小学数学比和比的应用练习题
小学数学比和比例问题知识汇总及解析例题
小学数学学问总结之比和比例应用题【求比的问题】例1 两个同样容器中各装满盐水。
第一个容器中盐及水的比是2∶3,第二个容器中盐及水的比是3∶4,把这两个容器中的盐水混合起来,那么混合溶液中盐及水的比是____。
〔无锡市小学数学竞赛试题〕那么混合溶液中,盐及水的比是:某电子产品去年按定价的80%出售,能获利20%,由于今年买入价降〔1994年全国小学数学奥林匹克决赛试题〕即:【比例问题】例1 甲、乙两包糖的重量比是4∶1,假如从甲包取出10克放入乙包后,甲、乙两包糖的重量比变为7∶5 那么两包糖重量的总和是____克。
〔1989年全国小学数学奥林匹克初赛试题〕例2 甲容器中有纯酒精11升,乙容器中有水15升,第一次将甲容器中的一部分纯酒精倒入乙容器,使酒精及水混合。
第二次将乙容器中的一部分混合液倒入甲容器。
这样甲容器中纯酒精含量为62.5%,乙容器中纯酒精含量为25%,那么,第二次从乙容器倒入甲容器的混合液是____升。
〔1991年全国小学数学奥林匹克决赛试题〕讲析:因为如今乙容器中纯酒精含量为25%,所以,乙容器中酒精及水的比为25%∶〔1-25%〕=1∶3第一次从甲容器中倒5升纯酒精到乙容器,才使得乙容器中纯酒精及水的比恰好是5∶15=1∶3又甲容器中纯酒精含量为62.5%,那么甲容器中酒精及水的比为62.5%∶〔1-62.5%〕=5∶3第二次倒后,要使甲容器中纯酒精及水的比为5∶3,不妨把从甲容器中倒入乙容器的混合液中纯酒精作1份,水作3份。
那么甲容器中剩下的纯酒精便是11-5=6〔升〕6升算作4份,这样可恰好配成5∶3。
而第二次从乙容器倒入甲容器的混合液共为1+3=4〔份〕,所以也应是6升。
一.比的意义和性质〔1〕比的意义两个数相除又叫做两个数的比。
“:〞是比号,读作“比〞。
比号前面的数叫做比的前项,比号后面的数叫做比的后项。
比的前项除以后项所得的商,叫做比值。
同除法比较,比的前项相当于被除数,后项相当于除数,比值相当于商。
小升初比和比例应用题专题练习(应用题)人教版六年级下册数学
人教版小升初比和比例应用题专题练习学校:___________姓名:___________班级:___________考号:___________一、解答题1.希望小学六年级学生中,男生与女生的人数比为7∶5,又转来15名男生,这时男生与女生的人数比为3∶2。
希望小学六年级现在有多少名学生?2.下面是三名同学某次足球练习情况。
姓名射门/次射中/次张晓156李欣105王浩1810(1)张晓的射中次数与射门次数的比是(),比值是()。
(2)李欣的射中次数与射门次数的比是(),比值是()。
(3)王浩的射中次数与射门次数的比是(),比值是()。
(4)马上举行全省小学生足球赛,各个小学推荐一名优秀的足球选手。
如果你是体育老师,你会推荐谁去?为什么?3.甲、乙、丙三人参加长跑比赛,甲和乙速度比是3:4,乙和丙速度的比是2∶5,求甲、乙、两三人速度的比.4.五(1)班男、女生人数比是12:11,又转来4名女生后,全班共有50人,求现在男、女生的人数比?5.某工厂有三个车间,第一车间人数与总数的比是1∶4,第二车间人数是第三车间的78。
第一车间比第三车间少21人,这个工厂一共有多少人?6.园林绿化队要栽一批树苗,第一天栽了总数的15%,第二天栽了76棵,这时剩下的与已栽的棵数的比是3:5.这批树苗一共有多少棵?7.新学期,六(一)班购置图书50本,要分给班上的男生和女生,男生人数和女生人数的比是1∶4,男生和女生各能分到多少本书?8.老师给班里买了90本儿童读物,按4∶5分别借给一组和二组。
这两个组各借书多少本?(用两种方法解答)9.一台播种机第一次工作3时,播种17100m2;第二次工作4时,播种22800m2,分别写出每次播种的面积和工作时间的比,你认为它们能组成比例吗?为什么?10.两个外项的积加上两个内项的积结果是120,其中一个内项是最小的质数,一个外项是最小的合数,请你写出所有符合条件的比例。
11.五一假期,郑磊和爸爸妈妈自驾去外地看外婆。
2023-2024人教版六年级数学上册第四单元比应用题练习题
2023-2024人教版六年级数学上册第四单元比应用题练习题1.解放路小学六(1)班暑假组织学生参加游泳和乒乓球训练,全班无一人不参加,已知参加乒乓球训练的人数与两项都参加的人数比是12:7,只参加游泳的人数是参加乒乓球训练人数的14,只参加乒乓球训练的人数比只加游泳的人数多6人,求两项都参加的人数.2.两桶油,第一桶里的油比第二桶多18千克。
从第二桶倒出17千克后,第二桶与第一桶的比是4:9。
两桶油原来各有多少千克?3.甲、乙两组共有54人,甲组人数的14与乙组人数的15相等,甲组比乙组少多少人?4.甲、乙两包糖的质量比是3:4,如果从甲包取50克放入乙包,则两包的质量比是2:5,求两包糖的总质量。
5.甲、乙两人本月工资收入的比值是3:5,他们又都获得了1000元的奖金,由此他们本月收入的比值为2:3。
问:他们本月的工资收入各是多少元?6.一个最简分数,分子与分母的和是62.若分子减去1,分母减去7,所得新分数约分后为27,原分数是多少?7.有一些篮球和足球,其中篮球与足球的数量之比是4:5.若篮球有20个,那么足球有多少个?若篮球与足球共有63个,那么篮球和足球各有多少个?8.一个三角形的三个内角之比是2:3:4,求这个三角形三个内角的度数。
9.甲、乙两袋糖的重量比是4:1,从甲袋中取出13千克糖放入乙袋,这时两袋的重量比为7:5,求两袋糖的重量之和。
10.一批化肥第一次运走了18吨,第二次运走了总数的14,剩下的化肥与运走的化肥重量比是9:11,这批化肥共有多少吨?11.甲工程队原有人数是乙工程队的27。
现在从乙工程队派28人到甲工程队,那么甲、乙两工程队的人数之比是5:7,两个工程队原来各有多少人?12.已知甲比乙小5,甲数的34等于乙数的23,请问:甲数是多少?13.装配车间有两个小组,甲组与乙组人数的比是5:3,如果从甲组调出14人到乙组,这时甲组与乙组人数的比例是1:2,原来两个小组各有多少人?14.学校里篮球和足球个数的比是4:5,排球的个数是足球的35。
小学6年级数学比、比的认识专项训练习题含答案
比的认识专项训练一一、单选题1.已知y=2.5x,那么x与y的最简整数比是( )。
A. 1:2.5B. 2.5:1C. 5:2 D. 2:52.行驶相同的路程,甲车用了5小时,乙车用了6小时,甲乙两车的速度比是()A. 5:6B. 6:5C. :D. 不能确定3.把10克糖溶解在100水中,糖与糖水的比是()A. 1∶10B. 1∶11C. 11∶14.将甲组人数的拨给乙组,则甲、乙两组人数相等.原来甲、乙两组人数的比是( )A. 5:1B. 5:3C. 5:45.两个圆的半径比是2:3,那么两个圆的面积比是()。
A. 4:9B. 2:3C. 3:26.甲数和乙数的比是4∶7,甲数是乙数的()A. B. C.7.糖占糖水的,糖与水的比是()A. 1:5B. 1:4C. 1:6 D. 无法确定二、判断题8.男生人数的与女生人数相等,男生与女生人数的比是5:6。
()9.加工一批零件,甲需要10天完成,乙需要12天完成,甲与乙的工作效率比是5:6.()10.买同样重的苹果和梨,买苹果用了6元,买梨用了5元,那么苹果和梨的单价比是6:5。
()11.男、女运动员人数的比是5:6,女运动员占运动员总数的。
()12.如果A:B=2:5,那么A=2,B=5。
()三、填空题13.一杯牛奶,牛奶与水的质量比是1∶4,喝掉一半后,这时牛奶与水的质量比是________。
14.下图中,阴影部分的面积是大圆面积的,是小圆面积的,大圆和小圆面积的比是________。
15.正方形周长与一条边长的比是________。
16.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
________ (2)写出甲、乙两队工作效率比,并化简。
________17.甲数是0.75,乙数是2,甲数与乙数的最简整数比是________.18.甲乙两人制造机器零件个数的比是11∶16,已知甲制造零件132个,乙制造零件________个.19.小明的妈妈在自家的墙根下用 12 米长的篱笆围成一个长方形鸡舍(如图),鸡舍的长宽之比为 2:1,这个鸡舍的面积是________。
(完整版)小学六年级数学比和比例综合练习题
比和比率姓名( )得分()一、 填空:1. 甲乙两数的比是 11:9, 甲数占甲、乙两数和的() ,乙数占甲、乙两数和的 ()。
甲、( )( ) 乙两数的比是 3:2 ,甲数是乙数的()倍,乙数是甲数的() 。
( )2. 某班男生人数与女生人数的比是3,女生人数与男生人数的比是(),男生人数4和女生人数的比是()。
女生人数是总人数的比是()。
3. 一本书,小明计划每日看2,这本书计划()看完。
74. 一根绳长 2 米,把它均匀剪成5 段,每段长是()米,每段是这根绳索的() 。
( )( )5. 王老师用 180 张纸订 5 本簿本,用纸的张数和所订的簿本数的比是(),这个比的比值的意义是( )。
6. 一个正方形的周长是8米,它的面积是()平方米。
57.9吨大豆可榨油1吨, 1 吨大豆可榨油()吨,要榨 1 吨油需大豆()吨。
838. 甲数的 2等于乙数的2,甲数与乙数的比是()。
359. 把甲数的 1给乙,甲、乙两数相等,甲数是乙数的(),甲数比乙数多() 。
7 ()()10. 甲数比乙数多 1,甲数与乙数比是()。
乙数比甲数少() 。
4( )11. 在 6 :5 = 1.2 中,6 是比的(),5 是比的(),1.2 是比的( )。
在 4 :7 =48 :84 中, 4 和 84 是比率的(),7 和 48 是比率的()。
12. 4 :5=24 ÷()= () :1513. 一种盐水是由盐和水按 1 : 30 的重量配制而成的。
此中,盐的重量占盐水的(—) ,水的重量占盐水的 (—)。
图上距离 3 厘米表示实质距离 180 千米,这幅图的比率尺是( )。
一幅地图的比率尺是图上 6 厘米表示实质距离 ()千米。
实质距离 150 千米在图上要画( )厘米。
14. 12 的约数有(),选择此中的四个约数,把它们构成一个比例是()。
写出两个比值是 8 的比()、()。
15. 加工部件的总个数必定,每小时加工的部件个数的加工的时间()比率;订数学书的本数与所需要的钱数(的部件和没有加工的部件个数(16. 假如 x ÷ y =712 ×2,那么 x 和y 成()比率;加工部件的总个数必定,已经加工)比率。
小学数学青岛版六年级上册比和比的应用分类练习题
小学数学青岛版六年级上册比和比的应用练习题一、填空题:1、六( 1)班有男生 20 人,女生 30 人,男生与女生人数的比是(),男生与总人数的比是()。
2、甲数是乙数的3/4,甲数与乙数的比是()。
3、一本书,看了2/3,看了的与没看的比是()。
4、一辆汽车 6 小时行了360 千米,这辆汽车行驶的行程和时间的比是(),比值是(),比值表示(),这辆汽车行驶的时间和行程的比是(),比值是(),比值表示()。
5、3: 8=()÷24=24÷() =()(分数) = ()(小数)6、甲数的 5/6 等于乙数的 2/3,甲数与乙数的比是()7、甲、乙、丙三个数的均匀数是60。
甲、乙、丙三个数的比是3︰ 2︰1。
甲、乙、丙三个数分别是()、()、()。
8、一个直角三角形的两个锐角度数的比是2︰ 1,这两个锐角分别是()度,()度。
9、甲数除以乙数的商是,甲乙两数的最简整数比是()。
10、两个连续的偶数的和是74,这两个偶数的最简比是()。
11、小明 2 小时行 5km,小华 3 小时 7km,小明和小华所行时间的比是():(),小明和小华所行行程的比是():()12、六( 1)班有男生 25 人,女生 20 人,男生和女生人数的最简整数比是():(),女生和全班人数的比是():()13、():6:()14、9÷()=0.6=():20=30:( )15、一项工程,甲队独自做 5 天达成,乙队独自做 7 天达成,甲乙两队独自达成这项工程的时间比是():(),每日达成的工作量的比是():()。
16、甲乙两数的比是 4:5,假如甲乙两数的和是45,甲数是();假如和是 81,甲数是()。
二、化简比并求比值24∶ 32 56∶∶0.8 ∶1、两个同样的瓶子都装满了酒精溶液,一个瓶中酒精与水的体积比是 3 :1,另一个瓶中酒精与水的体积比是 4 :1。
假如把这两个瓶中酒精溶液混淆,混淆溶液中酒精和水的比是()。
新人教版数学 六年级 上册 比的应用题分类练习+题型分类
比的应用题分类练习一、已知两个数的和与比求这两个数1、红花和黄共共70朵,红花与黄花的比是2:5,求红花与黄花各是多少朵?2、一个三角形的三个内角的比是2:3:4,这三个内角的度数分别是多少?3、一桶重200克的盐水,盐和水的质量比是1:24,要使盐和水的质量比是1:29,要加多少克水?4、一班有60人,二班有80人,从一班调多少人到二班,两班人数比才能为2:3?二、已知两个数的差与比,求这两个数。
1、红花比黄花多20朵,红花与黄花的比是7:3,求红花与黄花各是多少朵?2、大母鸡和小母鸡的生蛋数量比是10:9,大鸡比小鸡多生2个蛋,大、小母鸡各生几个蛋?3、妈妈买回来一些苹果和香蕉,苹果和香蕉重量的比是3:2.已知苹果比香蕉多0.5千克,两种水果各有多少千克?4、一批作业本按2:3分给甲乙两班,结果甲班比乙班少分60本,这批作业本共多少本?5、制作一种零件,甲要5分钟,乙要10分钟,丙要8分钟,现三人共做这种零件若干个,甲比丙多做24个,这批零件共多少个?三、已知一个数与比,求另一个数。
1、红花有朵,红花与黄花的比是4:7,求黄花有多少朵?2、商店运来一批冰箱,卖出18台,卖出的台数与剩下台数比是3:2,商店共运来多少台冰箱?3、小伟和小英给希望工程捐款钱数的比是2 :5。
小英捐了35元,小伟捐了多少元?4、一个鱼塘按1:2:3养殖草鱼,鲤鱼,白鲢鱼,已知鲤鱼养了6666尾,草鱼,白鲢鱼各养了多少尾?15、一块合金中,铜,锌的比是3:2 ,其中这块合金中含铜6克,合金中含锌多少克?四、把间接的分配量转化为直接的分配量1、一个长方体棱长总和为 96 厘米,长、宽、高的比是3∶2 ∶1 ,这个长方体的体积是多少?2、王伯伯家里的菜地一共有800平方米,准备用 200平方米种西红柿。
剩下的按2︰1的面积比种黄瓜和茄子,三种蔬菜的面积分别是多少平方米?3、用28米长的铁丝围成一个长方形,这个长方形的长与宽的比是5:2,这个长方形的长和宽各是多少?4、一块长方形菜地周长320米,长与宽的比是9:7,这块菜地的面积?五、把比转化成分率,总量不变1、甲乙两仓化肥的比是7:5,甲仓运出26吨到乙仓,这时甲乙两仓化肥比是3:4,甲乙两仓原来化肥各多少吨?2、小兰,小红的图书比是5:3,小兰给小红15本后,两人图书本数相同,两人原来各有多少本图书?3、有三箱水果共重60千克,如果从第一,二箱各拿出3千克放入第三箱中,则三箱重量比是1:2:3,求三箱水果原来各重多少千克?4、小明看一本故事书,第一天看的与剩下的比是1:8,第二天看了24页,两天看了的页数与剩下页数的比是1:4,这本书共有多少页?5、甲乙两校原来图书比是7:5,如果甲校给乙校650本,甲乙两校图书本数比是3:4,原来甲校有多少本图书?6、甲乙两个车间原来人数比为4:3,甲四间调48人到乙车间后,甲乙两个车间人数比为2:3,两车间原来各有多少人?7、有三桶油共重45千克,如果从第一,第二桶中都取出2.5千克倒入第三桶,这时一,二,三桶油重量之比是1:2:3。
奥数题专题训练之比和比例应用题
比和比例比和比例比和比例一直是学数学容易弄混的几大问题之一,其实它们之间的问题完全可以用一句话概括:比,等同于算式中等号左边的式子,是式子的一种如:a:b;比例,由至少两个称为比的式子由等号连接而成,且这两个比的比值是相同如:a:b=c:d;所以,比和比例的联系就可以说成是:比是比例的一部分;而比例是由至少两个比值相等的比组和而成的;比的意义是两个数的除又叫做两个数的比,而比例的意义是表示两个比相等的是叫做比例;比是表示两个数相除,有两项;比例是一个等式,表示两个比相等,有四项;比和比例的意义也不同;比和比例应用题例1、生产队饲养的鸡与猪的只数比为26∶5,羊与马的只数比为25∶9,猪与马的只数比为10∶3;求鸡、猪、马和羊的只数比;分析该题给出了三个单比,要求写出它们的连比;将几个单比写成连比,关键是利用比的基本性质将各个比中表示同一个量的值化为相同的值;解由题设,鸡∶猪=26∶5,羊∶马=25∶9,猪∶马=10∶3,由比的基本性质可得:猪∶马=10∶3=30∶9,羊:马=25∶9,鸡:猪=26∶5=156∶30,从而鸡∶猪∶马∶羊=156:30∶9∶25;答:鸡、猪、马、羊的只数比为156∶30∶9∶25;注将单比化为连比时,还可先化为三个量的连比,再化为四个量的连比;如,鸡∶猪=26∶5,猪∶马=10∶3,由此可得,鸡∶猪∶马=52∶10∶3;再注意到羊∶马=25∶9可得,鸡∶猪∶马∶羊=156∶30∶9∶25;例2.下列各题中的两个量是否成比例若成比例,请说明成正比例还是成反比例;1路程一定时,速度与时间;2速度一定时,路程与时间;3播种面积一定时,总产量与单位面积的产量;4圆的面积与该圆的半径;5两个相互啮合的大小齿轮,它们的转速与齿数;分析利用正比例、反比例的概念进行判定与说明;解 1由于速度与时间的乘积等于路程,所以,当路程一定时,速度与时间成反比例;2由于路程与时间的比值为速度,所以,当速度一定时,路程与时间成正比例;3由于总产量与单位面积的产量的比值为播种面积,所以,当播种面积一定时,总产量与单位面积的产量成正比例;4设圆的半径为R,则圆的面积为∏R2,所以圆的面积与半径的积为∏R3,随半径的变化而变化,即圆的面积与半径不成反比例;而圆的面积与半径的比值为∏R,也随半径的变化而变化,即圆的面积与半径不成正比例;综上,圆的面积与半径不成比例;5由于齿轮的转速与齿数的积等于单位时间内齿轮转过的总齿数,而两个相互咬合的大小齿轮在单位时间内转过的总齿数相等,所以,它们的转速与齿数成反比例;注若两个相关联的量成正比例,则一个量变大小时,另一个量也变大小;若两个相关联的量成反比例,则一个量变大小时,另一个量反而变小大;因此,在上例的4中,注意到半径愈大,圆的面积也愈大,故只需判断圆的面积与半径不成正比例,就可断定圆的面积与半径不成比例;例3 某小学共有学生697人,已知低年级学生数的1/2等于中年级学生数的2/5,低年级学生数的1/3等于高年级学生数的2/7,求该校低、中、高年级各有多少名学生分析由题设条件可得低、中、高各年级的学生数的比,从而可按比例分配求得各年级的学生数;解设低年级的学生数为“1”,则中年级的学生数为1/2÷2/5=5/4,高年级的学生数为1/3÷2/7=7/6手:舌,从而,低、中、高年级的学生数的比为:低∶中∶高=1∶5/4∶7/6=12∶15∶14,按比例分配得,低年级学生数:697×12/12+15 +14=204人,中年级学生数:697×15/12+15 +14=255人,高年级学生数::697×14/12+15 +14=238人;答:该校低、中、高年级的学生数分别为204人、255人、238人;注按比例分配时,可先出每份对应的量,再求出相应的量;如:697÷12+15+17 =17人;从而,低年级有17×12=204人,中年级有17×15=255人,高年级有17×14=238人;例 4 雏鹰小分队为“希望小学”搞了一次募捐活动;她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5∶6,乙商品与丙商品的数量之比为4∶11,且购买丙商品比购买甲商品多花了210元,求这次募捐所得的钱数;分析根据已知条件可先求出甲、乙、丙三种商品的数量比;即甲、乙、丙三种商品的份数比,再根据甲、丙商品的份数关系及单价,求出每份商品的实际数量,从而求出甲、乙、丙商品的数量,由此可得募捐所得的钱数;解已知:甲商品数∶乙商品数=5:6,乙商品数∶丙商品数=4∶11;于是,甲商品数∶乙商品数∶丙商品数=10∶12∶33,即甲、乙、丙商品分别有10份、12份、33份;由于购买丙商品比购买甲商品多花210元,所以,每份的商品数为210÷10×33—30×10 =7件;于是,甲商品数为:7×10=70件,乙商品数为:7×12=84件,丙商品数为:7×33=231件;由此,募捐所得到的钱数为:30×70+15×84+10×231=5670元.答:募捐所得到的钱为5670元;“比和比例”应用题错解例析2008-05-07 作者:佚名来源:网友投稿例1某车间要加工2220个零件,单独做,甲、乙、丙三人所需工作时间的比是4∶5∶6;现在由三人共同加工,问完成任务时,三人各加工了多少个错解由甲、乙、丙三人单独做所需工作时间的比是4∶5∶6,推出甲、乙、丙三人工作效率的比是6∶5∶4,用按比例分配的思路解;评析上述解答错在把甲、乙、丙三人工作效率的比看成是6∶5∶4;诚然,如果甲、乙二人工作时间的比是4∶5,那么,甲、乙二人工作效率的比就是5∶4,这是正确的;但是,把甲、乙、丙三人工作时间的连比是4∶5∶6转化成甲、乙、丙三人工作效率的连比是6∶5∶4,那就大错了不错,工作效率的比等于工作时间比的反比;从已知条件看,甲、乙二人工作时间的比是4∶5,所以,甲、乙二人工作效率的比是5∶4;乙、丙二人工作时间的比是5∶6,所以,乙、丙二人工作效率的比是6∶5;这里的“5∶4”表示甲5份,乙4份,“6∶5”表示乙6份,丙5分,两个比都是两重相比,其中同样表示“乙”有几份的数在前后两个比中并不相同,我们怎么能将这两个比直接变成甲、乙、丙三人工作效率的连比呢显然,上述解答中把甲、乙、丙三人工作效率的连比看成是6∶5∶4,是错误的;正确的解答应当是:甲、乙、丙三人工作效率的比=容易看出,因为5∶4=15∶12,6∶5=12∶10,所以,由上述“甲、乙二人工作效率的比是5∶4,乙、丙二人工作效率的比是6∶5”,也可以得到甲、乙、丙三人工作效率的比是是15∶12∶10;例2有两瓶同样重的盐水,甲瓶盐水盐与水重量的比是1∶8,乙瓶盐水盐与水重量的比是1:5;现将两瓶盐水并在一起,问在混合后的盐水中盐与水重量的比是多少错解认为在甲瓶盐水中,盐的重量是“1”,水的重量是“8”,在乙瓶盐水中,盐的重量是“1”,水的重量是“5”,于是,将两瓶盐水并在一起,便得到盐的重量是1+1=2,水的重量是8+5=13;1+1∶8+5=2∶13答:在混合后的盐水中盐与水重量的比是2∶13;评析上述解答的主要错误是把两种物质重量的最简比,看成了就是两种物质具体重量的比;甲瓶盐水盐与水重量的比是1∶8,不等于说在这瓶盐水中盐的重量是1千克,水的重量是8千克,乙瓶的情况也是一样;从已知条件可以看出,在甲瓶盐水中,盐有1份,水有8份,盐和水一共有1+8=9份,在乙瓶盐水中,盐有1份,水有5份,盐和水一共有1+5=6份;因为两瓶盐水是“同样重”,但甲瓶有9份,乙瓶只有6份,所以,可见两瓶盐水中每“1份”的重量有多少是不相同的;上述解答简单地将两瓶盐水中每份重量不同的盐和水的份数分别相加,然后再将两个“和”组成一个比,便造成了解答的错误;正确的解答是:1∶8=2∶16,2+16=18;1∶5=3:15,3+15=10;2+3∶16+15=5:31答:在混合后的盐水中盐与水重量的比是5∶31;小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1练习甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元;已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元;提示:根据已知条件可先求三种商品的数量比;练习一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克元,混合前的酥糖每千克是多少元例3、A、B、C是三个顺次咬合的齿轮;当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例;习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个。
六年级数学比和比例应用题专项
比和比例应用题1、房产博览会上;某楼盘的模型是按照1:500的比例尺制作的;该楼盘1号楼模型高7厘米;它的实际高度是多少2、兰州到乌鲁木齐的铁路长约1900千米3、修一条长12千米的公路;开工3天修了1.5千米..照这样计算;修完这条路还要多少天4、专业户刘大伯家养鸡、鸭、鹅共1800只;这三种家禽的只数比是5:3:1..刘大伯家养鸡、鸭、鹅各多少只5、把一批书按4:5:6的比例分给甲、乙、丙三个班;已知甲班比丙班少分到24本;三个班各分到多少本书6、亮亮家造了新房;准备用边长是0.4米的正方形地砖装饰客厅地面;这样需要180块;装修老师建议改用边长0.6米的正方形地砖铺地..请你算一算需要多少块7.一艘轮船以每小时40千米的速度从甲港开往乙港;行了全程的20 后;又行驶了1小时;这时未行路程与已行路程的比是3:1..甲乙两港相距多少千米8.建筑工人用水泥、沙子、石子按2:3:5配制成96吨的混凝土;需要水泥、沙子、石子各多少吨1.一个县共有拖拉机550台;其中大型拖拉机台数和手扶拖拉机台数的比是3:8;这两种拖拉机各有多少台2.用84厘米长的铜丝围成一个三角形;这个三角形三条边长度的比是3:4:5..这个三角形的三条边各是多少厘米3.甲、乙、丙三个数的平均数是84;甲、乙、丙三个数的比是3:4:5;甲、乙、丙三个数各是多少4.乙两个数的平均数是25;甲数与乙数的比是3:4;甲、乙两数各是多少5.一个直角三角形的两个锐角的度数比是1:5;这两个锐角各是多少度6.一块长方形试验田的周长是120米;已知长与宽的比是2:1;这块试验田的面积是多少平方米7. 一种药水是用药物和水按3:400配制成的..(1) 要配制这种药水1612千克;需要药粉多少千克(2) 用水60千克;需要药粉多少千克(3) 用48千克药粉;可配制成多少千克的药水8. 商店运来一批电冰箱;卖了18台;卖出的台数与剩下的台数比是3:2;求运来电冰箱多少台9. 纸箱里有红绿黄三色球;红色球的个数是绿色球的43;绿色球的个数与黄色球个数的比是4:5;已知绿色球与黄色球共81个;问三色球各有多少个10. 一幅地图;图上20厘米表示实际距离10千米;求这幅地图的比例尺11. 甲地到乙地的实际距离是120千米;在一幅比例尺是1:6000000的地图上;应画多少厘米12. 在一幅比例尺是1:300的地图上;量得东、西两村的距离是12.3厘米;东、西两村的实际距离是多少米13. 朝阳小学的操场是一个长方形;长120米;宽75米;用30001的比例尺画成平面图;长和宽各是多少厘米14. 在比例尺是1:6000000的地图上;量得两地之间的距离是3厘米;这两地之间的实际距离是多少千米15. 右图是一个梯形地平面图单位:厘米;求它的实际面积16. 修一条路;如果每天修120米;8天可以修完;如果每天修150米;几天可以修完用比例方法解17. 同学们做操;每行站20人;正好站18行..如果每行站24人;可以站多少行用比例方法解18. 飞机每小时飞行480千米;汽车每小时行60千米..飞机行421小时的路程;汽车要行多少小时用比例方法解19.修一条公路;每天修0.5千米;36天完成..如果每天修0.6千米;多少天可修完用比例方法解20.一个晒盐场用500千克海水可以晒15千克盐;照这样的计算;用100吨海水可以晒多少吨盐用比例方法解答21.一个车间装配一批电视机;如果每天装50台;60天完成任务;如果要用40天完成任务;每天应装多少台用比例方法解22.生产一批零件;计划每天生产160个;15天可以完成;实际每天超产80个;可以提前几天完成用比例方法解23.小明买4本同样的练习本用了元;元可以买多少本这样的练习本24.配制一种农药;药粉和水的比是1:5001 现有水6000千克;配制这种农药需要药粉多少千克2 现有药粉千克;配制这种农药需要水多少千克25.两个底面积相等的长方体;第一个长方体与第二个长方体高的比是7:11;第二个长方体的体积是144立方分米;第一个长方体的体积是多少立方分米26.园林绿化队要栽一批树苗;第一天栽了总数的15 ;第二天栽了136棵;这时剩下的与已栽的棵数的比是3:5..这批树苗一共有多少棵比的应用练习题难点部分1、两个相同的瓶子都装满了酒精溶液;一个瓶中酒精与水的体积比是 3 :1;另一个瓶中酒精与水的体积比是4 :1..如果把这两个瓶中酒精溶液混合;混合溶液中酒精和水的比是 ..2、五角人民币与贰角人民币的张数比为12 :35;那么伍角与贰角的总钱数比为 ..3、甲、乙、丙三个数的平均数是60..甲、乙、丙三个数的比是3 :2 :1..甲、乙、丙三个数各是多少4、一个直角三角形的两个锐角度数的比是2 :1;这两个锐角分别是多少度5、大、小两瓶油共重千克;大瓶的油用去千克后;剩下的油与小瓶内油的重量比是3 :2..求大、小瓶里各装油多少千克6、甲、乙、丙三位同学共有图书108本;乙比甲多18本;乙与丙的图书数之比是5 :4;求甲、乙、丙三人各有图书多少本7、一个直角三角形的三条边总和是60厘米;已知三条边的比是3 :4 :5.这个直角三角形的面积是多少平方厘米8、一个直角三角形的周长为36厘米;三条边的长度比是3 :4 :5;这个三角形的面积是多少平方厘米9、一瓶盐水;盐和水的重量比是1 :24;如果再放入75克水;这时盐与水的重量比是1 :27;原来瓶内盐水重多少千克10、盒子里有三种颜色的球;黄球个数与红球个数的比是2 :3;红球个数与白球个数的比是4 :5..已知三种颜色的球共175个;红球有多少个11、王老师用100元去买了20支圆珠笔和10支钢笔;每支钢笔的价钱和每支圆珠笔的价钱的比是3 :1..问买圆珠笔和钢笔各花了多少元12、甲、乙两包糖果的重量的比是4 :1;如果从甲包取出10克放入乙包后;甲、乙两包糖果重量的比变为7 :5..那么两包糖果重量的总和是多少13、某小学男、女生人数之比是16 :13;后来有几位女生转学到这所学校;男、女生人数之比变成为6 :5;这时全体学生共有880人;问转学来的女生有多少人14、小明读一本书;已读的和末读的页数比是1 :5..如果再读30页;则已读的和末读的页数之比为3 :5..这本书共有多少页15、运输队要运一批货物;已经运走的和剩下的比是1 :4..如果再运走4吨;那么运走的和剩下的比为3 :7..这批货物共多少吨16、甲、乙、丙三人的彩球数的比例为9:4:2;甲给了丙30个彩球;乙也给了丙一些彩球;比例变为2 :1 :1..乙给了丙多少个彩球。
13小学六年级奥数题-专题训练之比和比例应用题
小学六年级奥数题:专题训练之比和比例应用题例1、乘坐某路汽车成年人票价3元,儿童票价2元,残疾人票价1元,某天乘车的成年人、儿童和残疾人的人数比是50:20:1,共收得票款26740元,这天乘车中成年人、儿童和残疾人各有多少人?提示:单价比:成年人:儿童:残疾人=3:2:1人数比:50:20:1[练习]甲乙两人走同一段路,甲要20分钟,乙要15分钟,现在甲、乙两人分别同时从相距840米的两地相向而行,相遇时,甲、乙各走了多少米?例2、“希望小学”搞了一次募捐活动,她们用募捐所得的钱购买了甲、乙、丙三种商品,这三种商品的单价分别为30元、15元和10元。
已知购得的甲商品与乙商品的数量之比为5:6,乙商品与丙商品的数量之比为4:11,且购买丙商品比购买甲商品多花了210元。
提示:根据已知条件可先求三种商品的数量比。
[练习]一种什锦糖是由酥糖、奶糖和水果糖按5:4:3的比例混合而成,酥糖、奶糖和水果糖的单价比是11:8:7,要合成这样的什锦糖120千克,什锦糖每千克32.4元,混合前的酥糖每千克是多少元?例3、A、B、C是三个顺次咬合的齿轮。
当A转4圈时,B恰好转3圈;当B转4圈时,C恰好转5圈,问这三个齿轮的齿数的最小数分别是多少?提示:根据已知条件已知A、B、C转速与齿数的积都相等,即它们的转速与齿数成反比例。
习题:1、甲、乙、丙三个平行四边形的底之比是4:5:6,高之比是3:2:1,已知三个平行四边形的面积和是140平方分米,那么甲、乙、丙三个平行四边形的面积各是多少?2、甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少?3、某校四、五年级参加数学竞赛的人数相等,四年级获奖人数与未获奖人数的比是1:4,五年级获奖人数与未获奖人数的比是2:7;两个年级中获奖与未获奖人数的比是多少?4、盒子里共有红、白、黑三种颜色的彩球共68个,红球与白球个数的比是1:2,白球与黑球个数的比是3:4,红球有多少个?二年级奥数测试题一、找规律填数(1)、10,7,4,()(2)、2,5,(),11,14,()(3)、8、15、10、13、12、11、()、()(4)、3、6、5、10、9、()、()(5)、1、6、16、()、51、76二、填空1、学校有两个鸽棚,甲棚里有13只,乙棚里有27只,()棚里的鸽子送给()棚里()只,这样,两个棚里的鸽子同样多。
小学数学应用题专项练习——比例应用
比例应用1. 小新、小志、小刚三人拥有的藏书数量之比为3:4:6,三人一共藏书52本,求他们三人各自的藏书数量。
2.五年级一班、二班、三班同学争做好人好事,一班与二班做好事的件数比为4:3,二班与三班做好事的件数比为5:6已知一班比三班多做6件好事,那么三个班一共做了多少件好事?3.用120cm 的铁丝做一个长方体的框架。
长、宽、高的比是3:2:1。
这个长方体的长、宽高分别是多少4.阳光小学五年级有3个班,学生总人数在180人到200人之间,一班、二班、三班人数的比是5:6:6,五年级三个班各有多少人?5.艾迪、薇儿、大宽三人拥有的藏书数量之比为3:4:6,三人一共藏书104本,那么艾迪有多少本。
6.四、五、六三个年级参加植树的同学共有720人,已知六年级与五年级人数的比是3:2,王年级比四年级少20人,三个年级参加植树的各有多少人?7.a 和 b 两个数的比是8:5,每一数都减少34后,a 是 b 的2倍,试求这两个数。
8.丁丁照猫画虎发现以前的行程题也可以用比例解决,某部队接到提前到达目的地的任务后,把原定的每千米用15分钟的行军速度改为每千米用10分钟,原定12小时到达,现在可提前多少小时到达。
9.牛牛就照猫画猫,找了图形中的例子:(1)甲、乙两个正方形的边长比为2:3,则甲、乙的面积比为多少(2)甲、乙两个长方形,它们的面积相等,长的比为5:4,则宽的比为多少10.田田还发现,比例能决定三角形的面积。
(1)两个三角形的底与高的比都是2:3,则这两个三角形的面积比为多少(2)甲、乙、丙三个三角形的面积之比是8:9:10,高之比是2:3:4,对应的底之比是多少(3)A,B,C 三个三角形的底的比为1:2:3,对应的高的比为2:3:4,则这三个三角形11.丁丁深受启发,研究起了长方形中的比例。
一个长方形的长与宽的比是4:3,面积为48,那么这个长方形的周长是多少?12.有两种糖放在一起,软糖与硬糖之比为9:11,再放入16块硬糖以后,软糖与两种糖总数的比为1:4,软糖有多少块。
小学数学比例应用题(共6篇)
小学数学比例应用题〔共6篇〕篇1:六年级数学比例应用题练习题六年级数学比例应用题练习题(1)水果店一天运进苹果、香蕉、梨共390千克,苹果的重量是梨的1.5倍,香蕉的重量是梨的3/4,三种水果各运进多少千克?(2)一缸水,用去1/2和5桶,还剩30%,这缸水有多少桶?(3)有一快棱长20厘米的正方体木料,刨成一个底面直径的圆柱体,刨去木料的体积是多少?(4)一根钢管长10米,第一次截去它的7/10,第二次又截去余下的1/3,还剩多少米?(5)两个小组装配收音机,甲组每天装配50台,第一天完成了总任务的10%,这时乙组才开场装配,每天装配40台,完成这批任务时,甲组做了多少天?(6)修筑一条公路,完成了全长的2/3后,离中点16。
5千米,这条公路全长多少千米?(7)师徒两人合做一批零件,徒弟做了总数的2/7,比师傅少做21个,这批零件有多少个?(8)两队修一条公路,甲队每天修全长的1/5,乙队独做7.5天修好。
假如两队合修2天后,其余由乙队独修,还要几天完成?(9)仓库里有一批化肥,第一次取出总数的2/5,第二次取出总数的1/3少12袋,这时仓库里还剩24袋,两次共取出多少袋?(10)前轮在720米的间隔里比后轮多转40周,假如后轮的周长是2米,求前轮的周长。
11、为创立海华公司,张、王、李三人分别投资100万元、120万元和80万元。
在他们三人的共同努力下,到年末,公司共盈利60万元,你认为该如何合理分配这笔钱,每人分别得多少?12、甲乙两地相距360千米,一辆汽车从甲地到乙地方案7小时行完全程,汽车的速度如下表,问能否在规定的时间内行完全程?(计算后简要说明)13、在比例尺是的地图上,量得甲乙两地的间隔为4.5厘米,假如一辆客车和货车同时从甲乙两地相对开出,经过3小时相遇。
客车每小时行65千米,那么这辆货车每小时行多少千米?14、在比例尺是1:3000000的地图上,量得A、B两城之间的间隔是2.4厘米。
小学奥数思维训练-比和比应用(通用,含答案)
保密★启用前小学奥数思维训练-比和比应用学校:___________姓名:___________班级:___________考号:___________一、化简比和求比值1.化简下面的比,并求出比值。
65∶5237∶251.2∶0.150.5千米∶25米二、填空题2.化简下面各比,并求出比值。
3.如下图,两个平行四边形的重叠部分面积相当于大平行四边形的112,相当于小平行四边形面积的18。
大平行四边形与小平行四边形的面积比是( )。
4.用35厘米的铁丝围成一个等腰三角形,已知一个腰和底的长度比是3∶1,则腰长( )厘米。
5.下图中长方形的面积与阴影部分的面积比是( )。
三、解答题6.用24厘米的铁丝围成一个直角三角形,这个三角形三条边长度的比是3∶4∶5,这个直角三角形斜边上的高是多少厘米?7.已知甲数的25等于乙数的825,甲数是80,则乙数是多少?8.生产队饲养的鸡与猪只数的比是26:5,羊与马的只数比25:9,猪与马的只数比是10:3.求鸡与羊的只数的比.9.水果店新进梨和苹果,已知梨和苹果的数量比是11∶10 ,价格比是6∶5。
两种水果总进价是11600元,梨和苹果的进价各是多少元?10.学校美术组的人数是书法组的45,美术组人数与数学组人数的比是3:5.书法组有30人,数学组有多少人?11.已知A、B、C三个数的比是2∶3∶5,这三个数的平均数是90,这三个数分别是多少?12.希望小学参加植树活动,把任务按2∶3∶4分配给四、五、六三个年级,已知六年级比四年级多植树84棵,这次任务三个年级共植树多少棵?13.把54本图书分给三个组,A组的12和B组的13以及C组的14相等,A、B、C三个组各分得图书多少本?14.甲、乙两个人同时从A、B两地相向而行,甲每分钟走100米,与乙的速度比是5∶4,5分钟后,两人正好行了全程的,A、B两地相距多少米?15.甲、乙两班原有人数比为5∶4,若从甲班调9人到乙班,那么乙班与甲班人数之比为5∶4,两个班原来各有多少人?16.一条路全长120千米,分成上坡、平路、下坡三段,各段路程长的比依次是1∶2∶3,某人走完各段路程的所用时间比依次是4∶5∶6,已知他上坡的速度是每小时3千米,此人走完全程用了多少时间?参考答案:1.5∶4,54;15:14,1514;8∶1,8;20∶1,20【解析】【分析】整数比的化简,比的前项和后项同时除以最大公因数,小数比可以先同时移动小数点化成整数比,再化简。
数学比和比例的应用试题
数学比和比例的应用试题1.树台小学回族学生有1100人,回族学生人数与汉族学生人数的比是11:2,树台小学有汉族同学多少名?【答案】200【解析】由“回族学生人数与汉族学生人数的比是11:2”,可知:回族学生人数占11份,汉族学生人数占2份,用回族学生人数除以回族学生人数占得份数,先求出一份的数,然后即可求出汉族学生人数.解:1100÷11×2,=100×2,=200(人);答:树台小学有汉族同学200名.点评:此题是比的应用,主要考查先求一份的数,再求几份的数.2.粮店运来的大米比面粉多108袋,大米和面粉的比是5:4,运来大米和面粉各多少袋?【答案】大米有540袋,面粉有432袋.【解析】由它们的比是5:4可知,面数是大米的,而大米比面粉多108袋,所以大米有108÷(1﹣)袋,进而求出面粉有多少袋.解:大米有:108÷(1﹣)=540(袋);面粉有:540×=432(袋);答:大米有540袋,面粉有432袋.点评:本题主要根据它们的比先求出面粉是大米的几分之几后再根据多的袋数求出各有多少袋.3.鸡的只数与鸭的只数比是4:7.(1)鸡的只数是鸭的只数的.(2)鸭的只数是鸡鸭总数的.(3)鸭的只数是鸡的只数的倍.【答案】,,1.75.【解析】鸡的只数与鸭的只数比是4:7,把鸡的只数看作4份,鸭的只数7份.则鸡的只数和鸭的只数一共有4+7=11份,据此解答.解:(1)鸡的只数是鸭的只数的:4;(2)鸭的只数是鸡鸭总数的:7÷(4+7)=;(3)鸭的只数是鸡的只数的:7÷4=1.75.点评:解答此题的关键是利用份数进行解答.4.学前班有几十位小朋友,老师买来176个苹果,216块饼干,324粒糖,并将它们尽可能多的平均分给每位小朋友,余下的苹果、饼干、糖的数量之比是1:2:3.问:学前班有多少位小朋友?【答案】34【解析】因为1+2=3,176+216﹣324=68,所以全班的人数应是68的约数.68的大于10的约数是17、34和68.据此解答.解:如果全班人数为17,176÷17=10…6,216÷17=12…12,324÷17=19…1,16:12:1≠1:2:3不符合题意;如果全班人数为34,176÷34=5…6,216÷34=6…12,324÷34=9…18,6:12:18=1:2:3符合题意;如果全班人数为68,176÷68=2…40,216÷68=3…12,324÷68=4…52,40:12:52≠1:2:3不符合题意;答:学前班有34位小朋友.点评:本题的关键是先求全班的最多是多少,然后再分情况进行讨论.5.六年级甲乙两班人数比为3:2,甲班转给乙班3名同学后,两班人数比为4:3,问甲乙两班原来各有多少人?【答案】甲班原来有63人,乙班原来有42人.【解析】根据“六年级甲乙两班人数比为3:2”,可知甲班人数是乙班的,设乙班原有x人,甲班就有x人;再根据“甲班转给乙班3名同学后,两班人数比为4:3”,列出比例,进而解比例得解.解:设乙班原有x人,甲班就有x人,由题意得:(x﹣3):(x+3)=4:3,x﹣9=4x+12,x=21,x=42;x=×42=63;答:甲班原来有63人,乙班原来有42人.点评:此题考查比的应用,关键是根据甲乙人数的比,推知甲班人数是乙班的,再根据甲班转给乙班3名后的比,列出比例得解.6.东、西两个仓库所存粮食的比是7:3.如果从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%,两个仓库共存粮多少吨?【答案】600【解析】因两个仓库存粮的总数不变,原来东仓库的存粮占两库存粮的,“从东仓库运60吨粮食到西仓库,则东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60吨对应的分率就是两库存粮的﹣=,据此解答.解:东仓库存粮占西仓库的150%”,就是东仓库与乙仓库存粮的比是150:100=3:2,这是东仓库的存粮就占两库存粮的,60÷(﹣),=60÷,=600(吨).答:两个仓库共存粮600吨.点评:本题的关键是抓住不变量的两库存粮的总数,再分别求出东仓存粮原来和运出后各占两库总数的几分之几,然后根据60对应的分率求出两库的存粮总数.7.甲乙两车间人数比是3:5,若从乙车间调10人到甲车间,现在甲乙车间的人数比是2:3,原来甲车间有多少人?【答案】30【解析】根据题干,设原来甲车间有3x人,则乙车间就是5x人,从乙车间调10人到甲车间后,甲车间是3x+10人,乙车间是5x﹣10人,再根据现在甲乙车间的人数比是2:3,列出比例式求出x的值即可解答.解:设原来甲车间有3x人,则乙车间就是5x人,根据题意可得:(3x+10):(5x﹣10)=2:3,2(5x﹣10)=3(3x+10),10x﹣20=9x+30,x=10,10×3=30(人),答:甲车间原有30人.点评:解答此题的关键是利用已知的甲乙两个车间的人数之比,正确的设出未知数,再根据变化后的比列出比例式即可解答.8.妈妈5月份的工资是3200元,这个月花去的和剩下的钱数的比是5:3,花去的比剩下的多多少元?【答案】800【解析】由题意,把3200元看作5=3=8份,每份是3200÷8=400(元),又知花去的比剩下的多2份,那么花去的比剩下的多400×2元,解决问题.解:3200÷(5+3)×(5﹣3),=3200÷8×2,=400×2,=800(元);答:花去的比剩下的多800元.点评:把总钱数看作8份数,求出每份数,进一步解决问题.9.一辆汽车从甲城开往乙城,3小时行驶105km.用同样的速度又行驶了1.2小时到达乙城,甲城到乙城有多少千米?(用比例解)【答案】147【解析】根据速度一定,路程与时间成正比例,由此列出比例解决问题.解:设甲、乙两地相距x千米,105:3=x:(3+1.2),3x=105×(3+1.2),3x=441,x=147;答:甲城到乙城有147千米.点评:解答此题的关键是,根据题意及路程、速度与时间的关系,判断路程与时间成正比例,注意1.2小时是在前面3小时行驶后又行驶的时间,不是总路程对应的时间.10.一块铜锌的合金质量是760g,现在按锌、铜1:3的比例重新熔铸,需要添加40g铜,原有锌、铜各多少克?【答案】锌重200克,铜重560克.【解析】由题意得现在合金的重量为760+40=800克,根据现在合金中锌:铜=1:3,可知把总重量平均分成1+3=4份,用总重量除以总份数即可求出一份的重量,再用一份的重量分别乘各自占的份数即可求出现在合金中各自的重量,进而可以求出原来的重量.据此解答即可.解:(760+40)÷(1+3),=800÷4,=200(克),锌重:200×1=200(克)原来铜重:760﹣200=560(克).答:原有锌重200克,铜重560克.点评:此题主要考查利用比的应用解决实际问题.关键是求出每一份的重量.11.用192厘米的铁丝做一个长方体的框架.长、宽、高的比是7:5:4.这个长方体框架的体积是多少?【答案】3780【解析】根据“用192厘米的铁丝做一个长方体的框架”,可知一个长、宽、高的长度和是192除以4,也就是要分配的总量;把这个总量按7:5:4的比例进行分配,进一步求出它的长、宽、高的长度分别是多少,这个长方体框架的体积也就迎刃而解了.解:要分配的总量:192÷4=48(厘米),长:48×=21(厘米),宽:48×=15(厘米),高:48×=12(厘米),长方体框架的体积:21×15×12=3780(立方厘米).答:这个长方体框架的体积是3780立方厘米.点评:此题属于比的应用按比例分配题,关键是弄清要分配的总量和按什么比例进行分配,再进一步解决问题.12.小明读一本书,第一天读了全书的,第二天比第一天多读26页,这时已读的与剩下的页数比是7:5,这本书小明还有多少页没读?【解析】70读了两天后,已读的与剩下的页数比是7:5,即此时已读的占全部的,由于第一天读了第一天读了全书的,则第二天读的占全书的﹣,第二天比第一天多读了全书的﹣﹣,第二天比第一天多读26页,则全书的页数为26÷(﹣﹣),由此可知,这本书小明没有读的还有26÷(﹣﹣)×页.解:26÷(﹣﹣)×=26÷(﹣﹣)×,=26÷×,=70(页).答:小明没读的页数为70页.点评:首先根据两天后已读的页数与未读页数的比,求出已读页数占全部页数的分率,进而求出第二天比第一天多读的占全部的分率是完成本题的关键.13. A、B两的地相距360千米,甲、乙两车同时从两地出发,相向而行,3小时后相遇.已知甲车与乙车速度的比是7:5,求乙车的速度.【答案】50【解析】根据路程除以相遇时间等于速度和,即可求出甲、乙的速度和,再由甲车与乙车速度的比是7:5,即可求出乙车的速度.解:360÷3=120(千米),乙车的速度占甲、乙速度和的几分之几:5÷(7+5)=,120×=50(千米);答:乙车的速度是50千米.点评:解答此题的关键是,根据速度,路程,相遇时间的关系,求出速度和,再找出对应量,根据乘法的意义,列式解答即可.14.哲商小学原来新、老两个校区六年级人数的比是5:7,这学期老校有30人去新校,新校有6人转到老校,这样新校六年级的人数是老校六年级人数的.现在新校区六年级学生有多少人?【答案】384【解析】老校有30人去新校,新校有6人转到老校,变化的人数实际为(30﹣6),在这个过程中,实际不变的量是总人数,所以把两校总人数当做单位“1”,通过两校人数比的变化求出总人数是多少之后就能求出新校区有多少人.解:(30﹣6)÷(﹣)=24÷=864(人),864×=384(人)答:现在新校区六年级学生有384人.点评:本题关健是找出不变量,然后根据不变量求出所求问题.15.将8本相同厚度的书叠起来,高度是30厘米.如果将20本这样相同厚度的书叠起来,那么高度是多少厘米?(要求用比例的方法)【答案】75厘米.【解析】根据题意知道,一本书的厚度一定,书叠起的高度与书的本数成正比例,由此列比例解答.解:设20本书叠起的高度是x厘米,30:8=x:20,8x=30×20,x=,x=75;答:20本书叠起的高度是75厘米.点评:解答此题的关键是,先判断出哪两种相关联的量成何比例,再列出比例解答即可.16.求未知数Ⅹ﹣3x=:4=3.5:x.【答案】x=;x=10.【解析】(1)根据等式的性质,在方程两边同时加上3x,再减去,最后除以3来解.(2)先根据比例的基本性质,把原式转化为,再根据等式的性质,在方程两边同时除以来解.解:(1),,,,x=;(2):4=3.5:x,,,点评:本题考查了学生利用比例的基本性质和等式的性质解方程的能力,注意等号要对齐.17.三个修路队共同修一条长120千米的路,第一队修了这条路的,第二队与第三队所修路长的比是3:5,第三队修了多少千米?【答案】第三队修了45千米【解析】根据分数乘法的意义,先求出第二队和第三队所修路长的和是:120×(1)=72千米;再根据比的意义,即可求出第三队修的路长.解:120×(1)=72(千米),3+5=8,72×=45(千米),答:第三队修了45千米.点评:此题考查了利用分数乘法的意义解决问题的方法以及比在实际问题中的应用.18.100吨甘蔗可以榨糖12吨,照这样计算,6000吨甘蔗可以榨糖多少吨?如果要榨糖360吨,需要用甘蔗多少吨?【答案】6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.【解析】根据甘蔗的榨糖量一定,甘蔗的质量与糖的质量成正比例,由此设出未知数,列出比例解答即可.解:(1)6000吨甘蔗可以榨糖x吨,100:12=6000:x,100x=12×6000,x=720;(2)如果要榨糖360吨,需要用甘蔗y吨,100:12=y:360,12y=100×360,y=,y=3000;答:6000吨甘蔗可以榨糖720吨;如果要榨糖360吨,需要用甘蔗3000吨.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.19.李师傅3小时做了48个零件.照这样计算,8小时可做多少个零件?(用比例解答)【答案】8小时可做128个零件【解析】根据题意知道,工作效率一定,工作量和工作时间成正比例,由此列式解答即可.解:8小时可做x个零件,x:8=48:3,3x=8×48,x=,x=128;答:8小时可做128个零件.点评:解答此题的关键是,弄清题意,根据工作效率,工作时间和工作量三者的关系,列式解答即可.20.贝贝家来了3位客人,贝贝拿出20ml浓缩果汁按1:50的比给客人冲果汁喝,用如下图的玻璃杯,果汁倒至处,贝贝和客人每人一杯够吗?【答案】贝贝和客人每人一不杯够【解析】根据题意,求出20ml浓缩果汁按1:50,可配果汁多少,再利用圆柱的体积公式求出玻璃杯的体积,再进行比较即可.解:果汁体积为20×50=1000(ml)=1000(立方厘米),6÷2=3(厘米),4个玻璃杯里果汁体积为π×32×15××4=1130.4(立方厘米),1130.4>1000.2;答:贝贝和客人每人一不杯够.点评:解答此题主要分清所求物体的形状,转化为求有关图形的体积或面积的问题,把实际问题转化为数学问题,再运用数学知识解决.21.一艘轮船从甲港驶往乙港,每小时行25千米.12小时到达,返回时每小时行30千米,几小时可以到达?(用比例知识解答)【答案】10小时可以到达【解析】根据路程一定,速度与时间成反比例,由此列出比例解答即可.解:设x小时可以到达,30x=25×12,x=,x=10,答:10小时可以到达.点评:解答此题的关键是,根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.22.(2011•平和县模拟)架线班要架设一条通讯线路,计划每天架设105米,40天完成.如果每天架设120米,多少天可以完成?(用方程解)【答案】35天可以完成【解析】根据通讯线路的总米数一定,每天架设的米数与架设的天数成反比例,由此列出比例解决问题.解:设x天可以完成,120x=105×40,x=,x=35,答:35天可以完成.点评:解答此题的关键是,每天架设的米数×架设的天数=通讯线路的总米数(一定),由此判断成何比例.23.(2011•宿州模拟)正方形的周长和边长的比是4:1..【答案】正确【解析】因为正方形的周长=边长×4,所以正方形的周长与边长的比是4:1;据此解答即可.解:正方形的周长与边长的比是:(边长×4):边长=4:1;故答案为:正确.点评:解答此题关键是根据正方形的周长的计算公式,进一步求得问题即可.24.(2011•郑州模拟)操场上有108名同学在锻炼身体,其中女生占,后来又来了几名女生,使女生人数和男生人数的比是3:7,后来来了几名女生?【答案】后来来了12名女生【解析】根据“女生占,”知道男生占(1﹣)由此求出男生的人数;再根据后来女生人数和男生人数的比是3:7,知道后来男生占总数的,又因为男生的人数不变,所以可以求出后来的总人数,进而求出后来来的女生的人数.解:108×(1﹣)﹣108,=108×﹣108,=84×﹣108,=120﹣108,=12(名);答:后来来了12名女生.点评:解答此题的关键是,根据题意知道男生的人数不变,然后将比转化成分数,再找出对应量,利用基本的数量关系列式解答即可.25.(2012•宜宾县模拟)AB两种商品原来价格之比为7:3,如果它们的价格分别上涨70元,则价格之比变成7:4.问这两种商品原来的价格各是多少元?【答案】甲种商品原来的价格是210元,乙种商品原来的价格是90元【解析】根据题意知道,甲、乙两种商品的价格差不会变化,由此根据“甲、乙两种商品的价格之比是7:3”,知道原来甲占价格差的,再根据“价格之比是7:4.”知道后来甲占价格差的,由此用70除以(﹣),即可求出价格差,进而求出这两种商品原来的价格.解:价格差是:70÷(﹣),=70÷,=70×,=120(元);甲原来的价格是:120×,=120×,=210(元),乙原来的价格:210﹣120=90(元);答:甲种商品原来的价格是210元,乙种商品原来的价格是90元.点评:解答此题的关键是,根据价格差不变化,将比转化为分率,统一单位“1”,再根据基本的数量关系解决问题.26.有正方形和长方形两种不同的纸板,正方形纸板总数与长方形纸板总数之比为2:5.现在将这些纸板全部用来拼成横式和竖式两种无盖纸盒,其中竖式盒由一块正方形纸板做底面,四块长方形纸板做侧面(图1),横式盒由一块长方形纸板做底面,两块长方形和两块正方形纸板做侧面(图2),那么做成的竖式纸盒与横式纸盒个数之比是多少?【答案】做成的竖式纸盒与横式纸盒个数之比是4:3【解析】此题可以用设数法来解答,假设竖式纸盒有a个,横式纸盒有b个,由题意列式为(a+2b):(4a+3b)=2:5,然后化简即可.解:设竖式纸盒有a个,横式纸盒有b个,则共用长方形纸板(4a+3b)块,正方形纸板(a+2b)块.根据题意有:(a+2b):(4a+3b)=2:5,即5(a+2b)=2(4a+3b),5a+10b=8a+6b,3a=4b,即a:b=4:3.答:做成的竖式纸盒与横式纸盒个数之比是4:3.点评:此题的解题思路是:先设出竖式纸盒和横式纸盒的个数,然后相应地表示出共用长方形纸板的块数,正方形纸板的块数,再根据正方形纸板总数与长方形纸板总数之比为2:5,列出等式并化简.27.装修一间客厅,用边长5dm的方砖铺地,需要80块,用边长4dm的方砖铺地需要多少块?(用比例知识解答)【答案】用边长4dm的方砖铺地需要125块【解析】根据题意知道客厅的面积一定,方砖的面积与方砖的块数成反比例,由此列出比例解决问题.解:设用边长4dm的方砖铺地需要x块,4×4×x=5×5×80,16x=25×80,x=,x=125;答:用边长4dm的方砖铺地需要125块.点评:解答本题的关键是判断哪两种量成何比例,注意此题给出的5dm与4dm是方砖的边长,不是方砖的面积.28.李师傅要加工一批零件,如果每小时加工50个,6小时可以加工完.若每小时加工60个,多少小时可以加工完?(用比例解)【答案】5小时可以加工完【解析】根据题意知道,零件的总个数一定,即总工作量一定,工作效率与工作时间成反比例,由此列出比例解答即可.解:设x小时可以加工完,60x=50×6,x=,x=5,答:5小时可以加工完.点评:关键是根据题意,先判断哪两种相关联的量成何比例,即两个量的乘积一定则成反比例,两个量的比值一定则成正比例;再列出比例解答即可.29.(2010•泸西县模拟)一座16层高的住宅楼(层高3米),地基深为8米.按照这样的比例,盖一座22层高的住宅楼,需打多深的地基?【答案】需打11米深的地基【解析】由题意可知:每米的楼高需打地基的深度是一定的,则楼的高度与地基的深度成正比例关系,据此即可列比例求解.解:设需打x米深的地基,则有(16×3):8=(22×3):x,48x=66×8,48x=528,x=11;答:需打11米深的地基.点评:解答此题的主要依据是:若两个量的商一定,则这两个量成正比例,从而可以列比例求解.30.(2012•同心县模拟)用600页纸装订同样的练习本如下表:600=(2)、根据上面的关系式,求X=15时,Y=.(3)、练习本每本的页数和装订的本数成比例吗?成什么比例?说明理由.【答案】XY,40【解析】(1)由表格知道每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600解方程即可求出Y的值;(3)判练习本每本的页数和装订的本数之间成什么比例,就看这两个量是对应的比值一定,还是对应的乘积一定;如果是比值一定,就成正比例;如果是乘积一定,则成反比例.解:(1)因为每本装订的页数×装订的本数=600,所以用Y表示装订的本数,用X表示每本装订的页数,那么600=XY;(2)把X=15时代入XY=600,即15Y=600,Y=600÷15,Y=40,(3)因为练习本每本的页数×装订的本数=600(一定),符合反比例的意义,所以练习本每本的页数和装订的本数成反比例,故答案为:XY,40.点评:本题主要是利用正、反比例的意义解决问题.31.小明和小红所集邮票张数的比是5:6,小明给小红10张邮票后,小明和小红邮票张数的比是4:5.小明和小红一共有多少张邮票?【答案】小明和小红一共有990张邮票【解析】因原来小明和小红所集邮票张数的比是5:6,就是小明的邮票张数占全部邮票的,小明给小红10张邮票后,小明和小红邮票张数的比是4:5,就是小明的邮票张数占全部邮票的,也就是全部邮票的()就是10,根据分数除法的意义可列式解答.解:10,=10÷,=10,=990(张).答:小明和小红一共有990张邮票.点评:本题考查了学生对比与分数的掌握,和利用分数除法的意义解题的能力.32.某工程队男女职工人数的比是4:3.因支援其他工程,调走女职工66人,这时女职工人数是男职工人数的,这个工程队原来有男职工多少人?【答案】这个工程队原来有男职工有216人【解析】根据“男女职工人数的比是4:3.”知道女职工人数是男职工的,又根据题意知道男职工的人数不变,而女职工的人数由占男职工的变为占男职工人数的,是因为调走女职工66人,因此用对应的数66除以对应的分数(﹣),就是要求的单位“1”,即原来男职工的人数.解:66÷(﹣),=66÷,=66×,=216(人);答:这个工程队原来有男职工有216人.点评:根据男职工的人数不变,将单位“1”统一为男职工的人数,再找出对应的分率与对应的数,用除法列式解答即可.33.同一种方砖铺一间长8米,宽6米的乒乓球室的地板,先用200块方砖就铺了32平方米,余下的还要多少方砖?(用比例解)【答案】余下的还要100块方砖【解析】由题意可知:每块方砖的面积是一定的,则铺设的底面的面积与需要的方砖的块数成正比例,据此即可列比例求解.解:设余下的还要x方砖,则有32:200=(8×6﹣32):x,32x=200×(8×6﹣32),32x=200×16,32x=3200,x=100;答:余下的还要100块方砖.点评:解答此题的主要依据是:若两个相关联量的商一定,则这两个量成正比,从而可以列比例求解.34.建筑工地计划运进一批水泥,第一次运来总数的25%,第二次运来180吨,这时运来的与没运来的吨数比是4:3,工地计划运进的这批水泥是多少吨?【答案】工地计划运进的这批水泥是560吨【解析】第二次运来180吨后,运来的与没运来的吨数比是4:3,即已运来的占总数的,又第一次运来总数的25%,则这180吨占总数的﹣25%,所以这批水泥共有180÷(﹣25%)吨.解:180÷(﹣25%)=180÷(﹣25%),=180÷,=560(吨).答:工地计划运进的这批水泥是560吨.点评:首先根据二次运来180吨,运来的与没运来的吨数比求出已运来的占总数的分率是完成本题的关键.35.修一条公路,已经修的和没有修的长度比是1:3,再修300米,已经修的长度是没有修的,共修了多少千米?【答案】共修了1.2千米【解析】根据“已经修的和没有修的长度比是1:3,”知道已经修的占公路总长度的,再根据“已经修的长度是没有修的,”知道已经修的长度占公路总长度的,,由此用(﹣)去除对应的量300米就是这条路的总长度,进而求出修路的千米数.解:300÷(﹣)=300÷,=3600(米);3600×,=3600×,=1200(米),1200米=1.2千米.答:共修了1.2千米.点评:这道题单位“1”是这条公路的全长,单位“1”是不变的,统一单位“1”,找到300米的对应分率,用除法求出单位“1”进而得出答案.36.(2012•商丘模拟)一堆煤,第一天运走的吨数与总吨数的比是1:3,第二天运走4.5吨后,两天正好运走了总数的一半,这堆煤有多少吨?【答案】这堆煤有27吨【解析】把这堆煤的总量看作单位“1”,由题意可知:第一天运走的吨数占总吨数的,再据“第二天运走4.5吨后,两天正好运走了总数的一半”可知,第二天运走的吨数占总吨数的(),而第二天运走的实际吨数是4.5吨,所以用4.5除以()就是这堆煤的总量.解:4.5÷(),=4.5÷,=27(吨);答:这堆煤有27吨.点评:解答此题的关键是求出4.5吨的对应分率(),进而求出这堆煤的总量.37.装配车间要装配一批洗衣机,计划每天装配42台,20天内完成任务,实际每天多装配8台,需要几天完成?(有比例知识解)【答案】实际每天多装配8台,需要16.8天完成【解析】根据题意知道洗衣机的总量一定,每天装配的台数×装配需要的天数=洗衣机的总量(一定),所以每天装配的台数与装配需要的天数成反比例,由此列出比例解答即可.解:设需要x天就可以完成任务,(42+8)x=42×20,50x=840,x=16.8;答:实际每天多装配8台,需要16.8天完成.点评:解答此题的关键是明白,洗衣机的总量一定,每天装配的台数与装配需要的天数成反比例.38.工程队修一条路,上半月修好的米数与全长的比是1:5.如果再修360米,就正好修了这条路的一半.这条路全长多少米?【答案】这条路全长1200米【解析】把全长看作单位“1”,根据“上半月修好的米数与全长的比是1:5”,可知上半月修好的米数占全长的,再根据“如果再修360米,就正好修了这条路的一半”,可以求出360 米就相当于全长的(﹣),然后用除法计算.解:360÷(﹣),=360×,=1200(米);答:这条路全长1200米.点评:此题主要考查分数除法的应用及比与分数的关系,用数量除以它的对应分率就是单位“1”,即全长.39.李明与王华身高的比是6:5,李明比王华高;王华比李明矮.【答案】;【解析】(1)把王华的身高看作单位“1”,则李明的身高是王华身高的,于是利用分数减法的意义即可求解;(2)把李明的身高看作单位“1”,则王华的身高是李明身高的,于是利用分数减法的意义即可求解.解:(1)﹣1=;(2)1﹣=;故答案为:;.点评:解答此题的关键是:要设出不同的单位“1”,比谁就把谁看作单位“1”,从而问题逐步得解.40.一种合金中A和B两种物质的质量比是4:5,那么A物质的质量占这种合金的.【答案】【解析】一种合金中A和B两种物质的质量比是4:5,A物质的质量占这种合金的,据此解答.解:=,答:么A物质的质量占这种合金的.故答案为:.点评:本题主要考查了学生对比与分数之产关系的掌握情况.41.某校男生人数和女生人数的比是8:7,则男生人数占全校学生人数的,女生人数占全校学生人数的.【答案】;【解析】根据题干,可知单位“1”的量是全校学生人数,男生人数占了其中的8份,女生人数占了其中的7份,进而可知全校学生就是8+7=15分,据此用男生人数除以全校人数,用女生人数除以全校人数即可解答.解:7+8=15,。
人教版六年级数学上册第4单《比的应用》专项练习
人教版六年级数学上册第4单《比的应用》专项练习一、填空题。
1.一个长方体的棱长总和是72厘米,长、宽、高的比是3:2:1,它的表面积是平方厘米。
2.药粉和水按1:50配成药水,5克药粉中应加水克,510克药水中含有药粉克。
3.红星小学六(1)班参加舞蹈小组的人数与参加绘画小组的人数的比是5∶3,参加绘画小组的人数是这两个小组总人数的。
若这两个小组一共有32人,则参加舞蹈小组的有人,参加绘画小组的有人。
4.小齿轮和大齿轮的比是3:4.小齿轮和大齿轮一共有84个齿,小齿轮有个齿,大齿轮有个齿。
5.一项工程,甲单独做要用8小时,乙单独做要用10小时,甲乙的工效比是。
,那么演出队的男女生人数之比6.演出队女生人数占全班人数的37是。
,已修的与未修的长度比是。
7.一段路,修了全长的378.一个长方体的棱长总和是36厘米,长、宽、高的比是4:3:2,则这个长方体的体积是立方厘米。
9.一个等腰三角形的两个内角的度数比是1:4,顶角可能是,也可能是。
二、选择题。
1.如图,乙的面积是甲的1,甲比乙多24cm2,平行四边形的面积是()3cm 2。
A .64B .72C .1442.参加数学测试的男生与女生人数的比是2:1,平均分是86,其中男生的平均分是84,则女生的平均分是( )。
A .87B .88C .89D .903.某校六年一班有学生48人,这个班男、女生人数的比可能是( )。
A .5∶2B .7∶8C .6∶11D .9∶74.甲、乙两个数的和是300,甲、乙两数的比是5:7,甲数是( ) A .120B .125C .175D .1805.从A 地到B 地,甲需要13小时,乙需要14小时,甲、乙两人的速度之比是( )。
A .3∶4B .4∶3C .13∶146.如右图,阴影部分面积与小圆的面积比是2:5,阴影部分与大圆的面积比是1 :6。
如果大圆的面积比小圆多109.9平方厘米。
小圆的半径是( )厘米。
完整版)小学数学比和比例应用题(小升初)
完整版)小学数学比和比例应用题(小升初)
第3讲:比和比例、工程、路程等应用题
一、基础知识
比的定义:两个数的比实际上就是两个数的商。
可以化为
分数形式,如a:b=a÷b,也可以化为等式形式,如ac=bd,化
简后得到a:b=c:d。
连比的定义:三个数的比叫连比,如a:b:c,满足a:b:c=na:
正比例和反比例的定义:正比例关系为y=kx,反比例关
系为y·x=k(定值)或y=k/x。
应用举例:速度v一定时,路程s与时间t成正比例,即
s=vt;工作效率一定时,工作量与工作时间成正比例,即工作
量=工作效率×工作时间;浓度一定时,溶质重量与溶液重量
成正比例,即溶质重量=溶液重量×浓度。
二、典型例题
例1、已知a:b=53:74,求a:b的值。
例2、已知a:b=3:4,b:c=5:6,求a:b:c的值。
例3、甲、乙两个瓶子里装的酒精体积相等,甲瓶中与水的体积比是3:1,乙瓶中与水的体积比是4:1,混合后酒精和水的体积比是多少?
例4、甲、乙、丙三个数的比是6:7:8,已知这三个数的平均数是42,求甲、乙、丙三个数各是多少?
例5、甲、乙两个课外小组人数比是5:3,从甲组调9人去乙组后,甲、乙两组人数比是2:3,求甲、乙两组原来各有多少人。
例6、有两支同样质地的蜡烛,粗细、长短不同,一支能燃烧3.5小时,一支能燃烧5小时,当燃烧2小时的时候,两支蜡烛的长度恰好相同,这两支蜡烛长度之比是多少?
三、比和比例应用题随堂练
1、甲、乙两厂人数的比是7∶6.从甲厂调360人到乙厂后,甲、乙两厂人数比为2∶3,甲、乙两厂原有多少人?。
小升初数学知识点专练——比和比的应用
浙江省2023年小升初知识点专练——比和比的应用一、单选题1.7:9的前项增加14,要使比值不变,后项应该增加( )。
A .14B .18C .27D .92.如果A :B=19,那么(A×9):(B×9)=( )。
A .1B .19C .2D .813.学校买来140本图书,按一定的比分配给三个班,他们的比可能是( )A .1∶2∶3B .2∶3∶4C .2∶3∶5D .3∶4∶54.比的前项扩大到原来的4倍,后项缩小到原来的14,比值( )A .缩小到原来的4倍B .扩大到原来的4倍C .扩大到原来的16倍D .扩大到原来的8倍5.有一盒棋子,黑子与白子的比是4:5,下面说法错误的是( )。
A .黑子是白子的45B .白子是黑子的54C .黑子是棋子总数的49D .白子比黑子多156.甲数和乙数的比是1:2,乙数和丙数的比是3:4,那么甲数和丙数的比是( )。
A .1:4B .3:8C .2:4D .8:37.下列说法错误的是( )。
A .两个数相除,又叫做这两个数的比B .一个三角形三个内角度数的比是1:2:3,这是一个直角三角形C .比的前项和后项同时乘以一个相同的数,比值大小不变D .一瓶糖水,糖与水的质量比是1:9,糖的质量占糖水的1108.如图,阴影部分的面积相当于甲圆面积的16,相当于乙圆面积的15,那么乙的空白部分与甲的空白部分的面积比是( )。
A .6:1B .5:4C .4:5D .5:6二、填空题9.34= ∶ =9÷ = %= (填小数)10.根据下图中的数据,手指和掌心长度的最简整数比是 ,比值是 。
11.大小两个圆的直径的比是3∶2,它们的半径之比是 ,周长之比是 ,面积之比是 。
12.校园足球队的女生人数是男生人数的35,女生人数比男生人数少 %,男生人数与校园足球队的总人数的比是 ,男生人数比女生人数多()()。
13.小聪尝试利用蜂蜜、柠檬汁、水三种材料按照1:1:8的配比配置300mL 的饮料,则需要水ml ;如果用50mL 的柠檬汁,配置这款饮料,需要准备 ml 的水。
求比值、化简比与比的应用六年级数学小升初复习系列:第四章+比和比例
1 / 134.2 求比值、化简比与比的应用(小考复习精编专项练习)六年级数学小升初复习系列:第四章 比和比例(含知识点、练习与答案)一、求比值和化简比1、求比值:求两个数的比值,用比的前项除以比的后项,得数是一个数值,该数值就是比值。
这个数值可以是整数、小数或分数。
【典型例题】 求下列各组比的比值。
(1)4.8:0.6= (2)45: 1625=【解答】 (1)4.8:0.6 =48÷6 =8 (2)45: 1625=45× 2516=1.252、化简比:把两个数的比化成最简的整数比。
(1)化简整数比:整数比的化简需先找出两个数的最大公因数,然后同时用这个公因数分别去除“比的前项和比的后项”即可,与分数的约分类同。
【典型例题】28:49=(28÷7)∶(49÷7)=4:7(2)化简小数比:首先把比的前项和后项的小数点同时向右移动相同的位数(即扩大相同的倍数),变成整数比;然后,再按照化简整数比的方法进行化简。
【典型例题】0.36:1.2=36:120=(36÷12)∶(120÷12)=3:10(3)化简分数比:就是减比的前项和后项同时乘以它们分母的最小公倍数,变成整数比;然后进行化简。
也可以按照分数除法的形式去计算。
可将“∶”号变成“÷”号,将比式变成除式进行计算,从而化简分数比,但结果需要写成比的形式。
【典型例题】2/ 137 10:45=方法一:7 10:45=(710×10):(45×10)=7:8 方法二:=65÷910=65×109=43=4∶3二、比的实际应用如果已知一个总量的各部分的比,同时也清楚其中某一部分的数量,要求出其他几个部分的数量或者全部的数量。
那么,可以先把已知的比看作已分配的份数,先求出每一份的数量;然后,再转化成要求的份数乘以每一份的数量来解决此类问题。
浙教版2023年小升初数学比和比的应用知识点专练(含答案)
浙教版2023年小升初数学比和比的应用知识点专练(含答案)一、单选题1.∶4=4∶1应填的数是()A.14B.3C.16D.152.2:5的前项加上6,要使比值不变,后项应()A.加6B.乘6C.乘43.五星红旗的长与宽的比是3:2,下面按标准制作的是()A.长是宽的2.5倍B.宽是长的45C.长144cm,宽96cm 4.把5克盐溶解在100克水中,盐和盐水重量的比是()A.1:20B.20:21C.1:215.一个直角三角形中两个锐角的度数比是1∶2,这两个角的度数分别是()。
A.30°和60°B.90°和60°C.60°和45°D.45°和45°6.把3∶4的前项加上9,要使比值不变,后项应加上()。
A.6B.9C.12D.167.一个等腰直角三角形的三个内角的度数比是()。
A.1:2:2B.2:1:1C.3:3:1D.1:3:3 8.同一个圆周长与直径的比值是A.3B.3.24C.π二、填空题9.16:20=8()=÷15=(填小数)=%.10.一个比的前项是72,后项是60,这个比的比值是。
11.走完同一段路,甲用8小时,乙用6小时,甲、乙两人的速度比是。
12.五年级有10名女生,15名男生,男生和女生人数的比是,比值是13.一项工程,甲单独做20天完成,乙单独做30天完成。
(1)写出甲、乙两队完成这项工程所用的时间比,并化简。
(2)写出甲、乙两队工作效率比,并化简。
14.甲乙两个工程队修一条路,甲队单独做需8天完成,乙队单独做需10天完成,甲队与乙队工作效率的比是。
15.一块三角形菜地,边长的比是4:3:5,周长是168米,其中最长的边长是 米. 16.最小的质数与最小的合数的比是 。
17.甲数除以乙数的商是1.5,甲数与乙数的最简整数比是 。
18.下面图形阴影部分面积 .(单位:分米)19.一个长方体的棱长总和是36厘米,长、宽、高的比是4:3:2,则这个长方体的体积是 立方厘米。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
比和比的应用练习题
一、填空题:
1、六(1)班有男生20人,女生30人,男生与女生人数的比是(),男生与总人数的比是()。
2、一辆汽车6小时行了360千米,这辆汽车行驶的路程和时间的比是(),比值是(),比值表示(),这辆汽车行驶的时间和路程的比是(),比值是(),比值表示()。
3、3:8=()÷24=24÷()=()%
4、甲、乙、丙三个数的平均数是60。
甲、乙、丙三个数的比是3∶2∶1。
甲、乙、丙三个数分别是()、()、()。
5、一个直角三角形的两个锐角度数的比是2∶1,这两个锐角分别是()度,()度。
6、甲数除以乙数的商是0.35,甲乙两数的最简整数比是()。
7、两个连续的偶数的和是74,这两个偶数的最简比是()。
4,甲数与乙数的比是()。
8、甲数是乙数的
5
5,看了的与没看的比是()。
9、一本书,看了
17
10、五角人民币与贰角人民币的张数比为12∶35,那么伍角与贰角的总钱数比为()。
11、甲、乙、丙三个人的速度的比为:甲∶乙=4∶5,乙∶丙=6∶7。
从A地到B地,甲走了
20分钟,丙要走()分钟。
12、大、小两瓶油共重2.7千克,大瓶的油用去0.2千克后,剩下的油与小瓶内油的重量比是3∶2。
求大、小瓶里分别装油()千克,()千克。
二、求比值(12分)
1 24∶3
2 56∶1.4 0.15∶2.5 15∶25 0.8 ∶
4
三、化简比(12分)
128∶34 0.54∶2.7 0.4米∶60厘米
83∶65 1.42∶71
25
四、判断(10分)
1、50米:5米=10米………………………………………………( )
2、4:3的后项加上6,要想比值不变,前项也要加上6。
…………( )
3、六一班有男生25人,女生24人,女生和全班人数的比是24∶25( )
4、如果甲数与乙数的比是1∶2 ,那么乙数∶甲数=5∶2…………( )
5、一杯盐水,盐占盐水的9
1 ,盐和水的比是1∶9………………( ) 6、比的后项不能是0…………………………………………………( )
五、解决问题 (35分)
1、沙、石共36吨,沙与石的比是1∶8,沙、石各是多少吨?
2、一个长方形周长是88cm,长与宽的比是4∶7。
长方形的长、宽各是多少厘米?面积是多少?
3、男工与女工的比是4∶5,女比男多4人,男、女各多少人?
4、一个三角形的内角度数的比是3∶2∶1,按角分这是个什么三角形?
5、A,B两地相距480千米.甲乙两辆大巴同时从A,B两地相对开出,经过4.5小时,两车相遇后又相距120千米.这是甲乙两辆车所经过的路程比正好是8:7.甲.乙两辆车已经各行了多少千米?
6、果园里苹果和梨的棵树比是7:8,丰收后的苹果的重量是梨的1.2倍,那么平均每棵苹果树和梨树的产量比是多少?
7、男工40人,男工与女工的比是4∶5,女工有多少人?一共有多少人?
8、一种什锦糖是由水果糖、奶糖、软糖按5∶3∶2混合而成的。
(1)如果先称20千克的水果糖,奶糖与软糖各需多少千克?。