列不定方程解复杂的应用题

合集下载

不定方程解应用题

不定方程解应用题

不定方程解应用题(二)采购员用一张1万元支票去购物。

购单价590元的A 种物若干,又买单价670元的B 种物若干,其中B 种个数多于A 种个数,找回了几张100元和几张10元的(10元的不超过9张)。

如把购A 种物品和B 种物品的个数互换,找回的100元和10元的钞票张数也恰好相反。

问购A 物几个,B 物几个?解:设购A 种物x 个,购B 种物为x +y 个,并设第一次购物找回r 张100元,s 张10元,则这是4个未知数,2个方程的不定方程组。

解方程时,方程变形的一些法则(方程两边同时乘或除以不为0的数,方程不变;方程两边同时加或减一个数,方程不变)仍适用。

先将(1) (2)两边约去10,得⎩⎨⎧=++++=++++(4) 100010675959)3(100010676759r s x y x s r y x x 由于(3) (4)式的右边都等于1000,因此它们相等,整理后得 8y +9r -9s =0,再在方程两边同时加上9s -9r ,得:8y =9(s -r )由于y 是大于0的整数,所以s -r 也是整数>0。

因此8|9·(s -r ),9|8y 。

应有⎩⎨⎧•=-•=k r s k y 89,k 为大于0的整数。

但是s 是10元钱的张数,s ≤9,r 是100元钱的张数,所以k =1,因此y =9,s -r =8。

显然s =9,r =1。

代回(3)式:得到x =3。

所以:x =3,x +y =3+9=12,r =1,s =9。

采购员购A 物3件,B 物12件,找回1张100元,9张10元。

⎩⎨⎧=⨯+⨯+⨯+⨯+=⨯+⨯+⨯++⨯(2)1000010100670590)((1) 1000010100670)(590r s x y x s r y x x1、有一捆树苗,每人种6棵还余4棵,每人种5棵还余3棵,这捆树苗最少多少棵?2、李家和王家共养521头牛,李家的牛群中有67%是母牛,而王家的牛群中仅有113是母牛,李家和王家各养多少头牛?3、一名学生去商店买足球,足球23元钱一只,若该生身上的钞票都是2元一张的,而商店的钞票都是5元一张的,试问学生应该怎么付钱?4、A、B、C三个微型机器人围绕一个圆形轨道高速运动,它们顺时针同时同地出发后,A在2秒钟时追上B,2.5秒钟时追上C,当c追上B时,C和B的运动路程之比是3:2,问第一分钟时,A围绕这个圆形轨道运动了多少圈?5、设有一框苹果,把它们三等分后还剩1个苹果,取出其中两份后,将它们五等分后还剩4个苹果,然后再取出其中三份,将它们四等分后还剩2个苹果,问这框苹果至少有几个?6、某校在向“希望工程”捐款活动中,甲班的m位男生和11位的捐款总数与乙班的9位男生和n位女生的捐款总数相等,都是(mn+9m+11n+145)元,已知每人的捐款数相同,且都是整数元,求每人的捐款数韩信点兵和不定方程和书的作者不详,但后来经过宋朝数学家秦九韶的推广,又发现了一种算法,叫做“大衍求一术”。

小学数学列不定方程解应用题(含答案)

小学数学列不定方程解应用题(含答案)

列不定方程解应用题知识框架一、知识点说明 历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

重难点(1) 根据题目叙述找到等量关系列出方程 (2) 根据解不定方程方法解方程 (3) 找到符合条件的解例题精讲一、不定方程与数论【例 1】 把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【考点】列不定方程解应用题【解析】 这是一道整数分拆的常规题.可设拆成的两个数分别为11x 和13y ,则有:11132001x y +=,要让x 取最小值,y 取最大值. 可把式子变形为:2001111315312132122153131313x x x x y x -⨯+-++===-+,可见12213x+是整数,满足这一条件的x 最小为7,且当7x =时,148y =. 则拆成的两个数分别是71177⨯=和148131924⨯=.【答案】则拆成的两个数分别是77和1924.【巩固】 甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【考点】列不定方程解应用题【解析】 设甲搬的是18x 块,乙搬的是23y 块.那么1823300x y +=.观察发现18x 和300都是6的倍数,所以y 也是6的倍数.由于3002313y <÷≈,所以y 只能为6或12. 6y =时18162x =,得到9x =;12y =时1824x =,此时x 不是整数,矛盾.所以甲搬了162块,乙搬了138块,甲比乙搬得多,多24块.【答案】甲比乙搬得多,多24块【例 2】 用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.【考点】列不定方程解应用题【解析】 若是四位数abcd ,则()161636<1000a b c d ⨯+++⨯≤,矛盾,四位以上的自然数也不可能。

列方程解较复杂的应用题一

列方程解较复杂的应用题一

列方程解较复杂的应用题一路程=速度×时间工作量=工作效率×工作时间路程和=速度和×时间工作量和=工作效率和×工作时间路程差=速度差×时间工作量差=工作效率差×工作时间路程差=速度×时间差工作量差=工作效率×工作时间差例11、两个城市相距255千米,甲、乙两辆汽车同时从两个城市出发,相向而行。

甲车的速度是42千米/时,乙车的速度是43千米/时。

两车几小时相遇?练一练1、甲、乙两个工程队合修一条长24千米的公,甲队每天修320米,乙队每天修430米。

两队从两端同时开工,几天后可以修好这条公路?2、两个城市相距255千米。

甲、乙两辆汽车同时从两个城市出发,相向而行.如果甲车的速度是42千米/时,3小时后两车相遇。

求乙车的速度。

例2小巧和小胖合作打一篇1850字的文章,小巧先打了370个字后,小胖才开始打.小巧平均每分钟打36个字,小胖平均每分钟打38个字,小胖打了几分钟后两人正好把这篇文章打完?练一练1、两辆汽车分别从相距580千米的两地相对开出,甲车每小时行50千米,行了130千米后乙车才出发,乙车每小时行40千米,乙车开出几小时后两车相遇?2、东西两村相距4000米,甲乙两人同时从两村相向而行,甲车每分钟行80米,乙车每分钟行90米,几分钟后两车还相距600米?3、甲乙两车从相距740千米的AB两地相向而行,甲车先行了2小时后乙车才出发,甲车每小时行70千米,乙车每小时行80千米,乙车行了几小时后两车相遇?例3一辆汽车上午行5小时,下午用同样的速度行了3小时,下午比上午少行90千米,这辆汽车每小时行多少千米?这一天共行了多少千米?练一练1、一台插秧机,按照同样的工作效率,上午工作5小时,下午工作3小时,上午比下午多插秧1100平方米。

这台插秧机每小时插秧多少平方米?2、6、甲乙两辆汽车分别从两个城市同时出发,相向而行.已知甲车平均每小时行85千米,乙车平均每小时行65千米,相遇时,乙车比甲车少行80千米,两车出发几小时在途中相遇?3、运输队运货物上午运了7车,下午运了11车,每辆车载重相等,一共运货物144吨,每车运货物多少吨?上午比下午少运多少吨?例4两辆汽车同时从两地相向而行,甲车开了150千米时与乙车相遇,这是甲车离两地的中点还有 30千米,乙车每小时行60千米,相遇时乙车行了多少小时?练一练甲乙两人同时从AB两地出发相向而行,甲每分行50米,乙每分行60米,两人在距离中点15米的地方相遇,求两人经过多少分钟相遇?AB两地的距离是多少米?例5客车、货车分别同时从A、B两地相向而行,客车每小时行30千米,货车每小时行40千米。

奥数不定方程解应用题(例题讲解)

奥数不定方程解应用题(例题讲解)

不定方程解应用题例1、55人去游园划船,小船每只坐4人,大船每只坐7人,问要租大、小船各多少只?解:列不定方程,设大船x只,小船y只。

7x+4y=55。

55-7x≡0(mod 4);因此 7x≡55(mod 4)≡3(mod 4),但7≡3(mod 4),所以x≡1(mod 4),因此x=1,或x=5。

所以有 x=1,y=12以及x=5,y=5两组解。

例2、王虎用100元买油菜籽、西红柿种子和萝卜籽共100包.油菜籽每包3元,西红柿种子每包4元,萝卜籽1元钱7包,问他每种各买了多少包?解:设买油菜籽x包,西红柿种子y包,则萝卜籽(100-x-y)包,列28y+10 0-x-y=700,也即20x+27y=600。

因此y≤22.由于600≡0(mod 20),所以27y≡0(mod 20);但(27,20)=1,所以y≡0(mod 20)。

因此y=20,x=3,100-x-y=77。

答:购油菜籽3包,西红柿种子20包,萝卜籽77包。

例3、100匹马驮100筐物品,一匹大马驮3筐,一匹中马驮2筐,两匹小马驮1筐.问大、中、小马各多少?解:设大、中、小马的匹数依次为x、y、z,由题意,列不定方程为:因此y≤33.由于5|100,所以5|3y.y=0,5,10,…,30.相应地可以得到x和z.但(3,5)=1,所以5|y.因此把结果列出:以上讲了6个例子,解不定方程(组)的一般思路和步骤都体现在其中了.这讲介绍的是最基本的整系数整式不定方程求整数解.总之,它要调用解方程时的常用的方程变形公共原则,又时时巧用未知数是整数这一“约定”.当然还有许多其他技巧.至于其他形式的不定方程,如x2+y2=25;奇质数p,。

列方程解较复杂的应用题

列方程解较复杂的应用题

第十六讲列方程解较复杂的应用题〈精讲〉较复杂的应用题,主要复杂在应用题所提供的某些条件比较隐蔽,或者某个已知条件要多次使用,或在叙述上以逆叙述的形式出现等.列方程时,首先要在弄清题意的基础上,分析出题目里的等量关系,再以“x”表示未知数,参加计算.典型例题【例1】修理厂在一个月中修理了40辆车,只有汽车和轻便摩托车两种车,修换车轮100只,问汽车、摩托车各修了多少辆?【例2】甲乙两个书架,甲书架的册数是乙书架上的7倍,如果从甲书架上取出12册,而往乙书架上放12册,这时甲书架上的书的册数是乙书架上的3倍.甲乙两个书架上原来各有书多少册?【例3】山坡上有群羊,黑羊是白羊的2倍少9只,而白羊的只数恰好是黑羊只数的2倍,这群羊共有多少只?【例4】一个空桶,连同盛满的蜂蜜一共重500克。

还是这个空桶,如果装满煤油共重350克,已知煤油的重量是蜂蜜的一半,这个空桶重多少克?【例5】小龙、小虎、小方和小圆四个孩子共有45个球,但不知道每个人各有几个球,如果变动一下,小龙的球减少2个,小虎的球增加2个,小方的球增加一倍,小圆的球减少一半,那么四个人的球的个数就一样多了.求原来每个人各有几个球?【例6】两堆煤,甲堆煤有4.5吨,乙堆煤有6吨,甲堆煤每天用去0.36吨,乙堆煤每天用去0.51吨,几天后两堆煤剩下吨数相等?列方程解较复杂的应用题〈精练〉1.一个学生的前6次数学测验平均分是93分,他的前7次测验平均分是94分,那么他的第七次测验得分是多少?2.一个服装小组由6名女工和1名男工组成,已知每名女工各收入200元,这名男工的收入比小组7名成员的平均收入多30元,问这名男工收入多少元?3.小松鼠的妈妈采松籽,晴天每天可采20个,雨天每天只能采12个。

它一连几天采了112个,平均每天采14个.问这几天当中有几天有雨?4.某校设有4个流动图书箱,每个书箱装书的本数相等。

从每箱取出75本,结果各箱所剩的书数的和正好等于原来一箱的书数.求每箱原来有书多少本?学校姓名成绩列方程解较复杂的应用题〈作业〉1.小华上学时坐车,回家时步行,在路上一共用去1.5小时,如果往返都坐车,全部行程只需30分钟,如果往返都步行,全部行程则需要几小时?2.一个人爬山,上山的速度是每小时2千米,到山顶后立即下山,下山的速度是每小时6千米,已知上山用3小时,下山用1小时,求平均速度是每小时多少千米?3.有两根绳子,长的比短的长1倍,现在把两根绳子都剪掉6分米,这时,长的一根就比短的一根长两倍,请问这两根绳子原来的长度是多少?4.1980年,爸爸的年龄是哥哥和弟弟年龄和的4倍.1988年爸爸的年龄是哥哥和弟弟年龄和的两倍,问爸爸出生在哪一年?5.某小学三四五年级学生去看电影,423人排成三路纵队,前后相邻两排相距0.5米,他们以每分钟20米的速度前进,通过一条宽34米的马路需要几分钟?。

18题不定方程专题汇总(答案)

18题不定方程专题汇总(答案)

1.小明今年五一节去三峡广场逛水果超市,他分两次购进了A 、B 两种不同单价的水果.第一次购买A 种水果的数量比B 种水果的数量多50%,第二次购买A 种水果的数量比第一次购买A 种水果的数量少60%,结果第二次购买水果的总数量比第一次购买水果的总数量多20%,且第二次购买A 、B 水果的总费用比第一次购买A 、B 水果的总费用少10%(两次购买中A 、B 两种水果的单价不变),则B 种水果的单价与A 种水果的单价的比值是______. 【答案】12【分析】根据水果数量的等量关系,可设第一次购买B 种水果数量为x 个,用x 分别表示第一次购买A 种水果的数量和第二次购买两种水果的数量.再分别设两种水果的单价为a 元和b 元,根据两次购买价钱的等量关系列方程,所列方程中x 是可以约去的,化简即得到a 与b 的数量关系. 【详解】解:设第一次购买B 种水果数量为x ,∴第一次购买A 种水果的数量为:3(150%)2x x +=, ∴第二次购买A 种水果数量为:3323(160%)2255x xx -==, ∴第二次购买水果的总数量为:356()(120%)3225x x xx ++==, ∴第二次购买B 种水果个数为:312355x x x -=,设A 种水果单价为a 元,B 种水果单价为b 元,依题意得:3312()(110%)255a x bx a xb x +-=+, 化简得:2a b =∴12b a =, B ∴水果的单价与A 水果的单价的比值是12,故答案为:12. 【点睛】本题考查了一次方程的应用,在缺少确切数值的情况下,可先假设等量关系中的关键量为未知数,再列方程化简求值.2.为了适合不同人群的口味,某商店对苹果味、草莓味、牛奶味的糖果混合组装成甲、乙两种袋装进行销售.甲种每袋装有苹果味、草莓味、牛奶味的糖果各10颗,乙种每袋装有苹果味糖果20颗,草莓味和牛奶味糖果各5颗.甲、乙两种袋装糖果每袋成本价分别是袋中各类糖果成本之和.已知每颗苹果味的糖果成本价为0.4元,甲种袋装糖果的售价为23.4元,利润率为30%,乙种袋装糖果每袋的利润率为20%.若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装糖果的数量之比是__________. 【答案】5:9 【分析】根据题意,先求出1颗草莓味和1颗牛奶味糖果的成本之和,然后求出乙种糖果的成本价,然后设甲种糖果x 袋,乙种糖果y 袋,通过利润的关系,列出方程,解方程,即可求出甲、乙两种糖果数量之比. 【详解】解:设1颗草莓味糖果m 元,1颗牛奶味糖果n 元,则,10(0.4)(130%)23.4m n ++⨯+=,解得: 1.4m n +=,∴甲种糖果的成本价:10(0.4 1.4)18⨯+=元∴乙种糖果的成本价:200.45()85 1.415m n ⨯++=+⨯=元, 设甲种糖果有x 袋,乙种糖果有y 袋,则,1830%1520%(1815)24%x y x y •+•=+•,解得:59x y =;∴该公司销售甲、乙两种袋装糖果的数量之比是59. 故答案为59. 【点睛】本题考查了二元一次方程的应用,利润、成本价与利润率之间的关系的应用,理解题意得出等量关系是解题的关键. 3.“八月十五月儿圆,中秋月饼香又甜”,每中秋,皓月当空,阖家团聚,品饼赏月,谈天说地,尽享天伦之乐.今年中秋节前夕某商场结合当地情况,决定启动一笔专项资金用于月饼进货,经过一段时间,该商场已购进的京式、广式、苏式月饼总价之比为2:3:4,根据市场需求,将把余下的资金继续购进这三种月饼,经测算需将余下资金的13购买京式月饼,则京式月饼的总价将达到这三种月饼总价的415.为了使广式月饼总价与苏式月饼的总价达到9:13,则该商场还需购买的广式月饼总价与苏式月饼的总价之比是_____. 【答案】3:5 【分析】由题意设已购进京式月饼价格2m ,剩余资金为n ,根据题意列出方程进行解答即可. 【详解】解:设已购进京式月饼价格2m ,剩余资金为n ,由题意可得:可得:①()1429315m n m n +=+,解得:n=6m , ②23a b n +=,可得:a+b=4m , ③1349(2)113m a m b m n m n m +++=+-+=, ④(3m+a ):(4m+b )=9:13,93135342222m a m a m m b m b m +==+==,,,,∴a :b=3:5,答:该商场还需购买的广式月饼总价与苏式月饼的总价之比是3:5. 故答案为:3:5. 【点睛】本题考查多次方程问题,解题的关键是根据题意列出多个方程得出其关系式解答.4.为了适合不同人群的需求,某公司对每日坚果混合装进行改革.甲种每袋装有10克核桃仁,10克巴旦木仁,10克黑加仑;乙种每袋装有20克核桃仁,5克巴旦木仁,5克黑加仑.甲乙两种袋装干果每袋成本价分别为袋中核桃仁、巴旦木仁、黑加仑的成本价之和.已知核桃仁每克成本价0.04元,甲每袋坚果的售价为5.2元,利润率为30%,乙种坚果每袋利润率为20%,若这两种袋装的销售利润率达到24%,则该公司销售甲、乙两种袋装坚果的数最之比是____. 【答案】13∶30 【分析】根据题意,先求出1克巴旦木和1克黑加仑的成本之和,然后求出乙种干果的成本,再设甲种干果x 袋,乙种干果y 袋,通过利润的关系,列出方程解方程即可求出甲、乙两种干果数量之比. 【详解】解:设1克巴旦木成本价m 元,和1克黑加仑成本价n 元,根据题意得 10(0.04 +m+n) ×(1+30%)=5.2 解得:m+n=0.36甲种干果的成本价:10×(0.04+0.36)=4 乙种干果的成本价:20×0.04+5×0.36=2.6乙种干果的售价为:2.6×(1+20 %)=3.12设甲种干果有x袋,乙种干果有y袋,则(4x+2.6y)(1+24 %)=5.2x+3.12y解得:1330 xy=故答案为:该公司销售甲、乙两种袋装坚果的数最之比是13∶30.【点睛】本题考查了二元一次方程的应用,利用利润、成本价与利润率之间的关系列出方程,理解题意得出等量关系是解题的关键.5.某科技公司推出一款新的电子产品,该产品有三种型号.通过市场调研后,按三种型号受消费者喜爱的程度分别对A型、B型、C型产品在成本的基础上分别加价20%,30%,45%出售(三种型号的成本相同).经过一个季度的经营后,发现C型产品的销量占总销量的37,且三种型号的总利润率为35%.第二个季度,公司决定对A型产品进行升级,升级后A产品的成本提高了25%,销量提高了20%;B、C产品的销量和成本均不变,且三种产品在二季度成本基础上分别加价20%,30%,45%出售,则第二个季度的总利润率为______.【答案】34%【分析】由题意得出A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意列出方程组,解得13x zy z⎧=⎪⎨⎪=⎩;第二个季度A产品成本为(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,则第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=34%.【详解】解:由题意得:A型、B型、C型三种型号产品利润率分别为20%,30%,45%,设A型、B型、C型三种型号产品原来的成本为a,A产品原销量为x,B产品原销量为y,C产品原销量为z,由题意得:20%ax30%ay45%az35%a(x y z)3(x y z)z7++=++⎧⎪⎨++=⎪⎩,解得:13x z y z⎧=⎪⎨⎪=⎩,第二个季度A产品的成本提高了25%,成本为:(1+25%)a=54a,B、C的成本仍为a,A产品销量为(1+20%)x=65x,B产品销量为y,C产品销量为z,∴第二个季度的总利润率为:5620%30%45%455645a x ay aza x ay az⨯⨯++⨯++=0.30.30.451.5x y zx y z++++=10.30.30.45311.53z z zz z z⨯++⨯++=34%,故答案为:34%.【点睛】本题考查了利用二元一次方程组解实际问题,正确理解题意,设出未知数列出方程组是解题的关键.6.某商店新进一批衬衣和数对暖瓶(一对为2件),暖瓶的对数正好是衬衣件数的一半,每件衬衣的进价是40元,每对暖瓶的进价是60元(暖瓶成对出售),商店将这批物品以高出进价10%的价格售出,最后留下了17件物品未卖出,这时,商店发现卖出物品的总售价等于所有货物总进价的90%,则最初购进这批暖瓶_____对.【答案】22.【分析】设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,根据这批物品的售价数恰好等于买进这批物品所花的钱数的90%可列出方程,根据x、a的取值范围分别讨论求适合题意的解即可.即可得到这17件物品是什么及它们的价值.【详解】设购进暖瓶x对,则有2x只暖瓶,衬衫2x件,留下的17件物品中有a只暖瓶,(17﹣a)件衬衫,∵每件衬衣的进价是40元,每对暖瓶的进价是60元,商店将这批物品以高出进价10%的价格售出,∴暖瓶每只售价为30×(1+10%)=33(元),衬衫每件售价为40×(1+10%)=44(元),∴总售价为=33×(2x﹣a)+44(2x﹣17+a)=154x+11a﹣748(元),根据题意得:154x+11a﹣748=90%(40×2x+60x),整理得:28x+11a=748,∵a为偶数,且17﹣a≥0,∴a为2,4,6,8,10,12,14,16,当a=2,x的值为分数,不合题意;当a=4,x的值为分数,不合题意;当a=6,x的值为分数,不合题意;当a=8,x的值为分数,不合题意;当a=10,x的值为分数,不合题意;当a=12,x=22,当a=14,x的值为分数,不合题意;当a=16,x的值为分数,不合题意;∴即只有当a=12,x=22时符合题意.答:最初购进这批暖瓶22对,故答案为:22.【点睛】本题考查二元一次方程的应用,解题的关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系列出方程,再根据实际情况求解.7.小明同学为筹备缤纷节财商体验活动,准备在商店购入小商品A和B,已知A和B的单价和为25元,小明计划购入A的数量比B的数量多3件,但一共不超过28件.现商店将A的单价提高20%,B打8折出售,小明决定将A、B的原定数量对调,这样实际花费比原计划少6元.已知调整前后的价格和数量均为整数,求小明原计划购买费用为_____元.【答案】311【分析】设小商品A的单价为x元/件,则B商品的单价为(25-x)元/件,计划购买小商品Aa件,则B商品为(a-3)件,根据等量关系:实际花费只比计划少6元,列出方程,再根据整数的性质求解即可.【详解】解:设小商品A的单价为x元/件,则B商品的单价为(25﹣x)元/件,计划购买小商品Aa件,则B商品为(a﹣3)件,(1+20%)x(a﹣3)+0.8a(25﹣x)+6=xa+(25﹣x)(a﹣3),解得x=77.4 3.8 30.8aa-+,由题意得:a+a﹣3≤28a≤16.5,∵x和a都是整数,∴当a=14时,x=12,小明原计划购买费用为:xa+(25﹣x)(a﹣3)=14×12+13×11=311.故答案为311【点睛】本题考查了一元一次方程的应用,准确理解题意列出方程是解题的关键.8.今年年初,受新冠肺炎疫情的影响,人们对病毒的防范意识加强,市面上的洗手液也备受欢迎,小王计划购进A型、B型、C型三种洗手液共50箱,其中B型洗手液数量不超过A型洗手液数量,且B型洗手液数量不少于C型洗手液数量的一半.已知A型洗手液每箱60元,B型洗手液每箱80元,C型洗手液每箱100元.在价格不变的条件下,小王实际购进A型洗手液是计划的56倍,C型洗手液购进了12箱,结果小王实际购进三种洗手液共35箱,且比原计划少支付1240元,则小王实际购进B型洗手液_____箱.【答案】8【分析】设小王计划购进A型洗手液x箱,B型洗手液y箱,则计划购进C型洗手液(50﹣x﹣y)箱,实际购进A型洗手液5 6x箱,B型洗手液(35﹣12﹣56x)箱,根据实际比原计划少支付1240元,即可得出关于x,y的二元一次方程组,结合x,y均为正整数即可得出x,y的值,再由y≤x,y≥12(50﹣x﹣y)可确定x,y的值,将其代入(35﹣12﹣56x)中即可求出结论.【详解】解:设小王计划购进A型洗手液x箱,B型洗手液y箱,则计划购进C型洗手液(50﹣x﹣y)箱,实际购进A型洗手液56x箱,B型洗手液(35﹣12﹣56x)箱,依题意,得:60x+80y+100(50﹣x﹣y)﹣[60•56x+80(35﹣12﹣56x)+100×12]=1240,整理,得:7x+6y=216,∴y=36﹣76x.∵x,y均为正整数,∴x为6的倍数,∴629xy=⎧⎨=⎩,1222xy=⎧⎨=⎩,1815xy=⎧⎨=⎩,248xy=⎧⎨=⎩,301xy=⎧⎨=⎩.又∵y≤x,y≥12(50﹣x﹣y),∴1815 xy=⎧⎨=⎩,∴35﹣12﹣56x=8.故答案为:8.【点睛】本题考查了二元一次方程的应用及整数解的情况,根据题意列出等量关系和整数解的情况判断解得情况.9.国庆期间某外地旅行团来重庆的网红景点打卡,游览结束后旅行社对该旅行团做了一次“我最喜爱的巴渝景点”问卷调查(每名游客都填了调查表,且只选了一个景点),統计后发现洪崖洞、长江索道、李子坝轻轨站、磁器口榜上有名.其中选李子坝轻轨站的人数比选磁器口的少8人;选洪崖洞的人数不仅比选磁器口的多,且为整数倍;选磁器口与洪崖洞的人数之和是选李子坝轻轨站与长江索道的人数之和的5倍;选长江索道与洪崖洞的人数之和比选李子坝轻轨站与磁器口的人数之和多24人.则该旅行团共有_______人. 【答案】48 【分析】设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人,根据题意可列出4个方程,然后整理得到不含c 的两个方程,再分情况讨论整数倍x 的值,得到符合题意的解即可. 【详解】解:设选洪崖洞的有a 人,选长江索道的有b 人,选李子坝轻轨站的有c 人,选磁器口的有d 人, 根据题意可列方程: c=d ﹣8,a=xd (x >1,且为整数), d+a=5(b+c ), b+a=c+d+24, 整理可得:283727d ba b=-⎧⎨=-⎩, 当x=2时,解得b=16,d=﹣20,不符合题意,舍去;当x=3时,解得b=6,d=10,a=30,c=2,则旅行团共有6+10+30+2=48人; 当x >3时,求得的b 均为负数,不符合题意. 故答案为48. 【点睛】本题主要考查列方程,解多元一次方程,解此题的关键在于根据题意准确列出方程.10.某中学去年举办竞赛,颁发一二三等奖各若干名,获奖人数依次增加,各获奖学生获得的奖品价值依次减少(奖品单价都是整数元),其中有3人获得一等奖,每人获得的奖品价值34元,二等奖的奖品单价是5的倍数,获得三等奖的人数不超过10人,并且获得二三等奖的人数之和与二等奖奖品的单价相同.今年又举办了竞赛,获得一二三等奖的人数比去年分别增加了1人、2人、3人,购买对应奖品时发现单价分别上涨了6元、3元、2元.这样,今年购买奖品的总费用比去年增加了159元.那么去年购买奖品一共花了__________元. 【答案】257 【分析】根据获奖人数依次增加,获得二三等奖的人数之和与二等奖奖品的单价相同,以及二等奖奖品单价为5的倍数,可知二等奖的单价为10或15,分别讨论即可得出答案. 【详解】设二等奖人数为m ,三等奖人数为n ,二等奖单价为a ,三等奖单价为b ,根据题意列表分析如下:∵今年购买奖品的总费用比去年增加了159元∴()()()()4402332343=159⨯++++++-⨯--m a n b ma nb 整理得322389+++=m a n b∵310<<≤m n ,m n a +=,a 为5的倍数 ∴a 的值为10或15 当=10a 时,4m =,6n =代入322389+++=m a n b 得3421026389⨯+⨯+⨯+=b , 解得15=>b a 不符合题意,舍去; 当=15a 时,有3种情况:①5m =,10n =,代入322389+++=m a n b 得35215210389⨯+⨯+⨯+=b ,解得8=<b a ,符合题意此时去年购买奖品一共花费334515108257⨯+⨯+⨯=元 ②6m =,9n =,代入322389+++=m a n b 得3621529389⨯+⨯+⨯+=b ,解得233=b ,不符合题意,舍去 ③7m =,8n =,代入322389+++=m a n b 得3721528389⨯+⨯+⨯+=b ,解得223b =,不符合题意,舍去 综上可得,去年购买奖品一共花费257元 故答案为:257. 【点睛】本题考查了方程与不等式的综合应用,难度较大,根据题意推出a 的取值,然后分类讨论是解题的关键.11.一年之计在于春,春天,是万物复苏的开始,是播种的季节,小刘准备在自家农田种植一批新鲜蔬菜,经过市场调研,他了解到,丝瓜籽每包3元,茄子籽每包4元,白菜籽1元7包,且蔬菜籽必须整包购买,小刘计划购买这三种蔬菜籽共100包(三种均有购买),经过计算,恰好需要m 元.其中购买丝瓜籽的数量不少于3包且不超过6包,购买茄子籽的数量不超过19包.实际购买时,由于商家储存的蔬菜籽数量有限,小刘并末购满100包,其中购买白菜籽支付10元,购买丝瓜籽的实际数量是计划数量的两倍,购买茄子籽若干包,这样小刘实际支付比计划少12元,则小刘实际购买三种蔬菜籽共_____包.【答案】84.【分析】设计划买丝瓜籽数量为a包,茄子籽b包,白菜籽c包,则3≤a≤6,0≤b≤19,c为7的倍数,且均为整数,根据题意,a+b+c=100,分情况列出所有可能的a,b,c,再分别计算出各种条件下的计划支付价格m,设实际购买丝瓜数量为x包,茄子籽y包,则实际:6≤x≤12,0≤y≤19,且x仅能为6、8、10、12(对应的a分别为3、4、5、6),进而求出符合条件的整数x和y的值,最后求出共计买的包数.【详解】设计划买丝瓜籽数量为a包,茄子籽b包,白菜籽c包,则3≤a≤6,0≤b≤19,c为7的倍数,且均为整数,根据题意,a+b+c=100,分情况列出所有可能的a,b,c,具体如下:①a=3时,b=13,c=84或b=6,c=91,②a=4时,b=12,c=84或b=5,c=91,③a=5时,b=11,c=84或b=4,c=91,④a=6时,b=10,c=84或b=3,c=91,再分别计算出各种条件下的计划支付价格m,设实际购买丝瓜数量为x包,茄子籽y包,则:实际:6≤x≤12,0≤y≤19,且x仅能为6、8、10、12(对应的a分别为3、4、5、6),∵10元买白菜籽,∴10×7=70(包),又∵实际支付比计划少12元,3x+4y+70=m﹣12,⑤∴将x=6、8、10、12分别代入⑤式,计算得符合条件的整数y,经计算,x=10,y=4时,符合上述所有不等式,∴共计买10+4+70=84(包).故答案为:84.【点睛】本题考查了三元一次方程的应用,解决本题的关键是根据题意求整数解.12.为刺激顾客到实体店消费,某商场决定在星期六开展促销活动.活动方案如下:在商场收银台旁放置一个不透明的箱子,箱子里有红、黄、绿三种颜色的球各一个(除颜色外大小、形状、质地等完全相同),顾客购买的商品达到一定金额可获得一次摸球机会,摸中红、黄、绿三种颜色的球可分别返还现金50元、30元、10元.商场分三个时段统计摸球次数和返现金额,汇总统计结果为:第二时段摸到红球次数为第一时段的3倍,摸到黄球次数为第一时段的2倍,摸到绿球次数为第一时段的4倍;第三时段摸到红球次数与第一时段相同,摸到黄球次数为第一时段的4倍,摸到绿球次数为第一时段的2倍,三个时段返现总金额为2510元,第三时段返现金额比第一时段多420元,则第二时段返现金额为____元.【答案】1230.【分析】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .根据题意得到关于a ,b ,c 方程组,根据a ,b ,c 均为正整数,求解即可.【详解】设第一时段统计摸到红、黄、绿球的次数分别为a ,b ,c ,则第二时段统计摸到红、黄、绿球的次数分别为3a ,2b ,4c ,第三时段统计摸到红、黄、绿球的次数分别为a ,4b ,2c .由题意得()()2502107025105012020503010420a b c a b c a b c ++=⎧⎪⎨++-++=⎪⎩, 即25217251942a b c b c ++=⎧⎨+=⎩, 其整数解为42372521231225a n b n c n =-⎧⎪=-⎨⎪=-⎩(其中n 为整数),又∵a ,b ,c 均是正整数,易得n =1.所以546a b c =⎧⎪=⎨⎪=⎩.∴150a +60b +40c =150×5+60×4+40×6=1230.故答案为:1230.另解:由上9b +c =42,得知b =1,2,3,4.列举符合题意的解即可.【点睛】本题考查了求方程组的正整数解,根据题意得到方程组,求出方程组的整数解是解题关键.解题时注意题目中隐含条件a ,b ,c ,均为正整数.13.已知每件A 奖品价格相同,每件B 奖品价格相同,老师要网购A,B 两种奖品16件,若购买A 奖品9件、B 奖品7件,则微信钱包内的钱会差230元;若购买A奖品7件、B奖品9件,则微信钱包的钱会剩余230元,老师实际购买了A奖品1件,B奖品15件,则微信钱包内的钱会剩余__________元.【答案】1610【解析】【分析】设A奖品价格为x元/个,B奖品价格为y元/个,微信钱包金额为z元,根据题意可得9x+7y=z+230,7x+9y=z-230,从而得到8x+8y=z,x-y=230,从而得到结论.【详解】设A奖品价格为x元/个,B奖品价格为y元/个,微信钱包金额为z元,根据题意得:{9x+7y=z+230①7x+9y=z−230②,由①+②得:16x+16y=2z,即8x+8y=z,则微信钱包金额刚好可以买8个A产品和8个B产品,由①-②得:2x-2y=460,即x-y=230,则A的价格比B的价格多230元,∴x+15y=8x+8y-7(x-y)=z-7×230=z-1610,∴微信钱包内的钱会剩余1610元.【点睛】考查了方程组的应用,解题关键是求得微信钱包金额刚好可以买8个A产品和8个B产品和A的价格比B的价格多230元,再将x+15y变形成=8x+8y-7(x-y)的形式.14.2019年秋,重庆二外初2021级将开启“大阅读”活动,为了充实书吧藏书,学生会号召全年级学生捐书,得到各班的大力支持.同时,年级部分备课组的老师也购买藏书充实到年级书吧,其中数学组购买了甲、乙两种自然科学书籍若干本,用去699元;语文组购买了A、B两种文学书籍若干本,用去6138元,已知A、B的数量分别与甲、乙的数量相等,且甲种书与B种书的单价相同,乙种书与A种书的单价相同.若甲种书的单价比乙种书的单价多7元,则乙种书籍比甲种书籍多买了__________本.【答案】777【分析】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,甲种书与A种书的数量为a本,乙种书与B 种书的数量为b本,根据单价乘以数量等于总价,建立方程组,整理即可得出b-a的值.【详解】设乙种书与A种书的单价为x元,则甲种书与B种书的单价为(x+7)元,设甲种书与A种书的数量为a本,乙种书与B种书的数量为b本,由题意得:()()()()76991761382 a x bxax b x⎧++=⎪⎨++=⎪⎩()()21-得775439-=b a∴777-=b a故答案为:777.【点睛】本题考查方程组的应用,熟练掌握单价乘以数量等于总价,建立方程组是解题的关键.15.某厂家以A 、B 两种原料,利用不同的工艺手法生产出了甲、乙两种袋装产品,其中,甲产品每袋含1.5千克A 原料、1.5千克B 原料;乙产品每袋含2千克A 原料、1千克B 原料.甲、乙两种产品每袋的成本价分别为袋中两种原料的成本价之和.若甲产品每袋售价72元,则利润率为20%.某节庆日,厂家准备生产若干袋甲产品和乙产品,甲产品和乙产品的数量和不超过100袋,会计在核算成本的时候把A 原料和B 原料的单价看反了,后面发现如果不看反,那么实际成本比核算时的成本少500元,那么厂家在生产甲乙两种产品时实际成本最多为_____元.【答案】5750【解析】【分析】根据题意设甲产品的成本价格为b 元,求出b ,可知A 原料与B 原料的成本和40元,然后设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,列出方程组得到xn =20n ﹣250,最后设生产甲乙产品的实际成本为W 元,即可解答【详解】∵甲产品每袋售价72元,则利润率为20%.设甲产品的成本价格为b 元, ∴72-b b=20%, ∴b =60,∴甲产品的成本价格60元,∴1.5kgA 原料与1.5kgB 原料的成本和60元,∴A 原料与B 原料的成本和40元,设A 种原料成本价格x 元,B 种原料成本价格(40﹣x )元,生产甲产品m 袋,乙产品n 袋,根据题意得:10060(240)50060(802)m n m x x n m n x x +≤⎧⎨++-+=+-+⎩, ∴xn =20n ﹣250,设生产甲乙产品的实际成本为W 元,则有W =60m +40n +xn ,∴W =60m +40n +20n ﹣250=60(m +n )﹣250,∵m +n ≤100,∴W ≤6250;∴生产甲乙产品的实际成本最多为5750元,故答案为5750;【点睛】此题考查不等式和二元一次方程的解,解题关键在于求出甲产品的成本价格16.王老师在期中考试过后,决定给同学们发放奖品.他到对面 one way 文具店看了一下,准备买一些钢笔和笔记本,再给班级购买一个中考倒计时电子显示屏,经预算总共需要1501元,其中电子显示屏的价格为41元.当他付款时才发现他把钢笔和笔记本的单价弄反了,由于王老师购物金额超过1000元,文具店免费赠送了一个电子显示屏.这样实际付款后预算资金还剩余100多元(剩余资金为整数),正好能再购买1支钢笔和1个笔记本,王老师计划购买__________件奖品.【答案】20【分析】首先设购买x 支钢笔和y 个笔记本,每支钢笔a 元,每个笔记本b 元,然后根据题意列出方程组,根据整数解即可得解.【详解】设购买x 支钢笔和y 个笔记本,每支钢笔a 元,每个笔记本b 元,4115011501bx ay ax by a b ++=⎧⎨+++=⎩①② +①②,得()()2961a b x a b y a b +++++=29611x y a b+=-+ ∴100200a b +<<∴x y +可取的整数为14、15、16、17、18、19、20、21、22、23、24、25、26、27、28∵()(),x y a b ++为整数∴20x y +=即王老师计划购买20件奖品.【点睛】此题主要考查列二元一次方程组解实际问题的运用,解题关键是找到等量关系建立方程.17.近日天气晴朗,某集团公司准备组织全体员工外出踏青.决定租用甲、乙、丙三种型号的巴士出行,甲型巴士每辆车的乘载量是乙型巴士的3倍,丙型巴士每辆可乘坐36人.现在旅游公司有甲、乙、丙型巴士若干辆,预计给该集团公司安排申型、丙型巴士共计8辆,其余员工安排乙型巴士,每辆巴士均满载,这样乘坐乙型巴士和丙型巴士的员工共296人.临行前,突然有若干人因特殊原因请假,这样一来刚好可以减少租用一辆乙型包士,且有一辆乙型巴士多出两个空位,这样甲、乙两种型号巴士共计装载178人;则该集团公司共有________名员工.【答案】416【分析】设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(8-a )辆,乙型巴士乘载量为x 人,由题意列出方程,由整数解的思想可求解.【详解】解:设甲型巴士a 辆,乙型巴士b 辆,丙型巴士(8-a )辆,乙型巴士乘载量为x 人,由题意可得:36(8)2963(1)1782xb a xa x b +-=⎧⎨+-=+⎩, 解得:x=1723631a a --, ∵1≤a ≤7,且a 为整数,∴168a x =⎧⎨=⎩(不合题意舍去),220a x =⎧⎨=⎩,38a x =⎧⎨=⎩(不合题意舍去), ∴2036(82)296b +⨯-=,∴b=4,∴总人数=2×60+4×20+36×6=416(人)故答案为:416.【点睛】本题考查了三元一次方程组的应用,根据题意,正确列出方程,利用整数解的思想解决问题是本题的关键. 18.某餐厅以A 、B 两种食材,利用不同的搭配方式推出了两款健康餐,其中,甲产品每份含200克A 、200克B ;乙产品每份含200克A 、100克B .甲、乙两种产品每份的成本价分别为A 、B 两种食材的成本价之和,若甲产品每份成本价为16元.店家在核算成本的时候把A 、B 两种食材单价看反了,实际成本比核算时的成本多688元,如果每天甲销量的4倍和乙销量的3倍之和不超过120份,那么餐厅每天实际成本最多为______元.【答案】824【分析】先求出100克A 原料和100克B 原料的成本和,再设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意列方程求出【详解】解:∵甲产品每份含200克A 、200克B ,甲产品每份成本价为16元∴100克A 原料和100克B 原料的成本为8元设100克A 原料的成本为m 元,则100克B 种原料的成本为(8)m -元,生产甲产品x 份,乙产品y 份,根据题意可得出:。

小学五年级不定方程、流水行船问题奥数练习题

小学五年级不定方程、流水行船问题奥数练习题

小学五年级不定方程、流水行船问题奥数练习题1.小学五年级不定方程奥数练习题篇一1、六年级某班同学48人到公园里去划船,如果每只小船可坐3人,每只大船可坐5人,那么需要小船和大船各几只?(大船小船都有)答案:小船x大船y列方程:3x+5y=48x,y都是正整数解得:x=1,y=9x=6,y=6x=11,y=32、装水瓶的盒子有大小两种,大的能装7个,小的能装4个,要把41个水瓶装入盒内。

问需大、小盒子个多少个?答案:设大的x个,小的y个,有:7x+4y=41根据奇偶关系知道:x只能取奇数x=1,y=8.5舍去x=3,y=5满足x=5,y=1.5舍去2.小学五年级不定方程奥数练习题篇二一天,小强在家里做数学作业时,遇到了一题难题,这道题目是:有一次,小红问小军的生日,小军说:“把我的月份数乘以18,日期数乘以12的和只要等于108就行了。

试用最单的方法算出小军的生日是几月几日?解:设小军的生日月份为x,月份的日期y18x+12y=108在解决问题的时候,小强的心里想:在方程式里,怎么会出现一个式子里就有两个未知数呢?突然间小强明白了这道题的方法:原来这是一道不定方程。

小强问妈妈:什么是不定方程呢?妈妈说:在一个等式里未知数个数多于方程个数的方程叫做不定方程。

例如:刚才你思考的题目中所列出的方程,就是属于不定方程。

小强听了妈妈的讲解方法,终于解出了那道不定方程,他的解法是:将18x+12y=108,变形后得:y=(108-18x)÷12,即y=9-1。

5x,因为x,y均为整数,且1≤x≤12,1≤y≤31,根据该方程,2≤x≤4,当x=2时,y=6;当x=4时,y=3。

3.小学五年级流水行船问题奥数练习题篇三1、船在静水中的速度为每小时15千米,水流的速度为每小时2千米,船从甲港顺流而下到达乙港用了13小时,从乙港返回甲港需要多少小时?分析:船速+水速=顺水速度,可知顺水速度为17千米/时。

较复杂的方程应用题

较复杂的方程应用题
(1)今年养兔50只,比去年养的 2倍少16只,去年养几只?
(2)去年养兔50只,今年养的比去年 的2倍多16只,今年养几只?
3、只列方程不解答 1)图书室有文艺书180本,比科技书的2倍 多20本,科技书有多少本?
解:设科技书有 本,列方程: 2x+20=180 或180-2x=20 或180-20=2x
知识回顾
1、解方程 y-20=4
解: y-20+20=4 +20 2x=24 y =24
解: 2x÷2 =24÷2 x =12
2、先写出下列题中数量间的等量关系,再列方程
(1)某班有女生人,男生30人,男生人数是女 生人数的2
2x =30
(2)某班有女生x人,男生30人,男生人数 比女生人数少6人。
数量关系: 女生人数-男生人数 =6
列方程
x-30=6
开动脑筋?
白色皮有20块,比黑色皮的2倍少4块
根据这句话你可以写出怎样的等量关系?
巩固练习
1、(课本66页第1题)解下列方程
(1)3x+6=18
(2)2x-7.5=8.5
(3)16 +8x =40
(4)4x -3×9 =29
2、先找出关键句,再说出等量关系式
2)

小学奥数 列不定方程解应用题 精选例题练习习题(含知识点拨)

小学奥数  列不定方程解应用题  精选例题练习习题(含知识点拨)

列不定方程解应用题教学目标1、熟练掌握不定方程的解题技巧2、能够根据题意找到等量关系设未知数解方程3、学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

二、运用不定方程解应用题步骤1、根据题目叙述找到等量关系列出方程2、根据解不定方程方法解方程3、找到符合条件的解模块一、不定方程与数论【例 1】把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【巩固】甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【巩固】现有足够多的5角和8角的邮票,用来付4.7元的邮资,问8角的邮票需要多少张?【例 2】用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.模块二、不定方程与应用题【例 3】有两种不同规格的油桶若干个,大的能装8千克油,小的能装5千克油,44千克油恰好装满这些油桶.问:大、小油桶各几个?【例 4】在一次活动中,丁丁和冬冬到射击室打靶,回来后见到同学“小博士”,他们让“小博士”猜他们各命中多少次.“小博士”让丁丁把自己命中的次数乘以5,让冬冬把自己命中的次数乘以4,再把两个得数加起来告诉他,丁丁和冬冬算了一下是31,“小博士”正确地说出了他们各自命中的次数.你知道丁丁和冬冬各命中几次吗?【巩固】某人打靶,8发共打了53环,全部命中在10环、7环和5环上.问:他命中10环、7环和5环各几发?【例 5】某次聚餐,每一位男宾付130元,每一位女宾付100元,每带一个孩子付60元,现在有13的成人各带一个孩子,总共收了2160元,问:这个活动共有多少人参加(成人和孩子)?【巩固】单位的职工到郊外植树,其中有男职工,也有女职工,并且有13的职工各带一个孩子参加.男职工每人种13棵树,女职工每人种10棵树,每个孩子都种6棵树,他们一共种了216棵树,那么其中有多少名男职工?【例 6】张师傅每天能缝制3件上衣,或者9件裙裤,李师傅每天能缝制2件上衣,或者7件裙裤,两人20天共缝制上衣和裙裤134件,那么其中上衣是多少件?【巩固】小花狗和波斯猫是一对好朋友,它们在早晚见面时总要叫上几声表示问候.若是早晨见面,小花狗叫两声,波斯猫叫一声;若是晚上见面,小花狗叫两声,波斯猫叫三声.细心的小娟对它们的叫声统计了15天,发现它们并不是每天早晚都见面.在这15天内它们共叫了61声.问:波斯猫至少叫了多少声?【例 7】甲、乙两人生产一种产品,这种产品由一个A配件与一个B配件组成.甲每天生产300个A配件,或生产150个B配件;乙每天生产120个A配件,或生产48个B配件.为了在10天内生产出更多的产品,二人决定合作生产,这样他们最多能生产出多少套产品?【巩固】某服装厂有甲、乙两个生产车间,甲车间每天能生产上衣16件或裤子20件;乙车间每天能生产上衣18件或裤子24件.现在要上衣和裤子配套,两车间合作21天,最多能生产多少套衣服?【例 8】有一项工程,甲单独做需要36天完成,乙单独做需要30天完成,丙单独做需要48天完成,现在由甲、乙、丙三人同时做,在工作期间,丙休息了整数天,而甲和乙一直工作至完成,最后完成这项工程也用了整数天,那么丙休息了天.【例 9】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了5辆大巴车和3辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】实验小学的五年级学生租车去野外开展“走向大自然,热爱大自然”活动,所有的学生和老师共306人恰好坐满了7辆大巴车和2辆中巴车,已知每辆中巴车的载客人数在20人到25人之间,求每辆大巴车的载客人数.【巩固】每辆大汽车能容纳54人,每辆小汽车能容纳36人.现有378人,要使每个人都上车且每辆车都装满,需要大、小汽车各几辆?【巩固】小伟听说小峰养了一些兔和鸡,就问小峰:“你养了几只兔和鸡?”小峰说:“我养的兔比鸡多,鸡兔共24条腿.”那么小峰养了多少兔和鸡?【例 10】一个家具店在1998年总共卖了213张床.起初他们每个月卖出25张床,之后每个月卖出16张床,最后他们每个月卖出20张床.问:他们共有多少个月是卖出25张床?【例 11】五年级一班共有36人,每人参加一个兴趣小组,共有A、B、C、D、E五个小组.若参加A组的有15人,参加B组的人数仅次于A组,参加C组、D组的人数相同,参加E组的人数最少,只有4人.那么,参加B组的有_______人.【例 12】将一群人分为甲乙丙三组,每人都必在且仅在一组.已知甲乙丙的平均年龄分为37,23,41.甲乙两组人合起来的平均年龄为29;乙丙两组人合起来的平均年龄为33.则这一群人的平均年龄为.【例 13】14个大、中、小号钢珠共重100克,大号钢珠每个重12克,中号钢珠每个重8克,小号钢珠每个重5克.问:大、中、小号钢珠各有多少个?【巩固】袋子里有三种球,分别标有数字2,3和5,小明从中摸出12个球,它们的数字之和是43.问:小明最多摸出几个标有数字2的球?【例 14】公鸡1只值钱5,母鸡一只值钱3,小鸡三只值钱1,今有钱100,买鸡100只,问公鸡、母鸡、小鸡各买几只?【巩固】小明玩套圈游戏,套中小鸡一次得9分,套中小猴得5分,套中小狗得2分.小明共套了10次,每次都套中了,每个小玩具都至少被套中一次,小明套10次共得61分.问:小明至多套中小鸡几次?【例 15】开学前,宁宁拿着妈妈给的30元钱去买笔,文具店里的圆珠笔每支4元,铅笔每支3元.宁宁买完两种笔后把钱花完.请问:她一共买了几支笔?【巩固】小华和小强各用6角4分买了若干支铅笔,他们买来的铅笔中都是5分一支和7分一支的两种,而且小华买来的铅笔比小强多.小华比小强多买来铅笔多少支.【例 16】蓝天小学举行“迎春”环保知识大赛,一共有100名男、女选手参加初赛,经过初赛、复赛,最后确定了参加决赛的人选.已知参加决赛的男选手的人数,占初赛的男选手人数的20%;参加决赛的女选手的人数,占初赛的女选手人数的12.5%,而且比参加初赛的男选手的人数多.参加决赛的男、女选手各有多少人?【巩固】今有桃95个,分给甲、乙两班学生吃,甲班分到的桃有29是坏的,其他是好的;乙班分到的桃有316是坏的,其他是好的.甲、乙两班分到的好桃共有几个?【例 17】甲、乙两人各有一袋糖,每袋糖都不到20粒.如果甲给乙一定数量的糖后,甲的糖就是乙的2倍;如果乙给甲同样数量的糖后,甲的糖就是乙的3倍.甲、乙两人共有多少粒糖?【巩固】有两小堆砖头,如果从第一堆中取出100块放到第二堆中去,那么第二堆将比第一堆多一倍.如果相反,从第二堆中取出若干块放到第一堆中去,那么第一堆将是第二堆的6倍.问:第一堆中的砖头最少有多少块?【例 18】甲乙丙三个班向希望工程捐赠图书,已知甲班有1人捐6册,有2人各捐7册,其余都各捐11册,乙班有1人捐6册,3人各捐8册,其余各捐10册;丙班有2人各卷4册,6人各捐7册,其余各捐9册。

用不定方程解应用题

用不定方程解应用题

不定方程
1.小明花4.5元钱买了0.14元一支的铅笔和0.67元一支的圆珠
笔,问:铅笔和圆珠笔各几支?
2.李根和布什二人植树,李根每天植树18棵,布什每天植21
棵,两人共植了135棵。

问:两人各植了几天?
3.大客车有39个座位,小客车有30个座位,现有267位乘客,
要使每位乘客都有座位且没有空座位,问:需大、小客车各几辆?
4.商店卖出若干2.3元和1.6元一支的钢笔,共收入500元,问
两种钢笔各卖出多少支?
5.有150个小球分装在大小两种盒子里,大盒装12个,小盒装
7个,问:需要大、小盒子各多少个才能恰好把这些小球装完?
6.有两种不同规格的油桶若干个,大的能装8千克油,小的能
装5千克油,44千克油恰好装满这些油桶。

问:大小油桶各几个?
7.参加围棋比赛的有八段和九段选手若干名,他们的段位数字
加在一起正好是100段。

问:八段和九段选手各几名。

8.一批布长36米,用此布做一件成人衣服用布3米,做一件儿
童衣服用布1.6米。

要把这批布刚好用完,应做多少件成人衣服和多少件儿童衣服?
9.工程队要做78米长的地下排水管道,仓库中有3米和5米长
的两种管子。

问:可以有多少种不同的取法。

10.袋子里有三种球,分别标有数字2、3、5,小明从中摸出12
个球,它们的数字之和是43。

问:小明最多摸出几个标有数字2的球?
11.有煮蛋、茶蛋和皮蛋共30个,价值24元,煮蛋每个0.6元,
茶蛋每个1元,皮蛋每个1.2元。

问最多有几个皮蛋?
12.用1分、2分和5分硬币凑成1元钱,共有多少种不同的凑法。

小学奥数:列不定方程解应用题.专项练习及答案解析

小学奥数:列不定方程解应用题.专项练习及答案解析

列不定方程解应用题教学目标1、熟练掌握不定方程的解题技巧2、能够根据题意找到等量关系设未知数解方程3、学会解不定方程的经典例题知识精讲一、知识点说明历史概述不定方程是数论中最古老的分支之一.古希腊的丢番图早在公元3世纪就开始研究不定方程,因此常称不定方程为丢番图方程.中国是研究不定方程最早的国家,公元初的五家共井问题就是一个不定方程组问题,公元5世纪的《张丘建算经》中的百鸡问题标志着中国对不定方程理论有了系统研究.宋代数学家秦九韶的大衍求一术将不定方程与同余理论联系起来.考点说明在各类竞赛考试中,不定方程经常以应用题的形式出现,除此以外,不定方程还经常作为解题的重要方法贯穿在行程问题、数论问题等压轴大题之中.在以后初高中数学的进一步学习中,不定方程也同样有着重要的地位,所以本讲的着重目的是让学生学会利用不定方程这个工具,并能够在以后的学习中使用这个工具解题。

二、运用不定方程解应用题步骤1、根据题目叙述找到等量关系列出方程2、根据解不定方程方法解方程3、找到符合条件的解模块一、不定方程与数论【例 1】把2001拆成两个正整数的和,一个是11的倍数(要尽量小),一个是13的倍数(要尽量大),求这两个数.【考点】列不定方程解应用题【难度】3星【题型】解答【解析】这是一道整数分拆的常规题.可设拆成的两个数分别为11x和13y,则有:3-3-3.列不定方程解应用题.题库教师版11132001x y +=,要让x 取最小值,y 取最大值.可把式子变形为:2001111315312132122153131313x x x x y x -⨯+-++===-+,可见12213x +是整数,满足这一条件的x 最小为7,且当7x =时,148y =. 则拆成的两个数分别是71177⨯=和148131924⨯=.【答案】则拆成的两个数分别是77和1924.【巩固】 甲、乙二人搬砖,甲搬的砖数是18的倍数,乙搬的砖数是23的倍数,两人共搬了300块砖.问:甲、乙二人谁搬的砖多?多几块?【考点】列不定方程解应用题 【难度】3星 【题型】解答【解析】 设甲搬的是18x 块,乙搬的是23y 块.那么1823300x y +=.观察发现18x 和300都是6的倍数,所以y 也是6的倍数.由于3002313y <÷≈,所以y 只能为6或12. 6y =时18162x =,得到9x =;12y =时1824x =,此时x 不是整数,矛盾.所以甲搬了162块,乙搬了138块,甲比乙搬得多,多24块.【答案】甲比乙搬得多,多24块【巩固】 现有足够多的5角和8角的邮票,用来付4.7元的邮资,问8角的邮票需要多少张?【考点】列不定方程解应用题 【难度】3星 【题型】解答【解析】 设5角和8角的邮票分别有x 张和y 张,那么就有等量关系:5847x y +=. 尝试y 的取值,当y 取4时,x 能取得整数3,当y 再增大,取大于等于6的数时,x 没有自然数解.所以8角的邮票需要4张.【答案】8角的邮票需要4张【例 2】 用十进制表示的某些自然数,恰等于它的各位数字之和的16倍,则满足条件的所有自然数之和为___________________.【考点】列不定方程解应用题 【难度】3星 【题型】解答【关键词】北大附中,资优博雅杯【解析】 若是四位数abcd ,则()161636<1000a b c d ⨯+++⨯≤,矛盾,四位以上的自然数也不可能。

六年级奥数试题及答案:不定方程问题(高难度)

六年级奥数试题及答案:不定方程问题(高难度)

六年级奥数试题及答案:不定方程问题(高难度)一个卖牛奶的人告诉两个小学生:这儿的一个钢桶里盛着水,另一个钢桶里盛着牛奶,由于牛奶乳脂含量过高,必须用水稀释才能饮用.现在我把A桶里的液体倒入B桶,使其中液体的体积翻了一番,然后我又把B桶里的液体倒进A桶,使A桶内的液体体积翻番.最后,我又将A桶中的液体倒进B桶中,使B桶中液体的体积翻番.此时我发现两个桶里盛有同量的液体,而在B桶中,水比牛奶多出1升.现在要问你们,开始时有多少水和牛奶,而在结束时,每个桶里又有多少水和牛奶?考点:不等方程的分析求解.分析:假设一开始A桶中有液体x升,B桶中有y升,第一次将A桶的液体倒入B桶后,B桶有液体2y升,A桶剩(x-y)升;第二次将B桶液体倒入A桶后,A桶有液体2(x-y)升,B桶是(3y-x)升,第三次将A桶的液体倒入B桶后,B桶有液体(6y-2x)升,A桶剩下(3x-5y)升,由此时两桶的液体体积相等,可得方程3x-5y=6y-2x,整理可以得出5x=11y,所以x:y=11:5,据此再进行推理即可解答问题.解答:解:设一开始A桶中有液体x升,B桶中有y升,第一次将A桶的液体倒入B桶后,B桶有液体2y升,A桶剩(x-y)升;第二次将B桶液体倒入A桶后,A桶有液体2(x-y)升,B桶是(3y-x)升,第三次将A桶的液体倒入B桶后,B桶有液体(6y-2x)升,A 桶剩下(3x-5y)升,由此时两桶的液体体积相等,可得方程:3x-5y=6y-2x,整理可以得出5x=11y,所以x:y=11:5,现在还不知道A桶中装的是水还是牛奶,可以将牛奶稀释的过程列成下表:由上表看出,B桶中的液体,原来A桶液体与原来B桶液体的比是5:3,而题目中说水比牛奶多1升,所以原来A桶中是水,B桶中是牛奶,因为在5:3中,5-3 相当于1升,所以2个单位相当于1升,所以A桶中原有水11/2升,B桶中原有牛奶5/2升;结束时,A桶中有3升水和1升牛奶,B桶中有5/2升水和3/2升牛奶.点评:解答此题的关键是,根据题意,设出未知数,再根据所给出的信息,列出方程或不定方程,解答即可,难度较大.。

列不定方程解较复杂的应用题

列不定方程解较复杂的应用题

列不定方程解较复杂的应用题(一)同学们好!这周和同学研究如何列不定方程解较复杂的应用题。

什么是不定方程?怎样列不定方程解应用题呢?下面先通过实例让同学们在教与学的过程中掌握思路,学会方法。

(一)思路指导:例1. 李丽新年用13元买2元一张和3元一张的两种贺年片,请你算一算李丽两种贺年片各买了几张?分析与解答:根据题目的条件和问题,可做出如下解答:解:设买2元一张的贺年片张,买3元一张的贺年片张,于是可得方程为:然后进行讨论,为了使是整数,都可以取哪些整数呢?当时,时,所以原不定方程有两个整数解:答:李丽买来2元一张贺年片2张、3元一张贺年片3张,或者买来2元一张贺年片5张,3元一张贺年片1张。

像例1这样题目中有两个未知数,但是却只有一个等量关系,也就是说只能列出一个方程,如,这样,一个方程中含有两个或两个以上的未知数的方程,叫做不定方程,所谓不定方程,是指这个方程的解是不固定的。

任意给一个值,都可以得出相应的值。

因此不定方程一般都有无数组解。

如,可以有如下组解:当但结合题目实际的情况买贺年片的张数应该是整数才可以,所以只有上述两组解符合题意。

通过上面的研究,你知道什么是不定方程了吗?又怎么样用不定方程解应用题吗?请看例2,边阅读边思考用不定方程解应用题的思路和步骤是怎样的。

例2. 大汽车能容纳54人,小汽车能容纳36人,现在有378人,问要大小汽车几辆才能使每个人都上车,且每个车正好坐满?分析与解答:根据题意,此题用不定方程解较为简捷。

(1)解:设大汽车有辆,小汽车有辆。

(2)列方程根据等量关系(3)整理变形(4)讨论符合题意的解当答:1辆大汽车和9辆小汽车或3辆大汽车和6辆小汽车或5辆大汽车和3辆小汽车。

例3. 学校打算安装一条42米长的自来水管道,准备使用3米和5米长的两种自来水管,在不截断自来水管的情况下,要尽可能多地使用5米长的管子,两种水管各需几根?分析与解答:根据题意,该题可用列不定方程的方法求解。

用不定方程解应用题.doc

用不定方程解应用题.doc

用不定方程解应用题用不定方程或不定方程组解具体的应用题时,要注意题中的条件限定或其它具体要求,根据实际情况给出符合题目的答案。

例1:求不定方程:6X+8Y=46的自然数解。

<分析与解答>1A、求不定方程的自然数解:3X+8Y=100 X1= X2= X3= X4=Y1= Y2= Y3= Y4=1B、不定方程:2X+5Y=80有()组自然数解。

例2:求下列不定方程的自然数解:(1) 2/3X+1/5Y=10 (2) X+Y+Z=503X+2Y+1/2Z=502A、求下列各不定方程的自然数解:(1)1/3X+3/4Y=10X1= X2= X3=Y1= Y2= Y3=(2) X+Y+Z=257X+9Y+4Z=200X1= X2=Y1= Y2=Z1= Z2=2B、(1)不定方程:1.2X+0.4Y=20,有( )组自然数解。

(2)不定方程组:2X+3Y-4Z=34 的自然数解共有()组, X+Y+Z和的最小值是()。

X+2Y+4Z=66例3:学校准备安装一条42米长的自来水管道,可是仓库里只有3米长和5米长两种同样口径的钢管。

在不截断钢管的情况下,如果尽可能地使用5米长的钢管,那么两种钢管各需要多少根?3A、大桶能盛油5千克,小桶能盛油3千克。

现有花生油50千克,需要大小桶总数最多是大()只,小()只。

3B、小刚问小亮:“你养了几只兔几只鸡?”小亮说:“我养的兔比鸡多,鸡兔一共24条腿,你猜我养了几只兔几只鸡?”小亮养了()只兔和()只鸡。

例4:图书馆王老师去书店购买文艺书,科技书和外语书共55本,其中文艺书比科技书的本数多1倍,外语书只买了十几本。

三种书王老师各买了多少本?<分析与解答>4A、龙游艺术小学组队参加舞蹈、唱歌、演奏比赛的共81人,其中舞蹈的学生比演奏的多1倍,唱歌的人数接近40人。

参加舞蹈比赛的有( )人,参加唱歌比赛的有( )人,参加演奏比赛的有( )人。

4B、水果商店运进苹果、梨和桔子总价值1000元,其中萍果每箱5元,桔子每箱8元,梨每箱10元,桔子的箱数是萍果的3倍,梨大约四十几箱。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

年 级
六年级 学 科 奥数 版 本 内容标题
列不定方程解较复杂的应用题(一)
编稿老师
石翠花 【本讲教育信息】
一. 教学内容:
列不定方程解较复杂的应用题(一)
同学们好!这周和同学研究如何列不定方程解较复杂的应用题。

什么是不定方程?
怎样列不定方程解应用题呢?
下面先通过实例让同学们在教与学的过程中掌握思路,学会方法。

(一)思路指导:
例1. 李丽新年用13元买2元一张和3元一张的两种贺年片,请你算一算李丽两种贺年片各买了几张?
分析与解答:根据题目的条件和问题,可做出如下解答:
解:设买2元一张的贺年片x 张,买3元一张的贺年片y 张,于是可得方程为: 2313x y +=
2133x y =-
x y =-1332
然后进行讨论,为了使x 是整数,y 都可以取哪些整数呢?
当y =1时,x =
-⨯=13312
5 y =3时,x =-⨯=133322 所以原不定方程有两个整数解:x y x y ==⎧⎨⎩==⎧⎨⎩23
51 答:李丽买来2元一张贺年片2张、3元一张贺年片3张,或者买来2元一张贺年片5
张,3元一张贺年片1张。

像例1这样题目中有两个未知数,但是却只有一个等量关系,也就是说只能列出一个方程,如2313x y +=,这样,一个方程中含有两个或两个以上的未知数的方程,叫做不定方程,所谓不定方程,是指这个方程的解是不固定的。

任意给x 一个值,都可以得出相应y 的值。

因此不定方程一般都有无数组解。

如2313x y +=,可以有如下组解:
当y x y x y x y x ==⎧⎨⎩==⎧⎨⎩==⎧⎨⎩==⎧⎨⎩
1523535405.. 但结合题目实际的情况买贺年片的张数应该是整数才可以,所以只有上述两组解符合题
意。

通过上面的研究,你知道什么是不定方程了吗?又怎么样用不定方程解应用题吗?请看例2,边阅读边思考用不定方程解应用题的思路和步骤是怎样的。

例2. 大汽车能容纳54人,小汽车能容纳36人,现在有378人,问要大小汽车几辆才能使每个人都上车,且每个车正好坐满?
分析与解答:根据题意,此题用不定方程解较为简捷。

(1)解:设大汽车有x 辆,小汽车有y 辆。

(2)列方程5436378x y += 根据等量关系
(3)整理变形 3221x y +=
2213y x =-
y x =
-2132
(4)讨论符合题意的解
当x y x y x y ==⎧⎨⎩==⎧⎨⎩==⎧⎨⎩
1
93653 答:1辆大汽车和9辆小汽车或3辆大汽车和6辆小汽车或5辆大汽车和3辆小汽车。

例3. 学校打算安装一条42米长的自来水管道,准备使用3米和5米长的两种自来水管,在不截断自来水管的情况下,要尽可能多地使用5米长的管子,两种水管各需几根? 分析与解答:根据题意,该题可用列不定方程的方法求解。

如果设需用5米长的水管x 根,3米长的水管y 根,列出不定方程后,却不需要求出x 与y 的所有整数解,而只需要求出x 最大可以取几就行了。

想一想,为什么?
解:设需要5米长的水管x 根,3米长的水管y 根。

列方程:5342x y +=
3425y x =-
y x =
-4253
在能被3整除的前提下,x 最大只能取6。

当x =6时,y x y ===⎧⎨⎩
464,是方程解。

答:需要5米长的水管6根,3米长的水管4根。

例4. 一只箱子里装有蟋蟀和蜘蛛各若干只,它们共有46只脚,问箱子里各有几只? 分析与解答:根据题意可知一只蟋蟀有6只脚,一只蜘蛛有8只脚,于是可以设有蟋蟀x 只,蜘蛛y 只,列不定方程求解。

解:设箱子里有蟋蟀x 只,蜘蛛y 只,依题意,则
6846x y +=
6468x y =-
x
y y =
-
=
-468
6
234
3
由于x y
、必须都是自然数所以y只能取2和5。

当y=2时,x=
-⨯
== 2342
3
15
3
5
当y=5时,x=
-⨯
== 2345
3
3
3
1
所以原方程有两组解:
x y
x
y =
=
⎧⎨⎩
=
=



5
2
1
5
答:箱子里有5只蟋蟀,2只蜘蛛;或1只蟋蟀,5只蜘蛛。

【模拟试题】(答题时间:30分钟)
1. 甲级铅笔7角1支,乙级铅笔3角1支,用6元钱可以买两种铅笔共几支?
2. 有大小两种盒,大盒可装48粒巧克力,小盒可装30粒巧克力,现有306粒巧克力,要使每粒巧克力都装入盒内,且每盒都装满,问需大、小盒各有几个?
3. 某班48人到公园去划船,售票处规定,每只小船坐3人,每只大船坐5人,要保证每位同学都上船,而且大、小船都有,则需大船、小船各几只?
4. 有一批苹果,如果平均分给幼儿园大、小两个班的小朋友,每人可得6个,如果平均分给大班的小朋友,每人可得10个,如果平均分给小班的小朋友,每人可得几个?
【试题答案】
(三)独立完成:
1. 甲级铅笔7角1支,乙级铅笔3角1支,用6元钱可以买两种铅笔共几支?
解:设7角的铅笔买x 支,3角的铅笔买y 支,则
7360x y +=
3607y x =-
y x =-6073
x y x y ==⎧⎨⎩==⎧⎨⎩3
1366
31316+=(支) 6612+=(支) 答:共买16支铅笔或12支铅笔。

2. 有大小两种盒,大盒可装48粒巧克力,小盒可装30粒巧克力,现有306粒巧克力,要使每粒巧克力都装入盒内,且每盒都装满,问需大、小盒各有几个?
解:设大盒有x 个,小盒有y 个,则
4830306x y +=
8551x y +=
5518y x =-
y x =-5185
x y ==⎧⎨⎩27
答:大盒有2个,小盒有7个。

3. 某班48人到公园去划船,售票处规定,每只小船坐3人,每只大船坐5人,要保证每位同学都上船,而且大、小船都有,则需大船、小船各几只?
解:设需大船x 只,小船y 只。

5348x y +=
x y =-4835
x y x y x y ==⎧⎨⎩==⎧⎨⎩==⎧⎨⎩
9
166311 答:需要小船11只,大船3只;或小船6只,大船6只或小船1只,大船9只。

4. 有一批苹果,如果平均分给幼儿园大、小两个班的小朋友,每人可得6个,如果平均分给大班的小朋友,每人可得10个,如果平均分给小班的小朋友,每人可得几个? 解:设大班有x 人,小班有y 人。

()610x y x +=
y x =23(说明小班人数是大班的23
) 答:小班的小朋友每人可得15个。

相关文档
最新文档