2020届江西省百所名校高三下学期第四次联考数学(理)试卷及解析
江西省南昌市2019-2020学年高考第四次大联考数学试卷含解析
江西省南昌市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()ln af x x a x =-+在[]1,e x ∈上有两个零点,则a 的取值范围是( ) A .e ,11e ⎡⎤-⎢⎥-⎣⎦B .e ,11e ⎡⎫⎪⎢-⎣⎭C .e ,11e ⎡⎫-⎪⎢-⎣⎭D .[)1,e - 【答案】C 【解析】 【分析】对函数求导,对a 分类讨论,分别求得函数()f x 的单调性及极值,结合端点处的函数值进行判断求解. 【详解】 ∵()21a f x x x +'== 2x ax +,[]1,e x ∈. 当1a ≥-时,()0f x '≥,()f x 在[]1,e 上单调递增,不合题意. 当a e ≤-时,()0f x '≤,()f x 在[]1,e 上单调递减,也不合题意.当1e a -<<-时,则[)1,x a ∈-时,()0f x '<,()f x 在[)1,a -上单调递减,(],e x a ∈-时,()0f x '>,()f x 在(],a e -上单调递增,又()10f =,所以()f x 在[]1,e x ∈上有两个零点,只需()10a f e a e =-+≥即可,解得11e a e≤<--. 综上,a 的取值范围是e ,11e ⎡⎫-⎪⎢-⎣⎭. 故选C. 【点睛】本题考查了利用导数解决函数零点的问题,考查了函数的单调性及极值问题,属于中档题.2.在直角坐标系中,已知A (1,0),B (4,0),若直线x+my ﹣1=0上存在点P ,使得|PA|=2|PB|,则正实数m 的最小值是( )A .13B .3C D【答案】D 【解析】 【分析】设点()1,P my y -,由2PA PB =,得关于y 的方程.由题意,该方程有解,则0∆≥,求出正实数m 的取值范围,即求正实数m 的最小值.【详解】由题意,设点()1,P my y -.222,4PA PB PA PB =∴=Q ,即()()222211414my y my y ⎡⎤--+=--+⎣⎦,整理得()2218120m y my +++=, 则()()22841120m m ∆=-+⨯≥,解得3m ≥或3m ≤-.min 0,3,3m m m >∴≥∴=Q .故选:D . 【点睛】本题考查直线与方程,考查平面内两点间距离公式,属于中档题.3.已知(1)n x +的展开式中第4项与第8项的二项式系数相等,则奇数项的二项式系数和为( ). A .122 B .112 C .102 D .92【答案】D 【解析】因为(1)nx +的展开式中第4项与第8项的二项式系数相等,所以,解得,所以二项式10(1)x +中奇数项的二项式系数和为.考点:二项式系数,二项式系数和.4.高三珠海一模中,经抽样分析,全市理科数学成绩X 近似服从正态分布()285,N σ,且(6085)0.3P X <≤=.从中随机抽取参加此次考试的学生500名,估计理科数学成绩不低于110分的学生人数约为( ) A .40 B .60C .80D .100【答案】D 【解析】 【分析】由正态分布的性质,根据题意,得到(110)(60)P X P X ≥=≤,求出概率,再由题中数据,即可求出结果. 【详解】由题意,成绩X 近似服从正态分布()285,N σ,则正态分布曲线的对称轴为85x =,根据正态分布曲线的对称性,求得(110)(60)0.50.30.2P X P X ≥=≤=-=, 所以该市某校有500人中,估计该校数学成绩不低于110分的人数为5000.2100⨯=人, 故选:D . 【点睛】本题考查正态分布的图象和性质,考查学生分析问题的能力,难度容易.5.已知集合{2,3,4}A =,集合{},2B m m =+,若{2}A B =I ,则m =( ) A .0 B .1C .2D .4【答案】A 【解析】 【分析】根据2m =或22m +=,验证交集后求得m 的值. 【详解】因为{2}A B =I ,所以2m =或22m +=.当2m =时,{2,4}A B =I ,不符合题意,当22m +=时,0m =.故选A.【点睛】本小题主要考查集合的交集概念及运算,属于基础题. 6.已知等差数列{}n a 的公差不为零,且11a ,31a ,41a 构成新的等差数列,n S 为{}n a 的前n 项和,若存在n 使得0n S =,则n =( ) A .10 B .11C .12D .13【答案】D 【解析】 【分析】利用等差数列的通项公式可得16a d =-,再利用等差数列的前n 项和公式即可求解. 【详解】 由11a ,31a ,41a 构成等差数列可得 31431111a a a a -=- 即13341413341422a a a a d da a a a a a a a ----=⇒=⇒=又()4111323a a d a a d =+⇒=+ 解得:16a d =- 又[]12(1)(12(1))(13)222n n n nS a n d d n d d n =+-=-+-=- 所以0n S =时,13n =. 故选:D 【点睛】本题考查了等差数列的通项公式、等差数列的前n 项和公式,需熟记公式,属于基础题. 7.已知向量()()1,2,2,2a b λ==-r r ,且a b ⊥r r,则λ等于( )A .4B .3C .2D .1【答案】D 【解析】 【分析】由已知结合向量垂直的坐标表示即可求解. 【详解】因为(1,2),(2,2)a b λ==-r r ,且a b ⊥r r ,·22(2)0a b λ=+-=rr ,则1λ=. 故选:D . 【点睛】本题主要考查了向量垂直的坐标表示,意在考查学生对这些知识的理解掌握水平,属于基础题. 8.过抛物线24y x =的焦点F 的直线交该抛物线于A ,B 两点,O 为坐标原点.若3AF =,则直线AB 的斜率为( )A .B .C .D .±【答案】D 【解析】 【分析】根据抛物线的定义,结合||3AF =,求出A 的坐标,然后求出AF 的斜率即可. 【详解】解:抛物线的焦点(1,0)F ,准线方程为1x =-,设(,)A x y ,则||13AF x =+=,故2x =,此时y =±(2,A ±.则直线AF 的斜率21k ±==±-. 故选:D . 【点睛】本题考查了抛物线的定义,直线斜率公式,属于中档题.9.已知(1,3),(2,2),(,1)a b c n ===-r r r ,若()a c b -⊥r r r,则n 等于( )A .3B .4C .5D .6【答案】C 【解析】 【分析】先求出(1,4)a c n -=-r r ,再由()a c b -⊥r r r,利用向量数量积等于0,从而求得n .【详解】由题可知(1,4)a c n -=-r r,因为()a c b -⊥r r r,所以有()12240n -⨯+⨯=,得5n =,故选:C. 【点睛】该题考查的是有关向量的问题,涉及到的知识点有向量的减法坐标运算公式,向量垂直的坐标表示,属于基础题目.10.设集合{|0}A x x =>,{}2|log (31)2B x x =-<,则( ). A .50,3A B ⎛⎫= ⎪⎝⎭I B .10,3A B ⎛⎤= ⎥⎝⎦I C .1,3A B ⎛⎫⋃=+∞ ⎪⎝⎭D .(0,)A B =+∞U【答案】D 【解析】 【分析】根据题意,求出集合A ,进而求出集合A B U 和A B I ,分析选项即可得到答案. 【详解】根据题意,{}215|log (31)2|33B x x x x ⎧⎫=-<=<<⎨⎬⎩⎭则15(0,),,33A B A B ⎛⎫⋃=+∞⋂= ⎪⎝⎭故选:D 【点睛】此题考查集合的交并集运算,属于简单题目, 11.双曲线22:21C x y -=的渐近线方程为( ) A.0x ±= B .20x y ±= C0y ±= D .20x y ±=【答案】A 【解析】 【分析】将双曲线方程化为标准方程为22112y x -=,其渐近线方程为2212y x -=,化简整理即得渐近线方程. 【详解】双曲线22:21C x y -=得22112y x -=,则其渐近线方程为22012y x -=,整理得0x =. 故选:A 【点睛】本题主要考查了双曲线的标准方程,双曲线的简单性质的应用.12.将3个黑球3个白球和1个红球排成一排,各小球除了颜色以外其他属性均相同,则相同颜色的小球不相邻的排法共有( ) A .14种 B .15种C .16种D .18种【答案】D 【解析】 【分析】采取分类计数和分步计数相结合的方法,分两种情况具体讨论,一种是黑白依次相间,一种是开始仅有两个相同颜色的排在一起 【详解】首先将黑球和白球排列好,再插入红球.情况1:黑球和白球按照黑白相间排列(“黑白黑白黑白”或“白黑白黑白黑”),此时将红球插入6个球组成的7个空中即可,因此共有2×7=14种; 情况2:黑球或白球中仅有两个相同颜色的排在一起(“黑白白黑白黑”、“黑白黑白白黑”、“白黑黑白黑白”“白黑白黑黑白”),此时红球只能插入两个相同颜色的球之中,共4种. 综上所述,共有14+4=18种. 故选:D 【点睛】本题考查排列组合公式的具体应用,插空法的应用,属于基础题 二、填空题:本题共4小题,每小题5分,共20分。
江西省百所名校2020-2021学年高三第四次联考数学(文)试题
【分析】
由题意可得 ,代入 并对其化简,再代入模长计算公式即可.
【详解】
因为 ,
所以 ,
从而 .
故选:B
【点睛】
本题考查了复数的运算及复数的模的求法,属于容易题.
3.A
【分析】
根据渐近线方程求得 关系式,结合离心率公式即可求得.
【详解】
因为 的渐近线方程为 ,所以 ,
故பைடு நூலகம்心率 .
故选:A.
【点睛】
A. B. C. D.
二、填空题
13.若非零向量 ,满足 , ,则 与 的夹角的余弦值为______.
14.若实数 满足约束条件 ,则 的最大值为______.
15.已知高为 的正三棱柱的外接球的体积为 ,则该正三棱柱的底面边长为______.
三、双空题
16.在数列 中, ,前 项和 满足 .令 ,则 ______;若数列 满足 , ,则 ______.
【详解】
因为原函数的定义域为 ,
且 ,知 为奇函数,所以排除A,
又因为 ,
当 时,函数为减函数,且 ,排除B、C.
A. B.
C. D.
7.下图是为了统计某班 名学生假期期间平均学习时间而设计的程序框图,其中 表示第 位学生的学习时间,则判断框中可以填入的条件是()
A. B. C. D.
8.在正方体 中, 为 的中点, 为正方形 的中心,则异面直线 与 所成角的余弦值为()
A. B. C. D.
9.已知函数 的部分图象如图所示,为了得到函数 的图象,需要将函数 的图象向右平移 个单位长度,则 的最小值为()
优
良
轻度污染
中度污染
重度污染
严重污染
2020届江西名校高三11月大联考数学(理)试题(解析版)
2020届江西名校高三11月大联考数学(理)试题一、单选题1.已知集合2{|40}A x x x =->,2{|40}B x x =-≤,则A B =I ( ) A .[2,0]- B .(,0)-∞ C .[2,0)- D .[4,4]-【答案】C【解析】对集合A 和集合B 进行化简,然后根据集合的交集运算,得到答案. 【详解】由题得2{|40}{|0A x x x x x =->=<或4}x >,2{|40}{|22}B x x x x =-≤=-≤≤, 则{|20}A B x x =-≤<I , 故选:C . 【点睛】本题考查解不含参的二次不等式,集合的交集运算,属于简单题.2.已知角α终边上一点M 的坐标为,则sin 2α=( )A .12-B .12C .D 【答案】D【解析】根据题意,结合α所在象限,得到sin α和cos α的值,再根据公式,求得答案. 【详解】由角α终边上一点M 的坐标为(,得sin 2α=,1cos 2α=,故sin 22sin cos ααα== 故选D. 【点睛】本题考查已知角的终边求对应的三角函数值,二倍角公式,属于简单题. 3.已知1(,),sin(2)22ααπ∈-0π-=-,则sin cos αα-=( )A .5B .52-C .62D .62-【答案】D【解析】由诱导公式得到1sin 22α=-,再根据二倍角公式展开,结合同角三角函数关系,得到()2sin cos αα-的值,结合α的范围得到答案. 【详解】因为1sin(2)2απ-=-,所以1sin 22α=-,即12sin cos 2αα=-,所以2(sin cos )1αα-=-132sin cos 122αα=+=, 又,02πα⎛⎫∈- ⎪⎝⎭,所以sin cos αα<,所以得到sin cos αα-=6-. 故选D . 【点睛】本题考查诱导公式,二倍角的正弦公式,同角三角函数关系,属于简单题. 4.函数2()(1)sin 21x f x x =-+在[2,2]-上的图象大致是( ) A . B .C .D .【答案】A【解析】先判断出()f x 是偶函数,排除C 、D ,再由()1f 的正负排除B ,从而得到答案. 【详解】因为()()21sin 21xfx x -⎛⎫-=-- ⎪+⎝⎭2221sin 1sin ()1221x xx x x f x ⎛⎫⋅⎛⎫=--=-= ⎪ ⎪++⎝⎭⎝⎭, 所以函数()f x 是偶函数,排除C 、D ,又当1x =时,1(1)sin103f =-<,排除B ,故选:A. 【点睛】本题考查函数图像的识别,属于简单题.5.已知x ,y 满足约束条件1400y x y x y ≤⎧⎪++≥⎨⎪-≤⎩,则2z x y =+的最小值是( )A .-8B .-6C .-3D .3【答案】B【解析】根据约束条件画出可行域,然后将目标函数化为斜截式,得到过点B 时,直线的截距最小,从而得到答案. 【详解】画出不等式组表示的平面区域,如图中阴影部分所示, 易求得(1,1),(2,2),(5,1)A B C ---, 2z x y =+,则1122y x z =-+, 当直线1122y x z =-+过点(2,2)B --时,z 取到最小值, 所以2z x y =+的最小值是22(2)6-+⨯-=-, 故选:B .【点睛】本题考查线性规划求最值,属于简单题.6.已知函数22ln ,1()1,1x x f x x ax a x ≥⎧=⎨-+-+<⎩在R 上为增函数,则a 的取值范围是( ) A .(,1]-∞ B .[1,)+∞C .(,2]-∞D .[2,)+∞【答案】D【解析】由()f x 为增函数,得到其在每段上都为增函数,得到1x <时,二次函数对称轴大于等于1,且当1x =时,二次函数对应的值应小于等于对数函数的值,才能保证()f x 单调递增,从而得到答案.【详解】若函数()f x 在R 上为增函数, 则在两段上都应为单调递增函数, 当1x <时,()221f x x ax a =-+-+,对称轴为2a x =,所以12a≥, 且在1x =处,二次函数对应的值应小于等于对数函数的值, 即20a a ≤-所以得到2120a a a ⎧≥⎪⎨⎪-≤⎩,解得201a a a ≥⎧⎨≤≥⎩或所以2a ≥. 故选:D. 【点睛】本题考查分段函数的性质,根据函数的单调性求参数的范围,属于中档题.7.已知非零向量a r 与b r 的夹角为θ,tan θ=(2)()a b a b -⊥+r r r r ,则||||b a =rr ( )A .13B .3CD【答案】D【解析】计算cos θ=,根据(2)()a b a b -⊥+r r r r得到2120b a ⎛⎫⎪-= ⎪⎝⎭rr,解得答案.tan θ=[]0,θπ∈,故cos θ=. (2)()a b a b -⊥+r r r r,故2222(2)()220a b a b a a b b a b b -⋅+=-⋅-=⋅-=r r r r r r r r r r r ,即2120b a ⎛⎫ ⎪-= ⎪⎝⎭r r,解得||||b a =r r||||b a =r r (舍去). 故选:D . 【点睛】本题考查了向量模的计算,意在考查学生的计算能力.8.设0>ω,将函数sin()3y x ωπ=+的图象向左平移6π个单位长度后与函数cos()3y x πω=+的图象重合,则ω的最小值为( )A .1B .2C .3D .4【答案】C【解析】根据题意得到平移后的解析式sin()63y x ωωππ=++,再将函数cos()3y x πω=+化为5sin()6y x ωπ=+,从而得到52636k ωπππ+=+π,得到ω的表达式,根据ω的范围,得到答案. 【详解】将函数sin()3y x ωπ=+的图象向左平移6π个单位长度后,得到函数sin()63y x ωωππ=++的图象, 又5cos()sin()36y x x ωωππ=+=+,所以52,636k ωπππ+=+π 整理得123()k k ω=+∈Z , 又0>ω,所以ω的最小值为3 , 故选:C . 【点睛】本题考查正弦型函数的平移,正弦型函数的图像与性质,属于简单题.9.已知奇函数()f x 在R 上是增函数,()()g x xf x =.若2(log 4.1)a g =,0.2(2)b g =-,()c g =π,则a ,b ,c 的大小关系为( )A .a b c <<B .c b a <<C .b a c <<D .b c a <<【解析】先判断出()g x 的单调性和奇偶性,再判断出2log 4.1,0.22,π的大小,利用()g x 的奇偶性和单调性判断出a ,b ,c 的大小关系,得到答案. 【详解】因为奇函数()f x 在R 上是增函数, 所以当0x >时,()0f x >. 对任意的12(0+)x x ∈∞,,且12x x <, 有120()()f x f x <<,故12()()<g x g x ,所以()g x 在(0+)∞,上也是增函数, 因为()()()g x xf x xf x -=--=,所以()g x 为偶函数. 又2log 4.1(2,3)∈,0.22(1,2)∈, 所以0.2212log 4.1<<<π, 而0.20.2(2)(2)b g g =-=, 所以b a c <<, 故选:C . 【点睛】本题考查函数的单调性和奇偶性的判断,根据函数的性质比较大小,属于中档题. 10.公比不为1的等比数列{}n a 的前n 项和为n S ,若1a ,3a ,2a 成等差数列,2mS ,3S ,4S 成等比数列,则m =( )A .78B .85C .1D .95【答案】D【解析】根据1a ,3a ,2a 成等差数列,得到q 的值,再表示出2S ,3S ,4S ,再由2mS ,3S ,4S 成等比数列,得到关于m 的方程,解出m 的值,得到答案.【详解】设{}n a 的公比为(0q q ≠且1)q ≠, 根据1a ,3a ,2a 成等差数列,得3122a a a =+,即21112a q a a q =+,因为10a ≠,所以2210q q --=, 即(1)(21)0q q -+=. 因为1q ≠,所以12q =-, 则2112(1)3141a q a S q q -==⋅--,3113(1)9181a q a S q q -==⋅--,414(1)1a q S q -==-115161a q ⋅-. 因为2mS ,3S ,4S 成等比数列, 所以2324S mS S =⋅,即211193158141161a a am q q q ⎛⎫⋅=⋅⋅⋅⋅ ⎪---⎝⎭,211193151118416111222a a a m ⎛⎫⎪ ⎪⋅=⋅⋅⋅⋅⎛⎫⎛⎫⎛⎫ ⎪------ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭得95m =. 故选:D . 【点睛】本题考查等比数列通项和求和的基本量计算,等差中项、等比中项的应用,属于中档题. 11.若0,1x y >>-且满足21x y +=,则22211x y x y +++的最小值是( ) A .3 B.32+ C.D.12+【答案】B【解析】对所求的22211x y x y +++进行化简,得到22211111x y x y x y ++=+++,根据212x y ++=,由基本不等式1的妙用,得到最小值,并研究等号成立条件,得到答案.【详解】2221111121111x y x y x y x y x y ++=+++-=++++, 因为212x y ++=,所以111(21)()21x y x y ++++1121(3)(3212y x x y +=++≥++, 当且仅当12=1y xx y ++,21x y +=时取等号,即23x y ==时取得最小值32+. 故选:B. 【点睛】本题考查基本不等式求和的最小值,1的妙用求最值,属于中档题.12.已知函数321,()3,x x x mf x x m x m⎧-+≤⎪=⎨⎪->⎩,若存在实数a ,使得函数()()g x f x a =-恰好有4个零点,则实数m 的取值范围是( ) A .(0,2) B .(2,)+∞ C .(0,3) D .(3,)+∞【答案】B【解析】问题等价于直线y a =与函数()f x 图象的交点个数,利用导数得到3213y x x =-+的单调性、极值、最值,从而根据不同的m 的范围,画出()f x 的图像,再根据图像,得到直线y a =与函数()f x 图象有4个交点时,对应的m 的范围,得到答案. 【详解】()()g x f x a =-的零点个数等价于直线y a =与函数()f x 图象的交点个数.令3213y x x =-+,22y'x x =-+,当0x <或2x >时,'0y <, 当02x <<时,'0y >, 当2x >时,'0y <,所以函数3213y x x =-+在(,0)-∞,(2,)+∞上单调递减,在(0,2)上单调递增,画出函数()f x 的大致图象如图所示,由图可知当2m >时,存在直线y a =与函数()f x 图象的交点为4个; 当02m <≤时,直线y a =与函数()f x 图象的交点至多为3个; 当0m ≤时,直线y a =与函数()f x 图象的交点至多为2个; 所以m 的取值范围为(2,)+∞. 故选B. 【点睛】本题考查利用导数研究函数的单调性、极值、最值,画函数图像,函数与方程,根据零点个数求参数的范围,属于中档题.二、填空题13.已知函数2,4()(1),4x x f x f x x ⎧≤=⎨->⎩,则2(5log 6)f +的值为________.【答案】12【解析】根据题意可知4x >时,函数()f x 有周期性,判断25log 6+的范围,然后利用周期性,得到()()225log 61log 6f f +=+,代入4x ≤时的解析式,得到答案. 【详解】由题意4x >时,函数()()1f x f x =-, 所以()f x 在()4,+∞时,周期为1,因为22log 63<<,所以()25log 67,10+∈,()21log 63,4+∈, 所以()()225log 61log 6f f +=+ 21log 622612+==⨯=.故答案为:12. 【点睛】本题考查函数的周期性,求分段函数的值,属于简单题.14.已知等差数列{}n a ,其前n 项和为n S ,若253924,a a S S +==,则n S 的最大值为________. 【答案】72【解析】根据39S S =,得到670a a +=,结合25240a a +=>,得到数列{}n a 的前6项为正,从而得到6n =时,n S 的最大值,得到答案. 【详解】由39S S =,得4567890,a a a a a a +++++= 根据等差数列下标公式可得670,a a += 又25240a a +=>,所以数列{}n a 的前6项为正, 所以当6n =时,n S 有最大值,且616253()3()72S a a a a =+=+=.故答案为:72. 【点睛】本题考查等差数列的下标公式,前n 项和的最值,属于简单题.15.已知ABC V 中,2,3,60,2,2AB BC ABC BD DC AE EC ==∠=︒==,则AD BE ⋅=u u u v u u u v________.【答案】43【解析】根据条件中的几何关系,将AD u u u r 和BE u u u r 用BC uuu r 和BA u u u r 来表示,然后将AD BE ⋅u u u r u u u r利用数量积的运算律进行计算,得到结果. 【详解】因为2BD DC =,2AE EC =,所以23AD BD BA BC BA =-=-u u u r u u u r u u u r u u u r u u u r ,2133BE BC BA =+u u u r u u u r u u u r所以221333AD BE BC BA BC BA ⎛⎫⎛⎫⋅=-⋅+ ⎪ ⎪⎝⎭⎝⎭u u u r u u u r u u u r u u u r u u u r u u u r22414939BC BA BC BA =--⋅u u ur u u u r u u u r u u u r 4149432cos60939=⨯-⨯-⨯⨯⨯︒ 4444333=--=.故答案为:43.【点睛】本题考查向量的平面基本定理,向量数量积的运算律,属于中档题. 16.函数1()sin sin 22f x x x =+的最大值为________. 33【解析】对()f x 求导,利用导数,判断出()f x 的单调性,从而求出()f x 的最大值 【详解】因为1()sin sin 22f x x x =+求导得2()cos cos22cos cos 1f x x x x x '=+=+- (2cos 1)(cos 1)x x =-+,因为cos 10x +≥, 所以当1cos 2x >时,()0f x '>,当11cos 2x -<<时,()0f x '<,即当22,33ππππ-≤≤+∈k x k k Z 时,()f x 单调递增,当52+2,33k x k k πππ<<π+∈Z 时,()f x 单调递减, 故()f x 在23x k k π=π+∈Z ,处取得极大值即最大值,所以max 131333()sin sin(2)3232f x ππ=+⨯=. 33. 【点睛】本题考查利用导数求函数的单调性和最大值,属于简单题.三、解答题17.已知函数2π()2sin()cos()23f x a x x π=--,且π()13f =.(1)求a 的值及()f x 的最小正周期;(2)若1()3f α=-,(0,)2πα∈,求sin2α.【答案】(1)2a =,π;(2【解析】(1)由π()13f =得到a 的值,再对()f x 进行整理化简,得到()π2sin(2)16f x x =--,从而得到()f x 的最小正周期;(2)由1()3f α=-得到π1sin(2)63α-=,判断出26πα-的范围,得到πcos(2)6α-=sin 2α转化为ππsin 266α⎡⎤⎛⎫-+⎪⎢⎥⎝⎭⎣⎦,利用公式展开,从而得到答案. 【详解】(1)由已知π()13f =,得112122a ⨯⨯=,解得2a =.所以1()4cos cos )2f x x x x =-2cos 2cos x x x =-2cos21x x =--π2sin(2)16x =--.所以π()2sin(2)16f x x =--的最小正周期为π.(2)1()3f α=-,π12sin(2)163α--=-,π1sin(2)63α-=,因为(0,)2πα∈,所以π52(,)666αππ-∈-, 又π11sin(2)632α-=<,所以π2(0,)66απ-∈.所以πcos(2)6α-=则ππsin 2=sin[(2)]66αα-+ππππsin(2)cos cos(2)sin 6666αα=-+-1132==【点睛】本题考查利用三角函数公式进行化简求正弦型函数解析式,求正弦型函数的周期性,三角函数给值求值题型,利用两角和的正弦公式求值,属于简单题. 18.已知数列{}n a 的前n 项和为n S ,且2,n S n n =+数列{}n b 满足122212121n n n b b ba =++++++L . (1)求数列{}n a ,{}n b 的通项公式; (2)若,4n nn a b c n =-求数列{}n c 的前n 项和n T . 【答案】(1)2()n a n n *=∈N ,122()n n b n +*=+∈N ;(2)1(1)22n n T n +=-⋅+【解析】(1)根据2n ≥时,1n n n a S S -=-,验证1n =,从而得到n a 的通项,然后由122212121n n n b b b a =++++++L ,得到1122122212121n n b b bn --+++=-+++L ,通过作差得到nb 的通项公式;(2)根据(1)得到nc 的通项,利用错位相减法得到n c 的前n 项的和n T . 【详解】(1)因为2n S n n =+,所以当1n =时,112a S ==, 当2n ≥时221,(1)(1)2n n n a S S n n n n n -=-=+----=, 又12a =也满足上式,所以2()n a n n *=∈N . 又1222212121n n n b b ba n +++==+++L , 所以1122122(2,)212121n n b b bn n n *--+++=-≥∈+++N L , 两式作差得,221nnb =+,所以122(2,)n n b n n +*=+≥∈N , 当1n =时11,2,63b b ==,又16b =满足上式,所以122()n n b n +*=+∈N . (2)因为2,4n n nn a b c n n =-=⋅ 所以231222322nn T n =⨯+⨯+⨯++⋅L ,23121222(1)22n n n T n n +=⨯+⨯++-⨯+⋅L ,两式相减,得23122222n n n T n +-=++++-⋅L ,即11222n n n T n ++-=--⋅,所以1(1)22n n T n +=-⋅+.【点睛】本题考查根据n S 求n a 的通项,错位相减法求数列的前n 项的和,属于中档题. 19.如图,在ABC V 中,,BAC ∠,B C ∠∠的对边分别是,,a b c ,60BAC ∠=︒,AD 为BAC ∠的平分线,3AD =.(1)若2DC BD =,求c ; (2)求ABC V 面积的最小值. 【答案】(1)32c =;(23【解析】(1)根据已知条件,结合12ABD ADC S BD S DC ==△△,利用三角形面积公式,表示出面积,从而得到2AC AB =,在ABD △、ACD V 中,利用余弦定理表示出cos BAD ∠和cos CAD ∠,然后代入已知条件,解得c 的值;(2)设BD x =,所以b DC x c=,在,ABD ACD △△中,22223()32323bx b c cb+-=得到关于,,x b c 的方程,消去x 得到关于,b c 的方程,得到()()0b c bc b c ---=,分类讨论,分别研究ABC V 面积,从而得到其最小值.【详解】(1)因为2DC BD =,BAD CAD ∠=∠, 所以12ABD ADC S BD S DC ==△△, 所以1sin 1212sin 2AB AD BADAB AC AC AD CAD ⋅⋅∠==⋅⋅∠ 所以2AC AB =. 在ABD △、ACD V 中,由余弦定理,得2223cos 2AB AD BD BAD AB AD +-∠==⋅2223cos 2AC AD CD CAD AC AD +-∠==⋅即223cos3023c ︒==,223cos3043c︒= 解得32c =. (2)设BD x =,则由(1)可知BD AB DC AC=,所以bDC x c =,在,ABD ACD △△22223()bx b +-== 所以2233x c c =+-,222233b x b b c=+-,消去x ,得2222(33)(33)b c c c b b +-=+-, 化简,得()()0b c bc b c ---=.当b c =时,ABC V为等边三角形,此时2,ABC b c S ===△ 当bc b c =+时,由基本不等式可得bc b c =+≥2≥,即4bc ≥当2b c ==时取等号,此时1sin 602ABC S bc =︒=≥△综上可得,ABC V【点睛】本题考查三角形面积公式,余弦定理解三角形,利用基本不等式求和的最小值,涉及分类讨论的思想,属于中档题.20.已知函数()(0,x f x a b a =+>且1)a ≠,满足(1)3f =,且(1)4()+3f n f n +=,其中n *∈N .(1)求函数()f x 的解析式; (2)求证:11114(1)(2)(3)()9f f f f n ++++<L . 【答案】(1)()=41x f x -;(2)见解析【解析】(1)由(1)3f =,且(1)4()+3f n f n +=,得到()215f =,代入函数,得到关于,a b 的方程组,解得,a b 的值,从而得到()f x 解析式;(2)由1()4134n n f n -=-≥⨯得到111()34n f n -≤⨯,从而得到1111(1)(2)(3)()f f f f n ++++L 211111(1)3444n -≤⨯++++L ,再利用等比数列求和公式,得到前n 项的和,从而得到证明. 【详解】(1)由(1)4()+3()f n f n n *+=∈N 得 (2)4(1)315f f =+=,即2315a b a b +=⎧⎨+=⎩,解得41a b =⎧⎨=-⎩或36a b =-⎧⎨=⎩(舍去), 所以()=41x f x -.(2)由(1)得()41().n f n n *=-∈N由于141n -≥,即1144341n n --⨯-⨯≥,所以14134n n --≥⨯, 即1()4134n n f n -=-≥⨯,111()34n f n -≤⨯, 所以1111(1)(2)(3)()f f f f n ++++L 211111(1)3444n -≤⨯++++L 111()1()11441333144n n --=⨯=⨯- 414(1)949n =⨯-<. 【点睛】本题考查求函数的解析式,等比数列求和,放缩法证明不等式,属于中档题. 21.已知函数ln +()x af x x x=+()a R ∈. (1)当0a =时,求曲线()f x 在=1x 处的切线方程;(2)若函数()f x 在区间(1,)+∞上有极值,求实数a 的取值范围. 【答案】(1)210x y --=;(2)(2,)+∞【解析】(1)代入0a =,对()f x 求导,代入1x =得到斜率,再由点斜式写出直线方程;(2)对()f x 求导,令2()ln 1F x x x a =--+,然后再求导得到()F x ',可得(1,)x ∈+∞时,()0F'x >,所以函数()F x 在(1,)+∞上单调递增,再根据(1)2F a =-,按2a ≤和2a >进行分类讨论,得到函数()F x 在(1,)a 上存在唯一零点0x x =,从而得到若函数()f x 在区间(1,)+∞上有极值,则2a >. 【详解】(1)当0a =时,ln ()x f x x x =+,21ln ()1xf x x -'=+, 则(1)1f =,(1)2f '=,故曲线()f x 在1x =处的切线方程为:12(1)y x -=-,即210x y --=.(2)ln ()(1)x a f x x x x +=+>,22221ln ln 1()1x a x x a f 'x x x x ---+=+-=, 令2()ln 1F x x x a =--+,则2121()2x F'x x x x-=-=,当(1,)x ∈+∞时,()0F'x >,所以函数()F x 在(1,)+∞上单调递增, 又(1)2F a =-,故①当2a ≤时,()0F x >,()0f 'x >,()f x 在(1,)+∞上单调递增,无极值; ②当2a >时,(1)0F <,2()ln 1F a a a a =--+,令2()ln 1G x x x x =--+,则2121()21x x G'x x x x--=--=,当2x >时,()0G'x >,函数()G x 在(2,)+∞上单调递增,(2)3ln 20G =->, 所以在(2,)+∞上,()0G x >恒成立, 所以2()ln 10F a a a a =--+>,所以函数()F x 在(1,)a 上存在唯一零点0x x =,所以()f x 在0(1,)x 上单调递减,在()0,x +∞上单调递增,此时函数()f x 存在极小值. 综上,若函数()f x 在区间(1,)+∞上有极值,则2a >. 故实数a 的取值范围为(2,)+∞. 【点睛】本题考查利用导数求函数在一点的切线,利用导数研究函数的单调性、极值、最值,零点存在定理,涉及分类讨论的思想,属于中档题. 22.已知函数21()ln 2(0).2f x x x mx m =+-> (1)判断函数()f x 的单调性;(2)若函数()f x 有极大值点x t =,求证:2ln 1t t mt >-. 【答案】(1)见解析;(2)证明见解析【解析】(1)对()f x 求导,得到()f x ',然后判断()0f x '=的根的情况,得到()f x '的正负,然后得到()f x 的单调性;(2)由(1)可得1m >,且(0,1)t m =-=,由221()0,t mt f 't t -+==得212t m t+=,所以只需证32ln 20,(0,1)t t t t t --+>∈,令3()2ln 2h x x x x x =--+,0x >,利用导数研究出()h x 的单调性和最值,结合(1)0h =,得到(0,1)x ∈时,()0h x >,从而得以证明.【详解】(1)由题意,知221()(0)x mx f 'x x x-+=>,对于方程221=0x mx -+,24(1)m ∆=-, ①当01m <≤时,24(1)0m ∆=-≤,()0f 'x ≥,()f x 在(0,)+∞上单调递增.②当1m >时,令()0f 'x =,则1x m =-,2x m =+当0x m <<()0f 'x >,函数()f x 单调递增;当m x m -<<+()0f 'x <,函数()f x 单调递减,当x m >+()0f 'x >,函数()f x 单调递增. 综上所述,当01m <≤时,()f x 在(0,)+∞上单调递增;当1m >时,()f x 在(0,m -,()m ++∞上单调递增,在(m m +上单调递减.(2)由(1)可知当1m >时,在x m =-处时,函数()f x 取得极大值,所以函数()f x 的极大值点为x m =(0,1)t m =.由221()0,t mt f 't t -+==得212t m t+=, 要证2ln 1t t mt >-, 只需证2ln 10t t mt -+>,只需证221ln 102t t t t t+-⋅+>, 即32ln 20,(0,1)t t t t t --+>∈, 令3()2ln 2h x x x x x =--+,0x >, 则2()2ln 31h'x x x =-+, 令2()2ln 31x x x ϕ=-+,0x >,则2226()6x 'x x x xϕ-=-=,当03x <<时,'()0x ϕ>,)'(h x 单调递增;当3x >时,'()0x ϕ<,)'(h x 单调递减,max ()0h'x h'==<, 所以'()0h x <,()h x 在(0,)+∞上单调递减,又(1)0h =, 故(0,1)x ∈时,32ln 20x x x x --+>, 又(0,1)t ∈,则32ln 20t t t t --+>, 从而可证明2ln 1t t mt >-. 【点睛】本题考查利用导数研究函数的单调性、极值、最值,利用导数证明不等式,涉及分类讨论的思想,属于难题.。
2020年江西省南昌市高考第四次模拟测试理科数学试题-含答案
2020年江西省南昌市高考第四次模拟测试理科数学试题本试卷共4页,23小题,满分150分。
考试时间120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、准考证号填涂在答题卡上,并在相应位置贴好条形码. 2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目的答案信息涂黑:如需改动,用橡皮擦干净后,再选涂其它答案.3.非选择题必须用黑色水笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来答案,然后再写上新答案,不准使用铅笔和涂改液不按以上要求作答无效. 4.考生必须保证答题卡整洁。
考试结束后,将试卷和答题卡一并交回.一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.复数12121,,z z i z z z ===⋅,则||z 等于( )A .2B .4CD .2.集合{|},{}A y y x N B x N N =∈=∈,则A B ⋂=( )A .{0,2}B .{0,1,2}C .2}D .∅3.已知,,a b c 是三条不重合的直线,平面,αβ相交于直线c ,,a b αβ⊂⊂,则“,a b 相交”是“,a c 相交”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.已知1,1()ln ,1x x f x x x -≤⎧=⎨>⎩,则不等式()1f x >的解集是( )A .(1,)eB .(2,)+∞C .(2, )eD .(,)e +∞5.已知ABC V 中角, , A B C 所对的边分别为,,a b c ,若2,sin 2cos 2a c A C ==,则角A 等于( )A .6π B .2π C .23π D .56π6.已知,a b r r 为不共线的两个单位向量,且a r 在b r上的投影为12-,则|2|a b -=r r ( )A .3B .5C .6D .7 7.函数ln ()xx xf x e=的图象大致为( ) A . B . C . D .8.直线2sin 0x y θ⋅+=被圆222520x y y +-+=截得最大弦长为( )A .25B .23C .3D .229.函数()sin()(0)f x A x ωϕω=+>的部分图象如图所示,则(0)f =( )A .6-B .3C .2-D .6 10.春秋以前中国已有“抱瓮而出灌”的原始提灌方式,使用提水吊杆——桔槔,后发展成辘轳.19世纪末,由于电动机的发明,离心泵得到了广泛应用,为发展机械提水灌溉提供了条件.图形所示为灌溉抽水管道在等高图的上垂直投影,在A 处测得B 处的仰角为37度,在A 处测得C 处的仰角为45度,在B 处测得C 处的仰角为53度,A 点所在等高线值为20米,若BC 管道长为50米,则B 点所在等高线值为(参考数据3sin 375︒=)A .30米B .50米C .60米D .70米11.已知F 是双曲线22221(0,0)x y a b a b-=>>的右焦点,直线3y x =交双曲线于A ,B 两点,若23AFB π∠=,则双曲线的离心率为( ) A 56 C .1022+.52212.已知函数3()sin cos (0)4f x x x a x a π⎛⎫=+--> ⎪⎝⎭有且只有三个零点()123123,,x x x x x x <<,则()32tan x x -属于( ) A .0,2π⎛⎫ ⎪⎝⎭ B .,2ππ⎛⎫ ⎪⎝⎭ C .3,2π⎛⎫+∞ ⎪⎝⎭ D .3,2ππ⎛⎫⎪⎝⎭二、填空题:本题共4小题,每小题5分,共20分.13.若变量x ,y 满足约束条件||1310y x x y ≥-⎧⎨-+≥⎩,则目标函数z x y =+的最小值为______________.14.已知梯形ABCD 中,//,3,4,60,45AD BC AD AB ABC ACB ︒︒==∠=∠=,则DC =_____________.15.已知6270127(1)(21)x x a a x a x a x --=++++L ,则2a 等于_______________.16.已知正四棱椎P ABCD -中,PAC V 是边长为3的等边三角形,点M 是PAC V 的重心,过点M 作与平面PAC 垂直的平面α,平面α与截面PAC 交线段的长度为2,则平面α与正四棱椎P ABCD -表面交线所围成的封闭图形的面积可能为______________.(请将可能的结果序号..填到横线上)①2; ②22; ③3; ④23.三、解答题:共70分,解答应写出文字说明、证明过程或演算步骤。
2020届五省优创名校高三(全国Ⅰ卷)第四次联考数学(理)试题(解析版)
2020届五省优创名校高三(全国Ⅰ卷)第四次联考数学(理)试题一、单选题1.已知集合{|A x y ==,2{|}10B x x x =-+≤,则A B =( )A .[12]-, B .[-C .(-D .⎡⎣【答案】C【解析】计算A ⎡=⎣,(]1,2B =-,再计算交集得到答案.【详解】{|A x y ⎡==⎣=,(]2{|},1012x x B x -=-+=≤,故(A B -=. 故选:C . 【点睛】本题考查了交集运算,意在考查学生的计算能力.2.若202031i i z i+=+,则z 的虚部是( )A .iB .2iC .1-D .1【答案】D【解析】通过复数的乘除运算法则化简求解复数为:a bi +的形式,即可得到复数的虚部. 【详解】由题可知()()()()202022131313123211111i i i i i i i z i i i i i i +-+++-=====++++--, 所以z 的虚部是1. 故选:D. 【点睛】本题考查复数的代数形式的混合运算,复数的基本概念,属于基础题. 3.cos350sin 70sin170sin 20-=( )A .BC .12D .12-【答案】B【解析】化简得到原式cos10cos 20sin10sin 20=-,再利用和差公式计算得到答案. 【详解】3cos350sin 70sin170sin 20cos10cos 20sin10sin 20cos302-=-==. 故选:B 【点睛】本题考查了诱导公式化简,和差公式,意在考查学生对于三角公式的灵活运用.4.已知()f x 为定义在R 上的偶函数,当()1,0x ∈-时,()433xf x =+,则33log 2f ⎛⎫= ⎪⎝⎭( ) A .2- B .3 C .3- D .2【答案】D【解析】判断321log 03-<<,利用函数的奇偶性代入计算得到答案. 【详解】 ∵321log 03-<<,∴33332224log log log 223333f f f ⎛⎫⎛⎫⎛⎫=-==+= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭. 故选:D 【点睛】本题考查了利用函数的奇偶性求值,意在考查学生对于函数性质的灵活运用.5.在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知4cos sin b B C =,则B =( )A .6π或56πB .4π C .3π D .6π或3π 【答案】D【解析】根据正弦定理得到4sin cos sin B B C C =,化简得到答案. 【详解】由4cos sin b B C =,得4sin cos sin B B C C =,∴sin 2B =23B π=或23π,∴6B π=或3π.故选:D 【点睛】本题考查了正弦定理解三角形,意在考查学生的计算能力.6.函数()()2cosln1xf xx x=+-的部分图象大致为()A.B.C.D.【答案】A【解析】判断函数为奇函数排除B,C,计算特殊值排除D,得到答案.【详解】∵()()()()()()222cosln1ln1ln1xf x f xx x x xx x--====-⎡⎤+++--+--⎢⎥⎣⎦,∴()f x为奇函数,排除B,C;又322f fππ⎛⎫⎛⎫==⎪ ⎪⎝⎭⎝⎭,()()()22ln1ln1fπππππ==>+-++,排除D;故选:A【点睛】本题考查了函数图像的识别,确定函数单调性是解题的关键.7.明代数学家程大位(1533~1606年),有感于当时筹算方法的不便,用其毕生心血写出《算法统宗》,可谓集成计算的鼻祖.如图所示的程序框图的算法思路源于其著作中的“李白沽酒”问题.执行该程序框图,若输出的y的值为2,则输入的x的值为()A .74B .5627C .2D .16481【答案】C【解析】根据程序框图依次计算得到答案. 【详解】34y x =-,1i =;34916y y x =-=-,2i =;342752y y x =-=-,3i =;3481160y y x =-=-,4i =;34243484y y x =-=-,此时不满足3i ≤,跳出循环,输出结果为243484x -,由题意2434842y x =-=,得2x =. 故选:C 【点睛】本题考查了程序框图的计算,意在考查学生的理解能力和计算能力. 8.将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,再将图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,若()g x 为奇函数,则m 的最小值为( ) A .9πB .29π C .18π D .24π【答案】C【解析】根据三角函数的变换规则表示出()g x ,根据()g x 是奇函数,可得m 的取值,再求其最小值. 【详解】解:由题意知,将函数()sin(3)6f x x π=+的图像向右平移(0)m m >个单位长度,得()sin 36y x m π⎡⎤=-+⎢⎥⎣⎦,再将sin 336y x m π⎡⎤=-+⎢⎥⎣⎦图像上各点的横坐标伸长到原来的6倍(纵坐标不变),得到函数()g x 的图像,1()sin(3)26g x x m π∴=-+,因为()g x 是奇函数, 所以3,6m k k Z ππ-+=∈,解得,183k m k Z ππ=-∈,因为0m >,所以m 的最小值为18π. 故选:C 【点睛】本题考查三角函数的变换以及三角函数的性质,属于基础题.9.已知双曲线()222210,0x y a b a b-=>>的左、右顶点分别是,A B ,双曲线的右焦点F 为()2,0,点P 在过F 且垂直于x 轴的直线l 上,当ABP ∆的外接圆面积达到最小时,点P 恰好在双曲线上,则该双曲线的方程为( )A .22122x y -=B .2213y x -=C .2213x y -=D .22144x y -=【答案】A【解析】点P 的坐标为()2,m ()0m >,()tan tan APB APF BPF ∠=∠-∠,展开利用均值不等式得到最值,将点代入双曲线计算得到答案. 【详解】不妨设点P 的坐标为()2,m ()0m >,由于AB 为定值,由正弦定理可知当sin APB ∠取得最大值时,APB ∆的外接圆面积取得最小值,也等价于tan APB ∠取得最大值, 因为2tan a APF m +∠=,2tan aBPF m-∠=, 所以()2222tan tan 221a aa a m m APB APF BPF a ab b m m m m +--∠=∠-∠==≤=+-+⋅+, 当且仅当2b m m=()0m >,即当m b =时,等号成立,此时APB ∠最大,此时APB 的外接圆面积取最小值,点P 的坐标为()2,b ,代入22221x y a b-=可得a =b ==所以双曲线的方程为22122x y -=.故选:A 【点睛】本题考查了求双曲线方程,意在考查学生的计算能力和应用能力.10.点O 在ABC ∆所在的平面内,OA OB OC ==,2AB =,1AC =,AO AB AC λμ=+(),R λμ∈,且()420λμμ-=≠,则BC =( )A .73B C .7D 【答案】D【解析】确定点O 为ABC ∆外心,代入化简得到56λ=,43μ=,再根据BC AC AB =-计算得到答案. 【详解】由OA OB OC ==可知,点O 为ABC ∆外心, 则2122AB AO AB ⋅==,21122AC AO AC ⋅==,又AO AB AC λμ=+, 所以2242,1,2AO AB AB AC AB AC AB AO AC AB AC AC AB AC λμλμλμλμ⎧⋅=+⋅=+⋅=⎪⎨⋅=⋅+=⋅+=⎪⎩①因为42λμ-=,② 联立方程①②可得56λ=,43μ=,1AB AC ⋅=-,因为BC AC AB =-, 所以22227BC AC AB AC AB =+-⋅=,即7BC =故选:D 【点睛】本题考查了向量模长的计算,意在考查学生的计算能力.11.有一圆柱状有盖铁皮桶(铁皮厚度忽略不计),底面直径为20cm ,高度为100cm ,现往里面装直径为10cm 的球,在能盖住盖子的情况下,最多能装()2.236≈≈≈) A .22个 B .24个C .26个D .28个【答案】C【解析】计算球心连线形成的正四面体相对棱的距离为,得到最上层球面上的点距离桶底最远为)()101n+-cm ,得到不等式)101100n +-≤,计算得到答案. 【详解】由题意,若要装更多的球,需要让球和铁皮桶侧面相切,且相邻四个球两两相切, 这样,相邻的四个球的球心连线构成棱长为10cm 的正面体,易求正四面体相对棱的距离为,每装两个球称为“一层”,这样装n 层球,则最上层球面上的点距离桶底最远为)()101n +-cm ,若想要盖上盖子,则需要满足)101100n +-≤,解得113.726n ≤+≈, 所以最多可以装13层球,即最多可以装26个球. 故选:C 【点睛】本题考查了圆柱和球的综合问题,意在考查学生的空间想象能力和计算能力.12.已知函数()ln 2f x x ax =-,()242ln ax g x x x=-,若方程()()f x g x =恰有三个不相等的实根,则a 的取值范围为( ) A .(]0,eB .10,2e ⎛⎤ ⎥⎝⎦C .(),e +∞D .10,e ⎛⎫ ⎪⎝⎭【答案】B【解析】由题意可将方程转化为ln 422ln x ax a x x -=-,令()ln xt x x=,()()0,11,x ∈+∞,进而将方程转化为()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,即()2t x =-或()2t x a =,再利用()t x 的单调性与最值即可得到结论. 【详解】由题意知方程()()f x g x =在()()0,11,+∞上恰有三个不相等的实根,即24ln 22ln ax x ax x x-=-,①.因为0x >,①式两边同除以x ,得ln 422ln x axa x x-=-. 所以方程ln 4220ln x axa x x--+=有三个不等的正实根. 记()ln xt x x=,()()0,11,x ∈+∞,则上述方程转化为()()4220at x a t x --+=. 即()()220t x t x a +-=⎡⎤⎡⎤⎣⎦⎣⎦,所以()2t x =-或()2t x a =.因为()21ln xt x x-'=,当()()0,11,x e ∈时,()0t x '>,所以()t x 在()0,1,()1,e 上单调递增,且0x →时,()t x →-∞.当(),x e ∈+∞时,()0t x '<,()t x 在(),e +∞上单调递减,且x →+∞时,()0t x →.所以当x e =时,()t x 取最大值1e,当()2t x =-,有一根. 所以()2t x a =恰有两个不相等的实根,所以102a e<<.故选:B. 【点睛】本题考查了函数与方程的关系,考查函数的单调性与最值,转化的数学思想,属于中档题.二、填空题 13.抛物线2112y x =的焦点坐标为______. 【答案】()0,3【解析】变换得到212x y =,计算焦点得到答案. 【详解】 抛物线2112y x =的标准方程为212x y =,6p ,所以焦点坐标为()0,3.故答案为:()0,3 【点睛】本题考查了抛物线的焦点坐标,属于简单题.14.()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为______. 【答案】25-【解析】先求得61x x ⎛⎫- ⎪⎝⎭中含21x 的项与常数项,进而可得()6212x x x ⎛⎫+- ⎪⎝⎭的常数项.【详解】61x x ⎛⎫- ⎪⎝⎭的展开式中含21x 的项为44262115C x x x ⎛⎫-= ⎪⎝⎭,61x x ⎛⎫- ⎪⎝⎭的展开式中的常数项为3336120C x x ⎛⎫-=- ⎪⎝⎭,所以()6212x x x ⎛⎫+- ⎪⎝⎭的展开式中的常数项为154025-=-.故答案为:25-.【点睛】本题考查二项展开式中常数项的求法,解题时要认真审题,注意二项式定理的合理运用,属于基础题.15.在棱长为2的正方体1111ABCD A B C D -中,E 是正方形11BB C C 的中心,M 为11C D 的中点,过1A M 的平面α与直线DE 垂直,则平面α截正方体1111ABCD A B C D -所得的截面面积为______. 【答案】26【解析】确定平面1A MCN 即为平面α,四边形1A MCN 是菱形,计算面积得到答案. 【详解】如图,在正方体1111ABCD A B C D -中,记AB 的中点为N ,连接1,,MC CN NA , 则平面1A MCN 即为平面α.证明如下: 由正方体的性质可知,1A MNC ,则1A ,,,M CN N 四点共面,记1CC 的中点为F ,连接DF ,易证DF MC ⊥.连接EF ,则EF MC ⊥, 所以MC ⊥平面DEF ,则DE MC ⊥. 同理可证,DE NC ⊥,NCMC C =,则DE ⊥平面1A MCN ,所以平面1A MCN 即平面α,且四边形1A MCN 即平面α截正方体1111ABCD A B C D -所得的截面.因为正方体的棱长为2,易知四边形1A MCN 是菱形, 其对角线123AC =,22MN =,所以其面积12223262S =⨯⨯=. 故答案为:26【点睛】本题考查了正方体的截面面积,意在考查学生的空间想象能力和计算能力.16.某部队在训练之余,由同一场地训练的甲、乙、丙三队各出三人,组成33⨯小方阵开展游戏,则来自同一队的战士既不在同一行,也不在同一列的概率为______. 【答案】1140【解析】分两步进行:首先,先排第一行,再排第二行,最后排第三行;其次,对每一行选人;最后,利用计算出概率即可. 【详解】首先,第一行队伍的排法有33A 种;第二行队伍的排法有2种;第三行队伍的排法有1种;然后,第一行的每个位置的人员安排有111333C C C 种;第二行的每个位置的人员安排有111222C C C 种;第三行的每个位置的人员安排有111⨯⨯种.所以来自同一队的战士既不在同一行,也不在同一列的概率311111133332229921140A C C C C C C P A ⋅⋅⋅==. 故答案为:1140. 【点睛】本题考查了分步计数原理,排列与组合知识,考查了转化能力,属于中档题.三、解答题17.已知数列{}n a 满足123123252525253n n na a a a ++++=----….(1)求数列{}n a 的通项公式;(2)设数列11n n a a +⎧⎫⎨⎬⎩⎭的前n 项和为n T ,证明:11226n T ≤<.【答案】(1)352n n a +=(2)证明见解析 【解析】(1)123123252525253n n na a a a ++++=----…,①当2n ≥时,123112311252525253n n n a a a a ---++++=----…,②两式相减即得数列{}n a 的通项公式;(2)先求出()()114411353833538n n a a n n n n +⎛⎫==- ⎪++++⎝⎭,再利用裂项相消法求和证明. 【详解】(1)解:123123252525253n n na a a a ++++=----…,①当1n =时,14a =.当2n ≥时,123112311252525253n n n a a a a ---++++=----…,②由①-②,得()3522n n a n +=≥, 因为14a =符合上式,所以352n n a +=.(2)证明:()()114411353833538n n a a n n n n +⎛⎫==- ⎪++++⎝⎭12231111n n n T a a a a a a +=+++… 4111111381111143538n n ⎡⎤⎛⎫⎛⎫⎛⎫=⨯-+-++- ⎪ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎝⎭⎣⎦… 4113838n ⎛⎫=⨯- ⎪+⎝⎭因为1103811n <≤+,所以11226n T ≤<. 【点睛】本题主要考查数列通项的求法,考查数列求和,意在考查学生对这些知识的理解掌握水平. 18.如图,在三棱柱ADEBCF 中,ABCD 是边长为2的菱形,且60BAD ∠=︒,CDEF是矩形,1ED =,且平面CDEF ⊥平面ABCD ,P 点在线段BC 上移动(P 不与C 重合),H 是AE 的中点.(1)当四面体EDPC 的外接球的表面积为5π时,证明://HB .平面EDP(2)当四面体EDPC 的体积最大时,求平面HDP 与平面EPC 所成锐二面角的余弦值. 【答案】(1)证明见解析(2)78【解析】(1)由题意,先求得P 为BC 的中点,再证明平面//HMB 平面EDP ,进而可得结论;(2)由题意,当点P 位于点B 时,四面体EDPC 的体积最大,再建立空间直角坐标系,利用空间向量运算即可. 【详解】(1)证明:当四面体EDPC 的外接球的表面积为5π时. 则其外接球的半径为5. 因为ABCD 时边长为2的菱形,CDEF 是矩形.1ED =,且平面CDEF ⊥平面ABCD .则ED ABCD ⊥平面,5EC =.则EC 为四面体EDPC 外接球的直径. 所以90EPC ∠=︒,即CB EP ⊥. 由题意,CB ED ⊥,EPED E =,所以CB DP ⊥.因为60BAD BCD ∠=∠=︒,所以P 为BC 的中点. 记AD 的中点为M ,连接MH ,MB .则MB DP ,MHDE ,DE DP D ⋂=,所以平面//HMB 平面EDP .因为HB ⊂平面HMB ,所以//HB 平面EDP .(2)由题意,ED ⊥平面ABCD ,则三棱锥E DPC -的高不变. 当四面体EDPC 的体积最大时,DPC △的面积最大. 所以当点P 位于点B 时,四面体EDPC 的体积最大.以点D 为坐标原点,建立如图所示的空间直角坐标系D xyz -.则()0,0,0D ,()0,0,1E ,)3,1,0B,311,222H ⎛⎫- ⎪⎝⎭,()0,2,0C .所以()3,1,0DB =,311,,22DH ⎛⎫=-⎪⎝⎭,()0,2,1EC =-,()3,1,1EB =-.设平面HDB 的法向量为()111,,m x y z =.则1111130,3110,222DB m x y DH m x y z ⎧⋅=+=⎪⎨⋅=-+=⎪⎩令11x =,得()1,3,23=--m .设平面EBC 的一个法向量为()222,,n x y z =.则2222220,30,EC n y z EB n x y z ⎧⋅=-=⎪⎨⋅=+-=⎪⎩令23y =,得()3,3,6n =.设平面HDP 与平面EPC 所成锐二面角是ϕ,则7cos 8ϕ⋅==m n m n. 所以当四面体EDPC 的体积最大时,平面HDP 与平面EPC 所成锐二面角的余弦值为78. 【点睛】本题考查平面与平面的平行、线面平行,考查平面与平面所成锐二面角的余弦值,正确运用平面与平面的平行、线面平行的判定,利用好空间向量是关键,属于基础题.19.某芯片公司对今年新开发的一批5G 手机芯片进行测评,该公司随机调查了100颗芯片,并将所得统计数据分为[)[)[)[)[]9101011111212131314,,,,,,,,五个小组(所调查的芯片得分均在[]914,内),得到如图所示的频率分布直方图,其中018a b -=..(1)求这100颗芯片评测分数的平均数(同一组中的每个数据可用该组区间的中点值代替). (2)芯片公司另选100颗芯片交付给某手机公司进行测试,该手机公司将每颗芯片分别装在3个工程手机中进行初测。
2020届江西省名校联盟高三第四次模拟考试 数学(理)
2020届江西省名校联盟高三第四次模拟考试理科数学★祝考试顺利★ 注意事项:1、考试范围:高考范围。
2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。
3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。
4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。
用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。
5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。
写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。
6、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。
写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。
如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
7、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。
8、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。
一、选择题(每题只有一个选项,每题5分,共12题)1.已知集合{}ln 0A x x =>,集合{}(1)(5)0B x N x x =∈--≤,则A ∩B= ( ) A. {}0,1,2,3,4,5 B. {}1,2,3,4,5 C. {}1,2,3,4D. {}2,3,4,52.在区间)0,(-∞上为增函数的是 ( )A. xy ⎪⎭⎫⎝⎛=32 B. x y 31log = C. 2)1(+-=x y D. )(log 32x y -=3.已知函数,且满足 ,则 的取值范围为( )A. 或B.C.D. 4.已知定义在R 上的函数()f x 满足()()f x f x -=-,(1)(1)f x f x +=-,且当[01]x ∈,时,2()log (1)f x x =+,则(31)f =( )A. 0B. 1C. 1-D. 25. 命题“[]1,2x ∀∈,220x a -≥”为真命题的一个充分不必要条件是( ) A. 1a ≤B. 2a ≤C. 3a ≤D. 4a ≤6.命题“n n f N n f N n ≤∈∈∀**)()(,且”的否定形式是( ) A.n n f N n f N n >∉∈∀**)()(,且 B.n n f N n f N n >∉∈∀**)()(,或 C .0000)()(,n n f N n f N n >∉∈∃**且 D.0000)()(,n n f N n f N n >∉∈∃**或7.设函数()y f x =对任意的x ∈R 满足(4)()f x f x +=-,当(2]x ∈-∞,时,有()25x f x -=-.若函数()f x 在区间(1)k k +,(k ∈Z )上有零点,则k 的值为( ) A. 3-或7 B. 4-或7 C. 3-或6 D. 4-或6 8.函数f(x)=sinx ∙ln|x|的图象大致是A. B.C. D.9.若cos 2cos sin sin θθθθ+=-,则2sin θ的值是( ) A .35-B .35C .45-D .4510下列函数同时具有性质“(1)最小正周期是π;(2)图象关于直线x =π6对称;(3)在⎥⎦⎤⎢⎣⎡3,6ππ上是减函数”的是( )A .y =sin )1252(π+xB .y =sin )32(π-xC .y =cos )322(π+xD .y =sin )62(π+x11.17世纪德国著名的天文学家开普勒曾经这样说过:“几何学里有两件宝,一个是勾股定理,另一个是黄金分割. 如果把勾股定理比作黄金矿的话,那么可以把黄金分割比作钻石矿.” 黄金三角形有两种,其中底与腰之比为黄金分割比的黄金三角形被认为是最美的三角形,它是一个顶角为36°的等腰三角形(另一种是顶角为108°的等腰三角形). 例如,五角星由五个黄金三角形与一个正五边形组成,如图所示,在其中一个黄金△ABC 中,51=BCAC -. 根据这些信息,可得sin 234︒=( )A.14- B. 38+-14- D. 48+-12.己知关于x 的不等式22ln 2(1)2x m x mx +-+≤在(0,+∞)上恒成立,则整数m 的最小值为( )A.1B.2C.3D.4二.填空题(每题5分,共4题) 13. 已知312sin(),sin ,513αββ-==-且(,),(,0)22ππαπβ∈∈-则sin α= 14.已知曲线y =x+lnx 在点(1,1)处的切线与曲线y =ax 2+(a+2)x+1相切,则a=15.设函数()sin()5f x x πω=+ (0ω>),已知()f x 在[0,2]π有且仅有5个零点,对于下述4个结论: ①()f x 在(0,2)π有且仅有3个最大值点; ②()f x 在(0,2)π有且仅有2个最小值点;③()f x 在(0,)2π单调递增; ④的取值范围是1229[,)510:其中所有正确结论的编号为___ _16.若函数,0()ln ,0ax a x f x x x x +≤⎧=⎨>⎩的图象上有且仅有两对点关于原点对称,则实数a 的取值范围是三、解答题17.已知()2:0,,2ln p x x e x m ∃∈+∞-≤;q :函数221y x mx =-+有两个零点. (1)若p q ∨为假命题,求实数m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求实数m 的取值范围.18.已知函数f (x )=4tan x sin )2(x -πcos )3(π-x - 3.(1)求f (x )的定义域与最小正周期;(2)讨论f (x )在区间⎥⎦⎤⎢⎣⎡-4,4ππ上的单调性.19.已知函数f (x )=x 2﹣4x+a+3,a ∈R ;(1)若函数y=f (x )在[﹣1,1]上存在零点,求a 的取值范围;(2)设函数g (x )=bx+5﹣2b ,b ∈R ,当a=3时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使得g (x 1)=f (x 2),求b 的取值范围.20.在中,内角所对的边分别为.且,(1)求的值; (2)求的值.21. 已知函数()22f x x x alnx =--(),g x ax =.()1求函数()()()F x f x g x =+的极值; ()2若不等式()sin 2cos g xxx +≤,对0x ≥恒成立,求a 的取值范围.22.请考生在第(22)(23)两题中任选一题作答,如果两题都做,则按所做的第一题记分,作答时请写题号. (22)已知曲线1C 的参数方程是2cos {sin x y θθ==(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2sin ρθ=. (1)写出1C 的极坐标方程和2C 的直角坐标方程;ABC △,,A B C ,,a b c 2b c a +=3sin 4sin c B a C =cos B sin 26B π⎛⎫+ ⎪⎝⎭(2)已知点1M 、2M 的极坐标分别为12π⎛⎫⎪⎝⎭,和(20),,直线12M M 与曲线2C 相交于P ,Q 两点,射线OP 与曲线1C 相交于点A ,射线OQ 与曲线1C 相交于点B ,求2211||||OA OB +的值.(23)已知函数()f x =. (1)求()(4)f x f ≥的解集;(2)设函数()(3)g x k x =-,k ∈R ,若()()f x g x >对任意的x ∈R 都成立,求实数k 的取值范围.参考答案一选择题DDBCA DCABD CB 二.填空题(每题5分,共4题) 13.566514.8 15.16.(0,1)(1,)+∞三、解答题17.已知()2:0,,2ln p x x e x m ∃∈+∞-≤;q :函数221y x mx =-+有两个零点. (1)若p q ∨为假命题,求实数m 的取值范围;(2)若p q ∨为真命题,p q ∧为假命题,求实数m 的取值范围.17.若p 为真,令()22ln f x x e x =-,问题转化为求函数()f x 的最小值,()22222e x ef x x x x-'=-=,令()0f x '=,解得x =函数()22ln f x x e x =-在上单调递减,在)+∞上单调递增,故()min 0f x f ==,故0m ≥.若q 为真,则2440m =->,1m >或 1m <-.(1)若p q ∨为假命题,则,p q 均为假命题,实数m 的取值范围为[)1,0-. (2)若p q ∨为真命题,p q ∧为假命题,则,p q 一真一假.若p 真q 假,则实数m 满足011m m ≥⎧⎨-≤≤⎩,即01m ≤≤;若p 假q 真,则实数m 满足011m m m <⎧⎨><-⎩或,即1m <-.综上所述,实数m 的取值范围为()[],10,1-∞-⋃.18.已知函数f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x cos ⎝ ⎛⎭⎪⎫x -π3- 3.(1)求f (x )的定义域与最小正周期; (2)讨论f (x )在区间⎣⎢⎡⎦⎥⎤-π4,π4上的单调性.18(1)f (x )=4tan x sin ⎝ ⎛⎭⎪⎫π2-x cos ⎝ ⎛⎭⎪⎫x -π3- 3=4sin x ⎝ ⎛⎭⎪⎫12cos x +32sin x - 3=sin 2x +3(1-cos 2x )- 3 =sin 2x -3cos 2x =2sin ⎝ ⎛⎭⎪⎫2x -π3.∴定义域⎩⎨⎧⎭⎬⎫x ⎪⎪⎪x ≠π2+k π,k ∈Z,最小正周期T =2π2=π.(2)-π4≤x ≤π4,-5π6≤2x -π3≤π6,设t =2x -π3, 因为y =sin t 在t ∈⎣⎢⎡⎦⎥⎤-5π6,-π2时单调递减,在t ∈⎣⎢⎡⎦⎥⎤-π2,π6时单调递增. 由-5π6≤2x -π3≤-π2,解得-π4≤x ≤-π12,由-π2≤2x -π3≤π6,解得-π12≤x ≤π4,所以函数f (x )在⎣⎢⎡⎦⎥⎤-π12,π4上单调递增,在⎣⎢⎡⎭⎪⎫-π4,-π12上单调递减.19.已知函数f (x )=x 2﹣4x+a+3,a ∈R ;(1)若函数y=f (x )在[﹣1,1]上存在零点,求a 的取值范围;(2)设函数g (x )=bx+5﹣2b ,b ∈R ,当a=3时,若对任意的x 1∈[1,4],总存在x 2∈[1,4],使得g (x 1)=f (x 2),求b 的取值范围.19解:(1)∵f (x )=x 2﹣4x+a+3的函数图象开口向上,对称轴为x=2, ∴f (x )在[﹣1,1]上是减函数, ∵函数y=f (x )在[﹣1,1]上存在零点,∴f (﹣1)f (1)≤0,即a (8+a )≤0,解得:﹣8≤a ≤0. (2)a=3时,f (x )=x 2﹣4x+6,∴f (x )在[1,2]上单调递减,在[2,4]上单调递增,∴f (x )在[2,4]上的最小值为f (2)=2,最大值为f (4)=6. 即f (x )在[2,4]上的值域为[2,6]. 设g (x )在[1,4]上的值域为M ,∵对任意的x 1∈[1,4],总存在x 2∈[1,4],使得g (x 1)=f (x 2), ∴M ⊆[2,6].当b=0时,g (x )=5,即M={5},符合题意, 当b >0时,g (x )=bx+5﹣2b 在[1,4]上是增函数, ∴M=[5﹣b ,5+2b],∴,解得0<b ≤.当b <0时,g (x )=bx+5﹣2b 在[1,4]上是减函数, ∴M=[5+2b ,5﹣b],∴,解得﹣1≤b <0.综上,b 的取值范围是.20.在中,内角所对的边分别为.且ABC △,,A B C ,,a b c 2b c a +=, (1)求的值;(2)求的值.【答案】(1);(2). 20【解析】(1)在中,由正弦定理,得,又由,得,即.又因为,得到,.由余弦定理可得. (2)由(1)可得,从而,,故.21. 已知函数()22f x x x alnx =--(),g x ax =.()1求函数()()()F x f x g x =+的极值; ()2若不等式()sin 2cos g xxx +≤,对0x ≥恒成立,求a 的取值范围. 21. ()1()22ln F x x x a x ax =--+,()()()()22221x a x a x a x F x x x+--+-'==()F x 的定义域为()0,+∞, ① 当02a-≤,即0a ≥时,()F x 在()0,1上递减,在()1,+∞上递增, ()=1F x a -极小,()F x 无极大值.3sin 4sin c B a C =cos B sin 26B π⎛⎫+ ⎪⎝⎭14-716-ABC △sin sin b cB C=sin sin b C c B =3sin 4sin c B a C =3sin 4sin b C a C =34b a =2b c a +=43b a =23c a =222222416199cos 22423a a a a cb B ac a a +-+-===-⋅⋅sin B ==sin 22sin cos B B B ==227cos 2cos sin 8B B B =-=-71sin 2sin 2cos cos 2sin 66682B B B πππ⎛⎫+=+=⨯= ⎪⎝⎭② 当012a <-<,即20a -<<时,()F x 在0,2a ⎛⎫- ⎪⎝⎭和()1,+∞上递增,在,12a ⎛⎫- ⎪⎝⎭上递减()2=ln 242a a a a a F F x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭极大,()()11F x a F ==-极小③ 12a-=,即2a =-时, ()F x 在(0,)+∞上递增, ()F x 没有极值. ④ 当12a ->即2a <-时, ()F x 在()0,1和(),2a -+∞上递增,在1,2a ⎛⎫- ⎪⎝⎭上递减()()=11F F a x ∴=-极大, ()2=ln 242a a a a a F F x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭极小综上可知:0a ≥时,()1F x a =-极小,()F x 无极大值;20a -<<时,()2=ln 242a a a a a F F x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭极大,()()11F x a F ==-极小,()F x 没有极值;2a <-时,()()11F x a F ==-极大,()2=ln 242a a a a a F F x ⎛⎫⎛⎫-=--- ⎪ ⎪⎝⎭⎝⎭极小.()2设()()sin 02cos x h x ax x x =-≥+,()()21cos 2cos xh x a x +'=-+, 设cos t x =,则[]1,1t ∈-,()()2122tt t φ+=+,()()()()()()4322121022t t t t t t φ-+---'==≥++,()t φ∴在[]1,1-上递增,()t φ∴的值域为113⎡⎤-⎢⎥⎣⎦,,① 当13a ≥时,()()'0,h x h x ≥为[0, )+∞上的增函数,② ()()00h x h ∴≥=,符合条件.③ 当0a ≤时,10222h a ππ⎛⎫=-< ⎪⎝⎭,∴不符合条件.④ 103a <<,对于()sin 0,23xx h x ax π<<<-,令()sin 3x T x ax =-,()cos 3x T x a '=-,存在00,2x π⎛⎫∈ ⎪⎝⎭,使得()00,x x ∈时,()0T x '<,()T x ∴在()00,x 上单调递减,()()00T x T x ∴<< 即在()00,x x ∈时,()0h x <,∴不符合条件.综上,a 的取值范围为1,3⎡⎫+∞⎪⎢⎣⎭.22.请考生在第(22)(23)两题中任选一题作答,如果两题都做,则按所做的第一题记分,作答时请写题号. (22).已知曲线1C 的参数方程是2cos {sin x y θθ==(θ为参数),以坐标原点为极点,x 轴的正半轴为极轴建立极坐标系,曲线2C 的极坐标方程是2sin ρθ=. (1)写出1C 的极坐标方程和2C 的直角坐标方程;(2)已知点1M 、2M 的极坐标分别为12π⎛⎫⎪⎝⎭,和(20),,直线12M M 与曲线2C 相交于P ,Q 两点,射线OP 与曲线1C 相交于点A ,射线OQ 与曲线1C 相交于点B ,求2211||||OA OB +的值. 【答案】(1)线1C 的普通方程为2214x y +=,曲线2C 的直角坐标方程为22(1)1y x +-=;(2)22115||||4OA OB +=. 22【解析】试题解析:(1)曲线1C 的普通方程为2214x y +=,化成极坐标方程为2222cos sin 14ρθρθ+= 曲线2C 的直角坐标方程为()2211x y +-=(2)在直角坐标系下,()101M ,,()220M ,,12:220M M x y +-=恰好过()2211x y +-=的圆心,∴90POQ ∠=︒由OP OQ ⊥得OA OB ⊥ A ,B 是椭圆2214x y +=上的两点, 极坐标下,设()1A ρθ,,22B ,πρθ⎛⎫+ ⎪⎝⎭分别代入222211cos sin 14ρθρθ+=中, 有222211cos sin 14ρθρθ+=和222222cos 2sin 142πρθπρθ⎛⎫+ ⎪⎛⎫⎝⎭++= ⎪⎝⎭ ∴22211cos sin 4θθρ=+,22221sin cos 4θθρ=+ 则22121154ρρ+=,即22115||||4OA OB +=(23).已知函数()f x =.(1)求()(4)f x f ≥的解集;(2)设函数()(3)g x k x =-,k ∈R ,若()()f x g x >对任意的x ∈R 都成立,求实数k 的取值范围.【答案】(1){|54}x x x -或≤≥;(2)12k -<≤.23【解析】(1)()34f x x x ===-++∴()()4f x f ≥,即349x x -++≥,∴4349x x x ,≤-⎧⎨---≥⎩①或43349x x x -<<⎧⎨-++≥⎩,②或3349x x x ≥⎧⎨-++≥⎩,③ 解得不等式①:5x ≤-;②:无解;③:4x ≥所以()()4f x f ≥的解集为{|54}x x x ≤-≥或(2)()()f x g x >即()34f x x x =-++的图象恒在()()3g x k x =-图象的上方,可以作出()21434743213x x f x x x x x x ,,,,,--≤⎧⎪=-++=-<<⎨⎪+≥⎩的图象,而()()3g x k x =-图象为恒过定点()30P ,,且斜率k 的变化的一条直线,作出函数()y f x =,()y g x =图象如图,其中2PB k =,()47A -,,∴1PA k =-,由图可知,要使得()f x 的图象恒在()g x 图象的上方,实数k 的取值范围应该为12k -<≤.。
高三下学期4月联考试卷(数学理)
江西省 联 合 考 试 高三数学试卷(理)(.4)命题人:吉安一中 曾志松 赣州一中 彭小明 审核 胡泊一、选择题(每小题5分,共60分)1.已知集合{}R y R x y x y x M ∈∈=+=,,0|),(,{}R y R x y x y x N ∈∈=+=,,0|),(22,则有( )A.M N M =B.N N M =C.M N M =D.φ=N M 2.若复数)2)(1(i bi ++是纯虚数(i 是虚数单位,b 是实数),则b 等于( ) A.3 B.1- C.21-D.2 3.做了一次关于“手机垃圾短信”的调查,在A 、B 、C 、D 四个单位回收的问卷数依次成等差数列,再从回收的问卷中按单位分层抽取容量为100的样本,若在B 单位抽取20份问卷,则在D 单位抽取的问卷份数是( )A.30份B.35份C. 40份D.65份 4.如图,已知四边形ABCD 在映射)2,1(),(:y x y x f +→作用下的象集为四边形1111D C B A ,若四边形1111D C B A 的面积是12,则四边形ABCD 的面积是( ) A. 9 B.6 C. 36 D.125. “⎪⎩⎪⎨⎧=+≠--=)1(2)1(11)(2x a x x x x f 是定义在),0(+∞上的连续函数”是“直线0)(2=+-y x a a 和直线0=-ay x 互相垂直”的( )A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件 6. 设)2,1(-=OA ,)1,(-=a OB ,)0,(b OC -=,0,0>>b a ,O 为坐标原点,若A 、B 、C 三点共线,则ba 21+的最小值是( ) A. 2B. 4C. 6D. 87.若三个数c a ,1,成等差数列,且22,1,c a 又成等比数列,则nn ca c a )(lim 22++∞→等于( ) A. 0 B. 1 C. 0或1 D. 不存在8.用0,1,2,3,4这五个数字组成无重复数字的五位数,其中恰有一个偶数夹在两个奇数之间的五位数的个数是( )抚州一中 赣州一中 吉安一中 九江一中 萍乡中学 新余一中 宜春中学 上饶县中A. 12B.28C.36D.489.设直线l 与球O 有且只有一个公共点P ,从直线l 出发的两个半平面,αβ截球O 的两个截面圆的半径分别为1和3,二面角l αβ--的平面角为 150, 则球O 的表面积为( )A.π4B.π16C.π28D.π11210.已知定义域为R 的函数)(x f 对任意实数x 、y 满足y x f y x f y x f cos )(2)()(=-++,且1)2(,0)0(==πf f .给出下列结论:①21)4(=πf ②)(x f 为奇函数 ③)(x f 为周期函数 ④),0()(π在x f 内单调递减其中正确的结论序号是( )A. ②③ B .②④ C. ①③ D. ①④11.如图,已知椭圆的左、右准线分别为、,且分别交轴于、两点,从上一点发出一条光线经过椭圆的左焦点被轴反射后与交于点,若,且,则椭圆的离心率等于( ) A.B. C. D.12.函数()f x 定义域为D ,若满足①()f x 在D 内是单调函数②存在D b a ⊆],[使()f x 在[],a b 上的值域为,22a b ⎡⎤⎢⎥⎣⎦,那么就称)(x f y =为“成功函数”,若函数)1,0)((log )(≠>+=a a t a x f x a 是“成功函数”,则t 的取值范围为( ) A.()+∞,0B.⎪⎭⎫ ⎝⎛∞-41, C. ⎥⎦⎤ ⎝⎛41,0D. ⎪⎭⎫ ⎝⎛41,0二、填空题(每小题4分,共16分)13.在n xx )1(2-的展开式中,常数项为15,则n 的值为14.空间一条直线1l 与一个正四棱柱的各个面所成的角都为α,而另一条直线2l 与这个正四棱柱的各条棱所成的角都为β,则=+βα22sin sin15.设实数b a 、满足⎪⎩⎪⎨⎧≤≥-+≥+-104230123a b a b a ,则2249b a +的最大值是22221(0)x y a b a b+=>>1l 2l x C D 1l A F x 2l B AF BF ⊥75ABD ∠=︒62-31-62-31-16.设函数)1lg()(2--+=a ax x x f ,给出下列四个命题:A.)(x f 有最小值;B.当0=a 时,)(x f 的值域是R ;C.当0>a 时,)(x f 在区间[)+∞,2上有反函数;D.若)(x f 在区间[)+∞,2上单调递增,则实数a 的取值范围是4-≥a . 其中正确的命题是三、解答题(共74分) 17.(本小题满分12分) 已知函数2()sin2cos 24x x f x =+ (1)求函数()f x 的最小正周期;(2)在ABC ∆中,角A B C 、、的分别是a b c 、、,若2cos a c b C (-)cosB =,求()f A 的取值范围.18.(本小题满分12分)某次国际象棋友谊赛在中国队和乌克兰队之间举行,比赛采用积分制,比赛规则规定赢一局得2分,平一局得1分,输一局得0分,根据以往战况,每局中国队赢的概率为21,乌克兰队赢的概率为31,且每局比赛输赢互不影响.若中国队第n 局的得分记为n a ,令12n n S a a a =++⋅⋅⋅+.(1)求43=S 的概率;(2)若规定:当其中一方的积分达到或超过4分时,比赛不再继续,否则,继续进行.设随机变量ξ表示此次比赛共进行的局数,求ξ的分布列及数学期望.19.(本小题满分12分)如图,斜三棱柱111C B A ABC -,已知侧面C C BB 11与底面ABC 垂直且 90=∠BCA ,601=∠BC B ,21==BB BC ,若二面角C B B A --1为 30, (1)证明⊥AC 平面C C BB 11; (2)求1AB 与平面C C BB 11所成角的正切值;(3)在平面B B AA 11内找一点P ,使三棱锥C BB P 1-为正三棱锥,并求点P 到平面C BB 1距离. 20.(本小题满分12分)已知0>a ,)1ln(12)(2+++-=x x ax x f ,l 是曲线)(x f y =在点))0(,0(f P 处的切线. (1)求切线l 的方程; (2)若切线l 与曲线)(x f y =有且只有一个公共点,求a 的值.ABC111A C B21.(本小题满分12分)如图,过抛物线y x 42=的对称轴上任一点P ),0(m )0(>m 作直线与抛物线交于B A ,两点,点Q 是点P 关于原点的对称点.(1)设点P 分有向线段AB 所成的比为λ,证明)(QB QA QP λ-⊥; (2)设直线AB 的方程是0122=+-y x ,过B A ,两点的圆C 与 抛物线在点A 处有共同的切线,求圆C 的方程. 22.(本小题满分14分) 设数列}{n a ,}{n b 满足211=a ,n n a n na )1(21+=+且221)1ln(n n n a a b ++=,*N n ∈. (1)求数列}{n a 的通项公式; (2)对一切*N n ∈,证明nn n b a a <+22成立;(3)记数列}{2n a ,}{n b 的前n 项和分别为n A 、n B ,证明:42<-n n A B .高三数学答案(理科)及评分标准一、选择题:(每题5分,共60分)13. 6 14. 1 15. 25 16. B 、C三、解答题(本大题共6题,共74分,解答应写出文字说明,证明过程或演算步骤) 17题.( 12分)解析:(1) ()2sin(122cos1)4x f x x =++-sin cos 122x x =++sin(1)24x π=++()4f x T π∴=的最小正周期为 . (5分)(2) ()2cos cos a c B b C -=由得()2sin sin cos sin cos A C B B C -=()2sin cos sin sin A B B C A ∴=+= (8分) sin 0A ≠ 1cos 2B ∴==>3B π=, 23A C π∴+=()1)24f A A π=++又,203A π∴<<,742412A πππ∴<+<, (10分)又∵7sinsin 412ππ<,sin(12)24A π<≤+,()21f A ∴<≤. (12分) 18题.( 12分)解:(1)43=S ,即前3局中国队1胜2平或2胜1负。
2020届全国大联考高三第四次联考数学(理)试题(解析版)
2020届全国大联考高三第四次联考数学(理)试题一、单选题1.已知集合{}2|340A x x x =--<,{}|23xB y y ==+,则A B =( )A .[3,4)B .(1,)-+∞C .(3,4)D .(3,)+∞【答案】B【解析】分别求解集合,A B 再求并集即可. 【详解】因为{}2|340{|14}A x x x x x =--<=-<<,{}|23xB y y ==+{|3}y y =>,所以(1,)A B =-+∞.故选:B 【点睛】本题考查集合的运算与二次不等式的求解以及指数函数的值域等.属于基础题.2.若直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为则m =( )A .1B .2C D .3【答案】A【解析】将圆的方程化简成标准方程,再根据垂径定理求解即可. 【详解】圆222230x x y y ++--=的标准方程22(1)(1)5x y ++-=,圆心坐标为(1,1)-,半径因为直线20x y m ++=与圆222230x x y y ++--=相交所得弦长为所以直线20x y m ++=过圆心,得2(1)10m ⨯-++=,即1m =. 故选:A 【点睛】本题考查了根据垂径定理求解直线中参数的方法,属于基础题. 3.抛物线23x ay =的准线方程是1y =,则实数a =( ) A .34-B .34C .43-D .43【答案】C【解析】根据准线的方程写出抛物线的标准方程,再对照系数求解即可. 【详解】因为准线方程为1y =,所以抛物线方程为24x y =-,所以34a =-,即43a =-. 故选:C 【点睛】本题考查抛物线与准线的方程.属于基础题. 4.已知:cos sin 2p x y π⎛⎫=+ ⎪⎝⎭,:q x y =则p 是q 的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】B【解析】根据诱导公式化简sin cos 2y y π⎛⎫+= ⎪⎝⎭再分析即可. 【详解】 因为cos sin cos 2x y y π⎛⎫=+= ⎪⎝⎭,所以q 成立可以推出p 成立,但p 成立得不到q 成立,例如5coscos33ππ=,而533ππ≠,所以p 是q 的必要而不充分条件. 故选:B 【点睛】本题考查充分与必要条件的判定以及诱导公式的运用,属于基础题.5.一个圆锥的底面和一个半球底面完全重合,如果圆锥的表面积与半球的表面积相等,那么这个圆锥轴截面底角的大小是( ) A .15︒ B .30︒C .45︒D .60︒【答案】D【解析】设圆锥的母线长为l ,底面半径为R ,再表达圆锥表面积与球的表面积公式,进而求得2l R =即可得圆锥轴截面底角的大小. 【详解】设圆锥的母线长为l ,底面半径为R ,则有2222R Rl R R ππππ+=+,解得2l R =,所以圆锥轴截面底角的余弦值是12R l =,底角大小为60︒. 故选:D 【点睛】本题考查圆锥的表面积和球的表面积公式,属于基础题.6.已知F 是双曲线22:4||C kx y k +=(k 为常数)的一个焦点,则点F 到双曲线C 的一条渐近线的距离为( ) A .2k B .4k C .4 D .2【答案】D【解析】分析可得k 0<,再去绝对值化简成标准形式,进而根据双曲线的性质求解即可. 【详解】当0k ≥时,等式224||kx y k +=不是双曲线的方程;当k 0<时,224||4kx y k k +==-,可化为22144y x k -=-,可得虚半轴长2b =,所以点F 到双曲线C 的一条渐近线的距离为2. 故选:D 【点睛】本题考查双曲线的方程与点到直线的距离.属于基础题.7.关于函数()sin 6f x x π⎛⎫=-- ⎪⎝⎭在区间,2ππ⎛⎫⎪⎝⎭的单调性,下列叙述正确的是( )A .单调递增B .单调递减C .先递减后递增D .先递增后递减【答案】C【解析】先用诱导公式得()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭,再根据函数图像平移的方法求解即可. 【详解】函数()sin cos 63f x x x ππ⎛⎫⎛⎫=--=+ ⎪ ⎪⎝⎭⎝⎭的图象可由cos y x =向左平移3π个单位得到,如图所示,()f x 在,2ππ⎛⎫⎪⎝⎭上先递减后递增.故选:C 【点睛】本题考查三角函数的平移与单调性的求解.属于基础题.8.在棱长为a 的正方体1111ABCD A B C D -中,E 、F 、M 分别是AB 、AD 、1AA 的中点,又P 、Q 分别在线段11A B 、11A D 上,且11(0)A P AQ m m a ==<<,设平面MEF平面MPQ l =,则下列结论中不成立的是( )A .//l 平面11BDDB B .l MC ⊥C .当2am =时,平面MPQ MEF ⊥ D .当m 变化时,直线l 的位置不变【答案】C【解析】根据线面平行与垂直的判定与性质逐个分析即可. 【详解】因为11A P AQ m ==,所以11//PQB D ,因为E 、F 分别是AB 、AD 的中点,所以//EF BD ,所以//PQ EF ,因为面MEF面MPQ l =,所以PQ EF l ////.选项A 、D 显然成立;因为BD EF l ////,BD ⊥平面11ACC A ,所以l ⊥平面11ACC A ,因为MC ⊂平面11ACC A ,所以l MC ⊥,所以B 项成立;易知1AC ⊥平面MEF ,1A C ⊥平面MPQ ,而直线1AC 与1A C 不垂直,所以C 项不成立. 故选:C 【点睛】本题考查直线与平面的位置关系.属于中档题.9.已知抛物线22(0)y px p =>,F 为抛物线的焦点且MN 为过焦点的弦,若||1OF =,||8MN =,则OMN 的面积为( )A .B .C .D .2【答案】A【解析】根据||1OF =可知24y x =,再利用抛物线的焦半径公式以及三角形面积公式求解即可. 【详解】由题意可知抛物线方程为24y x =,设点()11,M x y 点()22,N x y ,则由抛物线定义知,12|||||2MN MF NF x x =+=++,||8MN =则126x x +=.由24y x =得2114y x =,2224y x =则221224y y +=.又MN 为过焦点的弦,所以124y y =-,则21y y -==所以211||2OMNSOF y y =⋅-=故选:A 【点睛】本题考查抛物线的方程应用,同时也考查了焦半径公式等.属于中档题.10.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若2a =,ABC 的面积为1),则b c +=( )A .5B .C .4D .16【答案】C【解析】根据正弦定理边化角以及三角函数公式可得4A π=,再根据面积公式可求得6(2bc =-,再代入余弦定理求解即可.【详解】ABC 中,cos sin a B b A c +=,由正弦定理得sin cos sin sin sin A B B A C +=,又sin sin()sin cos cos sin C A B A B A B =+=+,∴sin sin cos sin B A A B =,又sin 0B ≠,∴sin A cos A =,∴tan 1A =,又(0,)A π∈,∴4A π=.∵1sin 1)24ABCSbc A ===-,∴bc =6(2-,∵2a =,∴由余弦定理可得22()22cos a b c bc bc A =+--,∴2()4(2b c bc +=++4(26(216=++⨯-=,可得4b c +=.故选:C 【点睛】本题主要考查了解三角形中正余弦定理与面积公式的运用,属于中档题.11.存在点()00,M x y 在椭圆22221(0)x y a b a b+=>>上,且点M 在第一象限,使得过点M 且与椭圆在此点的切线00221x x y y a b +=垂直的直线经过点0,2b ⎛⎫- ⎪⎝⎭,则椭圆离心率的取值范围是( ) A.0,2⎛ ⎝⎦B.,12⎛⎫⎪⎪⎝⎭C.0,3⎛ ⎝⎦D.,13⎛⎫⎪⎪⎝⎭【答案】D【解析】根据题意利用垂直直线斜率间的关系建立不等式再求解即可. 【详解】因为过点M 椭圆的切线方程为00221x x y ya b+=,所以切线的斜率为2020b x a y -,由20020021b y b x x a y +⎛⎫⨯-=- ⎪⎝⎭,解得3022b y b c =<,即222b c <,所以2222a c c -<,所以3c a >. 故选:D 【点睛】本题主要考查了建立不等式求解椭圆离心率的问题,属于基础题.12.已知正三棱锥A BCD -的所有顶点都在球O 的球面上,其底面边长为4,E 、F 、G 分别为侧棱AB ,AC ,AD 的中点.若O 在三棱锥A BCD -内,且三棱锥A BCD -的体积是三棱锥O BCD -体积的4倍,则此外接球的体积与三棱锥O EFG -体积的比值为( ) A. B.C.D.【答案】D【解析】如图,平面EFG 截球O 所得截面的图形为圆面,计算4AH OH =,由勾股定理解得6R =,此外接球的体积为2463π,三棱锥O EFG -体积为23,得到答案. 【详解】如图,平面EFG 截球O 所得截面的图形为圆面.正三棱锥A BCD -中,过A 作底面的垂线AH ,垂足为H ,与平面EFG 交点记为K ,连接OD 、HD .依题意4A BCD O BCD V V --=,所以4AH OH =,设球的半径为R , 在Rt OHD 中,OD R =,343HD BC ==,133R OH OA ==, 由勾股定理:222433R R ⎛⎫⎛⎫=+ ⎪ ⎪ ⎪⎝⎭⎝⎭,解得6R =,此外接球的体积为2463π, 由于平面//EFG 平面BCD ,所以AH ⊥平面EFG , 球心O 到平面EFG 的距离为KO , 则1262333R KO OA KA OA AH R R =-=-=-==, 所以三棱锥O EFG -体积为2113624343⨯⨯⨯⨯=, 所以此外接球的体积与三棱锥O EFG -体积比值为243π. 故选:D.【点睛】本题考查了三棱锥的外接球问题,三棱锥体积,球体积,意在考查学生的计算能力和空间想象能力.二、填空题13.若双曲线22221(0,0)x y a b a b-=>>的两条渐近线斜率分别为1k ,2k ,若123k k =-,则该双曲线的离心率为________. 【答案】2【解析】由题得21223b k k a=-=-,再根据2221b e a =-求解即可.【详解】双曲线22221x y a b-=的两条渐近线为b y x a =±,可令1k b a =-,2k b a =,则21223b k k a =-=-,所以22213b e a=-=,解得2e =.故答案为:2. 【点睛】本题考查双曲线渐近线求离心率的问题.属于基础题.14.已知在等差数列{}n a 中,717a =,13515a a a ++=,前n 项和为n S ,则6S =________.【答案】39【解析】设等差数列公差为d ,首项为1a ,再利用基本量法列式求解公差与首项,进而求得6S 即可.【详解】设等差数列公差为d ,首项为1a ,根据题意可得711116172415a a d a a d a d =+=⎧⎨++++=⎩,解得113a d =-⎧⎨=⎩,所以6116653392S =-⨯+⨯⨯⨯=. 故答案为:39 【点睛】本题考查等差数列的基本量计算以及前n 项和的公式,属于基础题.15.已知抛物线()220y px p =>的焦点和椭圆22143x y +=的右焦点重合,直线过抛物线的焦点F 与抛物线交于P 、Q 两点和椭圆交于A 、B 两点,M 为抛物线准线上一动点,满足8PF MF +=,3MFP π∠=,当MFP 面积最大时,直线AB 的方程为______.【答案】()31y x =-【解析】根据均值不等式得到16PF MF ⋅≤,43MFP S ≤△,根据等号成立条件得到直线AB 的倾斜角为3π,计算得到直线方程. 【详解】由椭圆22143x y +=,可知1c =,12p =,2p =,24y x ∴=,13sin 234MFP S PF MF PF MF π=⋅=⋅△, 82PF MF PF MF =+≥⋅,16PF MF ⋅≤,33164344MFP S PF MF =⋅≤⨯=△(当且仅当4PF MF ==,等号成立), 4MF =,12F F =,16FMF π∴∠=,13MFF π∠=,∴直线AB 的倾斜角为3π,∴直线AB 的方程为()31y x =-. 故答案为:()31y x =-.【点睛】本题考查了抛物线,椭圆,直线的综合应用,意在考查学生的计算能力和综合应用能力. 16.已知三棱锥P ABC -,PA PB PC ==,ABC 是边长为4的正三角形,D ,E 分别是PA 、AB 的中点,F 为棱BC 上一动点(点C 除外),2CDE π∠=,若异面直线AC 与DF 所成的角为θ,且7cos 10θ=,则CF =______.【答案】52【解析】取AC 的中点G ,连接GP ,GB ,取PC 的中点M ,连接DM ,MF ,DF ,直线AC 与DF 所成的角为MDF ∠,计算2222MF a a =-+,22410DF a a =-+,根据余弦定理计算得到答案。
2020届全国大联考高三第四次联考数学(理)试题(带答案解析)
数学(理)试题
1.已知集合 , ,则 ()
A. B. C. D.
2.若直线 与圆 相交所得弦长为 ,则 ()
A.1B.2C. D.3
3.抛物线 的准线方程是 ,则实数 ()
A. B. C. D.
4.已知 , 则p是q的()
A.充分而不必要条件B.必要而不充分条件
C.充分必要条件D.既不充分也不必要条件
8.在棱长为a的正方体 中,E、F、M分别是AB、AD、 的中点,又P、Q分别在线段 、 上,且 ,设平面 平面 ,则下列结论中不成立的是()
A. 平面 B.
C.当 时,平面 D.当m变化时,直线l的位置不变
9.已知抛物线 ,F为抛物线的焦点且MN为过焦点的弦,若 , ,则 的面积为()
A. B. C. D.
故选:C
【点睛】
本题考查直线与平面的位置关系.属于中档题.
9.A
【解析】
【分析】
根据 可知 ,再利用抛物线的焦半径公式以及三角形面积公式求解即可.
16.已知三棱锥 , , 是边长为4的正三角形, , 分别是 、 的中点, 为棱 上一动点(点 除外), ,若异面直线 与 所成的角为 ,且 ,则 ______.
17.在数列 和等比数列 中, , , .
(1)求数列 及 的通项公式;
(2)若 ,求数列 的前n项和 .
18.如图,在四棱锥 中,平面 平面ABCD, , ,底面ABCD是边长为2的菱形,点E,F分别为棱DC,BC的中点,点G是棱SC靠近点C的四等分点.
故选:D
【点睛】
本题考查双曲线的方程与点到直线的距离.属于基础题.
7.C
【解析】
【分析】
江西省百所名校2020届高三第四次联考理科综合试题含答案
C.②过程释放 的能量可 以通过①过程进人生态系统
D① 和②过程 中交换 的物质种类和能量形式均相 同
7.文房 四宝 即笔 、墨 、纸 、砚 ,其 中以湖笔 、徽 墨 、宣纸和端砚最 为称著 。下列说法正确 的是
A湖 笔 中笔头的羊毫 的主要成分是蛋 白质 &徽墨 中墨 的主要成分是黑色 的油脂 G宣 纸 的主要成分是无机碳和少量 的纤维素 D含 较多氧化铁 的端砚呈黑色
8.从 酸性蚀 刻废液 (含 F£ 12、 CuC炻 、Hα 及少量 FeC13)中 回收铜并再 生 F£ 1酸性溶液 的过程 中 ,不 涉及 的操
作是
C炻
母液雪 `鼋:ζ
A
B
C
D
9.甲 基异 丁基酮在 临床上主要用作药用溶剂 ,其 结构简式如 图 。下列关 于 甲基异 丁基酮 的说 法正确 的是
A.1mol甲 基异丁基酮含有 8mo1氢 原子
下列相关叙述错误 的是
A癌 细胞 中的乳酸含量 比正常细胞 中的多 R癌 细胞消耗 的葡萄糖量 比正常细胞 的多
C.癌 细胞 的线粒体缺 陷主要影 响有氧呼吸的第 三 阶段
猹尽芦篚 D癌细胞 的线粒体功能缺陷是 由原癌基 因突变导致 的
3.离子的跨膜运输是神经兴奋传导与传递 的基础 。兴奋在突触部位 的传递过程和 Caa~r⒉
D室 温下 向 1L pH=1的 醋酸溶液 中加水稀释 ,所得溶液 中 H+的 数 目大于 0.1NA 11.短 周期 主族元 素 W、 X、 Y、 Z的 原 子序数依 次增大 ,W、 Y同 主族 ,Y的 次外层 电子数 与 W的 质 子数 相 同 。X
的简单离子半径是 X所处周期 中最小 的 ,Z元 素是最重要 的“成盐元素”。下列说法正确 的是
江西省新余市2019-2020学年高考第四次质量检测数学试题含解析
江西省新余市2019-2020学年高考第四次质量检测数学试题一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知()()()sin cos sin cos k k A k παπααα++=+∈Z ,则A 的值构成的集合是( )A .{1,1,2,2}--B .{1,1}-C .{2,2}-D .{}1,1,0,2,2--【答案】C 【解析】 【分析】对k 分奇数、偶数进行讨论,利用诱导公式化简可得. 【详解】k 为偶数时,sin cos 2sin cos A αααα=+=;k 为奇数时,sin cos 2sin cos A αααα=--=-,则A 的值构成的集合为{}2,2-.【点睛】本题考查三角式的化简,诱导公式,分类讨论,属于基本题.2.在ABC ∆中,角A 、B 、C 的对边分别为a 、b 、c ,若1a =,c =,sin sin 3b A a B π⎛⎫=- ⎪⎝⎭,则sin C =( )A B .7C .12D 【答案】B 【解析】 【分析】利用两角差的正弦公式和边角互化思想可求得tan 3B =,可得出6B π=,然后利用余弦定理求出b 的值,最后利用正弦定理可求出sin C 的值. 【详解】1sin sin cos sin 322b A a B a B a B π⎛⎫=-=- ⎪⎝⎭Q ,即1sin sin cos sin sin 2A B A B A B =-,即3sin sin cos A B A A =,sin 0A >Q ,3sin B B ∴=,得tan B =,0B Q π<<,6B π∴=.由余弦定理得2232cos112212372b ac ac B=+-=+-⨯⨯⨯=,由正弦定理sin sinc bC B=,因此,123sin212sin77c BCb⨯===.故选:B.【点睛】本题考查三角形中角的正弦值的计算,考查两角差的正弦公式、边角互化思想、余弦定理与正弦定理的应用,考查运算求解能力,属于中等题.3.阅读下侧程序框图,为使输出的数据为,则①处应填的数字为A.B.C.D.【答案】B【解析】考点:程序框图.分析:分析程序中各变量、各语句的作用,再根据流程图所示的顺序,可知:该程序的作用是利用循环求S的值,我们用表格列出程序运行过程中各变量的值的变化情况,不难给出答案.解:程序在运行过程中各变量的值如下表示:S i 是否继续循环循环前 1 1/第一圈3 2 是第二圈7 3 是第三圈15 4 是第四圈31 5 否故最后当i<5时退出,故选B.4.复数1ii+=()A .2i -B .12i C .0 D .2i【答案】C 【解析】略5.已知函数()e ln mx f x m x =-,当0x >时,()0f x >恒成立,则m 的取值范围为( ) A .1,e ⎛⎫+∞ ⎪⎝⎭B .1,e e ⎛⎫ ⎪⎝⎭C .[1,)+∞D .(,e)-∞【答案】A 【解析】 【分析】分析可得0m >,显然e ln 0mx m x ->在(]0,1上恒成立,只需讨论1x >时的情况即可,()0f x >⇔e ln mx m x >⇔ln e e ln mx x mx x >,然后构造函数()e (0)xg x x x =>,结合()g x 的单调性,不等式等价于ln mx x >,进而求得m 的取值范围即可. 【详解】由题意,若0m ≤,显然()f x 不是恒大于零,故0m >.0m >,则e ln 0mx m x ->在(]0,1上恒成立;当1x >时,()0f x >等价于e ln mx m x >, 因为1x >,所以ln e e ln mx x mx x >.设()e (0)xg x x x =>,由()e (1)x g x x '+=,显然()g x 在(0,)+∞上单调递增,因为0,ln 0mx x >>,所以ln e e ln mx x mx x >等价于()(ln )g mx g x >,即ln mx x >,则ln xm x>. 设ln ()(0)x h x x x=>,则21ln ()(0)xh x x x '-=>. 令()0h x '=,解得e x =,易得()h x 在(0,e)上单调递增,在(e,)+∞上单调递减, 从而max 1()(e)e h x h ==,故1em >. 故选:A. 【点睛】本题考查了不等式恒成立问题,利用函数单调性是解决本题的关键,考查了学生的推理能力,属于基础题. 6.如图,在ABC ∆中,点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=u u u r u u u r( )A .1233BA BC +u uu r u u u rB .5799BA BC +u uu r u u u rC .11099BA BC +u u ur u u u r D .2799BA BC +u uu r u u u r【答案】B 【解析】 【分析】23PA PC BA BP BC BP BA BC BQ +=-+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r ,将13BQ BA AQ BA AC =+=+u u u r u u u r u u u r u u u r u u u r ,AC BC BA=-u u u r u u u r u u u r代入化简即可. 【详解】23PA PC BA BP BC BP BA BC BQ +=-+-=+-u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r2()3BA BC BA AQ =+-+u u u r u u u r u u u r u u u r1233BA BC =+-⨯u u ur u u u r 13AC u u u r 1257()3999BA BC BC BA BA BC =+--=+u uu r u u u r u u u r u u u r u u u r u u u r . 故选:B. 【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题.7.设i 为数单位,z 为z 的共轭复数,若13z i=+,则z z ⋅=( ) A .110B .110i C .1100D .1100i 【答案】A 【解析】 【分析】由复数的除法求出z ,然后计算z z ⋅. 【详解】13313(3)(3)1010i z i i i i -===-++-, ∴223131311()()()()10101010101010z z i i ⋅=-+=+=. 故选:A. 【点睛】本题考查复数的乘除法运算,考查共轭复数的概念,掌握复数的运算法则是解题关键.8.在ABC ∆中,内角A 的平分线交BC 边于点D ,4AB =,8AC =,2BD =,则ABD ∆的面积是( )A .B .C .3D .【答案】B 【解析】 【分析】利用正弦定理求出CD ,可得出BC ,然后利用余弦定理求出cos B ,进而求出sin B ,然后利用三角形的面积公式可计算出ABD ∆的面积. 【详解】AD Q 为BAC ∠的角平分线,则BAD CAD ∠=∠.ADB ADC π∠+∠=Q ,则ADC ADB π∠=-∠,()sin sin sin ADC ADB ADB π∴∠=-∠=∠,在ABD ∆中,由正弦定理得sin sin AB BDADB BAD =∠∠,即42sin sin ADB BAD =∠∠,①在ACD ∆中,由正弦定理得sin sin AC CD ADC ADC =∠∠,即8sin sin CDADC CAD=∠∠,②①÷②得212CD =,解得4CD =,6BC BD CD ∴=+=,由余弦定理得2221cos 24AB BC AC B AB BC +-==-⋅,sin B ∴==因此,ABD ∆的面积为1sin 2ABD S AB BD B ∆=⋅=故选:B. 【点睛】本题考查三角形面积的计算,涉及正弦定理和余弦定理以及三角形面积公式的应用,考查计算能力,属于中等题.9.i 是虚数单位,若17(,)2ia bi ab R i+=+∈-,则乘积ab 的值是( ) A .-15 B .-3C .3D .15【答案】B【解析】17(17)(2)1325i i i i i +++==-+-,∴1,3,3a b ab =-==-,选B . 10.设12,F F 分别为双曲线22221(0,0)x y a b a b-=>>的左、右焦点,过点1F 作圆222x y a +=的切线,与双曲线的左、右两支分别交于点,P Q ,若2||QF PQ =,则双曲线渐近线的斜率为( ) A .±1 B .()31±-C .()31±+D .5±【答案】C 【解析】 【分析】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,计算12PF a =,24PF a =,22a PN c =,12abF N c=,根据勾股定理计算得到答案. 【详解】如图所示:切点为M ,连接OM ,作PN x ⊥轴于N ,121212QF QF QP PF QF PF a -=+-==,故24PF a =,在1Rt MOF ∆中,1sin a MFO c ∠=,故1cos b MFO c ∠=,故22a PN c=,12ab F N c =, 根据勾股定理:242242162a ab a c c c ⎛⎫=+- ⎪⎝⎭,解得31b a =+. 故选:C .【点睛】本题考查了双曲线的渐近线斜率,意在考查学生的计算能力和综合应用能力.11.已知函数,其中04?,?04b c ≤≤≤≤,记函数满足条件:(2)12{(2)4f f ≤-≤为事件A ,则事件A 发生的概率为A .14B .58C .38D .12【答案】D 【解析】 【分析】 【详解】由(2)12{(2)4f f ≤-≤得4212424b c b c ++≤⎧⎨-+≤⎩,分别以,b c 为横纵坐标建立如图所示平面直角坐标系,由图可知,()12P A =.12.函数1()f x ax x=+在(2,)+∞上单调递增,则实数a 的取值范围是( ) A .1,4⎛⎫+∞⎪⎝⎭ B .1,4⎡⎫+∞⎪⎢⎣⎭C .[1,)+∞D .1,4⎛⎤-∞ ⎥⎝⎦【答案】B 【解析】 【分析】对a 分类讨论,当0a ≤,函数()f x 在(0,)+∞单调递减,当0a >,根据对勾函数的性质,求出单调递增区间,即可求解. 【详解】当0a ≤时,函数1()f x ax x=+在(2,)+∞上单调递减,所以0a >,1()f x ax x =+的递增区间是,a ⎫+∞⎪⎝⎭, 所以2a ≥,即14a ≥. 故选:B. 【点睛】本题考查函数单调性,熟练掌握简单初等函数性质是解题关键,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
江西省六校2020届高三联考理科数学参考答案
设平面 ADF 和平面 BEC1 所成锐二面角为θ,
则 cos
aa
D1E D1E
4
53 3 3
5 2 , 28
3
故平面
ADF
和平面
BEC1
所成锐二面角的余弦值为
5
2 8
.
-------------------------------------------12 分
19.解(1)
x 120.04140.12160.28180.36200.10220.06240.04 17.40(千元) ---------------3 分
3 3x y 0且 3x 1 y z 0,
3
取 x 1, y
3, z 2
3
,
a
(1,
3, 2 3),
3
3
-------------------------------------------9 分
由(1)可知 D1E 为平面 BEC1 的一个法向量,且 D1E (0,1, 1) ----------------------------------------10 分
则 B(1000, p), p 0.9773,
于是恰好有
k
个农民的年收入不少于
12.14
千元的事件概率是
P(
k)
CK 1000
p
k
(1
p)1000k ,
从而由
P( P( k
k) 1)
(1001 k) k(1 p)
p
1,
得到
k<1001p=978.2773,
所以当 0 k 978, P( k 1) P( k), 当 979 k 1000, P( k 1) P( k),
江西省百所名校2020届高三第四次联考数学(理)试题(word版,有答案)
江西省百所名校2020届高三第四次联考数学(理)试题第I 卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.全集U=R ,A={x|y=ln 2(1),{|20}x B x x x +=--<,则()U B A ⋃=ð A.(2,+∞)B.(-∞,2)C.∅D.(-1,2)2.欧拉是科学史上一位最多产的杰出数学家,为数学界作出了巨大贡献,其中就有欧拉公式:e ix =cosx+isinx(i 为虚数单位).它建立了三角函数和指数函数间的关系,被誉为“数学中的天桥”.结合欧拉公式,则复数432xi z e i=+的模为.3A.5B.22CD.23.空气质量AQI 指数是反映空气质量状况的指数,AQI 指数值越小,表明空气质量越好,其对应关系如表:如图所示的是某市11月1日~20日AQI 指数变化的折线图:下列说法不正确的是A.这20天中空气质量为轻度污染的天数占14B.这20天中空气质量为优和良的天数为10天C.这20天中AQI 指数值的中位数略低于100D.总体来说,该市11月上旬的空气质量比中旬的空气质量好4.已知5cos(),57πα-=则7cos 104tan 5παπα⎛⎫- ⎪⎝⎭⎛⎫+ ⎪⎝⎭=5.7A -26.7B -26.7C5.7D 5.已知双曲线C 2222:1(0,0)x y a b a b -=>>的一条渐近线的斜率k≥2,则C 的离心率的取值范围是5.(1,]2A5.[,)2B +∞.(1,5]C.[5,)D +∞6.右图是为了统计某班35名学生假期期间平均学习时间而设计的程序框图,其中i A 表示第i 位学生的学习时间,则判断框中可以填入的条件是A.i≤37?B.i≤36?C.i≤35?D.i≤34?7.在正方体1111ABCD A B C D -中,E 为AD 的中点,F 为正方形11B C CB 的中心,则异面直线AF 与1A E 所成角的余弦值为30.30A -3030B C.01.2D 8.已知函数()2sin()(0,)f x x ωϕωπϕπ=+>-<<的部分图象如图所示,为了得到函数f(x)的图象,需要将函数,22()2cos2sin 22xxg x ωω=-的图象向右平移m(m>0)个单位长度,则m 的最小值为.12A π.6B π.4C π.3D π9.已知函数y=f(x+1)是定义在R 上的偶函数,且满足f(3-x)=-f(3+x),且当-1≤x≤1时,f(x)=xln(x+2),则f(-1)+f(0)+f(1)+f(2)+f(3)+...+f(2020)=A.ln3B.-1n3C.4ln2-ln3D.4ln2+ln310.中国古典文学四大名著《三国演义》《水浒传》《西游记》和《红楼梦》的作者分别为罗贯中、施耐庵、吴承恩和曹雪芹.某次考试中有一道四大名著与作者的连线题,连对一个得一分,则同学甲随机连线得分为零的概率为1.3A1.4B3.8C1.24D 11.已知抛物线2:4C y x =的焦点为F ,圆22:(1)1F x y -+=,过F 作直线l,与上述两曲线自上而下依次交于点P,M,N,Q,当196||||PM QN +=时,直线l 的斜率为.3A -.3BC.1.3D 12.已知函数f(x)的定义域为(1,+∞),其导函数为(),(2)[2()()]()f x x f x xf x xf x ''++<对x ∈(1,+∞)恒成立,且14(5)25f =,则不等式2(3)(3)210x f x x ++>+的解集为 A.(1,2)B.(-∞,2)C.(-2,3)D.(-2,2)第II 卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡中的横线上. 13.若非零向量a ,b ,满足|a |=3|b |,(3a -b )⊥b ,则a 与b 的夹角的余弦值为____14.若实数x,y 满足约束条件<220240,34120x y x y x y --≤⎧⎪++≥⎨⎪-+≥⎩则x+y 的最大值为____15.在△ABC 中,角A,B,C 的对边分别为a,b,c,若3cos )cos cos ,A A B C a c -=+=6,b=4,则△ABC 的面积为____16.在四棱锥P-ABCD 中,PA ⊥平面ABCD,AP=2,点M 是矩形ABCD 内(含边界)的动点,且AB=1,AD=3,直线PM 与平面ABCD 所成的角为.4π记点M 的轨迹长度为α,则tanα=____;当三棱锥P-ABM 的体积最小时,三棱锥P-ABM 的外接球的表面积为_____.(本题第一空2分,第二空3分)三、解答题:本大题共6小题,共70分.解答应写出必要的文字说明、证明过程或演算步骤.17~21题为必考题每个试题考生都必须作答.第22,23题为选考题,考生根据要求作答.(一)必考题:共60分. 17.(12分)已知数列{}n a 的前n 项和为,n S 满足93,,24n n a S 成等差数列. (1)求{}n a 的通项公式;(2)设31323log log log n n b a a a =+++L ,数列1{}n b 的前n 项和为,n T 证明:11.9n T <18.(12分)今年1月至2月由新型冠状病毒引起的肺炎病例陡然增多,为了严控疫情传播,做好重点人群的预防工作,某地区共统计返乡人员100人,其中50岁及以上的共有40人.这100人中确诊的有10名,其中50岁以下的人占3.10(1)请将下面的列联表补充完整,并判断是否有95%的把握认为是否确诊患新冠肺炎与年龄有关;(2)为了研究新型冠状病毒的传染源和传播方式,从10名确诊人员中随机抽出5人继续进行血清的研究,X 表示被抽取的5人中50岁以下的人数,求X 的分布列以及数学期望。
江西省萍乡市2019-2020学年高考第四次大联考数学试卷含解析
江西省萍乡市2019-2020学年高考第四次大联考数学试卷一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设n S 为等差数列{}n a 的前n 项和,若33a =-,77S =-,则n S 的最小值为( ) A .12- B .15-C .16-D .18-【答案】C 【解析】 【分析】根据已知条件求得等差数列{}n a 的通项公式,判断出n S 最小时n 的值,由此求得n S 的最小值. 【详解】依题意11237217a d a d +=-⎧⎨+=-⎩,解得17,2a d =-=,所以29n a n =-.由290n a n =-≤解得92n ≤,所以前n项和中,前4项的和最小,且4146281216S a d =+=-+=-. 故选:C 【点睛】本小题主要考查等差数列通项公式和前n 项和公式的基本量计算,考查等差数列前n 项和最值的求法,属于基础题.2.已知边长为4的菱形ABCD ,60DAB ∠=︒,M 为CD 的中点,N 为平面ABCD 内一点,若AN NM =,则AM AN ⋅=u u u u r u u u r( )A .16B .14C .12D .8【答案】B 【解析】 【分析】取AM 中点O ,可确定0AM ON ⋅=u u u u r u u u r;根据平面向量线性运算和数量积的运算法则可求得2AM uuuu r ,利用()AM AN AM AO ON ⋅=⋅+u u u u r u u u r u u u u r u u u r u u u r可求得结果.【详解】取AM 中点O ,连接ON ,AN NM =Q ,ON AM ∴⊥,即0AM ON ⋅=u u u u r u u u r.60DAB ∠=o Q ,120ADM ∴∠=o ,()22222cos 416828AM DM DADM DA DM DA ADM ∴=-=+-⋅∠=++=u u u u r u u u u r u u u r u u u u r u u u r u u u u r u u u r,则()21142AM AN AM AO ON AM AO AM ON AM ⋅=⋅+=⋅+⋅==u u u u r u u u r u u u u r u u u r u u u r u u u u r u u u r u u u u r u u u r u u u u r .故选:B . 【点睛】本题考查平面向量数量积的求解问题,涉及到平面向量的线性运算,关键是能够将所求向量进行拆解,进而利用平面向量数量积的运算性质进行求解.3.某学校为了调查学生在课外读物方面的支出情况,抽取了一个容量为n 的样本,其频率分布直方图如图所示,其中支出在[20,40)(单位:元)的同学有34人,则n 的值为( )A .100B .1000C .90D .90【答案】A 【解析】 【分析】利用频率分布直方图得到支出在[20,40)的同学的频率,再结合支出在[20,40)(单位:元)的同学有34人,即得解 【详解】由题意,支出在[20,40)(单位:元)的同学有34人 由频率分布直方图可知,支出在[20,40)的同学的频率为34(0.010.024)100.34,1000.34n +⨯=∴==. 故选:A 【点睛】本题考查了频率分布直方图的应用,考查了学生概念理解,数据处理,数学运算的能力,属于基础题. 4.若函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,则( )A .函数()y f x =的值域是[]0,2B .点,04π⎛⎫⎪⎝⎭是()y f x =的一个对称中心C .函数()y f x =的最小正周期是2πD .直线4x π=是()y f x =的一条对称轴【答案】A 【解析】 【分析】根据函数()f x 的图像过点()0,2,求出θ,可得()cos21f x x =+,再利用余弦函数的图像与性质,得出结论. 【详解】由函数()()2sin 2cos f x x x θ=+⋅(02πθ<<)的图象过点()0,2,可得2sin 22θ=,即sin 21θ=,22πθ∴=,4πθ=,故()()22sin 2cos 2cos cos21f x x x x x θ=+⋅==+, 对于A ,由1cos21x -≤≤,则()02f x ≤≤,故A 正确; 对于B ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故B 错误; 对于C ,22T ππ==,故C 错误; 对于D ,当4x π=时,14f π⎛⎫=⎪⎝⎭,故D 错误; 故选:A 【点睛】本题主要考查了二倍角的余弦公式、三角函数的图像与性质,需熟记性质与公式,属于基础题. 5.设正项等差数列{}n a 的前n 项和为n S ,且满足6322S S -=,则2823a a 的最小值为A .8B .16C .24D .36【答案】B 【解析】 【分析】 【详解】方法一:由题意得636332()2S S S S S -=--=,根据等差数列的性质,得96633,,S S S S S --成等差数列,设3(0)S x x =>,则632S S x -=+,964S S x -=+,则222288789962212333(3)()()=3a a a a a S S a a a a a S ++-==++2(4)x x+=168816x x =++≥=,当且仅当4x =时等号成立,从而2823aa的最小值为16,故选B.方法二:设正项等差数列{}n a的公差为d,由等差数列的前n项和公式及6322S S-=,化简可得11653262(3)222a d a d⨯⨯+-+=,即29d=,则222282222222243()33(6)16163382333aa a da aa a a a a++===++≥⋅+816=,当且仅当221633aa=,即243a=时等号成立,从而2823aa的最小值为16,故选B.6.如图,网格纸是由边长为1的小正方形构成,若粗实线画出的是某几何体的三视图,则该几何体的表面积为()A.920π+B.926π+C.520π+D.526π+【答案】C【解析】【分析】根据三视图还原为几何体,结合组合体的结构特征求解表面积.【详解】由三视图可知,该几何体可看作是半个圆柱和一个长方体的组合体,其中半圆柱的底面半圆半径为1,高为4,长方体的底面四边形相邻边长分别为1,2,高为4,所以该几何体的表面积2112141222Sππ=⨯+⨯⨯⨯+⨯⨯14224520π+⨯⨯+⨯=+,故选C.【点睛】本题主要考查三视图的识别,利用三视图还原成几何体是求解关键,侧重考查直观想象和数学运算的核心素养.7.已知平面向量,,a b cr r r,满足||2,||1,b a bc a bλμ=+==+r r rr r r且21λμ+=,若对每一个确定的向量ar,记||cr的最小值为m,则当ar变化时,m的最大值为()A.14B.13C.12D.1【答案】B【解析】【分析】根据题意,建立平面直角坐标系.令,OP a OB b ==u u u r r u u u r r OC c =u u u r r.E 为OB 中点.由1a b +=rr 即可求得P 点的轨迹方程.将c a b λμ=+r r r变形,结合21λμ+=及平面向量基本定理可知,,P C E 三点共线.由圆切线的性质可知||c r的最小值m 即为O 到直线PE 的距离最小值,且当PE 与圆M 相切时,m 有最大值.利用圆的切线性质及点到直线距离公式即可求得直线方程,进而求得原点到直线的距离,即为m 的最大值. 【详解】根据题意,||2,b =r设()(),,2,0OP a x y OB b ====u u u r r u u u r r ,(),1,0OC c E =u u u r r则2b OE =r u u u r由1a b +=r r代入可得()2221x y ++=即P 点的轨迹方程为()2221x y ++=又因为c a b λμ=+r r r ,变形可得22b c a λμ⎛⎫=+ ⎪⎝⎭rr r ,即2OC OP OE λμ=+uuur uuu r uuu r ,且21λμ+=所以由平面向量基本定理可知,,P C E 三点共线,如下图所示:所以||c r的最小值m 即为O 到直线PE 的距离最小值根据圆的切线性质可知,当PE 与圆M 相切时,m 有最大值 设切线PE 的方程为()1y k x =-,化简可得kx y k 0--=由切线性质及点M 2211k k k --=+,化简可得281k =即2k =±所以切线方程为22044x y --=或22044x y +-=所以当a r变化时, O 到直线PE 的最大值为13m ==即m 的最大值为13故选:B 【点睛】本题考查了平面向量的坐标应用,平面向量基本定理的应用, 圆的轨迹方程问题,圆的切线性质及点到直线距离公式的应用,综合性强,属于难题.8.若双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直,则该双曲线的离心率为( ) A .2 BCD .【答案】B 【解析】 【分析】由题中垂直关系,可得渐近线的方程,结合222c a b =+,构造齐次关系即得解 【详解】双曲线22221(0,0)x y a b a b-=>>的一条渐近线与直线6310x y -+=垂直.∴双曲线的渐近线方程为12y x =±. 12b a ∴=,得2222214,4b ac a a =-=.则离心率2c e a ==. 故选:B 【点睛】本题考查了双曲线的渐近线和离心率,考查了学生综合分析,概念理解,数学运算的能力,属于中档题. 9.已知12log 13a =131412,13b ⎛⎫= ⎪⎝⎭,13log 14c =,则,,a b c 的大小关系为( )A .a b c >>B .c a b >>C .b c a >>D .a c b >>【答案】D 【解析】【分析】由指数函数的图像与性质易得b 最小,利用作差法,结合对数换底公式及基本不等式的性质即可比较a 和c 的大小关系,进而得解.【详解】根据指数函数的图像与性质可知1314120131b ⎛⎫<= ⎪⎭<⎝,由对数函数的图像与性质可知12log 131a =>,13log 141c =>,所以b 最小; 而由对数换底公式化简可得1132log 13log 14a c -=-lg13lg14lg12lg13=- 2lg 13lg12lg14lg12lg13-⋅=⋅ 由基本不等式可知()21lg12lg14lg12lg142⎡⎤⋅<+⎢⎥⎣⎦,代入上式可得()2221lg 13lg12lg14lg 13lg12lg142lg12lg13lg12lg13⎡⎤-+⎢⎥-⋅⎣⎦>⋅⋅221lg 13lg1682lg12lg13⎛⎫- ⎪⎝⎭=⋅11lg13lg168lg13lg16822lg12lg13⎛⎫⎛⎫+⋅- ⎪ ⎪⎝⎭⎝⎭=⋅((lg13lg13lg 0lg12lg13+⋅-=>⋅所以a c >, 综上可知a c b >>, 故选:D. 【点睛】本题考查了指数式与对数式的化简变形,对数换底公式及基本不等式的简单应用,作差法比较大小,属于中档题.10.己知集合{|13}M y y =-<<,{|(27)0}N x x x =-…,则M N ⋃=( ) A .[0,3) B .70,2⎛⎤ ⎥⎝⎦C .71,2⎛⎤- ⎥⎝⎦D .∅【答案】C 【解析】 【分析】先化简7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?,再求M N ⋃. 【详解】因为7{|(27)0}|02N x x x x x ⎧⎫=-=⎨⎬⎩⎭剟?, 又因为{|13}M y y =-<<,所以71,2M N ⎛⎤⋃=- ⎥⎝⎦, 故选:C. 【点睛】本题主要考查一元二次不等式的解法、集合的运算,还考查了运算求解能力,属于基础题.11.抛物线方程为24y x =,一直线与抛物线交于A B 、两点,其弦AB 的中点坐标为(1,1),则直线的方程为( ) A .210x y --= B .210x y +-=C .210x y -+=D .210x y ---=【答案】A 【解析】 【分析】设()11,A x y ,()22,B x y ,利用点差法得到1212422y y x x -==-,所以直线AB 的斜率为2,又过点(1,1),再利用点斜式即可得到直线AB 的方程. 【详解】解:设()()1122,,,A x y B x y ,∴122y y +=,又21122244y x y x ⎧=⎨=⎩,两式相减得:()2212124y y x x -=-, ∴()()()1212124y y y y x x +-=-,∴1212422y y x x -==-,∴直线AB 的斜率为2,又∴过点(1,1),∴直线AB 的方程为:12(1)y x -=-,即2 10x y --=, 故选:A. 【点睛】本题考查直线与抛物线相交的中点弦问题,解题方法是“点差法”,即设出弦的两端点坐标,代入抛物线方程相减后可把弦所在直线斜率与中点坐标建立关系.12.已知a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a //β,b //α,则“a //b“是“α//β”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件【答案】D 【解析】 【分析】根据面面平行的判定及性质求解即可. 【详解】解:a ⊂α,b ⊂β,a ∥β,b ∥α,由a ∥b ,不一定有α∥β,α与β可能相交; 反之,由α∥β,可得a ∥b 或a 与b 异面,∴a ,b 是两条不同的直线,α,β是两个不同的平面,且a ⊂α,b ⊂β,a ∥β,b ∥α, 则“a ∥b“是“α∥β”的既不充分也不必要条件. 故选:D. 【点睛】本题主要考查充分条件与必要条件的判断,考查面面平行的判定与性质,属于基础题. 二、填空题:本题共4小题,每小题5分,共20分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020届江西省百所名校高三下学期第四次联考
数学(理)试卷
★祝考试顺利★
(解析版)
一、选择题
1.全集U =R ,(){}ln 1A x y x ==+,{}220B x x x =--<,则() U B A =( )
A. ()2,+∞
B. (),2-∞
C. ∅
D. ()1,2- 【答案】B
【解析】 根据已知条件先求出集合A 和集合B ,再求出集合A 的补集,再运用集合的并集运算即可. 【详解】因为{}1A x x =>-,{}12B x x =-<<, 所以{} 1U A x x =≤-,故(){} 2U B A x x ⋃=<.
故选:B
2.欧拉是科学史上一位最多产的杰出数学家,为数学界作出了巨大贡献,其中就有欧拉公式:cos sin ix e x i x =+(i 为虚数单位).它建立了三角函数和指数函数间接关系,被誉为“数学中的
天桥”.结合欧拉公式,则复数43i z i
π=的模为( )
C. D. 2 【答案】B
【解析】
由题意可得4i e π=,代入43i z i π
=+并对其化简,再代入模长计算公式即可.
【详解】因为422
i e π
=+, 所以433112i z e i i i i
π==-++=-,
从而5z =.
故选:B
3.空气质量AQI 指数是反映空气质量状况指数,AQI 指数值越小,表明空气质量越好,其对应关系如表:
AQI 指数值 [)0,50
[)50,100 [)100,150 [)150,200 [)200,300 [)300,+∞ 空气质量
优 良 轻度污染 中度污染 重度污染 严重污染
如图所示的是某市11月1日至20日AQI 指数变化的折线图:
下列说法不正确的是( )
A. 这20天中空气质量为轻度污染的天数占14
B. 这20天中空气质量为优和良的天数为10天
C. 这20天中AQI 指数值的中位数略低于100
D. 总体来说,该市11月上旬的空气质量比中旬的空气质量好
【答案】C
【解析】
根据已知条件对每个选项进行判断即可.
【详解】对于A ,20天中AQI 指数值高于100,低于150的天数为5,即占总天数的14
,故A 正确; 对于B ,20天中AQI 指数值有10天低于100,故B 正确;
对于C ,20天中AQI 指数值有10天低于100,10天高于100,根据图可知中位数略高于100,故C 错误;
对于D ,由图可知该市11月上旬的空气质量的确比中旬的空气质量要好些,故D 正确.
故选:C。