮戊二酸在谷氨酸脱氢酶的催化及有NH4+存在的条件下,生成谷氨酸。

谷氨酸的生物合成葡萄糖中间产物a-酮戊二酸谷氨酸谷氨酸脱氢酶NH4+抑制谷氨酸的生物合成葡萄糖6-P-葡萄糖6-P-葡萄糖酸3-P-甘油醛5-P-核糖丙酮酸乙酰CoA草酰乙酸柠檬酸苹果酸异柠檬酸延胡索酸琥珀酸α-酮戊二酸谷氨酸透过细胞膜谷氨酸三、培养基(一)培养基培养基应满足微生物生长所需要的碳源、氮源、水、无机盐和生长因子等营养需求。

在工业生产过程中常采用天然成分作为营养物质的液体培养基(1)液体培养基能使营养物质在发酵过程中得到充分的利用,还能为菌体提供更大的生存空间。

同时,也有利于生产过程中培养条件的控制以及产物的提取。

(2)采用天然物质作营养物质既能满足菌体的营养需求,又能降低生产成本,还能减少对环境的污染。

(二)培养基的配制原则:(1)根据不同的菌种,应选择不同的材料配制培养基。

配制的培养基应满足微生物在碳源、氮源、生长因子、水、无机盐等方面的营养要求,并为微生物提供适宜的pH。

(2)培养基的营养要协调,以利于产物的合成。

(3)培养基在满足微生物的营养需求的基础上应尽量降低生产成本,以得到更高的经济效益。

例如:发酵生产常采用天然成分的液体培养基。

而且,经常用野生的植物淀粉、甘蔗渣、秸秆水解物以及乙醇、醋酸等石化产品代替粮食来配制培养基。

1. 碳源:淀粉水解糖、糖蜜、乙醇、烷烃(1)淀粉水解糖的制备(2)糖蜜原料2.氮源:铵盐、尿素、氨水C/N=100:15~21,实际高达100:28因为:1)用于调整pH。

2)分解产生的NH3从发酵液中逸出。

产酸阶段:NH4+过量:促使谷氨酸生成谷氨酰胺。

3.无机盐:磷酸盐、镁、钾、钠、铁、锰、铜,其中磷酸盐对发酵有显著影响。

不足:糖代谢受抑制,菌体生长不足。

过多:a.细胞膜磷脂生成量多,不利于谷氨酸排出。

b.促使丙酮酸和乙醛(由丙酮酸脱羧生成)缩合生成缬氨酸的前体物——α-乙醛乳酸,使缬氨酸在发酵液中蓄积。

4. 生长因子:生物素生物素:B族维生素的一种,又称维生素H或辅酶R。

是合成脂肪酸所必需的。

作用:影响细胞膜通透性和代谢途径。

(1)作为催化脂肪酸生物合成最初反应的关键酶乙酰CoA的辅酶,参与脂肪酸的生物合成,进而影响磷酯的合成。

(2)浓度过大:促进菌体生长,谷氨酸产量低。

因为:a.乙醛酸循环活跃,α-酮戊二酸生成量减少。

b.转氨酶活力增强,谷氨酸转变成其它氨基酸。

生物素:B族维生素的一种,又称维生素H或辅酶R。

是合成脂肪酸所必需的。

脂肪酸的生物合成:利用乙酰CoA(直接原料是丙二酸单酰CoA)在乙酰CoA羧化酶(辅基为生物素)催化下合成。

四、灭菌“灭菌”指的是用化学或物理的方法杀灭或除去物料及设备中所有的有生命物质的技术或工艺流程。

灭菌实质上可分杀菌和溶菌两种,前者指菌体虽死,但形体尚存,后者则指菌体杀死后,其细胞发生溶化、消失的现象。

工业上常用的方法有:干热灭菌、湿热灭菌、化学药剂灭菌、射线灭菌和介质过滤除菌等几种在酵母菌发酵的过程中通常采用加热进行灭菌。

五、谷氨酸发酵的工艺控制①氧。

谷氨酸产生菌是好氧菌,通风和搅拌不仅会影响菌种对氮源和碳源的利用率,而且会影响发酵周期和谷氨酸的合成量。

尤其是在发酵后期,加大通气量有利于谷氨酸的合成。

②温度。

菌种生长的最适温度为30~32 ℃。

当菌体生长到稳定期,适当提高温度有利于产酸,因此,在发酵后期,可将温度提高到34~37 ℃。

③pH。

谷氨酸产生菌发酵的最适pH在7.0~8.0。

但在发酵过程中,随着营养物质的利用,代谢产物的积累,培养液的pH会不断变化。

如随着氮源的利用,放出氨,pH会上升;当糖被利用生成有机酸时,pH会下降。

④磷酸盐。

它是谷氨酸发酵过程中必需的,但浓度不能过高,否则会转向缬氨酸发酵。

发酵结束后,常用离子交换树脂法等进行提取。

六、影响菌体的发酵条件:发酵生产中温度、pH、溶氧量等对发酵过程有重大影响;随着代谢的进行,产热的增加、营养物质的消耗,以及某些酸性和碱性物质的产生,会使温度、pH等发生变化,这些都会对微生物的生长造成不利影响。

因此,需要对发酵过程的中温度、pH、溶氧量等发酵条件进行严格的控制,以保证菌体生长和代谢途径朝着有利人类的方向进行。

七、谷氨酸的提取方法1.等电点沉淀法(1)水解等电点法(2)低温等电点法(3)低温连续等电点法2. 不溶性盐沉淀法(1)锌盐法谷氨酸+锌离子--→谷氨酸锌沉淀--→溶液--→谷氨酸结晶(2)盐酸盐法:Glu在浓盐酸中生成并析出谷氨酸盐酸盐。

这是用盐酸水解面筋生产谷氨酸的原理。

(3)钙盐法:高温谷氨酸钙溶解度大,与菌体等不溶性杂质分开,降温,析出谷氨酸钙沉淀,加NaHCO3 直接得到味精。

3.离子交换法用阳离子交换树脂吸附谷氨酸形成的阳离子,再用热碱( 60 ℃ 4% NaOH )洗脱,收集相应流分,加盐酸结晶。

GA+ GA± GA- GA=<2 3.22 7.0 >12pI谷氨酸是酸性氨基酸,含2个羧基1个氨基,与阴离子交换树脂要比与阳离子交换树脂强,但阴离子机械强度差,价格贵,因而用阳离子交换树脂。

理论上讲发酵液上柱的pH值应低于3.22,但实际上控制在5.0 6.0之间,因Na+、NH4+交换能力>谷氨酸,优先交换,置换出H+使pH值低于3.2,使谷氨酸成为阳离子,但不能>6.0。

4.电渗析法膜分离过程,利用的是电位差。

二次电渗析法:pH3.2:除去各种盐类。

pH 3.2:除去蛋白质、残糖和色素等非电解质。

如何得到高产量的谷氨酸在谷氨酸发酵中,如果能够改变细胞膜的通透性,使谷氨酸不断地排到细胞外面,就会大量生成谷氨酸。

研究表明,影响细胞膜通透性的主要因素是细胞膜中的磷脂含量。

因此,对谷氨酸产生菌的选育,往往从控制磷脂的合成或使细胞膜受损伤入手,如生物素缺陷型菌种的选育。

生物素是不饱和脂肪酸合成过程中所需的乙酰CoA的辅酶。

生物素缺陷型菌种因不能合成生物素,从而抑制了不饱和脂肪酸的合成。

而不饱和脂肪酸是磷脂的组成成分之一。

因此,磷脂的合成量也相应减少,这就会导致细胞膜结构不完整,提高细胞膜对谷氨酸的通透性。

当生物素缺乏时,菌种生长十分缓慢;当生物素过量时,则转为乳酸发酵。

因此,一般将生物素控制在亚适量条件下,才能得到高产量的谷氨酸。

相关文档
最新文档