六年级数学下百分数知识点总结
六年级数学百分数知识点总结

六年级数学百分数知识点总结1.百分数的定义:表示一个数是另一个数的百分之几的数,叫做百分数。
百分数也叫做百分率或百分比。
百分比代表两个数字之间的比率关系,不代表具体数量,因此百分比不能采用单位。
2.百分数的意义:表示一个数是另一个数的百分之几。
例如,25%意味着一个数字是另一个数字的25%。
3.百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,小于100或等于100。
4.十进制和百分比的倒数规则:把小数化成百分数,只要把小数点向右移动两位,同时在后面添上百分号;将百分比转换成小数,只需去掉百分号,将小数点向左移动两位数即可。
5.百分数与分数互化的规则:将分数转换成百分比。
通常,先把分数转换成小数。
如果有无穷的除法,保留小数点后三位,然后将小数转换成百分比;把百分数化成分数,先把百分数改写成分数,能约分的要约成最简分数。
百分比申请问题1求增加百分之几?减少百分之几?标准杆数:百分数增加=增加部分1单元减少百分之几=减少的部分÷单位1例如:1。
45立方厘米的水形成冰后,冰的体积是50立方厘米。
与原始水的体积相比,冰的体积增加了多少?解题思路:根据公式增加百分之几=增加的部分÷单位1,先确定单位1是水,已经知道是45:增加的部分不知道,可以利用50减45求得5;最后用增加的部分5÷单位1水的45就等于增加百分之几。
计算步骤:步骤1:单元1:水:45立方厘米第二步:增加的部分:50—45=5立方厘米第三步:增加几个百分点:5÷45=11.1%2、45立方厘米的水结成冰后,体积增加了5立方厘米,冰的体积比原来水的体积增加百分之几?解决方案:根据标准杆数增加百分比=增加单位1。
首先确定单元1是水,已知为45:增加部分为5立方厘米;最后,使用单位1的增加的5的标准杆数45的水等于增加百分之几。
计算步骤:第一步:单位1:水:45立方厘米第二步:添加零件:5cm第三步:增加百分之几:5÷45=11.1%3.水结冰后,体积增加5立方厘米,冰的体积为50立方厘米。
六年级数学知识点总结:第四单元 百分数的认识

第四单元 百分数的认识1、百分数的意义像84%,28%,2.5%……这样的数叫作百分数,表示一个数是另一个数的百分之几。
百分数也叫百分比、百分率。
百分数只表示两个数之间的关系,不能带单位名称,它表示的是一个比值。
2、百分数的读法和写法①百分数的读法:百分数的读法与分数的读法相同,但百分数读作“百分之几”,不读作“一百分之几”。
②百分数的写法:百分数相当于分母是100的分数,但百分数不能写成分数的形式,而是在分子的后面加上百分号(%)来表示。
3、百分数和分数的区别①意义不同百分数只表示一个数是另一个数的百分之几。
它只能表示两个数之间的倍数关系,并不是表示某一个具体数量,所以百分数不能带单位。
分数不仅可以表示两个数之间的倍数关系,还可以表示一定的数量,所以分数表示数量时可以带单位。
②写法不同百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
分数的最后结果中的分子只能是整数,计算结果不是最简分数的要化成最简分数。
百分数的最后结果中的分子可以是整数,也可以是小数。
如:18%,16.7%,180%4、小数、分数、百分数的互化①把小数化成百分数的方法:先把小数点向右移动两位,再在数的后面直接添上“%”,如0.25=25% ②把分数化成百分数的方法:可以先把分数化成分母是100的分数,再改写成百分数,如53=0.6=60%(除不尽的保留三位小数)。
③把百分数化成小数的方法:先把“%”去掉,同时把小数点向左移动两位,当移动的位数不够时,要添0补位。
④把百分数化成分数的方法:第7页先把百分数改写成分母是100的分数,能约分的要约分成最简分数。
当百分数的分子是小数时,要要根据分数的基本性质把分子和分母同时扩大相同的倍数,把分子变成整数后能约分的再约分。
5、求一个数是另一个数的百分之几的方法求一个数是另一个数的百分之几的方法与求一个数是另一个数的几分之几的方法相同,就是用这个数除以另一个数,除不尽时通常保留三位小数,然后把小数点向右移动两位,再在数的后面加上%6、求百分率的方法:百分率一般是指部分占总体的百分之几。
小学六年级数学百分数知识点总结含练习题解析与答案

百分数我的笔记百分数的定义百分数表示一个数是另一个数的百分之多少。
百分数也叫作百分率或百分比。
百分数的读法百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示,读作“百分之......”读百分数时,先读“百分之”,再读百分号前面的数。
百分数和小数互化百分数化小数:去掉百分号“%”,然后将小数点向左移动两位。
小数化百分数:将小数点向右移动两位,再加上百分号“%”。
百分数,小数,分数比较大小一般先转化为小数再比较大小。
例题:把0.33,⅓,0.34,33.3% 按从大到小顺序排列。
百分数和分数互化百分数化分数:将百分数写成分母是100的分数,然后将这个分数化成最简分数。
分数化百分数:将分数化成小数,再将小数化成百分数。
例题:成数成数表示一个数是另一个数的十分之几,通称“几成”。
一成表示十分之一,写成百分数是10%折扣几折就表示十分之几,也就是百分之几十。
同种商品,折数越小,价格越低。
纳税根据国家税法的有关规定,按照一定比例把集体或个人收入的一部分缴纳给国家。
缴纳的税款叫应纳税额。
税率:应纳税额与各种收入中应纳税部分的比率叫税率。
利息人们常把暂时不用的钱存入银行储蓄起来,存款分为活期、整存整取和零存整取等方式。
存入银行的钱叫本金,取款时银行多付的钱叫利息。
利率:单位时间内的利息与本金的比率较利率。
利息=本金×利率×存期例题:小明把300元钱存入银行一年后取出,一年定期存款利率是2.25%,存款到期后小明可取回多少钱?答案与解析例题:把0.33,⅓,0.34,33.3% 按从大到小顺序排列解析:将分数和百分数都化成小数再比较大小。
0.33⅓ =0.3333…0.3433.3% =0.333答案: 0.34 > ⅓ > 33.3% > 0.33例题:解析与答案:例题:小明把300元钱存入银行一年后取出,一年定期存款利率是2.25%,存款到期后小明可取回多少钱?解析:存款到期后,小明可取回本金和利息。
六年级下册数学第二单元百分数知识点整理1500字

六年级下册数学第二单元百分数知识点整理1500字数学六年级下册第二单元是关于百分数的知识点。
以下是对该知识点的整理:一、百分数的定义:百分数是以100为基数的百分之一的分数形式,用%表示。
二、百分数的转化:1. 百分数转化为小数:将百分数去掉百分号,除以100。
例如:45% = 45 ÷ 100 = 0.452. 小数转化为百分数:将小数乘以100,加上百分号。
例如:0.6 = 0.6 × 100% = 60%3. 分数转化为百分数:将分数的分子除以分母,再乘以100加上百分号。
例如:⅓ = 1 ÷ 3 = 0.333... ≈ 33.3%4. 百分数和小数之间的转化是等价的。
三、百分数的比较:1. 百分数大小比较:可以通过将百分数转换成小数进行比较。
例如:40% < 50% (0.4 < 0.5)2. 对于整数相同的两个百分数,分母越小,百分数越大。
例如:25% > 20%。
3. 对于小数部分相同的两个百分数,整数部分越大,百分数越大。
例如:28.5% > 15.5%。
四、百分数的应用:1. 百分之几的相当于几分之一:将百分数的百分号去掉,分母为100。
例如:50% = 50 ÷ 100 = 1/22. 几分之一的百分数:将几分之一变为分数形式,分子为1,分母为几,然后乘以100加上百分号。
例如:1/5 = 1 ÷ 5 = 0.2 × 100% = 20%3. 百分数的计算:(1) 用倍数乘法计算:将百分数转化为小数,与数相乘再转化为百分数。
(2) 用倍数除法计算:将数除以百分数转化为小数再与100相乘。
五、百分数的问题解决方法:1. 百分数的加减法:首先将百分数转化为小数,然后进行数学运算。
2. 百分数的乘法:将原数与百分数转化为小数相乘,然后将结果转化为百分数。
3. 百分数的除法:将原数除以百分数转化为小数,然后将结果转化为百分数。
六年级数学百分数的整理和复习知识点总结

六年级数学百分数的整理和复习知识点总结
小学是我们整个学业生涯的基础,所以小朋友们一定要培养良好的学习习惯,为同学们特别提供了百分数的整理和复习,希望对大家的学习有所帮助!
一、基本练习(只列式不计算)
(1)10万元的5%是多少? (2)一个数的80%是100,求这个数。
(3)500减少20%后是多少? (4)1000元增加2%后是多少?
(5)100比某数多10%,求某数?
二、知识梳理
1、某校男生人数比女生少10%。
①谁是单位1。
②男生人数是女生人数的百分之几?
③已知女生有500人,求男生有多少人?
④已知男生有450人,求女生有多少人?
2、把③、④两题进行比较,然后小结。
3、课本104页第3题,105页第1题。
税款的计算方法,利息的计算公式。
1、复习税款的计算方法。
2、复习利息的计算公式:利息=本金利率时间(定期整存整取通常还要叫20%的利息税,因此所得利息只有80%)
1、什么利息不纳税?利息与税后利息有什么不一样?
三、巩固与深化练习
1、课本104页的第4题。
2、课本105页的第6题。
小学数学百分数知识点总结

小学数学百分数知识点总结百分数是小学数学中的重要概念之一,它在日常生活和数学学习中都有着广泛的应用。
下面我们就来详细总结一下小学数学百分数的相关知识点。
一、百分数的定义百分数表示一个数是另一个数的百分之几,也叫百分率或百分比。
百分数通常不写成分数的形式,而采用符号“%”(叫做百分号)来表示。
例如,45% 表示 45 是 100 的 45%。
二、百分数的写法百分数的写法:先写分子,然后在分子后面加上百分号“%”。
例如,百分之三十五,写作 35%。
三、百分数与分数、小数的互化1、百分数化分数把百分数写成分母是 100 的分数,再约分化简。
例如,45% = 45/100 = 9/202、百分数化小数去掉百分号,小数点左移两位。
例如,67% = 0673、小数化百分数小数点向右移动两位,加上百分号。
例如,038 = 38%4、分数化百分数先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
例如,3/5 = 06 = 60%四、百分数的简单应用1、求一个数是另一个数的百分之几用一个数除以另一个数,再乘以 100%。
例如,_____班有 50 人,其中男生 25 人,男生人数占全班人数的百分之几?25÷50×100% = 50%2、求一个数的百分之几是多少用这个数乘以百分数。
例如,_____有 80 元钱,花了 20%,花了多少钱?80×20% = 16(元)3、已知一个数的百分之几是多少,求这个数用已知的数除以对应的百分数。
例如,一本书看了 30%,正好是 60 页,这本书一共有多少页?60÷30% = 200(页)五、百分数在生活中的应用1、折扣问题几折就是十分之几,也就是百分之几十。
例如,打八折,就是按原价的 80%出售。
2、税率问题应纳税额与各种收入的比率叫做税率。
例如,某企业的税率是 5%,如果该企业的收入是 10 万元,那么应纳税额是 10×5% = 05 万元。
六年级百分数的知识点

六年级百分数的知识点百分数(Percentage)是数学中的常见概念,也是六年级学生需要掌握的重要知识点。
百分数用于表示一个数相对于100的比例关系,广泛应用于各个领域。
在本文中,将详细介绍六年级学生需要了解的百分数的定义、转化、计算以及应用等知识点。
一、百分数的定义百分数指的是把一个数表示为百分之几的形式。
在百分之几中,百分号(%)表示“除以100”,可以将百分数理解为分数的一种形式。
例如,75%可以表示为75/100,简化后为3/4。
因此,百分数的定义可以总结为:百分数 = 数/100。
二、百分数的转化1. 百分数转化为小数:可以通过把百分数末尾的百分号去掉,然后除以100来得到相应的小数。
例如,75%转化为小数的计算步骤为75 ÷ 100 = 0.75。
2. 小数转化为百分数:可以通过把小数乘以100,并在末尾加上百分号来得到相应的百分数。
例如,0.75转化为百分数的计算步骤为0.75 × 100 = 75%。
3. 百分数转化为分数:可以将百分数的数值作为分子,分母为100化简得到分数形式。
例如,75%转化为分数的计算步骤为75/100,化简后为3/4。
4. 分数转化为百分数:可以将分数的数值乘以100,并在末尾加上百分号来得到相应的百分数。
例如,3/4转化为百分数的计算步骤为3/4 × 100 = 75%。
三、百分数的计算1. 百分数的加减:当对两个百分数进行加减运算时,可以先把百分数转化为小数,然后进行小数的加减运算,最后再将结果转化为百分数形式。
例子:计算 40% + 25%步骤:40% + 25% = 0.40 + 0.25 = 0.65所以,40% + 25% = 65%2. 百分数与数的乘除:当对一个百分数与一个数进行乘除运算时,可以先把百分数转化为小数,然后进行小数的乘除运算,最后再将结果转化为百分数形式。
例子:计算 60% × 80步骤:60% × 80 = 0.60 × 80 = 48所以,60% × 80 = 48四、百分数的应用1. 百分比的比较:百分数可以用来比较两个数的大小或者多个数之间的相对大小。
六年级下册数学-百分数(一)知识点总结全国通用

百分数知识点1、百分数表示一个数是另一个数的百分之几的数叫作百分数。
百分数也叫作百分率或百分比。
① 啤酒的酒精度3.4% ②五班有35%的同学会游泳 ③小力在一场比赛中的投篮命中率是48% 2、百分数通常不写成分数形式,而在原来分子后面加上“%”来表示。
分子部分可为小数、整数,可以大于100,小于100或等于100。
3、百分数和分数的区别与联系:相同点:都可以表示两个数的数量关系,都有分子和分母。
不同点:①意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;分数既可以表示具体的数,又可以表示两个数的关系,表示具体数时可以带单位。
② 百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
③ 百分数不需要化简;分数需要化简。
练习:判断 ①14 千克可以写成25%千克。
( )②910和90%形式不同,但意义相同。
( ) 4、百分数、小数、分数之间的互化:(1)小数化成百分数: (2) 百分数化成小数:(3)百分数化成分数: (4)分数化成百分数:(两种方法)注意:在分数化百分数的过程中,先把分数化成小数时,若除不尽,通常保留三位小数,再把小数化成百分数。
1.把下列各数化成百分数: 0.0672.75 3116 107 8102.把下面的百分数化成分数和小数: 9% 135% 1.6% 0.1% 48%5、用百分数解决问题百分率公式:求百分率就是求一个数是另一个数的百分之几。
×100%××率=××量单位“1”的量(总量)【注意:关于××必须理解其所代表的内容是人数、质量、物品的数量、次数等。
】练习:填空 1.实验小组的同学做向日葵种子发芽实验,种下20颗种子,只有16颗发芽了。
这批向种子发芽率是()。
2.一袋小麦重50千克,加工成面粉后,所得面粉是42千克。
这些小麦的出粉率是()。
新人教版六年级数学下册折扣(百分数)知识点梳理

新人教版六年级数学下册折扣(百分数)知识点梳理1. 什么是折扣?折扣是指商品在原价基础上的降价优惠。
通常用百分数表示折扣幅度。
2. 折扣的计算方法折扣计算可以使用以下公式:折扣金额 = 原价 ×折扣比例实际售价 = 原价 - 折扣金额3. 折扣的表示方式折扣可以用百分数、小数和分数表示。
3.1 百分数表示折扣:折扣比例 × 100%例如:- 0.8 表示八折优惠(80%的折扣)- 0.5 表示五折优惠(50%的折扣)3.2 小数表示折扣:折扣比例的小数形式例如:- 0.8 表示八折优惠(80%的折扣)- 0.5 表示五折优惠(50%的折扣)3.3 分数表示折扣:折扣比例的分数形式例如:- 4/5 表示八折优惠(80%的折扣)- 1/2 表示五折优惠(50%的折扣)4. 折扣的运算规则计算折扣时需要注意以下几个规则:4.1 多个折扣的运算规则:当有多个折扣依次作用时,可以使用以下公式计算最终折扣率:最终折扣率 = 1 - (1 - 折扣1) × (1 - 折扣2) × (1 - 折扣3) × ...4.2 计算原价的运算规则:已知实际售价和折扣率,可以使用以下公式计算原价:原价 = 实际售价 ÷ (1 - 折扣率)5. 折扣的应用折扣在购物和商业活动中广泛应用。
了解折扣的知识可以帮助我们更好地理解优惠信息和进行购物决策。
以上是新人教版六年级数学下册折扣(百分数)的知识点梳理。
参考资料:- 《新人教版数学六年级下册》。
六年级下册百分数知识点整理

人教版数学六年级下册百分数知识点整理一、百分数的意义:表示一个数是另一个数的。
百分数也叫做。
(千分数:表示一个数是另一个数的千分之几) 二、百分数和分数的区别:1.意义不同:百分数只表示两个数的或部分与整体的,不能表示具体的数量,所以; 分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
2.百分数的分子可以是整数,也可以是小数;分数的分子不能是小数,只能是除0以外的自然数。
3.百分数是特殊的分数,百分数的分母都是100,百分数的计数单位都是1/100.三、百分数与小数的互化:1.小数化成百分数:方法一:把小数点向右移动两位,同时在后面添上%。
方法二:把小数化成分母是10、100、1000……的分数(看小数有几位小数,一位用10作分母,两位用100做分母,三位用1000做分母),再把这个分数化成分母是100的分数,再转换成百分数。
例如:0.375=375/1000=37.5/100=37.5%; 3.6=36/10=360/100=360%.方法三:把小数的分母看做1,利用分数的基本性质,分子分母同时扩大100倍就可以化成百分数。
也可以用这个小数直接×100/100化成百分数。
例如:0.12=112.0=100110012.0x x =10012=12% 或者0.12×100100=10010012.0x =10012=12% 2.百分数化成小数:方法一:把小数点向左移动两位,同时去掉%方法二:变成除法直接除出小数。
例如:1.03/100=1.03÷100=0.0103; 50/100=50÷100=0.5四、百分数的和分数的互化:1.百分数化成分数:先把百分数化成分数形式,再约分,结果要约成最简分数。
2.分数化成百分数:方法:把分数化成小数(分子除以分母)(除不尽时,通常用四舍五入法保留三位小数),再化成百分数。
例如:53=3÷5=0.6=60%。
六年级百分数知识点总结

六年级百分数知识点总结
六年级的百分数知识点主要包括以下内容:
1. 百分数的意义:百分数是将分数以百作为基数表达出来的一种形式。
百分数的百分子表示分数的几份之几,百分母是100。
2. 百分数与分数之间的转化:将分数转化为百分数,可以将分子乘以100再加上百分号;将百分数转化为分数,可以将百分数除以100。
3. 百分数的化简与扩展:化简百分数就是将分子和分母都除以可以整除的数;扩展百分数就是将分子和分母都乘以相同的数。
4. 百分数的计算:百分数间的加减法可以先将百分数转化为分数,然后进行计算;百分数与整数的乘除法可以先将百分数转化为小数,然后进行计算。
5. 比较大小:比较两个百分数的大小可以将它们都转化为小数进行比较。
6. 百分数的应用:百分数广泛应用于生活中的各种问题,如折扣、利率、增长率等。
以上是六年级百分数的主要知识点总结,希望对你有所帮助!。
小学六年级数学知识点 百分数知识点_知识点总结

小学六年级数学知识点百分数知识点_知识点总结小学六年级数学知识点:百分数知识点总结百分数是我们在学习数学的过程中经常遇到的一个重要概念。
它是将分数用百分号表示的一种形式,它的出现是为了更方便地描述部分与整体之间的比例关系。
在小学六年级的数学学习中,百分数的应用非常广泛,掌握百分数的相关知识点对于解决实际问题以及日常生活中的计算非常重要。
本文将围绕小学六年级数学中的百分数知识点做一个总结,以帮助同学们更好地掌握这一内容。
一、百分数的概念百分数是以100为分母的分数,用百分号表示。
其中,百分号是由拉丁文的“per centum”演变而来,意为每一百。
比如,60%就表示60/100,意味着所占的部分是整体的60%。
二、数学中常见的百分数的表示方法百分数可以用分数形式表示,也可以用小数形式表示。
下面我们来看几个例子:1. 1/5可以表示为20%;2. 3/4可以表示为75%;3. 0.6可以表示为60%。
需要注意的是,当百分数为小数时,可以直接将小数转化为百分数形式,即将小数点向右移动两位并添加百分号。
三、百分数与分数之间的转换在实际问题中,我们常常需要将百分数和分数进行转换。
下面介绍两种常见的转换方式。
1. 将百分数转化为分数:百分数除以100并化简;例如,将75%转化为分数,可以得到75/100,即3/4。
2. 将分数转化为百分数:分数乘以100即可;例如,将2/5转化为百分数,可以得到2/5 * 100 = 40%。
四、百分数的四则运算在解决实际问题时,我们经常需要对百分数进行加减乘除的运算。
下面介绍百分数的四则运算的具体方法。
1. 加法和减法:对于百分数的加法和减法运算,我们可以先将百分数转化为小数,然后再进行运算,最后将结果转化为百分数形式。
2. 乘法:百分数的乘法可以直接通过将百分数转化为小数,然后与另一个数相乘来完成。
例如,将60%乘以150,可以先将60%转化为0.6,然后进行计算得到0.6 * 150 = 90。
小学数学百分数知识点

小学数学百分数知识点
小学数学百分数的主要知识点包括:
1. 百分数的概念:百分数是指以百为单位的分数,通常用百分数符号“%”表示。
2. 百分数的转化:把一个分数转化为百分数,可以把分子乘以100,再加上百分号。
例如,将分数1/4转化为百分数,先将1/4乘以100,得到25,然后加上百分号,表示为25%。
3. 百分数的表示方法:在数字后面加上百分号,表示为一个数的百分之几。
例如,表示80%就是表示80的百分之80。
4. 百分数的关系:百分数和小数之间有相互转化的关系。
可以把一个数的百分数转化为小数,方法是除以100;也可以把一个小数转化为百分数,方法是乘以100,再加上百分号。
5. 百分数的应用:百分数在实际生活中有很多应用,如表示比例、表示增长和减少、表示概率等。
6. 百分数的计算:对于两个百分数的运算,可以先将其转化为小数,然后进行相应的运算,最后再把结果转化为百分数。
这些是小学数学百分数的主要知识点,通过理解和掌握这些知识,可以正确使用百分数,进行相关的计算和应用。
部编人教版六年级数学下册第二单元百分数(二)知识点总结

部编人教版六年级数学下册第二单元百分
数(二)知识点总结
付的钱叫做利息。
3.利率是银行为了吸纳存款和贷款而规定的
一种利息比率。
4.利率可以表示为年利率或月利率,一般情
况下,年利率是月利率的12倍。
5.计算利息的方法:利息=本金×利率×时间。
6.求利率,就是已知本金和利息,求利率是多
少。
利率=利息÷本金×时间。
求本金,就是已
知利率和利息,求本金是多少。
本金=利息÷利
率×时间。
求时间,就是已知本金、利率和利
息,求时间是多少。
时间=利息÷本金÷利率。
存期要以“月”为单位,日利率对应的存期要以“日”为单位。
利息是指存款的收益,可以用以下公式计算:利息=本金
×利率×存期。
本金是指存款的原始金额,可以用以下公式计算:本金=利息÷存期÷利率。
利率是指单位时间内的利息与本
金的比率。
在购物时,我们需要注意商品的促销政策,可以用学过的百分数知识求出商品的实际价格,从中选取最省钱的方案。
在个人所得税的计算中,超过3500元部分需要按规定纳税,需要纳税部分的收入称为应税收入。
需要注意的是,不同的存期对应不同的利率,而在累计存期相同的情况下,一次性存款比其他存款方式所获得的利息要多一些。
在计算时,存期要与利率相对应,年利率对应的存期要以“年”为单位,月利率对应的存期要以“月”为单位,日利率对应的存期要以“日”为单位。
六年级下册数学百分数二知识点总结

六年级下册数学百分数二知识点总结总结是把一定阶段内的有关情况分析研究,做出有指导性结论的书面材料,它是增长才干的一种好办法,快快来写一份总结吧。
总结你想好怎么写了吗?以下是小编为大家整理的六年级下册数学百分数二知识点总结,希望能够帮助到大家。
六年级下册数学百分数二知识点总结1(一)、折扣和成数1、折扣:用于商品,现价是原价的百分之几,叫做折扣。
通称“打折”。
几折就是十分之几,也就是百分之几十。
例如:八折=8/10=80%,六折五=6.5/10=65/100=65%解决打折的问题,关键是先将打的折数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
商品现在打八折:现在的售价是原价的80%商品现在打六折五:现在的售价是原价的65%2、成数:几成就是十分之几,也就是百分之几十。
例如:一成=1/10=10% 八成五=8.5/10=85/100=80%解决成数的问题,关键是先将成数转化为百分数或分数,然后按照求比一个数多(少)百分之几(几分之几)的数的解题方法进行解答。
这次衣服的进价增加一成:这次衣服的进价比原来的进价增加10% 今年小麦的收成是去年的八成五:今年小麦的收成是去年的85%(二)、税率和利率1、税率(1)纳税:纳税是根据国家税法的有关规定,按照一定的比率把集体或个人收入的一部分缴纳给国家。
(2)纳税的意义:税收是国家财政收入的主要来源之一。
国家用收来的税款发展经济、科技、教育、文化和国防安全等事业。
(3)应纳税额:缴纳的税款叫做应纳税额。
(4)税率:应纳税额与各种收入的比率叫做税率。
(5)应纳税额的计算方法:应纳税额=总收入×税率收入额=应纳税额÷税率2、利率(1)存款分为活期、整存整取和零存整取等方法。
(2)储蓄的意义:人们常常把暂时不用的钱存入银行或信用社,储蓄起来,这样不仅可以支援国家建设,也使得个人用钱更加安全和有计划,还可以增加一些收入。
小学六年级数学百分数相关知识点汇总

小学六年级数学百分数相关知识点汇总1、百分数的意义表示一个数是另一个数的百分之几的数叫做百分数,也叫做百分率或百分比。
百分数通常用"%"来表示。
百分号是表示百分数的符号。
2、百分数的读法:读百分数时,先读百分之,再读百分号前面的数,读数时按照整数的读法来读。
3、百分数的写法:百分数通常不写成分数形式,而在原来的分子后面加上百分号“%”来表示。
4、百分数与折数、成数的互化:例如:三折就是30%,七五折就是75%,成数就是十分之几,如一成就是10%,则六成五就是65%。
5、纳税和利息:税率:应纳税额与各种收入的比率。
利率:利息与本金的百分率。
由银行规定按年或按月计算。
利息的计算公式:利息=本金×利率×时间6、百分数与分数的区别主要有以下三点:⑴意义不同。
百分数是“表示一个数是另一个数的百分之几的数。
”它只能表示两数之间的倍数关系,不能表示某一具体数量。
如:可以说1米是5米的20%,不可以说“一段绳子长为20%米。
”因此,百分数后面不能带单位名称。
分数是“把单位‘1’平均分成若干份,表示这样一份或几份的数”。
分数不仅可以表示两数之间的倍数关系,如:甲数是3,乙数是4,甲数是乙数的?;还可以表示一定的数量,如:犌Э恕米等。
⑵应用范围不同。
百分数在生产、工作和生活中,常用于调查、统计、分析与比较。
而分数常常是在测量、计算中,得不到整数结果时使用。
⑶书写形式不同。
百分数通常不写成分数形式,而采用百分号“%”来表示。
如:百分之四十五,写作:45%;百分数的分母固定为100,因此,不论百分数的分子、分母之间有多少个公约数,都不约分;百分数的分子可以是自然数,也可以是小数。
而分数的分子只能是自然数,它的表示形式有:真分数、假分数、带分数,计算结果不是最简分数的一般要通过约分化成最简分数,是假分数的要化成带分数。
7、数的互化⑴小数化成分数:原来有几位小数,就在1的后面写几个零作分母,把原来的小数去掉小数点作分子,能约分的要约分。
北师大版六年级数学百分数的应用知识点:思维导图+知识梳理+例题精讲+易错专练

知识点二:百分数的应用(二)
1.求“比一个数增加(减少)百分之几的数是多少”的方法:
方法一:先求出增加(减少)部分的具体数量,然后用单位“1”所对应的具体数量加上(减去)增加(减少数量是单位“1”的百分之几,然后用单位“1”所对应的具体数量乘这个百分数。
(2)单位“1”的量+单位“1”的量×比单位“1”多的百分率=已知量。
3.用方程解“已知一个部分量占总量的百分之几及另一个部分量,求总量”的问题有两种解答方法:
(1)总量×(1-已知部分量占总量的百分率)=另一部分量;
(2)总量-总量×已知部分量占总量的百分率=另一部分量。
知识点四:百分数的应用(四)
4.已知利息、本金、利率,求时间:因为利息=本金×利率×时间,可以利用乘法各部分间的关系进行推导,得出时间=利息÷本金÷利率,也可以把时间用x表示,以利息的公式为“等量关系”,列方程解答。
5.已知利息、本金、时间,求利率:因为利息=本金×利率×时间,可以利用乘法各部分间的关系进行推导,得出利率=利息÷本金÷时间,也可以把利率用x表示,以利息的公式为“等量关系”,列方程解答。
(1)A%x±B%x=两个部分量的差(和);
(2)(A%±B%)x=两个部分量的差(和)。(x代表总量;A%代表较大的部分量所占的百分数;B%代表较小的部分量所占的百分数)
2.用方程解“已知比一个数增加百分之几的数是多少,求这个数”的问题有两种解答方法:
(1)单位“1”的量×(1+比单位“1”多的百分率)=已知量;
北师大版六年级数学百分数的应用
思维导图+知识梳理+例题精讲+易错专练
一、思维导图
二、知识点梳理
知识点一:百分数的应用(一)
六年级数学下册期末总复习《2单元百分数》必记知识点

六年级数学下册期末总复习《2单元百分数》必记知识点如下:一、百分数的定义与理解1.百分数表示一个数是另一个数的百分之几。
2.百分数由数字和百分号(%)组成,如25%读作百分之二十五。
二、百分数的计算1.百分数转化为小数:将百分数除以100。
例如,25% = 25 ÷ 100 = 0.25。
2.小数转化为百分数:将小数乘以100,并在后面加上百分号。
例如,0.25 =0.25 × 100% = 25%。
3.分数转化为百分数:先将分数转化为小数,再将小数转化为百分数。
例如,1/4= 0.25 = 25%。
三、百分数的应用1.折扣:商品打折时,“几折”就表示十分之几或百分之几十。
例如,打九折就是按原价的90%出售。
1.现价= 原价× 折扣2.原价= 现价÷ 折扣3.折扣= 现价÷ 原价2.成数:表示一个数是另一个数的十分之几,通称“几成”。
例如,三成五就是十分之三点五(或35%)。
1.实际应用时,需将成数转化成百分数。
3.税率:1.应纳税额= 应纳税部分× 税率2.应纳税部分= 应纳税额÷ 税率3.税率= 应纳税额÷ 应纳税部分× 100%4.本金、利率、存期与利息:1.利息= 本金× 利率× 存期2.利率= (利息÷ 存期) ÷ 本金× 100%3.本金= (利息÷ 存期) ÷ 利率四、百分数常考题型1.折扣问题:涉及现价、原价和折扣之间的关系。
2.税率问题:涉及应纳税额、税率和应纳税部分之间的关系。
3.利息问题:涉及本金、利率、存期和利息之间的关系。
4.利润问题:涉及售价、成本和利润之间的关系。
五、百分数应用题解题策略1.理解题意:仔细阅读题目,理解题目的要求和条件。
2.确定关系:根据题意,确定已知条件和未知量之间的数学关系。
3.列出方程:根据确定的关系,列出相应的数学方程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
六年级数学下册百分数
1、意义:表示一个数是另一个数的百分之几。
2、百分数和分数的区别:
①、意义不同:百分数只表示两个数的倍比关系,不能表示具体的数量,所以不能带单位;
分数既可以表示具体的数,又可以表示两个数的关系,表示具本数时可以带单位。
②、百分数的分子可以是整数,也可以是小数; 12.5%
分数的分子不能是小数,只能是除0以外的自然数。
12%
3、百分数与小数的互化:
(1)小数化成百分数:把小数点向右移动两位,同时在后面添上百分号。
0.2=20%
(2) 百分数化成小数:把小数点向左移动两位,同时去掉百分号 35%=0.35
4、百分数的和分数的互化
(1)百分数化成分数:先把百分数化成分数,先把百分数改写成分母是否100的分数,能约分要约成最简分 25%=10025=4
1 (2)分数化成百分数: ① 用分数的基本性质,把分数分母扩大或缩小成分母是100的分数,再写成百分数形式。
21=10050=50% ②先把分数化成小数(除不尽时,通常保留三位小数),再把小数化成百分数。
21=0.5=50% 3
1=0.333=33.3% 常见的百分率公式
5、用百分数解决问题
百分率=分量÷单位“1”×100%
1、求一个数是另一个数的百分之几。
一个数÷另一个数×100%
①甲是50,乙是40,甲是乙的百分之几?(50是40的百分之几?)50÷40=125%
②甲是50,乙是40,乙是甲的百分之几?(40是50的百分之几?)40÷50=80%
2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100% 可概括为:(大数-小数)÷小数×100%
3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%
⑦甲是50,乙是40,甲比乙多百分之几?(50比40多百分之几?)(50-40)÷40×100%=25%
⑧甲是50,乙是40,乙比甲少百分之几?(40比50少百分之几?)(50-40)÷50×100%=20%
分量=单位“1”×百分率
4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量
③乙是40,甲是乙的125%,甲数是多少?(40的125%是多少?)40×125%=50
④甲是50,乙是甲的80%,乙数是多少?(50的80%是多少?)50×80%=40
5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)=(1+百分之几)对应量
6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)=(1-百分之几)对应量
⑬乙是40,甲比乙多25%,甲数是多少?(什么数比40多25%?)40×(1+25%)=50
⑭甲是50,乙比甲少20%,乙数是多少?(什么数比50多25%?)50×(1-20%)=40
单位“1” =分量÷百分率
7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量
⑤乙是40,乙是甲的80%,甲数是多少?(一个数的80%是40,这个数是多少?)40÷80%=50
假设法:解:设甲为X X×80%=40 X=50
⑥甲是50,甲是乙的125%,乙数是多少?(一个数的125%是50,这个数是多少?)50÷125%=40
8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,
⑮乙是40,比甲少20%,甲数是多少?(40比什么数少20%?)40÷(1-20%)=50 假设法:解:设甲为X X×(1-20%)=40 X=50
⑯甲是50,比乙多25%,乙数是多少?(50比什么数多25%?)50÷(1+25%)=40 假设法:解:设乙为X X×(1+20%)=50 X=40
8、另外还有“已知比一个数多(少)百分之几,多(少)多少的数已知,求这个数”,
⑨甲比乙多25%,多10,乙是多少?10÷25%=40
假设法:解:设乙为X X×25%=10 X=40
⑩甲比乙多25%,多10,甲是多少?10÷25%+10=50
假设法:解:设乙为X X×25%=10 X=40 40+10=50
⑪乙比甲少20%,少10,甲是多少?10÷20%=50
假设法:解:设甲为X X×20%=10 X=50
⑫乙比甲少20%,少10,乙是多少?10÷20%-10=40
假设法:解:设甲为X X×20%=10 X=50 50-10=40
用百分数解决问题练习:
百分率=分量÷单位“1”×100%
1、求一个数是另一个数的百分之几。
一个数÷另一个数×100%
①甲是50,乙是40,甲是乙的百分之几?②甲是50,乙是40,乙是甲的百分之几?
2、求一个数比另一个数多百分之几。
(一个数-另一个数)÷另一个数×100% 可概括为:(大数-小数)÷小数×100%
3、求一个数比另一个数少百分之几。
(另一个数-一个数)÷另一个数×100% 可概括为:(大数-小数)÷大数×100%
⑦甲是50,乙是40,甲比乙多百分之几?⑧甲是50,乙是40,乙比甲少百分之几?
4、求一个数的百分之几是多少。
单位“1”的量×百分之几=百分之几对应量
③乙是40,甲是乙的125%,甲数是多少?④甲是50,乙是甲的80%,乙数是多少?
5、求比一个数多百分之几的数是多少。
单位“1”的量×(1+百分之几)=(1+百分之几)对应量
6、求比一个数少百分之几的数是多少。
单位“1”的量×(1-百分之几)=(1-百分之几)对应量
⑬乙是40,甲比乙多25%,甲数是多少?⑭甲是50,乙比甲少20%,乙数是多少?
单位“1” =分量÷百分率
7、已知一个数的百分之几是多少,求这个数。
百分之几对应量÷百分之几=单位“1”的量
⑤乙是40,乙是甲的80%,甲数是多少?
⑥甲是50,甲是乙的125%,乙数是多少?
8、另外还有“已知比一个数多(少)百分之几的数是多少,求这个数”,
⑮乙是40,比甲少20%,甲数是多少?
⑯甲是50,比乙多25%,乙数是多少?
8、另外还有“已知比一个数多(少)百分之几,多(少)多少的数已知,求这个数”,
⑨甲比乙多25%,多10,乙是多少?
⑩甲比乙多25%,多10,甲是多少?
⑪乙比甲少20%,少10,甲是多少?⑫乙比甲少20%,少10,乙是多少?。