函数、方程、不等式恒成立问题

合集下载

第10讲 恒成立能成立3种常见题型(解析版)

第10讲 恒成立能成立3种常见题型(解析版)

第10讲恒成立能成立3种常见题型【考点分析】考点一:恒成立问题若函数()f x 在区间D 上存在最小值()min f x 和最大值()max f x ,则不等式()f x a >在区间D 上恒成立()min f x a ⇔>;不等式()f x a ≥在区间D 上恒成立()min f x a ⇔≥;不等式()f x b <在区间D 上恒成立()max f x b ⇔<;不等式()f x b ≤在区间D 上恒成立()max f x b ⇔≤;考点二:存在性问题若函数()f x 在区间D上存在最小值()min f x 和最大值()max f x ,即()[],f x m n ∈,则对不等式有解问题有以下结论:不等式()a f x <在区间D 上有解()max a f x ⇔<;不等式()a f x ≤在区间D 上有解()max a f x ⇔≤;不等式()a f x >在区间D 上有解()min a f x ⇔>;不等式()a f x ≥在区间D 上有解()min a f x ⇔≥;考点三:双变量问题①对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≤⇔≤;②对于任意的[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≥⇔≥;③若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212min min f x g x f x g x ≤⇔≤;④若存在[]1,x a b ∈,对于任意的[]2m,x n ∈,使得()()()()1212max max f x g x f x g x ≥⇔≥;⑤对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212max min f x g x f x g x ≤⇔≤;⑥对于任意的[]1,x a b ∈,[]2m,x n ∈使得()()()()1212min max f x g x f x g x ≥⇔≥;⑦若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212min max f x g x f x g x ≤⇔≤⑧若存在[]1,x a b ∈,总存在[]2m,x n ∈,使得()()()()1212max min f x g x f x g x ≥⇔≥.【题型目录】题型一:利用导数研究恒成立问题题型二:利用导数研究存在性问题题型三:利用导数处理恒成立与有解问题【典型例题】题型一:利用导数研究恒成立问题【例1】(2022·福建省福安市第一中学高二阶段练习)对任意正实数x ,不等式ln 1x x a -+>恒成立,则a 的取值范围是()A .1a <B .2a <C .1a >D .2a >【答案】B【详解】令()ln 1f x x x =-+,其中0x >,则()min a f x <,()111x f x x x-'=-=,当01x <<时,()0f x '<,此时函数()f x 单调递减,当1x >时,()0f x '>,此时函数()f x 单调递增,所以,()()min 12f x f ==,2a ∴<.故选:B.【例2】【2022年全国甲卷】已知函数()a x x xe xf x-+-=ln .(1)若≥0,求a 的取值范围;【答案】(1)(−∞,+1]【解析】(1)op 的定义域为(0,+∞),'(p =(1−12)e −1+1=1(1−1)e +(1−1)=K1(e+1)令op =0,得=1当∈(0,1),'(p <0,op 单调递减,当∈(1,+∞),'(p >0,op 单调递增o )≥o1)=e +1−,若op ≥0,则e +1−≥0,即≤e +1,所以的取值范围为(−∞,+1]【例3】已知函数211()(1)ln (,0)22f x x a x a a =-+-∈≠R .(1)讨论函数的单调性;(2)若对任意的[1,)x ∈+∞,都有()0f x ≥成立,求a 的取值范围.【答案】(1)答案见解析;(2)0a ≤.【解析】【分析】(1)求()'f x ,分别讨论a 不同范围下()'f x 的正负,分别求单调性;(2)由(1)所求的单调性,结合()10f =,分别求出a 的范围再求并集即可.【详解】解:(1)由已知定义域为()0,∞+,()211'()x a a f x x x x-++=-=当10a +≤,即1a ≤-时,()'0f x >恒成立,则()f x 在()0,∞+上单调递增;当10a +>,即1a >-时,x =或x =,所以()f x 在(上单调递减,在)+∞上单调递增.所以1a ≤-时,()f x 在()0,∞+上单调递增;1a >-时,()f x 在(上单调递减,在)+∞上单调递增.(2)由(1)可知,当1a ≤-时,()f x 在()1,+∞上单调递增,若()0f x ≥对任意的[1,)x ∈+∞恒成立,只需(1)0f ≥,而(1)0f =恒成立,所以1a ≤-成立;当1a >-1≤,即10a -<≤,则()f x 在()1,+∞上单调递增,又(1)0f =,所以10a -<≤成立;若0a >,则()f x在(上单调递减,在)+∞上单调递增,又(1)0f =,所以(0x ∃∈,()0()10f x f <=,不满足()0f x ≥对任意的[1,)x ∈+∞恒成立.所以综上所述:0a ≤.【例4】已知函数()ln f x x ax =-(a 是正常数).(1)当2a =时,求()f x 的单调区间与极值;(2)若0x ∀>,()0f x <,求a 的取值范围;【答案】(1)()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,()f x 的极大值是ln 21--,无极小值;(2)1,e ⎛⎫+∞ ⎪⎝⎭.【解析】【分析】(1)求出函数的导函数,解关于导函数的不等式即可求出函数的单调区间;(2)依题意可得maxln x a x ⎛⎫< ⎪⎝⎭,设()ln x g x x =,利用导数研究函数的单调性,求出函数的最大值,即可得解;【详解】解:(1)当2a =时,()ln 2f x x x =-,定义域为()0,∞+,()1122x f x x x-'=-=,令()0f x '>,解得102x <<,令()0f x '<,解得12x >,所以函数()f x 在10,2⎛⎫ ⎪⎝⎭上单调递增,在1,2⎛⎫+∞ ⎪⎝⎭上单调递减,所以()f x 的极大值是1ln 212f ⎛⎫=-- ⎪⎝⎭,无极小值.(2)因为0x ∀>,()0f x <,即ln 0x ax -<恒成立,即maxln x a x ⎛⎫< ⎪⎝⎭.设()ln x g x x =,可得()21ln xg x x -'=,当0x e <<时()0g x '>,当x e >时()0g x '<,所以()g x 在()0,e 上单调递增,在(),e +∞上单调递减,所以()()max 1e e g x g ==,所以1a e >,即1,a e ⎛⎫∈+∞ ⎪⎝⎭.【例5】已知函数()xf x xe=(1)求()f x 的极值点;(2)若()2f x ax ≥对任意0x >恒成立,求a 的取值范围.【答案】(1)1x =-是()f x 的极小值点,无极大值点;(2)a e ≤.【解析】【分析】(1)利用导数研究函数的极值点.(2)由题设知:xe a x≤在0x >上恒成立,构造()x e g x x =并应用导数研究单调性求最小值,即可求a 的范围.【详解】(1)由题设,()(1)xf x e x '=+,∴1x <-时,()0<'x f ,()f x 单调递减;1x >-时,()0>'x f ,()f x 单调递增减;∴1x =-是()f x 的极小值点,无极大值点.(2)由题设,()2xx f x xe a =≥对0x ∀>恒成立,即x ea x≤在0x >上恒成立,令()xe g x x =,则2(1)()xe x g x x'-=,∴01x <<时,()0g x '<,()g x 递减;1x >时,()0g x '>,()g x 递增;∴()(1)e g x g ≥=,故a e ≤.【题型专练】1.(2022·四川广安·模拟预测(文))不等式ln 0x kx -≤恒成立,则实数k 的取值范围是()A .[)0,eB .(],e -∞C .10,e ⎡⎤⎢⎥⎣⎦D .1,e ∞⎡⎫+⎪⎢⎣⎭【答案】D 【解析】【分析】由题可得ln xk x ≥在区间(0,)+∞上恒成立,然后求函数()()ln 0x f x x x=>的最大值即得.【详解】由题可得ln xk x≥在区间(0,)+∞上恒成立,令()()ln 0x f x x x =>,则()()21ln 0xf x x x-'=>,当()0,e x ∈时,()0f x '>,当()e,x ∈+∞时,()0f x '<,所以()f x 的单调增区间为()0,e ,单调减区间为()e,+∞;所以()()max 1e ef x f ==,所以1ek ≥.故选:D.2.(2022·北京·景山学校模拟预测)已知函数()ln 2f x x x ax =++.(1)当0a =时,求()f x 的极值;(2)若对任意的21,e x ⎡⎤∈⎣⎦,()0f x ≤恒成立,求实数a 的取值范围.【答案】(1)极小值是11+2e e f ⎛⎫=- ⎪⎝⎭,无极大值.(2)222,e ⎡⎫--+∞⎪⎢⎣⎭【解析】【分析】(1)由题设可得()ln 1f x x '=+,根据()f x '的符号研究()f x 的单调性,进而确定极值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,转化为:2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,通过求导求()g x 的单调性进而求得()g x 的最大值,即可求出实数a 的取值范围.(1)当0a =时,()ln 2f x x x =+,()f x 的定义域为()0+∞,,()ln 1=0f x x '=+,则1ex =.令()0f x '>,则1,e x ⎛⎫∈+∞ ⎪⎝⎭,令()0f x '<,则10,e ⎛⎫∈ ⎪⎝⎭x ,所以()f x 在10,e ⎛⎫ ⎪⎝⎭上单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭上单调递增.当1e x =时,()f x 取得极小值且为1111ln 2+2e e ee f ⎛⎫=+=- ⎪⎝⎭,无极大值.(2)()ln 20f x x x ax =++≤对任意的21,e x ⎡⎤∈⎣⎦恒成立,则2ln 2ln x x a x x x+-≥=+对任意的21,e x ⎡⎤∈⎣⎦恒成立,令()2ln g x x x=+,()222120x g x x x x -+'=-+==,所以2x =,则()g x 在[)1,2上单调递减,在(22,e ⎤⎦上单调递增,所以()12g =,()222e 2e g =+,所以()()22max 2e 2e g x g ==+,则222e a -≥+,则222ea ≤--.实数a 的取值范围为:222,e ⎡⎫--+∞⎪⎢⎣⎭.3.(2022·新疆克拉玛依·三模(文))已知函数()ln f x x x =,()()23g x x ax a R =-+-∈.(1)求函数()f x 的单调递增区间;(2)若对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,求a 的取值范围.【答案】(1)1,e ⎛⎫+∞ ⎪⎝⎭,(2)(],4-∞【解析】【分析】(1)求函数()f x 的单调递增区间,即解不等式()0f x '>;(2)参变分离得32ln a x x x≤++,即求()()()32ln 0,h x x x x x =++∈+∞的最小值.(1)()ln f x x x =定义域为(0,)+∞,()ln +1f x x '=()0f x '>即ln +10x >解得1e x >,所以()f x 在1,)e∞+(单调递增(2)对任意()0,x ∞∈+,不等式()()12f xg x ≥恒成立,即()21ln 32x x x ax ≥-+-恒成立,分离参数得32ln a x x x≤++.令()()()32ln 0,h x x x x x =++∈+∞,则()()()231x x h x x +-'=.。

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法

关于不等式恒成立问题的几种求解方法不等式恒成立问题,在高中数学中较为常见。

这类问题的解决涉及到一次函数、二次函数、三角函数、指数与对数函数等函数的性质、图象,渗透着换元、化归、数形结合、函数与方程等思想方法,有利于考查学生的综合解题能力,在培养思维的灵活性、创造性等方面起到了积极的作用。

不等式恒成立问题在解题过程中有以下几种求解方法:①一次函数型;②二次函数型;③变量分离型;④数形结合型。

下面我们一起来探讨其中一些典型的问题一、一次函数型——利用单调性求解例1、若不等式对满足的所有实数m都成立,求x的取值范围。

若对该不等式移项变形,转化为含参数m的关于x的一元二次不等式,再根据对称轴和区间位置关系求对应的二次函数的最小值,利用最小值大于零求解。

这样得分好几种情况讨论,这思路应该说从理论上是可行的,不过运算量不小。

能不能找出不需要讨论的方法解决此问题呢?若将不等式右边移到左边,然后将新得到的不等式左边看做关于m的一次函数,借助一次函数的图像直线(其实是线段)在m轴上方只需要线段的两个端点在上方即可。

分析:在不等式中出现了两个字母:x及m,关键在于该把哪个字母看成是一个变量,另一个作为常数。

显然可将m视作自变量,则上述问题即可转化为在[-2,2]内关于m的一次函数大于0恒成立的问题。

解:原不等式转化为(1-x2)m+2x-1>0在|m|2时恒成立,设f(m)= (1-x2)m+2x-1,则f(m)在[-2,2]上恒大于0,故有:此类题本质上是利用了一次函数在区间[a,b]上的图象是一线段,故只需保证该线段两端点均在m轴上方(或下方)即可。

给定一次函数y=f(x)=ax+b(a≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(线段)(如下图)可得上述结论等价于ⅰ),或ⅱ)可合并成同理,若在[m,n]内恒有f(x)0恒成立;f(x)3;若改为:,构造函数,画出图象,得a<3利用数形结合解决恒成立问题,应先构造函数,作出符合已知条件的图形,再考虑在给定区间上函数与函数图象之间的关系,得出答案或列出条件,求出参数的范围。

教材完全解读 高中数学1 第二章 一元二次函数、方程和不等式-单元复习方案

教材完全解读 高中数学1 第二章 一元二次函数、方程和不等式-单元复习方案

单元复习方案单元知识导图单元专题梳理专题1 不等式中恒成立问题的求解专题解读恒成立问题是高考中的高频考点,由于我们所学知识有限,与函数有关的问题我们还只能就一次、二次函数进行一些讨论,尽管恒成立问题在函数、数列、解析几何中都会有涉及,但我们目前只能了解这类基本解答模型,还不能就更多内容进行深入讨论。

求解含有参数的不等式的恒成立问题的关键是转化与化归思想的应用,一般而言,针对不等式的表现形式,有如下四种策略。

1构造变量的函数(1)判别式法对于含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,则通过根的判别式或数形结合思想,可使问题顺利解决,这里一定要注意对含参数的二次项系数进行分类讨论。

2021·广东江门联考1-1.已知关于x的不等式(m2+4m-5)x2-4(m-1)x+3>0对一切实数x恒成立,则实数m 的取值范围为。

当m2+4m-5=0,即m=1或m=-5时,显然m=1符合条件,m=-5不符合条件;当m2+4m-5≠0时,由不等式所对应的二次函数的函数值对一切实数x恒为正数,得{m2+4m-5>0,Δ=16(m-1)2-12(m2+4m-5)<0,解得1<m<19。

综上可得,实数m的取值范围为{m|1≤m<19}。

{m|1≤m<19}(2)变更主元在有几个变量的问题中,常常有一个变量处于主要地位,我们称之为主元。

在解含有参数的不等式时,有时若能换一个角度,变参数为主元,则可以得到意想不到的效果。

2022·鄂州二中高一期中1-2.已知12≤m≤3,不等式x2+mx+4>2m+4x恒成立,求x的取值范围。

因为12≤m≤3时,不等式x2+mx+4>2m+4x恒成立,即m(x-2)+(x-2)2>0恒成立。

当x=2时,不等式不成立,所以x≠2。

令y=m(x-2)+(x-2)2(其中m为自变量),12≤m≤3,问题转化为y在m∈[12,3]时恒大于0,则{12(x-2)+(x-2)2>0,3(x-2)+(x-2)2>0,解得x>2或x<-1。

不等式有解_方程有解_不等式恒成立的区别与联系

不等式有解_方程有解_不等式恒成立的区别与联系

2 2 2x x- a+2
解:(1)函数(f x)的定义域为(1,+∞).f (′ x)=
2.
x-1
2 2 ①当 a+2 >1,即a>0时,f (x) 在 1,a+2 上单调递减,在
2
2
2 2 a+2 ,+∞ 上单调递增. 2
②当 a+2 ≤1,即a≤0时,(f x)在(1,+∞)上单调递增. 2
2 2 (2)由(1)知a≥1时,(f x)min=f
一、不等式有解问题
若不等式(f x)>k在区间D上能成立(有解)圳(f x)max>k; 若不等式(f x)<k在区间D上能成立(有解)圳(f x)min<k.
二、方程有解问题
若方程k=(f x)在区间D上有解圳k∈{y|y=(f x),x∈D}.
三、不等式恒成立问题
若不等式(f x)>k在区间D上恒成立圳(f x)min>k;
(f x)min
已知函数(f x)=lnx,g(x)= 1 ax2+bx 2
y=k 图1
(a≠0).若b=2,且h(x)=(f x)-g(x)存在单调递减区间,求a的取值
范围.
解:当b=2时,h(x)=(f x)-g(x)=lnx- 1 ax2-2x. 2
h(′ x)= 1 -ax-2=- ax2+2x-1 .
- ≤ - ≤ g(x1)=g(x2)成立,只需
m 16
<
1 2
m-2,即 m - 16
1 2
m-2<0.
- ≤ 为此令h(m)= m - 1 m-2,则h(m)在[2,+∞)上是增函数. 16 2

函数不等式恒成立问题6大题型

函数不等式恒成立问题6大题型

函数不等式恒成立问题6大题型新高考越来越注重对综合素质的考查,恒成立问题变式考查综合素质的很好途经,它经常以函数、方程、不等式和数列等知识为载体,渗透着还原、化归、分类讨论、数形结合、函数与方程等思想方法。

近几年的数学高考中频频出现恒成立问题、能问题,其形式逐渐多样化,但都与函数、导数知识密不可分,考查难度一般为中等或难题。

一、单变量不等式恒成立问题一般利用参变分离法求解函数不等式恒(能)成立,可根据以下原则进行求解:1、∀∈x D ,()()min ≤⇔≤m f x m f x2、∀∈x D ,()()max ≥⇔≥m f x m f x3、∃∈x D ,()()max ≤⇔≤m f x m f x4、∃∈x D ,()()min ≥⇔≥m f x m f x 二、双变量不等式与等式一般地,已知函数()[],,y f x x a b =∈,()[],,y g x x c d =∈1、不等关系(1)若[]1,x a b ∀∈,[]2,x c d ∀∈,总有()()12f x g x <成立,故()()max min f x g x <;(2)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()max max f x g x <;(3)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12f x g x <成立,故()()min min f x g x <;(4)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12f x g x <成立,故()()min max f x g x <.2、相等关系记()[],,y f x x a b =∈的值域为A ,()[],,y g x x c d =∈的值域为B,(1)若[]1,x a b ∀∈,[]2,x c d ∃∈,有()()12=f x g x 成立,则有A B ⊆;(2)若[]1,x a b ∃∈,[]2,x c d ∀∈,有()()12=f x g x 成立,则有A B ⊇;(3)若[]1,x a b ∃∈,[]2,x c d ∃∈,有()()12=f x g x 成立,故A B ⋂≠∅;【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫ ⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x af x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x x f f ->,求实数a 的取值范围.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【变式6-1】(2022秋·北京·高三人大附中校考阶段练习)已知函数()24a x x x f =-+,()5g x ax a =+-,若对任意的[]11,3x ∈-,总存在[]21,3x ∈-,使得()()12f x g x =成立,则实数a 的取值范围是()A .(],9-∞-B .[]9,3-C .[)3,+∞D .(][),93,-∞-+∞ 【变式6-2】(2022秋·北京·高三北师大实验中学校考期中)已知函数()()214x a f x x x+=≤≤,且()15f =.(1)求实数a 的值,并求函数()f x 的最大值和最小值;(2)函数()()122g x kx x =--≤≤,若对任意[]11,4x ∈,总存在[]02,2x ∈-,使得()()01g x f x =成立,求实数k 的取值范围.【变式6-3】(2022秋·上海长宁·高三上海市延安中学校考期中)已知2()327mx n f x x +=+,||1()3x m g x -⎛⎫= ⎪⎝⎭,其中,m n ∈R ,且函数()y f x =为奇函数;(1)若函数()y f x =的图像过点A (1,1),求实数m 和n 的值;(2)当3m =时,不等式()()()()f x g x af x g x +≥对任意[3,)x ∈+∞恒成立,求实数a 的取值范围;(3)设函数()()()393f x x h xg x x ⎧≥⎪=⎨<⎪⎩,若对任意1[3,)x ∈+∞,总存在唯一的2(,3)x ∈-∞使得()()12h x h x =成立,求实数m的取值范围;(建议用时:60分钟)1.(2022秋·北京西城·高三北京师大附中校考阶段练习)已知函数()253,121,1 2x x x f x x x x ⎧-+≤⎪⎪=⎨⎪+>⎪⎩设R a ∈,若关于x 的不等式()2x f x a ≥+恒成立,则a 的取值范围是()A .[]2,1-B .232,44⎡-⎢⎥⎣⎦C .32,14⎡⎤-⎢⎥⎣⎦D .[]1,2-2.(2022秋·黑龙江哈尔滨·高三哈尔滨市第六中学校校考期中)已知()f x ,()g x 分别为定义域为R 的偶函数和奇函数,且()()e xf xg x +=,若关于x 的不等式()()220f x ag x -≥在()0,ln 3上恒成立,则正实数a 的取值范围是()A .15,8⎡⎫+∞⎪⎢⎣⎭B .[)0,∞+C .15,8⎛⎤-∞ ⎝⎦D .150,8⎛⎤⎥⎝⎦3.(2022·全国·高三专题练习)设函数()()1xf x xe a x =--,其中1a <,若存在唯一整数0x ,使得()0f x a <,则a 的取值范围是().A .21,1e ⎡⎫-⎪⎢⎣⎭B .211,e e ⎡⎫-⎪⎢⎣⎭C .211,e e ⎡⎫⎪⎢⎣⎭D .21,1e ⎡⎫⎪⎢⎣⎭4.(2022·全国·高三专题练习)已知函数()2222,2log ,2x x x f x x x ⎧-+<=⎨>⎩,若∃0x ∈R ,使得()2054f x m m ≤-成立,则实数m 的取值范围为()A .11,4⎡⎤-⎢⎥⎣⎦B .1,14⎡⎤⎢⎥⎣⎦C .124⎡⎤-⎢⎥⎣⎦,D .113⎡⎤⎢⎥⎣⎦,5.(2022秋·江苏盐城·高三校考阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,对任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是()A .13,4⎛⎤-∞ ⎝⎦B .13,4⎛⎫+∞⎪⎝⎭C .130,4⎛⎫⎪⎝⎭D .(1,4)6.(2022秋·河南·高三安阳一中校联考阶段练习)已知函数()()22()26f x x x x ax b =-+++,且对任意的实数x ,()(4)f x f x =-恒成立,函数2()4mxg x x =+,若对[]11,3x ∀∈,[]21,3x ∃∈,使12()()g x f x =,则正实数m 的取值范围是()A .(][)0,1524,⋃+∞B .[]15,24C .[]16,25D .(][)0,1625,⋃+∞7.(2023秋·河南郑州·高三校联考期末)已知函数()()224,243f x x m x g x x x =++-=-+.(1)若3m =,求不等式()7f x >的解集;(2)若12R,R x x ∀∈∃∈,使得()()12f x g x ≥成立,求实数m 的取值范围.8.(2022秋·辽宁·高三大连二十四中校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()2()log 21x f x kx =+-,()()g x f x x =+.(1)若不等式()422(2)x xg a g -⋅+>-恒成立,求实数a 的取值范围;(2)设4()ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.9.(2022秋·湖南岳阳·高三校考阶段练习)已知函数()141log 1axf x x -=-的图象关于原点对称,其中a 为常数.(1)求a 的值;(2)当()1,x ∈+∞时,()()14log 1f x x m+-<恒成立,求实数m 的取值范围;(3)若关于x 的方程()()14log f x x k =+在[]2,3上有解,求实数k 的取值范围.参考答案【题型1单变量不等式恒成立问题】【例1】(2020秋·吉林白城·高三校考阶段练习)设函数()21f x x =-,对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414x f m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,则实数m 的取值范围是()A .1,4⎡⎫+∞⎪⎢⎣⎭B .11,,22⎛⎤⎡⎫-∞-+∞ ⎪⎢⎝⎦⎣⎭C .33,22⎛⎡⎫-∞⋃+∞ ⎪⎢ ⎪⎝⎦⎣⎭D .11,00,22⎡⎫⎛⎤-⋃⎪ ⎢⎥⎣⎭⎝⎦【答案】C【解析】由对任意3,2x ⎡⎫∈+∞⎪⎢⎣⎭,()()()2414xf m f x f x f m m ⎛⎫-≤-+ ⎪⎝⎭恒成立,得222222314(1)(1)14(1)(,))[2x m x x m x m ---≤--+-∈+∞恒成立,即22213241m m x x -≤--+在3,2x ⎡⎫∈+∞⎪⎢⎣⎭恒成立,令211()321x x x ϕ⎛⎫=--+ ⎪⎝⎭,因为3,2x ⎡⎫∈+∞⎪⎢⎣⎭,令120,3t x ⎛⎤=∈ ⎥⎝⎦,则2()321t t t ϕ=--+,所以2()321t t t ϕ=--+在20,3t ⎛⎤∈ ⎥⎝⎦单调递减,所以min 25()(33t ϕϕ==-,所以221543m m -≤-,化简得()2231(43)0m m +-≥,解得3m ≤3m ≥故选:C.【变式1-1】(2022秋·吉林·高三校考期末)已知()g x 为奇函数,()h x 为偶函数,且满足()()2xg x h x -+=,若对任意的[]1,1x ∈-都有不等式()()0mh x g x -≥成立,则实数m 的最小值为()A .13B .35C .1D .35-【答案】B【解析】 ()g x 为奇函数,()h x 为偶函数,且()()2xg x h x -+=①()()()()2x g x h x g x h x ∴-+-=-+=②①②两式联立可得()222x xg x -=-,()222x x h x -=+.由()()0mh x g x -≥,即2222022x x x xm ----≥+,得224121224141x x x x x x x m ----≥==-+++,∵41=+x t 在[]1,1x ∈-是增函数,且5,54t ⎡⎤∈⎢⎥⎣⎦,2y t=-在5,54t ⎡⎤∈⎢⎥⎣⎦上是单调递增,∴由复合函数的单调性可知2141x y =-+在[]1,1x ∈-为增函数,∴max 2231141415x⎛⎫-=-= ⎪++⎝⎭,∴35m ≥,即实数m 的最小值为35.故选:B.【变式1-2】(2022秋·陕西商洛·高三校联考阶段练习)已知一次函数()f x 满足()()2f f x x =+.(1)求()f x 的解析式;(2)若对任意的()0,x ∈+∞,()af x x >a 的取值范围.【答案】(1)()1f x x =+;(2)1,2⎛⎫+∞ ⎪⎝⎭【解析】(1)设(),0f x kx b k =+≠,则()()()()22f f x f kx b k kx b b k x kb b x =+=++=++=+,所以212k kb b ⎧=⎨+=⎩解得11k b =⎧⎨=⎩所以()f x 的解析式为()1f x x =+.(2)由()0,x ∈+∞,()af x x >1x a x >+,11112x x x x=≤+x x =1x =时,1x x +取得最大值,所以12a >,即a 的取值范围为1,2⎛⎫+∞ ⎪⎝⎭.【变式1-3】(2022·全国·高三专题练习)已知定义域为R 的函数2()2xx b f x a-=+是奇函数.(1)求,a b 的值;(2)用定义证明()f x 在(,)-∞+∞上为减函数;(3)若对于任意R t ∈,不等式()()22220f t t f t k -+-<恒成立,求k 的范围.【答案】(1)1a =,1b =;(2)证明见解析.;(3)1,3⎛⎫-∞- ⎪⎝⎭【解析】(1)()f x 为R 上的奇函数,02(0)02b f a-∴==+,可得1b =又(1)(1)f f -=-,11121222a a----∴=-++,解之得1a =,经检验当1a =且1b =时,12()21xx f x -=+,满足1221()()2112x x x xf x f x -----===-++是奇函数,故1a =,1b =.(2)由(1)得122()12121x x xf x -==-+++,任取实数12,x x ,且12x x <,则()()()()()211212122222221212121x x x x x x f x f x --=-=++++,12x x < ,可得1222x x <,且()()1221210x x ++>,故()()()211222202121x x x x ->++,()()120f x f x ∴->,即()()12f x f x >,所以函数()f x 在(,)-∞+∞上为减函数;(3)根据(1)(2)知,函数()f x 是奇函数且在(,)-∞+∞上为减函数.∴不等式()()22220f t t f t k -+-<恒成立,即()()()222222f t t f t k f t k -<--=-+恒成立,也就是:2222t t t k ->-+对任意的R t ∈都成立,即232k t t <-对任意的R t ∈都成立,221132333t t t ⎛⎫-=-- ⎪⎝⎭ ,当13t =时232t t -取得最小值为13-,13k ∴<-,即k 的范围是1,3⎛⎫-∞- ⎪⎝⎭.【题型2单变量不等式能成立问题】【例2】(2022秋·福建龙岩·高三上杭一中校考阶段练习)已知函数()f x 的定义域为B ,函数()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,若x B ∃∈,使得21a x x >-+成立,则实数a 的取值范围为()A .13,16⎛⎫-∞ ⎪⎝⎭B .130,16⎛⎫⎪⎝⎭C .13,16⎛⎫+∞⎪⎝⎭D .1313,1616⎛⎫-⎪⎝⎭【答案】C【解析】∵()13f x -的定义域为1,14A ⎡⎤=⎢⎥⎣⎦,∴114x ≤≤,12134x -≤-≤,则12,4B ⎡⎤=-⎢⎥⎣⎦.令()21g x x x =-+,x B ∃∈,使得21a x x >-+成立,即a 大于()g x 在12,4⎡⎤-⎢⎣⎦上的最小值.∵213()24g x x ⎛⎫=-+ ⎪⎝⎭,∴()g x 在12,4⎡⎤-⎢⎣⎦上的最小值为113416g ⎛⎫= ⎪⎝⎭,∴实数a 的取值范围是13,16⎛⎫+∞ ⎪⎝⎭.故选:C .【变式2-1】(2022秋·辽宁葫芦岛·高三校联考阶段练习)已知函数()3()23a a f x x -=-为幂函数.(1)求函数()2xf a +的值域;(2)若关于x 的不等式2()log ()f x f x a +<在[2,4]上有解,求a 的取值范围.【答案】(1)10,2⎛⎫⎪⎝⎭;(2)7,4⎛⎫-+∞ ⎪⎝⎭【解析】(1)由题意可得231a -=,解得2a =,则1()f x x =,所以()1222xx f a +=+,因为x ∈R ,则222x +>,故函数()2xf a +的值域为10,2⎛⎫ ⎪⎝⎭.(2)方法一:因为1()f x x=在[]2,4上单调递减,所以1()f x x =在[]2,4上的值域为11,42⎡⎤⎢⎥⎣⎦.令()f x t =,2()log g t t t =+,则()g t 在11,42⎡⎤⎢⎥⎣⎦上单调递增,所以()g t 的最小值为1172444g ⎛⎫=-=- ⎪⎝⎭,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.方法二:因为1()f x x =,所以2()log ()f x f x a +<即21log x a x-<.令函数21()log g x x x=-,则()g x 在[]2,4上单调递减,所以()g x 的最小值为17(4)244g =-=-,所以74a >-,即a 的取值范围为7,4⎛⎫-+∞ ⎪⎝⎭.【变式2-2】(2022·黑龙江大庆·大庆实验中学校考模拟预测)已知函数()1f x x x a =+--,1a >.(1)当a =2时,求不等式()1f x >的解集;(2)若()01,1x ∃∈-,使()20001f x x ax <-+-成立,求a 的取值范围.【答案】(1){}1x x >;;(2)()2,+∞.【解析】(1)当a =2时,()12f x x x =+--,当2x ≥时,()3f x =,()1f x >恒成立,解得2x ≥;当12x -<<时,()21f x x =-,由()1f x >,得1x >,解得12x <<;当1x ≤-时,()3f x =-,()1f x >无解,综上所述,()1f x >的解集为{}1x x >;(2)当1a >,()1,1x ∈-时,()121f x x a x x a =+-+=-+.由()21f x x ax <-+-得2211x a x ax -+<-+-,即()2122x a x x +>++.当()1,1x ∈-时,()10,2x +∈,所以2221x x a x++>+.若()1,1x ∃∈-使()21f x x ax <-+-成立,则只需2min221x x a x ⎛⎫++> ⎪+⎝⎭,而222111(1)2111x x x x x x x++=++≥+⋅+++(当且仅当x =0时等号成立),所以a 的取值范围为()2,+∞.【变式2-3】(2021秋·江苏·高三校联考期中)已知函数()151x af x =-+为奇函数.(1)求实数a 的值;(2)若存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,求x 的取值范围.【答案】(1)2a =;(2)[]22-,【解析】(1)函数的定义域为R ,由题意可得()00f =,即01051a-=+,解得2a =,所以2()151x f x =-+,()()()222511120515151x x x xf x f x -+--+-=-==++++,即()f x 为奇函数,所以2a =.(2)由(1)可知2()151x f x =-+, 存在m ∈[-1,1],使得不等式()22(2)2f x f mx x mx +--- 成立,∴存在m ∈[-1,1],使得不等式()22(2)20f x x f mx mx ++-+-≤成立,设()()g x f x x =+,定义域为R ,()f x 为奇函数,()()f x f x ∴=--,而()()()()g x f x x f x x g x -=--=--=-,所以()g x 为奇函数,∴存在m ∈[-1,1],()()22g x g mx ≤--成立,即存在m ∈[-1,1],()()22g x g mx ≤-成立,又因为2()151xf x =-+在R 上单调递增,所以()()g x f x x =+在定义域R 上单调递增,所以22x mx ≤-,∴存在m ∈[-1,1],使得220mx x +-≤,看成关于m 的一次函数,当0x >时,220x x -+-≤,解得02x <≤;当0x =时,20-≤不等式成立;当0x <时,则220x x +-≤,解得20x -≤<,综上所述,x 的取值范围为[]22-,【变式2-4】(2022秋·重庆北碚·高三重庆市朝阳中学校考开学考试)已知函数4()2x xa g x -=是奇函数,()()lg 101x f x bx =++是偶函数.(1)求a 和b 的值;(2)设1()()2h x f x x =+,若存在[0,1]x ∈,使不等式()[lg(109)]g x h m >+成立,求实数m 的取值范围.【答案】(1)11,2a b ==-;(2)910110m -<<.【解析】(1)因为函数4()2x x ag x -=是奇函数,所以(0)0g =得1a =,则41()2x x g x -=,经检验()g x 是奇函数.又()()lg 101xf x bx =++是偶函数,所以(1)(1)f f -=得12b =-,则()1()lg 1012xf x x =+-,经检验()f x 是偶函数,∴112a b ==-,.(2)()()lg 101x h x =+,lg(109)(lg(109))lg[101lg(1010)m h m m +⎤+=+=+⎦,则由已知得,存在(]0,1x ∈,使不等式lg(1010)()m g x >+成立,因为411()222x x x x g x -==-,易知()g x 单调递增,∴max 3()(1)2g x g ==,∴323lg(1010)lg101g10102m +<==∴101010m +<所以101m -,又109010100m m +>⎧⎨+>⎩,解得910m >-,所以910110m -<<.【题型3任意-任意型不等式成立问题】【例3】(2022秋·上海徐汇·高三上海中学校考期中)已知函数()213,11log ,12x x k x f x x x ⎧-++≤⎪=⎨-+>⎪⎩,2()1x g x x =+,若对任意的实数12,x x ,均有()()12f x g x ≤,则实数k 的取值范围是__.【答案】3,4⎛⎤-∞- ⎥⎝⎦【解析】由于对任意的12,R x x ∈,均有()()12f x g x ≤,因此max min ()()f x g x ≤,当0x >时,1()1g x x x =+,而12x x+≥,当且仅当=1x 时,等号成立,因此()()110,0012g x g x x<=≤=+,当0x <时,21()11x g x x x x==++,1120x x x x ⎛⎫+=---≤-< ⎪⎝⎭,当且仅当=1x -时,等号成立,此时,11()12g x x x =≥-+,所以,min 1()2g x =-.对()f x ,由已知,()2f x xx k =-++在1x ≤上最大值为1124f k⎛⎫=+ ⎪⎝⎭;()131log 2f x x =-+在1x >时单调递减,所以有()12f x <-满足.所以要使()()max min f xg x ≤成立,只需满足1142k +≤-所以34k ≤-,则实数k 的取值范围是3,4⎛⎤-∞- ⎥⎝⎦.【变式3-1】(2022秋·安徽合肥·高三合肥市第十中学校联考阶段练习)已知函数()f x 满足22()()(0)f x f x x x x+-=+≠.(1)求()y f x =的解析式,并求()f x 在[3,1]--上的值域;(2)若对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,求实数k的取值范围.【答案】(1)2()(0)f x x x x =+≠,()f x 在[3,1]--上的值域为11,23⎡--⎢⎣;(2)(],2-∞.【解析】(1)函数()f x 的定义域为{}0x x ≠,因为22()()f x f x x x+-=+①,所以22()()f x f x x x-+=--②,联立①②解得2()(0)f x x x x=+≠22222(2((2)2))1f x x x x x x x '=--+-==,当3,2x ⎡∈-⎣时,()0f x '>,()f x 为增函数;当(2,1x ⎤∈-⎦时,()0f x '<,()f x 为减函数,因为11(3),(2)22,(1)33f f f -=--=--=-,所以11(),223f x ⎡∈--⎢⎣,即()f x 在[3,1]--上的值域为11,223⎡--⎢⎣.(2)对12(2,4),x x ∀∈且12x x ≠,都有()()()2121R k kf x f x x x x +>+∈成立,不妨设1224x x <<<,可得函数()()2kk g x f x x x x+=+=+在区间()2,4上单调递增,则()2210k g x x +'=-≥对任意的()2,4x ∈恒成立,即22k x +≤,当()2,4x ∈时,2416x <<,故24k +≤,解得2k ≤.因此,实数k 的取值范围是(],2-∞.【变式3-2】(2022秋·全国·高三统考阶段练习)已知函数()1lg x f x xλ+=.(1)当2λ=时,解不等式()0f x >;(2)设0λ>,当1,22a ⎡⎤∈⎢⎥⎣⎦时,对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,求λ的取值范围.【答案】(1)()(),10,x ∈-∞-+∞ ;(2)2,3⎡⎫+∞⎪⎢⎣⎭【解析】(1)当2λ=时,()21lgx f x x+=由21lg0x x+>,得2121110x x x x ++>⇒->,即10x x+>,等价于()10x x +>,解得()(),10,x ∈-∞-+∞ ;(2)因为对任意1x ,[]2,1x a a ∈+,都有()()12lg 2f x f x -≤,所以对任意1x ,[]2,1x a a ∈+,都有()()max min lg 2f x f x ≤-,设()f x 的定义域为I ,又当1x ,2x I ∈且12x x <时,有121211x x x x λλ++>,即121211lg lg x x x x λλ++>,即()()12f x f x >,所以()f x 在I 上单调递减.因此函数()f x 在区间[],1a a +上的最大值与最小值分别为()f a ,()1f a +.由()11()1lg lg lg 21a a f a f a a a λλλ+++⎛⎫⎛⎫-+=-≤⎪ ⎪+⎝⎭⎝⎭,化简得()2110a a λλ++-≥,上式对任意1,22a ⎡⎤∈⎢⎥⎣⎦成立.因为0λ>,2(1)40λλ∆=++>令()()211h a a a λλ=++-,对称轴为102a λλ+=-<,所以函数()()211h a a a λλ=++-在区间1,22a ⎡⎤∈⎢⎥⎣⎦上单调递增,所以,()min h a =131242h λ⎛⎫=- ⎪⎝⎭,由31042λ-≥,得23λ≥.故λ的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.【变式3-3】(2022秋·上海浦东新·高三校考阶段练习)设()e xf x =,函数()g x 的图像和函数()f x 的图像关于y 轴对称.(1)若()()43f x g x =+,求x 的值.(2)令()()2f x h x x=,()22t x x x a =-++,若对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,求实数a 的取值范围.【答案】(1)ln 4x =;(2),12e⎛⎤-∞- ⎥⎝⎦【解析】(1)由题意得:()e xg x -=,则e e 43x x -=+,即2e e 340x x --=,解得:e 4x =或1-(舍去),所以ln 4x =;(2)()e 2x h x x=,()22t x x x a =-++,对任意1x ,()20,x ∈+∞,都有()()12h x t x ≥恒成立,则只需()e 2xh x x=在()0,+∞上的最小值大于等于()t x 在()0,+∞上的最大值,()()2e 12x x h x x-'=,当1x >时,()0h x '>,当01x <<时,()0h x '<,所以()e 2xh x x =在()1,+∞上单调递增,在()0,1上单调递减,故()e 2xh x x =在=1x 处取得最小值,()()min 1e 2h x h ==,()()22211t x x x a x a =-++=--++,()0,x ∈+∞,当=1x 时,()t x 取得最大值,()()max 11t x t a ==+,所以e 12a ≥+,故12e a ≤-.求实数a 的取值范围,12e⎛⎤-∞- ⎥⎝⎦.【题型4任意-存在性不等式成立问题】【例4】(2022秋·江苏常州·高三校联考阶段练习)已知()()2ln 1f x x =+,()12xg x m ⎛⎫=- ⎪⎝⎭,命题p :对任意[]10,3x ∈,都存在[]22,1x ∈--,使得()()12f x g x,则命题p 正确的一个充分不必要条件是()A .3mB .2mC .1mD .0m【答案】A【解析】p 为真,()f x 在[]0,3单调递增,()min ()00f x f ==,()g x 在[]2,1--单调递减,()min ()12g x g m =-=-,02m ∴≥-,2m ∴≥.又“3m ≥”是“2m ≥”的一个充分不必要条件.故选:A .【变式4-1】(2022秋·天津宝坻·高三天津市宝坻区第一中学校考期末)已知函数2()x x a f x x++=.(1)若()()1g x f x =-,判断()g x 的奇偶性并加以证明;(2)当12a =时,①用定义法证明函数()f x 在[1,)+∞上单调递增,再求函数()f x 在[1,)+∞上的最小值;②设()52h x kx k =+-,若对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤成立,求实数k 的取值范围.【答案】(1)见解析;(2)见解析【解析】(1)由已知2()x x a f x x++=,()()()()1=00ag x f x x x x=-+∈-∞+∞ ,,,,()()a a g x x x g x x x ⎛⎫-=--=-+=- ⎪⎝⎭故()g x 为奇函数.(2)①当12a =时,()112f x x x=++,[)12,1,x x ∀∈+∞,且12x x <()()()()()211212121212121211111=1222x x f x f x x x x x x x x x x x x x ⎛⎫⎛⎫⎛⎫--=-+--+=-- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭又因为[)12,1,x x ∞∈+,所以()120x x -<,121102x x ⎛⎫-> ⎝⎭,所以()()120f x f x -<即()()12f x f x <,故函数()f x 在[1,)+∞为单调递增,函数()f x 在[1,)+∞上的最小值为()15111=22f =++②由①知,1[1,2]x ∈,所以()1513,24f x ⎡⎤∈⎢⎥⎣⎦,当0k =时,()25h x =,()()12f x h x ≤成立,符合题意.当0k >时,22()52h x kx k =+-在2[0,1]x ∈为单调递增,[]2()52,5h x k k ∈--对任意的1[1,2]x ∈,总存在2[0,1]x ∈,使得()()12f x h x ≤故()()12max max f x h x ≤,即1354k ≤-,解得704k <≤当0k <时,22()52h x kx k =+-在2[0,1]x ∈为单调递减,[]2()552h x k k ∈--,同理:()()12max max f x h x ≤,即13524k ≤-,解得0k <综上可知:k 的取值范围为74⎛⎤-∞ ⎥⎝⎦,.【变式4-2】(2022秋·广东广州·高三广东实验中学校考阶段练习)已知函数()f x 对任意实数,x y 恒有()()()f x y f x f y +=+,当0x >时,()0f x <,且()12f =-(1)判断()f x 的奇偶性;(2)求函数()f x 在区间[]3,3-上的最大值;(3)若][()21,1,1,1,<22x a f x m am ∃∈-∀∈---⎡⎤⎣⎦恒成立,求实数m 的取值范围.【答案】(1)奇函数,理由见解析;(2)最大值为(3)6f -=;(3)2m <-或2m >.【解析】(1)令==0x y ,则(0)2(0)f f =,可得(0)=0f ,令y x =-,则(0)()()0f f x f x =+-=,可得()()f x f x -=-,又()f x 定义域为R ,故()f x 为奇函数.(2)令12=+>=x x y x x ,则1212()=()+()f x f x f x x -,且120x x ->,因为0x >时,()0f x <,所以1212()()=()<0f x f x f x x --,故12()()f x f x <,即()f x 在定义域上单调递减,所以()f x 在[]3,3-上的最大值为(3)=(12)=(1)+(2)=3(1)=3(1)=6f f f f f f -------.(3)由(2),()f x 在[]1,1-上min ()=(1)=2f x f -,2[1,1],[1,1],()<22x a f x m am ∃∈-∀∈---恒成立,即2[1,1],22>2a m am ∀∈----恒成立,所以2[1,1],()=2>0a g a m ma ∀∈--恒成立,显然0m =时不成立,则2>0(1)=2>0m g m m -⎧⎨⎩,可得2m >;2<0(1)=+2>0m g m m -⎧⎨⎩,可得2m <-;综上,2m <-或2m >.【变式4-3】(2022秋·河北邢台·高三校联考阶段练习)已知定义在R 上的函数()f x 满足()()0f x f x --=,且()()2log 21x f x kx =+-,()()g x f x x =+.(1)求k 的值;若函数()f x 的定义域为[]0,4,求()()22f x xh x +=的值域.(2)设()4ln 21h x x x x mx =+-+,若对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,求实数m 的取值范围.【答案】(1)12k =;()h x 值域为[]2,17;(2)3e 1,2⎡⎫++∞⎪⎢⎣⎭【解析】(1)()()()()22212log log 21log 222102xx x x f x f x kx kx kx k x -+--=+-++=+=-= ,210∴-=k ,解得:12k =,()()21log 212xf x x ∴=+-;若()f x 定义域为[]0,4,则由024x ≤≤得:02x ≤≤,即()2f x 的定义域为[]0,2;()()222log 21x f x x +=+ ,()()22221f x x x h x +∴==+,∴当[]0,2x ∈时,[]2212,17x +∈,()h x ∴值域为[]2,17.(2)由(1)得:()()21log 212xg x x =++;21x y =+ 在R 上单调递增,()2log 21xy ∴=+在R 上单调递增,又12y x =在R 上单调递增,()g x ∴在R 上单调递增;当[]0,3x ∈时,()()min 01g x g ==;对任意的[]10,3x ∈,存在22e,e x ⎡⎤∈⎣⎦,使得()()12g x h x ≥,∴存在22e,e x ⎡⎤∈⎣⎦,4ln 211x x x mx +-+≤,即32ln m x x ≥+,3ln y x x =+ 在2,e e ⎡⎤⎣⎦上单调递增,()33min ln e 1x x ∴+=+,32e 1m ∴≥+,解得:3e 12m +≥,即实数m 的取值范围为3e 1,2⎡⎫++∞⎪⎢⎣⎭.【题型5存在-存在性不等式成立问题】【例5】(2022秋·江西宜春·高三江西省丰城中学校考阶段练习)已知函数()1f x x x a =-+.(1)当0a =时,解不等式()()2122f x f x -++>;(2)若存在1x ,(]2,ln 2x ∈-∞,使得()()12e e3x xf f ->,求实数a 的取值范围.【答案】(1)1,3⎛⎫-+∞ ⎪⎝⎭;(2)()1,23,2⎛⎫-∞⋃+∞⎪⎝⎭【解析】(1)当0a =时,()1f x x x =+,记()22,0,0x x g x x x x x ⎧-<==⎨≥⎩,则()()g x g x -=-,故()g x 为奇函数,且()g x 在R 上单调递增,不等式()()2122f x f x -++>化为()()211212g x g x -++++>,即()()2120g x g x -++>,进一步化为()()212g x g x ->-+,即()()212g x g x ->--,从而由()g x 在R 上单调递增,得212x x ->--,解得13x >-,故不等式的解集为1,3⎛⎫-+∞ ⎪⎝⎭.(2)设11e xt =,22e x t =,则问题转化为存在(]12,0,2t t ∈,使得()()123f t f t ->,又注意到0t >时,()11f t t t a =-+>,且()01f =,可知问题等价于存在(]0,2t ∈,()4f t >,即3t t a ->在(]0,2t ∈上有解.即3t a t ->在(]0,2t ∈上有解,于是3a t t ->或3a t t-<-在(]0,2t ∈上有解,进而3a t t >+或3a t t<-在(]0,2t ∈上有解,由函数()3g t t t =+在(3上单调递减,在3,2⎡⎤⎣⎦上单调递增,()3h t t t=-在(]0,2上单调递增,可知()min 323g t g==()()max 122h t h ==,故a 的取值范围是()1,23,2⎛⎫-∞⋃+∞ ⎪⎝⎭.【变式5-1】(2022秋·江苏泰州·高一靖江高级中学校考期末)已知函数()()121,2121x x x f x g x ++==--(1)利用函数单调性的定义,判断并证明函数()f x 在区间()0,∞+上的单调性;(2)若存在实数()12,0,x x ∈+∞且12x x <,使得()f x 在区间[]12,x x 上的值域为()()21,m m g x g x ⎡⎤⎢⎥⎢⎥⎣⎦,求实数m 的取值范围.【答案】(1)()f x 在区间()0,∞+上是减函数,详见解析;;(2)()9,+∞.【解析】(1)由题可得()21212121x x x f x +==+--,()f x 在区间()0,∞+上是减函数,任取()12,0,x x ∈+∞,且12x x <,则21221x x >>,则()()()()()22111212222221121212121x x x x x x f x f x -⎛⎫⎛⎫-=+-+= ⎪ ⎪----⎝⎭⎝⎭,由题设知21121120,20,220x x x x--->>>,故()()()()()21121222202121x x x x f x f x --=>--,所以()()12f x f x >,所以()f x 在区间()0,∞+上是减函数;(2)由(1)知()f x 在区间()0,∞+上是减函数,所以当120x x <<时,()f x 在区间[]12,x x 上单调递减,所以函数()f x 在区间[]12,x x 上的值域为()()2121212121,,2121x x x x f x f x ⎡⎤++⎡⎤=⎢⎥⎣⎦--⎣⎦,所以2221111121212121 2121x x x x x x m m ++⎧+=⎪⎪--⎨+⎪=⎪--⎩,所以1212121x x x m ++=--在()0,∞+上有两解,所以()()()22121210x x xm ⋅-+--=在()0,∞+上有两解,令21x t =-,则210x t =->,则关于t 的方程()()2120t t mt ++-=在()0,∞+上有两解,即()22520t m t +-+=在()0,∞+上有2解,所以220504Δ(5)160m m >⎧⎪-⎪>⎨⎪=-->⎪⎩,解得9m >,所以m 的取值范围为()9,+∞.【变式5-2】(2022秋·江西抚州·高三江西省抚州市第一中学校考阶段练习)已知()214f x x x =-++(1)解不等式()23f x x +≤;(2)若存在实数x 1,x 2,使得()21222f x x x a <-++,求实数a 的取值范围.【答案】(1)[)1,+∞;(2)()4,+∞【解析】(1)依题意,21423x x x -+++≤,不等式化为以下3个不等式组:①42(1)(4)23x x x x <-⎧⎨---+≤+⎩即423x x <-⎧⎪⎨≥-⎪⎩,无解,②412(1)(4)23x x x x-≤<⎧⎨--++≤+⎩即411x x -≤<⎧⎨≥⎩,无解,12(1)(4)23x x x x ≥⎧⎨-++≤+⎩,即13223x x x ≥⎧⎨+≤+⎩,解得1x ≥,所以不等式()23f x x +≤的解集为[)1,+∞.(2)因为()()()3246(41)321x x f x x x x x ⎧--<-⎪=-+-≤<⎨⎪+≥⎩所以当1x =时,()f x 取得最小值5()()222111=-++=--+++≤g x x x a x a a ,()max 1g x a =+若存在实数1x ,2x ,使得()21222f x x x a <-++,则()min max ()f x g x <即51a <+,所以4a >即实数a 的取值范围是()4,+∞.【变式5-3】(2022·全国·高三专题练习)已知函数()()2xx ax bf x x R e ++=∈的一个极值点是2x =.(1)求a 与b 的关系式,并求()f x 的单调区间;(2)设0a >,()22x g x a e -=,若存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,求实数a 的范围.【答案】(1)0a b +=,单调区间见解析;(2)0<<3a 【解析】(1)可求得()()22xx a x a b f x e -+-+-'=,()f x 的一个极值点是2x =,()()242220a a bf e-+-+-'∴==,解得0a b +=,()()()()2222xxx a x a x a x f x e e -+-+-+-'∴=,当2a =-时,()0f x '≤,()f x 单调递减,此时函数没有极值点,不符合题意,当2a <-时,令()0f x ¢>,解得2x a <<-,令()0f x '<,解得2x <或x a >-,当2a >-时,令()0f x ¢>,解得2a x -<<,令()0f x '<,解得x a <-或2x >,综上,当2a <-时,()f x 的单调递增区间为()2,a -,单调递减区间为(),2∞-,(),a -+∞;当2a >-时,()f x 的单调递增区间为(),2a -,单调递减区间为(),a -∞-,()2,∞+;(2)()2xx ax a f x e +-=,由(1)可知,0a >时,()f x 在()0,2单调递增,在()2,3单调递减,()()2max 42af x f e +∴==,()00f a =-< ,()39230a f e +=>,()min f x a ∴=-,()22x g x a e-= 在[]0,3单调递增,()()22min 0ag x g e∴==,()()2max 3g x g a e ==,存在1x ,[]20,3x ∈,使得()()1222f xg x e -<成立,即存在1x ,[]20,3x ∈,使得()()()2122222g x f x g x e e -<<+成立,2222222240a a e e aa e e e a ⎧-<+⎪⎪+⎪∴-<⎨⎪>⎪⎪⎩,解得0<<3a .【题型6任意-存在性等式成立问题】【例6】(2023·全国·高三对口高考)已知函数()1π2sin 26f x x ⎛⎫=+ ⎪⎝⎭,()π2cos 13g x k x ⎛⎫=-- ⎪⎝⎭,若对任意π4π,33t ⎡⎤∈⎢⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,则实数k 的可能取值是().A .54B .74C .94D .114【答案】B【解析】当π4π,33x ⎡⎤∈⎢⎣⎦,有π1π5π3266x ≤+≤,故11πsin 1226x ⎛⎫≤+≤ ⎪⎝⎭,所以1π12sin 226x ⎛⎫≤+≤ ⎪⎝⎭,故()f x 的值域为[]1,2.当π2π,63x ⎛⎫∈ ⎪⎝⎭,有πππ633x -<-<,故1πcos 123x ⎛⎫<-≤ ⎪⎝⎭,所以π12cos 23x ⎛⎫<-≤ ⎪⎝⎭,当0k >时,()g x 的值域为(1,21]k k --,因为任意π4π,33t ⎡⎤∈⎢⎥⎣⎦,都存在π2π,63s ⎛⎫∈ ⎪⎝⎭,使得等式()()f t g s =成立,故[]1,2(1,21]k k ⊆--,故011212k k k >⎧⎪-<⎨⎪-≥⎩,即322k ≤<.当0k <,同理有[1,2][21,1)k k ⊆--,故012211k k k <⎧⎪->⎨⎪-≥⎩,此不等式组无解.综上,322k ≤<.四个选项中,只有37224≤<.故选:B.。

不等式恒成立

不等式恒成立

不等式恒成立
不等式恒成立,就是一边的式子结果,无论里面的变量如何,一定符合要求.
如:绝对值的(X-2)大于等于0 就不管X取何值,永远成立
主要判断定一边一定是某种结果,另一边符合大于或小于的特征对一元二次不等式恒成立问题,可有以下两种思路:
(1)转化为一元二次不等式解集为R的情况
(2)分离参数,将恒成立问题转化为求最值问题,即:k≥f(x)恒成立⇔k≥f(x)max;k≤f(x)恒成立⇔k≤f(x)min.
典例分析
例1:对任意的x∈R,函数f(x)=x2+(a-4)x+(5-2a)的值恒大于0,则a的取值范围为.
答案(-2,2)
解析由题意知,f(x)开口向上,故要使f(x)>0恒成立,
只需Δ<0即可,即(a-4)2-4(5-2a)<0,解得-2<a<2.
例2:对任意a∈[-1,1],函数f(x)=x2+(a-4)x+4-2a的值
恒大于零,则x的取值范围是( )
A.1<x<3 B.x<1或x>3
C.1<x<2 D.x<1或x>2
答案 B
解析f(x)>0,∴x2+(a-4)x+4-2a>0,
即(x-2)a+(x2+4-4x)>0,设g(a)=(x-2)a+(x2-4x+4)
总结:有关不等式恒成立求参数的取值范围的问题,通常处理方法有两种:
(1)考虑能否进行参变量分离,若能,则构造关于变量的函数,转化为求函数的最大(小)值,从而建立参数的不等式;
(2)若参变量不能分离,可以考虑转换主元,构造关于变量的函数(如一元一次、一元二次函数),并结合图象建立关于参数的不等式求解.。

不等式恒成立问题解题方法汇总(含答案)

不等式恒成立问题解题方法汇总(含答案)

不等式恒成立问题解题方法汇总(含答案)不等式恒成立问题一般设计独特,涉及到函数、不等式、方程、导数、数列等知识,渗透着函数与方程、等价转换、分类讨论、换元等思想方法,成为历年高考的一个热点.考生对于这类问题感到难以寻求问题解决的切入点和突破口.这里对这一类问题的求解策略作一些探讨.1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.例7.若不等式对于恒成立,求的取值范围.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.例10.关于的不等式在上恒成立,求实数的取值范围.答案部分1最值法例1.已知函数在处取得极值,其中为常数.(I)试确定的值;(II)讨论函数的单调区间;(III)若对于任意,不等式恒成立,求的取值范围.分析:不等式恒成立,可以转化为解:(I)(过程略).(II)(过程略)函数的单调减区间为,函数的单调增区间为.(III)由(II)可知,函数在处取得极小值,此极小值也是最小值.要使()恒成立,只需,解得或.所以的取值范围为.评注:最值法是我们这里最常用的方法.恒成立;恒成立.2分离参数法例2.已知函数(I)求函数的单调区间;(II)若不等式对于任意都成立(其中是自然对数的底数),求的最大值.分析:对于(II)不等式中只有指数含有,故可以将函数进行分离考虑.解:(I)(过程略)函数的单调增区间为,的单调减区间为(II)不等式等价于不等式,由于,知;设,则.由(I)知,,即;于是,,即在区间上为减函数.故在上的最小值为.所以的最大值为.评注:不等式恒成立问题中,常常先将所求参数从不等式中分离出来,即:使参数和主元分别位于不等式的左右两边,然后再巧妙构造函数,最后化归为最值法求解.3 数形结合法例3.已知当时,不等式恒成立,则实数的取值范围是___.分析:本题若直接求解则比较繁难,但若在同一平面直角坐标系内作出函数与函数在上的图象,借助图形可以直观、简捷求解.解:在同一平面直角坐标系内作出函数与函数在上的图象(如右),从图象中容易知道:当且时,函数的图象恒在函数上方,不合题意;当且时,欲使函数的图象恒在函数下方或部分点重合,就必须满足,即.故所求的的取值范围为.评注:对不等式两边巧妙构造函数,数形结合,直观形象,是解决不等式恒成立问题的一种快捷方法.4 变更主元法例4.对于满足不等式的一切实数,函数的值恒大于,则实数的取值范围是___.分析:若审题不清,按习惯以为主元,则求解将非常烦琐.应该注意到:函数值大于对一定取值范围的谁恒成立,则谁就是主元.解:设,,则原问题转化为恒成立的问题.故应该有,解得或.所以实数的取值范围是.评注:在某些特定的条件下,若能变更主元,转换思考问题的角度,不仅可以避免分类讨论,而且可以轻松解决恒成立问题.5 特殊化法例5.设是常数,且().(I)证明:对于任意,.(II)假设对于任意有,求的取值范围.分析:常规思路:由已知的递推关系式求出通项公式,再根据对于任意有求出的取值范围,思路很自然,但计算量大.可以用特殊值探路,确定目标,再作相应的证明.解:(I)递推式可以化归为,,所以数列是等比数列,可以求得对于任意,.(II)假设对于任意有,取就有解得;下面只要证明当时,就有对任意有由通项公式得当()时,当()时,,可见总有.故的取值范围是评注:特殊化思想不仅可以有效解答选择题,而且是解决恒成立问题的一种重要方法.6分段讨论法例6.已知,若当时,恒有<0,求实数a的取值范围.解:(i)当时,显然<0成立,此时,(ii)当时,由<0,可得<<,令则>0,∴是单调递增,可知<0,∴是单调递减,可知此时的范围是(—1,3)综合i、ii得:的范围是(—1,3).例7.若不等式对于恒成立,求的取值范围.解:(只考虑与本案有关的一种方法)解:对进行分段讨论,当时,不等式恒成立,所以,此时;当时,不等式就化为,此时的最小值为,所以;当时,不等式就化为,此时的最大值为,所以;由于对上面的三个范围要求同时满足,则所求的的范围应该是上三个的范围的交集即区间说明:这里对变量进行分段来处理,那么所求的对三段的要同时成立,所以,用求交集的结果就是所求的结果.评注:当不等式中左右两边的函数具有某些不确定的因素时,应该用分类或分段讨论方法来处理,分类(分段)讨论可使原问题中的不确定因素变化成为确定因素,为问题解决提供新的条件;但是最后综合时要注意搞清楚各段的结果应该是并集还是别的关系.7单调性法例8.若定义在的函数满足,且时不等式成立,若不等式对于任意恒成立,则实数的取值范围是___.解:设,则,有.这样,,则,函数在为减函数.因此;而(当且仅当时取等号),又,所以的取值范围是.评注:当不等式两边为同一函数在相同区间内的两个函数值时,可以巧妙利用此函数的单调性,把函数值大小关系化归为自变量的大小关系,则问题可以迎刃而解.8判别式法例9.若不等式对于任意恒成立.则实数的取值范围是___.分析:此不等式是否为一元二次不等式,应该先进行分类讨论;一元二次不等式任意恒成立,可以选择判别式法.解:当时,不等式化为,显然对一切实数恒成立;当时,要使不等式一切实数恒成立,须有,解得.综上可知,所求的实数的取值范围是.不等式恒成立问题求解策略一般做法就是上面几种,这些做法是通法,对于具体问题要具体分析,要因题而异,如下例.例10.关于的不等式在上恒成立,求实数的取值范围.通法解:用变量与参数分离的方法,然后对变量进行分段处理;∵,∴不等式可以化为;下面只要求在时的最小值即可,分段处理如下.当时,,,再令,,它的根为;所以在区间上有,递增,在区间上有,递减,则就有在的最大值是,这样就有,即在区间是递减.同理可以证明在区间是递增;所以,在时的最小值为,即.技巧解:由于,所以,,两个等号成立都是在时;从而有(时取等号),即.评注:技巧解远比通法解来得简单、省力、省时但需要扎实的数学基本功.。

恒成立问题

恒成立问题

恒成立问题1.不等式的恒成立问题(1)一般不等式:a x f >)(恒成立⇔a x f >min )]([ a x f <)(恒成立⇔ a x f >)(解集非空⇔a x f >max )]([ a x f <)(解集非空⇔ a x f >)(无解⇔a x f ≤max )]([ a x f <)(无解⇔ a x f ≥)(恒成立⇔a x f ≥min )]([ a x f ≤)(恒成立⇔ a x f ≥)(解集非空⇔a x f ≥max )]([ a x f ≤)(解集非空⇔ a x f ≥)(无解⇔a x f <max )]([ a x f ≤)(无解⇔(2)二次不等式(设R c b a c bx ax x f ∈++=,,,)(2)(a)0)(>x f 在R x ∈时恒成立⇔ 或 ; (b)0)(≥x f 在R x ∈时恒成立⇔ 或 ; (c)0)(<x f 在R x ∈时恒成立⇔ 或 . (注:若二次项系数含有参数,须分“0=a ”、“0≠a ”讨论)补充说明:a x f >)(恒成立⇔a x f >)(的解集为R ⇔ a x f ≤)(无解a x f <)(恒成立⇔a x f <)(的解集为R ⇔a x f ≥)(无解恒成立问题在解题过程中大致可分为以下几种类型:①一次函数型; ②二次函数型; ③变量分离型;④根据函数的奇偶性、周期性等性质; ⑤直接根据函数的图象。

现在我们一起来探讨其中一些典型的问题。

一、一次函数型给定一次函数y=f(x)=ax+b(a ≠0),若y=f(x)在[m,n]内恒有f(x)>0,则根据函数的图象(直线)可得上述结论等价于ⅰ)⎩⎨⎧>>0)(0m f a 或ⅱ)⎩⎨⎧><0)(0n f a 亦可合并定成⎩⎨⎧>>0)(0)(n f m f 同理,若在[m,n]内恒有f(x)<0,则有⎩⎨⎧<<0)(0)(n f m f例1、对于满足|a|≤2的所有实数a,求使不等式x 2+ax+1>a+2x 恒成立的x 的取值范围。

27用含参不等式恒成立问题的解法

27用含参不等式恒成立问题的解法

例1、对于不等式(1-m)x2+(m-1)x+3>0
................
(*)
(1)当| x | ≤2,不等式恒成立,求实数m的取值范围 ;
求谁,谁就是参数; 另一个是自变量
(2)当| m | ≤2,不等式恒成立,求实数x的取值范围 .
变更“主元” 解(2) : 设g(m)=(-x2+x)m+(x2-x+3) (m∈[-2,2])法
(Ⅱ){a|a≥-4}
练 习
设f(x)=x2-2ax+2(a∈R),g(x)=lgf(x) (1)当x∈R时,f(x)≥a恒成立,求a的取值范围; (2)若g(x)的值域为R,求a的取值范围; (3)当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围.
(1){a|-2≤a≤1}; (2){a|a≥ 或a≤2 }2
例1:已知关于x的不等式: (a-2)x2 + (a-2)x +1 ≥ 0恒成立, 试求a的取值范围.
解:由题意知: ①当a -2=0,即a =2时,不等式化为 1 ≥ 0,它恒成立,满足条件. ②当a -2≠0,即a ≠2时,原题等价于
a 2 0 2 ( a 2) 4( a 2) 0
练 已知不等式x2+mx>4x+m-4. 习 (1)若对于0≤m≤4的所有实数m,不等式恒成立,求实数x的取值范围.
(2)若对于x≤1的所有实数x,不等式恒成立,求实数m的取值范围. (1)实数x的取值范围为:(-∞,0)∪(0,2)∪(2,+∞); (2)实数m的取值范围是:{m|m<4}. 求谁,谁就是参数; 另一个是自变量
f 0 >0 则 f 4 >0

函数与不等式恒成立问题

函数与不等式恒成立问题

函数、不等式恒成立问题解法一、 用一次函数的性质对于一次函数],[,)(n m x b kx x f ∈+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔>0)(0)(0)(,0)(0)(0)(n f m f x f n f m f x f 恒成立恒成立 例1、 已知a x x f -+=3)(,若]2,2[-∈x ,0)(≥x f 恒成立,求a 的取值范围。

变式1:已知a ax x f -+=3)(,若]2,2[-∈x ,0)(≥x f 恒成立,求a 的取值范围。

巩固练习:若不等式)1(122->-x m x 对满足22≤≤-m 的所有m 都成立,求x 的范围。

二、 利用二次函数的性质对于一元二次函数),0(0)(2R x a c bx ax x f ∈≠>++=有:(1)R x x f ∈>在0)(上恒成立00<∆>⇔且a ;(2)R x x f ∈<在0)(上恒成立00<∆<⇔且a例2:若不等式02)1()1(2>+-+-x m x m 的解集是R ,求m 的范围。

例3、已知a ax x x f -++=3)(2,若]2,2[-∈x ,0)(≥x f 恒成立,求a 的取值范围。

巩固练习:1.当)2,1(∈x 时,不等式042<++mx x 恒成立,则m 的取值范围是 。

2.已知二次函数()2224(1)29f x x a x a a =---++,(1)若在[]1,1-上至少存在一个实数m ,使得()0f m >,求实数a 的取值范围;(2)若对任意[]1,1m ∈-,都有()0f m >,求实数a 的取值范围。

三、利用函数的最值(或值域)(1)m x f ≥)(对任意x 都成立m x f ≥⇔m in )(;(2)m x f ≤)(对任意x 都成立m ax )(x f m ≥⇔。

简单计作:“大的大于最大的,小的小于最小的”。

恒成立问题的几种常见解法

恒成立问题的几种常见解法
三、方程思想
五、函数思想
例2中。已知f(X)=X2+ax+1>10对一切X∈(0.1/2)恒成立甘 方程f(X)=O的根有且仅有下列3种情况: (1)无实根§△<0.解得一2<a<2
△≥0
例2中,设f(×)=x2+a)(+1。则f(x)/>0对X∈(0,士]恒成立,
从而在(0.百1]上有[f(x)]min/>0。(1)当一百a≤O时,即当a≥
computer room,library,multimedia
room等等,都是学生很想学
到的语言。 二、挖掘生活化的英语课程资源 所谓英语课程资源。是指学生生活中与英语学习密切相关的 有利于学生学习的所有要素。英语教材的编写已经充分考虑到要 接近学生的生活,我们应充分挖掘教材自身的生活因素,同时我们 还要开发教材以外的生活课程资源。如:我们可以以课本为依托, 根据内容。找到合适的切入点。把身边的、世界的、近期发生的事情 通过图片、投影、照片展示等多种方法引入到教学中来,使学生在 学习的同时能感受到所学知识与外界相联系,能够用简单的句式 表达自己的思想,从而体会到学习英语的成就感。
2即当一1≤a<0时,原不等式恒成立。(3)当一告>÷时。即当
a<一1时,在f(x)在(o,÷]上是减函数“.当X----÷时,[f(x)]rain=
虿a 4-i5一o a、7-虿5
(3)两个大于}或等于}的实根甘
一虿a;互1一
f(丢)=了1+虿a+1/>0 解得一争≤a≤一2,综合(1)(2)(3),得a≥一争。
×e(o,}]成立;当△=a2—4>0时,x2+ax+1≥o的解集为(一oo
二鱼二≤王三.]u[二学,+。)。要使不等式×2+ax+1≥。
需(O'士](-。华’]U
at

恒成立问题

恒成立问题

恒成立问题“恒成立”问题是数学中常见的问题,经常与参数的范围联系在一起,在高考中频频出现,是高考中的一个难点问题。

常用方法:(1)函数与方程方法。

利用不等式与函数和方程之间的联系,将问题转化成二次方程的根的情况的研究。

有些问题需要经过代换转化才是二次函数或二次方程。

注意代换后的自变量的范围变化。

(2)分离参数法。

将含参数的恒成立式子中的参数分离出来,化成形如:)(x f a =或)(x f a >或)(x f a <恒成立的形式。

则)(x f a =⇔a 的范围是)(x f 的值域。

)(x f a <恒成立⇔ ;)(x f a >恒成立⇔ 。

(3)若已知恒成立,则可充分利用条件(赋值法等)。

范例选讲1.已知不等式 在区间[2,3]上恒成立,求实数m 的取值范围。

【分析】有哪些方法?答案:]9,(-∞【拓展】不等式p x px x +>++222,(1)当x ∈+∞,1()恒成立,求p 的范围.(2)x ∈[-2,2] 恒成立,求p 的范围.(3)p ∈[-2,2] 恒成立,求x 的范围.【拓展】已知两函数f(x)=8x 2+16x-k ,g(x)=2x 3+5x 2+4x ,其中k 为实数.(1)对任意x ∈[-3,3],都有f (x)≤g(x)成立,求k 的取值范围;(2)存在x ∈[-3,3],使f (x)≤g(x)成立,求k 的取值范围;(3)对任意x 1.x 2∈[-3,3],都有f (x 1)≤g(x 2),求k 的取值范围.2.已知关于x 的方程09624=⋅+⋅+xx x a 恒有解,求实数a 的取值范围。

3.(1990年全国高考题)设f(x)=lg nn a n xx x ⋅+-++)1(21 ,a ∈R, n ∈N 且n ≥2.若f(x)当x ∈(-∞,1]有意义,求a 的取值范围.4.(福建04)已知f(x)=222+-x a x (x ∈R)在区间[-1,1]上是增函数. (Ⅰ)求实数a 的值组成的集合A ; (Ⅱ)设关于x 的方程f(x)=x 1的两个非零实根为x 1、x 2.试问:是否存在实数m ,使得不等式m 2+tm+1≥|x 1-x 2|对任意a ∈A 及t ∈[-1,1]恒成立?若存在,求m 的取值范围;若不存在,请说明理由.min )(x f a <max)(x f a >2290x x m -+≤【拓展】已知)(x f 是定义在]1,1[-上的奇函数,且f (1)=1,若]1,1[,-∈n m ,0≠+n m 时0)()(>++nm n f m f (1)用定义证明f (x )在]1,1[-上是增函数;(2)若12)(2+-≤at t x f 对所有]1,1[-∈x ,]1,1[-∈a 恒成立,求实数t 的取值范围5. 函数)(x f 是奇函数,且在]1,1[-上单调递增,又1)1(-=-f ,若12)(2+-≤at t x f ,所有的]1,1[-∈a 都成立,求t 的取值范围 .6 . 设 使得不等式对一切实数x 都成立,证明你的结论。

恒成立问题及处理

恒成立问题及处理

恒成立问题及处理一、知识归纳1、恒成立问题是高中数学的一种重要问题类型,其涉及面广融合知识点多,一直是试题命制的宠儿。

其分类有:方程(等式)恒成立、不等式恒成立。

2、方程恒成立(1)几种常见叙述:对于任意的x 来说,方程f(x)=0都(恒、始终)成立。

关于x 的方程f(x)=0其解集为R 。

(2)处理方程恒成立问题的基本方法:比较系数法(据条件列整等式,令系数相等得所需)、赋值法(据条件恰当赋值得所需,赋值又分赋数值与赋变量值)。

(3)整式方程恒成立的结论:如关于x 的方程ax+b=0其解集为R ⇔a=b=0。

关于x 的方程ax 2+bx+c=0其解集为R ⇔a=b=c=0。

(4)掌握解决方程恒成立问题的基本方法:赋值法、比较系数法;能根据成题特点,合理选择最优解题策略;在解决方程(等式)恒成立问题的过程中,充分体会特殊与一般,函数与方程的数学思想方法。

3、不等式恒成立(1)几种常见叙述:对于任意的x 来说,不等式f(x)>0都(恒、始终)成立。

关于x 的不等式f(x)>0其解集为R 。

(2)处理不等式恒成立问题的基本方法:结论法(有时要注意讨论)、图象法、最值分析法(注意分离法的应用)。

(3)一元一次、二次不等式的恒成立结论:关于x 的不等式ax+b>0⇔a=0且b>0。

关于x 的不等式ax 2+bx+c>0⇔a>0且△<0。

(4)掌握解决不等式恒成立问题的基本方法:结论法、图象法、最值分析法;能根据题目的构成特征,合理选择解题最优策略;在解决不等式恒成立问题的过程中,充分体会数形结合,函数与方程,分类讨论的数学思想方法。

二、典例解析例1、已知f(x)是一次函数,且f(f(f(x)))=8x+7,求f(x) .例2、无论k 取何值,二次函数k k kx x k y --++=222)1(的图像总过一定点,求出这个定点。

例3、已知()x f 是定义域在R 上不恒为0的函数,且对任意的R b a ∈,都满足: ()()()a bf b af ab f +=(1)求()0f ,()1f 的值;(2)判断()x f 的奇偶性,并证明你的结论。

恒成立问题常见类型及解法.

恒成立问题常见类型及解法.


的值不.可.能.等于(

A.4
B.6
C.8
D.12
【解析】选 B,把图象向左平移 个单位得 2
y

sin


x

2





s
in

x

2





又该函数图像与原函数图像重合,所以
s
in

x

2





sin
x



x
=
4
时,

loga 4

sin(2 4 ) 1 loga a
,
又 0 a 1 , 得
< a <1。 4
六、采用逆向思维,考虑使用反证法
【理论阐释】 恒成立问题有时候从正面很难入手,这时如果考虑
问题的反面,有时会有“柳暗花明又一村”的效果,所 谓“正难则反”就是这个道理。
解答过程中应注意的问题: (1)分离参数时应注意系数符号对不等号的影响. (2)应用函数方法求解时,所使用的函数一般为二次函 数. (3)应用数形结合法求解时,应注意图象最高点或最低 点处函数值的大小关系.
在高三复习中经常遇到不等式恒成立问题。这 类问题求解的基本思路是:根据已知条件将恒成立问题 向基本类型转化,正确选用函数法、最小值法、数形结 合法等解题方法求解。解题过程本身渗透着换元、化归、 数形结合、函数与方程等思想方法,另外不等式恒成立 问题大多要利用到一次函数、二次函数的图象和性质。
16

0

aa

函数中不等式恒成立问题

函数中不等式恒成立问题

函数中不等式恒成立问题————————————————————————————————作者:————————————————————————————————日期:函数中不等式恒成立问题-中学数学论文函数中不等式恒成立问题瑞昌市第二中学廖谨函数是高中数学课程的主干知识之一,而函数中不等式恒成立问题可以综合地考查函数、导数、不等式等高中数学的重点知识,历来是高考的重点、难点和热点,一般都出现在后面的解答题中,且难度一般较大,致使很多学生都望而却步。

本文针对函数中带不等式问题的常见类型加以归纳,并总结出了各种常见类型问题的基本解题方法及思路。

一、利用二次函数的图象及性质二次函数f(x)=ax2+bx+c(a≠0),当x∈[m,n]时,例1:设f(x)=x2+2ax+2,当x∈[-1,+∞)时,f(x)≥a恒成立,求a的取值范围。

解:因为f(x)≥a要恒成立,即f(x)≥a在[-1,+∞)上的最小值都大于或等于a,根据题意知,a≤x2-2ax+2在[-1,+∞)上恒成立,即a≤f(x)min 恒成立.由二次函数的性质知:①当a<-1时,f(x)min=f(-1)=1+2a+2=3+2a;即-3≤a≤-1②当a≥-1时,f(x)min=f(a)=2-a2,即-1≤a≤1所以a的取值范围是-3≤a≤1归纳总结:有关二次函数中的“恒成立”问题,经常采用转化的方法,将其转化为求函数的最值问题进行解决,然后利用二次函数的图象及性质求出它的最值,从而得到所求参数的取值范围,这种方法非常重要,需要在平时学习函数的时候多练习、多体会。

二、利用导数及函数的单调性已知函数f(x),其导函数为f′(x),若在区间I上有f′(x)>0(f′(x)<0),则f(x)在区间I上为增(减)函数.然后利用函数的单调性可以求出f(x)在区间I上的最大(小)值,最终求出相关参数的范围。

利用函数的导数及函数的单调性解决不等式中恒成立问题,主要有以下几种常见类型:类型1:f(x)≥g(a)恒成立等价于f(x)min≥g(a)恒成立;f(x)≤g(a)恒成立等价于f(x)min≤g(a)恒成立。

不等式恒成立问题总结

不等式恒成立问题总结

不等式恒成立问题总结不等式是数学中常见的一种数学表达式,它描述了数值之间的大小关系。

在研究不等式时,我们经常需要判断一个不等式在何种条件下是恒成立的。

在这篇文章中,我将总结一些关于不等式恒成立问题的重要内容。

首先,对于一元一次不等式,例如 "ax + b > 0",我们可以通过解方程 "ax + b = 0",找出它的零点。

然后,我们根据零点将数轴分成几个区间,并通过测试区间内的某一个数值来确定不等式的成立情况。

具体来说,我们选择一个零点相邻区间的中点,将其代入不等式进行判断,如果不等式成立,则可以得出不等式在整个区间上都成立的结论。

其次,对于二次函数的不等式,例如 "ax^2 + bx + c > 0",我们可以通过求解二次方程 "ax^2 + bx + c = 0" 的根来确定不等式的成立范围。

具体来说,当二次方程的解为实数时,可根据方程的根与零点分布来判断不等式在不同区间上的成立情况。

另外,对于一般的多元不等式,如 "f(x, y) > g(x, y)",我们通常需要求解不等式系统的解集。

这可以通过利用代数方法或图形方法来实现。

代数方法包括消元、代入等,来逐步化简并推导出不等式的解集。

图形方法则是将不等式转化为图形,通过观察图形的位置和交点来推导不等式的解集。

总结起来,要判断不等式是否恒成立,我们可以通过解方程、求解二次方程、代数方法或图形方法等方式来找到不等式的解集,并对应不同区间或解集进行测试。

通过这些方法,我们能够准确地判断不等式在何种条件下是恒成立的。

这篇总结介绍了处理不等式恒成立问题的一些常用方法和原则。

通过运用这些方法,我们可以更好地理解和解决不等式相关的问题。

函数不等式恒成立问题

函数不等式恒成立问题

在不等式中,有一类问题是求参数在什么范围内不等式恒成立。

恒成立条件下不等式参数的取值范围问题,涉及的知识面广,综合性强,同时数学语言抽象,如何从题目中提取可借用的知识模块往往捉摸不定,难以寻觅,是同学们学习的一个难点,同时也是高考命题中的一个热点。

其方法大致有:①用一元二次方程根的判别式,②参数大于最大值或小于最小值,③变更主元利用函数与方程的思想求解。

本文通过实例,从不同角度用常规方法归纳,供大家参考。

一、用一元二次方程根的判别式有关含有参数的一元二次不等式问题,若能把不等式转化成二次函数或二次方程,通过根的判别式或数形结合思想,可使问题得到顺利解决。

例1 对于x∈R,不等式恒成立,求实数m的取值范围。

解:不妨设,其函数图象是开口向上的抛物线,为了使,只需,即,解得。

变形:若对于x∈R,不等式恒成立,求实数m的取值范围。

此题需要对m的取值进行讨论,设。

①当m=0时,3>0,显然成立。

②当m>0时,则△<0。

③当m<0时,显然不等式不恒成立。

由①②③知。

关键点拨:对于有关二次不等式(或<0)的问题,可设函数,由a的符号确定其抛物线的开口方向,再根据图象与x轴的交点问题,由判别式进行解决。

例2 已知函数,在时恒有,求实数k 的取值范围。

解:令,则对一切恒成立,而是开口向上的抛物线。

①当图象与x轴无交点满足△<0,即,解得-2<k<1。

②当图象与x轴有交点,且在时,只需由①②知关键点拨:为了使在恒成立,构造一个新函数是解题的关键,再利用二次函数的图象性质进行分类讨论,使问题得到圆满解决。

二、参数大于最大值或小于最小值如果能够将参数分离出来,建立起明确的参数和变量x的关系,则可以利用函数的单调性求解。

恒成立,即大于时大于函数值域的上界。

恒成立,即小于时小于函数值域的下界。

例3 已知二次函数,如果x∈[0,1]时,求实数a的取值范围。

解:x∈[0,1]时,,即①当x=0时,a∈R②当x∈时,问题转化为恒成立由恒成立,即求的最大值。

高一数学函数和不等式中恒成立问题的教案

高一数学函数和不等式中恒成立问题的教案

函数和不等式结的恒成立问题的解法“含参不等式恒成立问题”把不等式、函数、三角、几何等内容有机地结合起来,其以覆盖知识点多,综合性强,解法灵活等特点而倍受高考、竞赛命题者的青睐。

另一方面,在解决这类问题的过程中涉及的“函数与方程”、“化归与转化”、“数形结合”、“分类讨论”等数学思想对锻炼学生的综合解题能力,培养其思维的灵活性、创造性都有着独到的作用恒成立问题的基本类型:一、判别式法若所求问题可转化为二次不等式,则可考虑应用判别式法解题。

一般地,对于二次函数,有),0()(2R x a c bx ax x f ∈≠++=1)对恒成立; 0)(>x f R x ∈⎩⎨⎧<∆>⇔00a 2)对恒成立 0)(<x f R x ∈.00⎩⎨⎧<∆<⇔a 例1:若不等式的解集是R ,求m 的范围。

02)1()1(2>+-+-x m x m 例2 设函数f(x)= mx 2-mx-1.(1)若对于一切实数x ,f(x)<0恒成立,求m 的取值范围;(2)对于x∈[1,3],f(x)<-m +5恒成立,求m 的取值范围二、最值法将不等式恒成立问题转化为求函数最值问题的一种处理方法,其一般类型有:1)恒成立a x f >)(min)(x f a <⇔2)恒成立a x f <)(max)(x f a >⇔例1、若时,不等式恒成立,求的取值范围。

[]2,2x ∈-23x ax a ++≥a 例2.设,当时,恒成立,求实数的取22)(2+-=mx x x f ),1[+∞-∈x m x f ≥)(m 值范围。

巩固.已知函数,若对任意,恒),1[,2)(2+∞∈++=x xa x x x f ),1[+∞∈x 0)(>x f 成立,求实数的取值范围。

a 练习2 已知,若恒成立,求a 的取值范围.a ax x x f -++=3)(22)(],2,2[≥-∈x f x 22210[0,1]x mx m x x m -++>∈练习1:若不等式对满足的所有实数都成立,求的取值范围。

恒成立能成立问题总结详细

恒成立能成立问题总结详细

恒成立问题的类型和能成立问题及方法处理函数与不等式的恒成立、能成立、恰成立问题是高中数学中的一个重点、难点问题。

这类问题在各类考试以及高考中都屡见不鲜。

感觉题型变化无常,没有一个固定的思想方法去处理,一直困扰着学生,感到不知如何下手。

在此为了更好的准确地把握快速解决这类问题,本文通过举例说明这类问题的一些常规处理。

一、函数法(一)构造一次函数 利用一次函数的图象或单调性来解决对于一次函数],[),0()(n m x k b kx x f ∈≠+=有:⎩⎨⎧<<⇔<⎩⎨⎧>>⇔⎩⎨⎧><⎩⎨⎧>>⇔>0)(0)(0)(;0)(0)(0)(00)(00)(n f m f x f n f m f n f k m f k x f 恒成立或恒成立 例1 假设不等式m mx x ->-212对满足22≤≤-m 的所有m 都成立,求x 的 围。

解析:将不等式化为:0)12()1(2<---x x m , 构造一次型函数:)12()1()(2---=x m x m g 原命题等价于对满足22≤≤-m 的m ,使0)(<m g 恒成立。

由函数图象是一条线段,知应⎪⎩⎪⎨⎧<---<----⇔⎩⎨⎧<<-0)12()1(20)12()1(20)2(0)2(22x x x x g g解得231271+<<+-x ,所以x 的围是)231,271(++-∈x 。

小结:解题的关键是将看来是解关于x 的不等式问题转化为以m 为变量,x 为参数的一次函数恒成立问题,再利用一次函数的图象或单调性解题。

练习:(1)假设不等式01<-ax 对[]2,1∈x 恒成立,数a 的取值围。

〔2〕对于40≤≤p 的一切实数,不等式342-+>+p x px x 恒成立,求x 的取值围。

〔答案:或〕〔二〕构造二次函数 利用二次函数的图像与性质及二次方程根的分布来解决。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
(1)证明:f (2) 2 (2)若f (2) 0,求f (x)的表达式
(3)在(2)的条件下设g(x) f (x) m x, x [0,), 2
若图像上的点都在直线y 1 的上方,求实数m的取值范围。 4
解析:(1)对于任意实数 x,都有f (x) x,故f (2) 2, 有 2 (1,3), 故f (2) 1 (2 2)2 2,故f (2) 2
简单记作:“大的大于最大值,小的小于最小值”
返回
例4:已知函数 f (x) x 2 a x , (a 0,且a 1) 当x (1,1)时,有f (x) 1 恒成立,求实数 a的范围。
2
解析:由f (x) x2 a x 1 ,得x 2 1 a x ,
2
2
在同一直角坐标系下画出两个函数的图像,
当x (1,1)时,x2 1 1 , 1 2 2 2
a 1
当a
1时有1 2
即得1 a 1
a
2
当0
a
0 1时有 1
2
a 1 即得aFra bibliotek1 2a
1
综上所得:a
1 2
,1
1,2
返回
小结四:数形结合法
小结二:判别式法
对于一元二次函数f (x) ax2 bx c(a 0, x R)有
(1)f
(x)
0在x
R上恒成立
a
0 0
(2)f
(x)
0在x
R上恒成立
a
0 0
返回
例3:已知二次函数f (x) ax2 bx c(a,b, c R)满足:
对任意x都有f (x) x,且当x (1,3)时有f (x) 1 (x 2)2 成立 8
8
22 24
当x 0时,g(x) 1 恒成立 4
x 2 当x 0时,有m 1 x 在(0, )上恒成立,
4
x 2 即m 1 x
1 2
4
2
min
综上所得m 1 2 2
小结三:分离参数法
把参数放到一边,利用函数的最值 (1)m f (x)对于任意x都成立 m f (x)min (2)m f (x)对于任意x都成立 m f (x)max
8
(2)
f f
(2) 4a 2b c (2) 4a 2b
2 c0
b 1 2 4a c
1
由f (x) x得 (b 1)2 4ac 0,即 1 (1 c)c 0得c 1
4
2
f (x) 1 x2 1 x 1 8 22
(3)由(2)知g(x) 1 x2 (1 m)x 1 1 在x [0,)上恒成立
所以只需
f(2) 0 f(2) 0 ,
即(2
2(x x2
2
1) 1)
(2x (2x
1) 1)
0
0
所以x的范围范
x
1
2
7
,1 2
3
小结一:变换主元法
对于一次函数f (x) kx b, x [m, n],
若f
(x)
0恒成立
f f
(m) 0 ,
(n) 0
若f
(x)
0恒成立
函数、不等式恒成立问题
一、变换主元法 二、判别式法 三、分离参数法
四、数形结合法
何玉杰 2011-11-14
例1:若不等式 2x 1 m(x2 1) 对满足 2 m 2 的所有 m 都成立,
求x的范围。
解析:将不等式化 为 m(x2 1) (2x 1) 0,
令f(m) m(x2 1) (2x 1), 则 2 m 2时,f(m) 0恒成立,
f f
(m) 0 (n) 0
返回
例2:若不等式(m 1)x2 (m 1)x 2 0的解集为R, 求m的范围。
解析:(1)当m 1 0时,原不等式化为2 0恒成立, 故m 1满足题意;
(2)m
1
0时,只需m
1 (m
0 1) 2
8(m
1)
0
解得m (1,9)
综上所得m [1,9)
相关文档
最新文档