导学案 1.5.1 有理数的乘方(第一课时)
人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计

人教版数学七年级上册1.5.1《有理数的乘方(1)》教学设计一. 教材分析人教版数学七年级上册1.5.1《有理数的乘方(1)》是学生在学习了有理数的加减乘除、相反数、绝对值等概念的基础上,进一步深化对有理数运算法则的理解。
本节课主要让学生掌握有理数的乘方运算,为后续学习幂的运算、指数函数等知识打下基础。
教材通过具体的例子引导学生探究有理数乘方的规律,从而让学生自主发现并掌握有理数乘方的法则。
二. 学情分析七年级的学生已经具备了一定的数学基础,对有理数的加减乘除运算较为熟悉。
但是,对于有理数的乘方运算,学生可能存在一定的困难,因为乘方运算涉及到多个有理数的乘积,运算规则相对复杂。
因此,在教学过程中,需要引导学生通过实例探究有理数乘方的规律,让学生在理解的基础上掌握乘方运算。
三. 教学目标1.理解有理数乘方的概念,掌握有理数乘方的法则。
2.能够熟练进行有理数的乘方运算。
3.培养学生的抽象思维能力,提高学生解决实际问题的能力。
四. 教学重难点1.教学重点:有理数乘方的概念,有理数乘方的法则。
2.教学难点:有理数乘方运算的规律,有理数乘方在实际问题中的应用。
五. 教学方法1.实例导入:通过具体的例子引导学生探究有理数乘方的规律。
2.小组讨论:让学生分组讨论,共同发现有理数乘方的法则。
3.练习巩固:通过大量练习,让学生熟练掌握有理数乘方运算。
4.实际应用:引导学生运用有理数乘方知识解决实际问题。
六. 教学准备1.教学课件:制作课件,展示有理数乘方的例子和知识点。
2.练习题:准备适量练习题,巩固学生对有理数乘方的掌握。
3.教学道具:准备一些教学道具,如卡片、小黑板等,方便学生直观地理解乘方运算。
七. 教学过程1.导入(5分钟)利用实例引入有理数乘方的概念,如:2的3次方表示2乘以自己3次,即2×2×2=8。
让学生初步认识有理数乘方。
2.呈现(10分钟)展示多个有理数乘方的例子,引导学生发现有理数乘方的法则。
1.5.1有理数的乘方(教案)

在今天的有理数乘方教学中,我发现学生们对乘方的概念和计算法则掌握得还不错,但在实际应用和解决复杂问题时,部分学生仍然感到困惑。这让我意识到,在今后的教学中,我需要从以下几个方面进行改进:
首先,加强学生对乘方概念的理解。虽然学生们能够记住乘方的定义,但在具体问题中,他们有时会忽略乘方的本质,将乘方与乘法混淆。因此,我打算在下一节课中,用更多的生活实例和图形演示,让学生更直观地理解乘方的意义。
1.5.1有理数的乘方(教案)
一、教学内容
本节课选自七年级数学上册《有理数的乘方》章节,主要内容为1.5.1有理数的乘方。具体内容包括:
1.掌握有理数乘方的定义,理解乘方的意义;
2.学会有理数乘方的计算法则,并能熟练运用;
3.掌握有理数乘方的性质,如负数的奇数次幂是负数,负数的偶数次幂是正数;
4.能够解决实际问题中涉及有理数乘方的计算。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了有理数乘方的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对有理数乘方的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
本节课旨在培养学生的数学抽象、逻辑推理和数学建模等核心素养。通过学习有理数的乘方,使学生能够:
1.提高数学抽象能力,理解乘方概念的本质,形成对乘方运算的直观认识;
2.培养逻辑推理能力,掌握有理数乘方的计算法则,并能运用逻辑推理解决问题;
3.增强数学建模能力,将乘方运算应用于解决实际问题,提高解决实际问题的能力;
1.5.1有理数的乘方(1)(精选)

-24=-2×2×2×2=-16 2 2 22 2 2 2 2 4 22 2 2 4 (5) ( ) .( X) ( ) ; 3 3 3 9 3 3 3 3 3
课堂小结
1、乘方的概念:求n个相同因数的积的 运算叫做乘方 指数
an 底数 幂(乘方的结果叫做幂)
谈谈你这届课的的收获。
(1 )
1
3
1
2014
=1
(3 )
(1)
(4 ) =1
1
2014 =1
2013
(5 )
(6) 1 (1) =-1
=-1
思考:你能从中发现什么吗?
(1) 1的任何次幂都为 1。 (2) -1的幂很有规律: -1的奇次幂是-1 , -1的偶次幂是1。
填表:
底数 指数
幂
-1 3
2 5
-4 3
(-4)3
0.3 4
0.34
10 4
(-1)3
25
104
判断:(对的画“√”,错的画“×”.) (1) 32 = 3×2 = 6; ( (2) (-2)3 = (-3)2; -32 (-3)2; (
X
) 32 = 3×3=9
3 =-8; (-3)2=9 ) (-2) X
2 =-9; (-3)2=9 -3 (3) = (X) (4) 24 (2) (2) (2) (2) ; ( X )
可读作a的n次幂
n
1、把下列相同的因数写成幂的形式,并 说明底数和指数
(1)( 6) ( 6) ( 6) 2 2 2 2 (2) 3 3 3 3
3 3
比 较 6 与- 6 一 样 吗 ? 注意:负数和分数的乘方,在书写时一定 注意:一个数可以看作这个数本身的 要把整个负数(连同符号)或分数,用小括 1,指数是1通 一次方,例如: 5 就是 5 号括起来.这也是辨认底数的方法。 4 4 2 2 常省略不写。 比 较 与 相 同 吗 ?
数学七年级上册第15课时《有理数的乘方(1)》导学案

第15课时 第2章第7节 有理数的乘方(1)【学习目标】1、理解乘方的意义,会进行有理数乘方运算。
2、在学习有理数乘方法则的过程中,体会“特殊到一般”的数学思想。
【活动方案】活动一 问题引入手工拉面是我国的传统面食.制作时,拉面师傅将一团和好的面,揉搓成1根长条后,手握两端用力拉长,然后将长条对折,再拉长,再对折(每次对折称为一扣),如此反复操作,连续拉扣若干次后便成了许多细细的面条.你能算出拉扣6次后共有多少根面条吗?活动二 乘方的有关概念1.试一试:将一张报纸对折再对折……直到无法对折为止.你对折了多少次?请用算式表示你对折出来的报纸的层数.2.你还能举出类似的实例吗?2×2×2×2×2×2记作26,读作“2的6次方”;7×7×7可记作73;读作“7的3次方”.3.归纳:一般地,n a a a a a ⋅⋅⋅⋅个记作a n ,读作“a 的n 次方”. 求相同因数的积的运算叫做乘方.乘方运算的结果叫幂.26、73也可以看做是乘方运算的结果,这时它们表示数,分别读作“2的6次幂”、“7的3次幂”,其中2、7叫做底数,6、3叫做指数.4. 思考:(1).(-4)3的底数是什么?指数是什么?幂是多少?(2).23和32的意义相同吗?(3).(-2)3、-23、-(-2)3分别表示什么意义?(4).(-23 )4、-243分别表示什么意义? 活动三 实践应用1 计算:(1)①37;②73;③(-3)4;④(-4)3.(2)①(12 )5;②(35 )3;③(-23)4.2 计算并思考幂的符号如何确定:(1)52、0.23、(23)4; (2)(-4)3、(-23)5、(-1)7; (3)(-1)4、(-3)2、(-12)6.3. 口答(1)(-5)3; (2)(-12 )5; (3)(-13)4; (4)-53; (5)0.14; (6)18.4.如果你第1个月存2元.从第2个月起每个月的存款都是上个月的2倍.那么第6个月要存多少钱?第12个月呢?[检测反馈]1、(-3)4表示 ( )A.4个(-3)相乘的积B. -3乘4的积C.3个(-4) 相乘的积D. 4个(-3)相加的积2、关于式子(-3)4,正确的说法是 ( )A.(-3)是底数,4是幂B.3是底数,4是幂C.3是底数,4是指数D.(-3)是底数,4是指数3、 求 的运算叫做乘方,乘方的结果叫做4、 3)2(-的底数是 ,指数是 ,它表示 ,运算的结果是5、32-的底数是 ,指数是 ,它表示 ,运算的结果是6、把下列各式写成乘方运算的形式:6×6×6= (-3) (-3) (-3) (-3)=2.1×2.1×2.1×2.1×2.1= ⨯21⨯21⨯21⨯21⨯2121= 7、 把下列各式写成乘法运算的形式:34 = ,43=(-1)4= ,3)32(-=8、思考:(-2)3与 –23的意义相同么?为什么?9、计算:=-4)1( ,=-3)1( ,=-4)2( ,-24=(1)(-1 )10,(-1)7,(-21)4,(-21)5是正数还是负数? (2)负数的幂的符号如何确定?【巩固提升】1、()20063-是 ( )A.负数B.正数C.非负数D.以上都不对2、计算()20082007)1(1-+-的值是 ( )A.0B.-1C.1D.23、 下列各式中,不相等的是 ( )A 、(-3)2和-32B 、(-3)2和32C 、(-2)3和-23D 、|-2|3和|-23|4、任何一个数的偶次幂都是 ( )A.正数B.负数C.非正数D.非负数5、一根一米长的绳子,第一次截去一半,第二次截去剩下的一半,如此下去,第六次剩下的绳子的长度为 ( ) A.3)21(米 B.5)21(米 C. 6)21(米 D. 12)21(米6、如果n 为正整数,则=-n 2)1( ; 如果n 为非负整数,则12)1(+-n = .7、一个数的平方等于49 ,这个数是 。
《有理数的乘方》 导学案

《有理数的乘方》导学案一、学习目标1、理解有理数乘方的意义。
2、掌握有理数乘方的运算。
3、能熟练进行有理数乘方的计算,并能解决相关的实际问题。
二、学习重点1、有理数乘方的概念及表示方法。
2、有理数乘方的运算。
三、学习难点1、负数和分数的乘方运算。
2、有理数乘方运算的符号确定。
四、知识链接1、乘法运算:几个相同的数相加可以用乘法表示,例如:5 + 5+ 5 = 5×3 。
2、乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘。
五、学习过程(一)引入我们来看这样一个问题:某种细胞每过 30 分钟便由 1 个分裂成 2 个。
经过 5 小时,这种细胞由 1 个能分裂成多少个?要解决这个问题,我们先来学习有理数的乘方。
(二)有理数乘方的概念1、一般地,n 个相同的因数 a 相乘,即\(a×a××a\)(n 个 a 相乘),记作\(a^n\),读作“a 的 n 次方”。
例如:\(2×2×2×2 = 2^4\),读作“2 的 4 次方”。
2、乘方的结果叫做幂。
在\(a^n\)中,a 叫做底数,n 叫做指数。
特别地,\(a^1 = a\),指数 1 通常省略不写。
(三)有理数乘方的运算1、正数的任何次幂都是正数。
例如:\(2^3 = 2×2×2 = 8\)2、负数的奇次幂是负数,负数的偶次幂是正数。
例如:\((-2)^3 =(-2)×(-2)×(-2) =-8\)\((-2)^4 =(-2)×(-2)×(-2)×(-2) = 16\)3、 0 的任何正整数次幂都是 0。
例如:\(0^5 = 0\)(四)例题讲解例 1:计算(1)\(5^3\)(2)\((-3)^4\)(3)\(-4^2\)(4)\((\frac{1}{2})^3\)解:(1)\(5^3 = 5×5×5 = 125\)(2)\((-3)^4 =(-3)×(-3)×(-3)×(-3) = 81\)(3)\(-4^2 =(4×4) =-16\)(注意:这里的底数是 4 ,不是-4 )(4)\((\frac{1}{2})^3 =(\frac{1}{2})×(\frac{1}{2})×(\frac{1}{2})=\frac{1}{8}\)例 2:一个数的平方等于 16,求这个数。
1.5.1有理数的乘方(一)教案

1.5.1有理数的乘方(一)教学目标:知识与技能:1、理解有理数乘方的概念,掌握有理数乘方的运算.2、培养学生的观察、比较、分析、归纳、概括能力,以及学生的探索精神. 过程与方法:教法主要采用启发式教学;学法引导学生自主探索去观察、交流、归纳。
情感、态度、价值观:渗透分类讨论思想.教学重点:有理数乘方的运算教学难点:有理数乘方运算的符号法则教学过程:(一)、提出问题在小学我们已经学习过a ·a ,记作a 2,读作a 的平方(或a 的二次方);a ·a ·a 作a 3,读作a 的立方(或a 的三次方);那么,a ·a ·a ·a 可以记作什么?读作什么?a ·a ·a ·a ·a 呢?(n 是正整数)呢?(二)、试一试在小学对于字母a 我们只能取正数,进入中学后,我们学习了有理数,那么a 还可以取哪些数呢?请举例说明(三)、探索1、求n 个相同因数的积的运算叫做乘方2、乘方的结果叫做幂,相同的因数叫做底数,相同因数的个数叫做指数一般地,在a n 中,a 取任意有理数,n 取正整数应当注意,乘方是一种运算,幂是乘方运算的结果当a n 看作a 的n 次方的结果时,也可以读作a 的n 次幂。
一个数可以看作这个数本身的一次方。
例如,5就是51.指数1通常省略不写。
3、我们知道,乘方和加、减、乘、除一样,也是一种运算,a n 就是表示n 个a 相乘,所以可以利用有理数的乘法运算来进行有理数乘方的运算例1 计算:a a a an a ⋅⋅个(1)24 (2)3(-2) (3)()24- (4)323⎛⎫- ⎪⎝⎭ 引导学生观察、比较、分析这些计算题中,幂的符号有什么规律?(1)正数的任何次幂都是正数;负数的奇次幂是负数,偶次幂是正数;零的任何次幂都是零(2)互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等(3)任何一个数的偶次幂都是非负数你能把上述的结论用数学符号语言表示吗? (板书)当a>0时,a n >0(n 是正整数);当a<0时, ⎧⎨⎩ ; 当a=0时,a n =0(n 是正整数)(以上为有理数乘方运算的符号法则)例2 计算:(1)(-2)4 (2)-24 (3) 223⎛⎫ ⎪⎝⎭ (4) 223 教师引导学生纵向观察第(1)题和第(2)题的形式和计算结果,让学生自己体会到,(-a)n 的底数是-a ,表示n 个(-a)相乘,-a n 是a n 的相反数,这是(-a)n 与-a n 的区别观察第(3)题和第(4)题的形式和计算结果,让学生自己体会到,写分数的乘方时要加括号,不然就是另一种运算了课堂练习: P42:1(四)、小结让学生回忆,做出小结:1、 乘方的有关概念;2、乘方的符号法则;3、括号的作用;(五)、作业设计课本P47:1、2a n >0(n 是正偶数) a n <0(n 是正奇数)。
人教版初一数学上册《1.5.1 第1课时 乘方》导学案

(-1)n = 0n = (n 为正整数) 1n =(n 为整数)1.5 有理数的乘方1.5.1 乘方 第 1 课时 乘方学习目标1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。
重点:乘方的意义及运算难点:乘方的运算 一、自主学习:1、复习巩固:①乘法运算的符号法则及运算方法:②多个不为 0 的数相乘,积的符号怎样确定?2、导学:(1)一般地,几个相同因数 a 相乘,即 a .a .......a ,记作 ,读作求 n 个相同因数的 ,叫作乘方,乘方的结果叫做。
在 a n 中, a 叫做, n 叫作。
当 a n 看作 a 的 n 次方的结果时,也可读作。
特别地一个数也可以看作这数本身的一次方,如 5 就是 5 的一次,即 5 = 51,指数为 1通常 不写。
(2)警示:①乘方是一种运算(乘法运算的特例),即求 n 个相同因数连乘的简便形式; ②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂; ③乘方具有双重含义:既表示一种,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用把底数括起来,以体现底数的整体性。
(3)拓展:底数为 -1,0,1,10,0.1 的幂的特性:n 为奇数n 为偶数10n = 100 ⋅⋅⋅⋅⋅⋅ 0 (1 后面有____个 0), 0.1 n =0.00…01 (1 前面有______个 0)(4)乘方的符号法则:负数的奇次幂是数,负数的偶次幂是 数。
正数的任何次幂都是数,0 的任何正整数次幂都是。
(5)参照乘法运算的方法进行乘方运算。
(6)用计算器作乘方运算。
二、合作探究:1、计算:(-1)2010 (-2)58 3(-5)31 (- )42(-10)4-(-2)3-22 ×32、 (-3)2 =; -32 = ______3、已知 n 是正整数,那么 (-1)2n =, (-1)2n +1 =1、把 (- )× × 写成乘方形式。
人教版初中七年级上册数学《有理数的乘方》导学案

1.5 有理数的乘方1.5.1 乘方第1课时有理数的乘方一、新课导入1.课题导入:大家都见过拉面师傅拉面,一次小明看到拉面师傅拉了6次,一碗面就拉好了,你能列出算式,帮他算算这碗面共有多少根吗?这个问题就是这节课我们要学习的乘方(板书课题).2.三维目标:(1)知识与技能正确理解乘方的意义,能利用乘方运算法则进行有理数乘方运算.(2)过程与方法①通过现实背景理解有理数乘方的意义,能进行有理数乘方的运算.②已知一个数,会求出它的正整数指数幂,渗透转化思想.(3)情感态度培养学生观察、归纳能力,以及思考问题、解决问题的能力,切实提高学生的运算能力.3.学习重、难点:重点:知道有理数乘方的意义.难点:能合理地进行乘方运算.二、分层学习1.自学指导:(1)自学内容:教材第41页的内容.(2)自学时间:5分钟.(3)自学要求:注意积中各因数的特点,结合乘法算式,找出相同因数的个数与指数的关系.理解乘方、幂、底数、指数的意义.(4)自学参考提纲:①2×2×2×2×2应记作25,读作2的五次方;12×12×12×12×12应记作125,读作12的5次方;(-3)×(-3)×(-3)×(-3)应记作(-3)4,读作-3的4次方;(-0.3)×(-0.3)×(-0.3)应记作(-0.3)3,读作-0.3的3次方;猜想:a·a·a…a的结果?n个a②一般地,n个相同因数a相乘,即a·a·a…a,记作a n,读作a的n 次方.求n个相同因数的积的运算,叫作乘方,乘方的结果叫做幂.在a n中,a做底数,n叫作指数.当a n看作a的n次方的结果时,也可读作a的n 次幂.特别地,一个数也可以看作这个数本身的一次方,如5就是5的一次方,即5=51,指数为1,通常省略不写.③-24与(-2)4相等吗?为什么?不相等,虽然绝对值相等,但符号不同.④你能解决之前的“拉面问题”吗?其结果是多少?26=642.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题和疑点.a.负数和分数的乘方的记法;b.-24与(-2)4的区别.②差异指导:对学习有困难的学生进行学法指导.(2)生助生:学生相互交流帮助解决一些自学中的疑难问题.4.强化:(1)有理数乘方意义的理解:①乘方是一种运算(乘法运算的特例),即求n个相同因数的积的简便算式;②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;③乘方具有双重含义:既表示一种乘法运算,又表示乘方运算的结果;④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用括号把底数括起来,以体现底数的整体性.(2)在-(-2)5中,底数是-2 ,指数是5,计算的结果是32.1.自学指导:(1)自学内容:教材第42页的例1、例2.(2)自学时间:5分钟.(3)自学要求:观察例1的计算过程和结果,相互交流自己的收获.(4)自学参考提纲:①例1的计算依据是什么?乘方的定义②完成思考并填空.③底数为-1,0,1,10,0.1的幂的特性:0n=0(n为正整数);1n=1(n为整数);10n=100……0(1后面有n个0);0.1n=0.00…01(小数部分1前面有n-1个0)④由②、③可得乘方的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.⑤试确定下列算式的结果是正还是负?a.(-3)×(-3)×…×(-3)共100个(-3)b.(-2)11 c.-(-1)153正;负;正.⑥仿例2用计算器作乘方运算:a.(-11)3 b.(-0.52)4-1331;0.07311616.2.自学:同学们可结合自学指导进行自学.3.助学:(1)师助生:①明了学情:教师巡视课堂了解学生在自学中存在的问题.②差异指导:指导学生的自学方法,帮助学困生解决学习中的疑难问题.(2)生助生:学生通过交流探讨相互帮助解决一些自学疑难问题.4.强化:(1)乘方的符号法则.(2)练习:)4;-(-2)3①计算:(-1);83;(-5)3;0.13;(-10)4;-32;(-12;8.解:1;512;-125;0.001;10000;-9;116②已知n是正整数,那么(-1)2n=1 ,(-1)2n+1=-1.三、评价1.学生的自我评价(围绕三维目标):谈自己在本节学习中的收获和存在的不足之处.2.教师对学生的评价:(1)表现性评价:对本节课学习中大家的态度、方法和成果进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课时宜从现实生活里的具体事例出发,引导学生探究理解乘方的意义,在教学过程中采用“自主——合作——讨论——探究——交流”的教学方法,教师始终起着引领学生探寻方向的作用,即遵循“引导——帮助——点拨”的原则,真正做到数学教师由单纯的知识传递者转变为学生学习的组织者、引导者和合作者.这种方式可使学生在动手实践、自主探索、合作交流中主动发展知识,在合作学习及相互交流中形成协作意识.一、基础巩固(第1、2、3题每题10分,第4题20分,共50分)1.(15分)在(-2)5中,底数是-2,指数是5,结果是-32.2.(15分)在-24中,底数是2,指数是4,结果是-16.3.(20分)下列各数相等的是(C)A.-33与-23B.32与-23C.-32与-(-3)2D. (-3)2与-324.(20分)计算.(1)(-3)3(2)(-2)4(3)(-1.7)2(4)(-43)3(5)-(-2)3(6)(-2)2×(-3)2 (7)-353(8)-32×(-2)3解:(1)-27;(2)16;(3)2.89;(4)-6427;(5)8;(6)36;(7)-1253;(8)72.二、综合应用(每题15分,共30分)5.(10分)平方等于9的数是几?立方等于27的数是几?解:±3;36.(10分)(1)计算0.12,12,102,1002,观察这些结果,底数的小数点向左(或右)移动一位时,平方数的小数点有什么移动规律?(2)计算0.13,13,103,1003,观察这些结果,底数的小数点向左(或右)移动一位时,立方数的小数点有什么移动规律?解:(1)平方数的小数点向左(向右)移动2位.(2)立方数的小数点向左(向右)移动3位.三、拓展延伸(20分)7.(10分)计算:(-2)2,22,(-2)3,23联系这类具体的数的乘方,你认为当a<0时,下列各式是否成立?(1)a2>0;(2)a2=(-a)2;(3)a2=-a2;(4)a3=-a3.解:4;4;-8;8.(1)(2)成立,(3)(4)不成立.作者留言:非常感谢!您浏览到此文档。
人教版七年级上册1.5.1《乘方》第一课时导学案

1.5 有理数的乘方1.5.1乘方第1课时1.知道乘方运算与乘法运算的关系,知道乘方、幂、指数、底数等概念,会进行有理数的乘方运算.2.通过计算感受乘方的意义,通过比较、观察、分析、归纳、概括增强解决数学问题的能力.3.重点:乘方的意义,会进行有理数的乘方运算.【问题探究】阅读教材P 41~42,回答下列问题.探究一:1.a2读作a的平方或a的二次方,写成乘法为a×a,即a2表示两个a相乘.2.a3读作a的立方或a的三次方,写成乘法为a×a×a,即a3表示三个a相乘.3.a×a×a×a可以写成a4.4.(-3)×(-3)×(-3)×(-3)×(-3)=(-3)5,读作负3的五次方.5.(-)6表示6个-相乘.【归纳】一般地,n个相同因数a相乘,即,记作a n,读作a的n次方;求n个相同因数的积的运算,叫作乘方,乘方的结果叫作幂.当a n看作a的n次方的结果时,也可读作a的n次幂,如右图所示.【预习自测】1.(-5)8表示的意义是8个(-5)相乘的积,读作:负5的八次方或负5的八次幂.2.关于(-3)4的正确说法是(B)A.-3是底数,4是幂B.-3是底数,4是指数C.3是底数,4是指数D.4是底数,-3是指数【讨论】一个数可以看作这个数本身的一次方,如3可以看作31,指数1通常省略不写.探究二:1.教材“例1”的计算,实际上是把有理数的乘方运算化为乘法运算.2.由教材“例1”可以发现负数的奇次幂是负数,负数的偶次幂是正数.3.正数的任何次幂都是正数,0的任何正整数次幂都是0.【讨论】1.-1的奇数次幂是多少?偶数次幂又是多少呢?-1,1.2.有理数乘方运算的一般步骤是什么?一是根据底数和指数确定幂的符号,二是把绝对值乘方.3.参照教材“例2”,使用你手中的计算器尝试进行乘方运算,和你的同桌说一说按键顺序.【预习自测】填空:(-4)2= 16,-43= -64.互动探究1:(1)(-)2的底数是-,指数是2,结果是.(2)的底数是3,指数是2,结果是.互动探究2:(-3)2与-32有什么不同?解:底数不同:(-3)2的底数是-3,-32的底数是3;表示的意义不同:(-3)2表示2个(-3)相乘,-32表示2个3相乘积的相反数;读法不同:(-3)2读作-3的平方或-3的2次幂,-32读作3的平方的相反数或3的2次幂的相反数.[变式训练]下列各组数中数值相等的是(B)A.-32与-23B.-23与(-2)3C.-32与(-3)2D.(-2×3)2与-3×22互动探究3:(1)(-1)2011+(-1)2012= 0.(2)若n是正整数,则(-1)2n+(-1)2n+1= 0.互动探究4:计算:(1)(-2)3;(2)(-)3;(3)(-2)3.解:(1)(-2)3=(-2)×(-2)×(-2)=-8;(2)(-)3=(-)×(-)×(-)=-;(3)(-2)3=(-)×(-)×(-)=-.【方法归纳交流】当底数是带分数时,乘方运算时要将带分数化为假分数.互动探究5:你喜欢吃拉面吗?拉面馆的师傅,用一根粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复几次,就把这根粗的面条拉成了许多细的面条,如图,这样捏合到第几次后可拉出128根细面条?并说明你的理由.解:第一次捏合后得2(即21)根面条,第二次捏合后得4(即22)根面条,第三次捏合后得8(即23)根面条……以此类推,要得到128(即27)根面条需要捏合七次.见《导学测评》P17。
【新人教版】七年级数学上册1.5.1有理数的乘方(第一课时)教案及练习(含答案)

有理数的乘方(1)1.在背景中,理解有理数乘方的意知与技能2. 会利用算器行乘方运算教学目程与方法已知一个数,会求出它的正整数指数,渗透化思想情感度价培养学生察、能力,以及思考、解决的能力,切提高学生的运算能力.教学重点、底数、指数的概念及其表示,理解有理数乘法运算与乘方的系,理好数的乘方运算。
教学点准确建立底数、指数和三个概念,并能求的运算教学程(生活)理念1. 提并引学生回答:在小学里我学一个数的回小学相关知平方和立方是如何定的?怎表示?,利入状a·a 作 a2, 作 a 的平方(或 a 的 2 次方),即 a2=a·a;a·a·a作 a3,作 a 的立方(或 a 的 3 次方),即a3=a·a·a.(分是 a 的正方形的面与棱a 的正方体的体)2. 教展示胞分裂的示意,引学生分析某种胞在背景中置情境情境激学生的分裂程,学生回答教提出来的,并明如引入的学趣。
何得出果。
3. 合学生熟悉的 a 的正方形的面是 a· a, 棱a 的正方体的体是a· a·a 及它的法,告学生几个相同因数 a 相乘的运算就是堂所要学通算正方体的内容。
面和正方体体的例,引出。
乘方定:一般地, n 个相同的因数 a 相乘,即 a· a·⋯· a,作 a n,作 a 的 n 次方.求 n 个相同因数的的运算,叫做乘方,乘方的果叫做.新知探究n中, a 叫做底数, n 叫做指数,当n看作 a 的 n 次在 a a方的果,也可作 a 的 n 次.明:( 1)例 94明概念及法;(2)一个数可以看作个数本身的一次方,通常省略指数 1 不写;n( 3)因为 a 就是 n 个 a 相乘,所以可以利用有理数的( 4)乘方是一种运算,幂是乘方运算的结果.例 1 说出下列各数的底数,指数,表示的含义,并求出结果.5 2,( -3) 4 2,-32 ,1,- 5 452使学生清楚的理点拨:对于每一个数, 应注意是哪一部分进行乘方,解有理数乘方的那才是真正的底数. 若底数为负数或分数, 应打上括号, 意义,真正掌握若没有打括号,表示只有其中的一部分进行乘方.幂、底数、指数解: 52 底数 5,指数 2,52= 5× 5=25. 52 表示 2 个等概念的意义。
1.5.1 有理数的乘方(课时1) 教案

1.5.1 乘方(1)课型新授单位主备人教学目标:1.知识与技能:1.理解有理数的乘方的意义.2.体会有理数乘方运算的符号法则,熟练进行有理数的乘方运算.2.过程与方法:经历动手操作和自主探究的过程,进一步探索乘方的意义。
3.情感、价值观:保持学习兴趣,养成积极探索的精神和合作意识,感受数学的价值。
重点、难点:教学重点:理解有理数的乘方的意义教学难点:理解有理数的乘方的意义.熟练进行有理数的乘方运算.教学准备:PPT课件和微课等。
教学过程一、创设情景、引入新课师:珠穆朗玛峰是世界的最高峰,它的海拔高度是8844.43米。
把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰。
这是真的吗?生:长方形、正方形、梯形、平行四边形。
【通过连续对折30次纸的厚度与珠穆朗玛峰高度的对比,让学生快速进入学习情境,引出课题,激发学生的学习兴趣。
】二、自主学习、合作探究1.探究过程要求:把一张纸进行对折、再对折并回答下面的问题?问题:(1)对折一次有几层?(2)对折二次有几层?(3)对折三次有几层?(4)对折四次有几层?(5)对折二十次有几层?(6)对折三十次呢?……说说你的看法试着做一做:1.乘方:求n个相同因数的___的运算,叫做乘方,乘方的结果叫做___.在a n中,a叫做_____,n叫做_____,读作_________,当a n看作a的n次方的结果时,也可读作_________.2.乘方运算的符号法则:计算:(1)(-2)1=___. (-2)2=4. (-2)3=___. (-2)4=___.(2)21=__. 22=__. 23=__. 24=___.基础:1、计算下列各式:(-3)2;(-2)3;(-4)4;-0.12;-(-3)3;3·(-2)3;-6·(-3)3;(-4)2·(-1)52、计算:3a=-3,b=-5,c=4时,求下列各代数式的值:(1)(a+b)2; (2)a2-b2+c2; (3)(-a+b-c)2; (4)a2+2ab+b24、当a是负数时,判断下列各式是否成立(1)a2=(-a)2; (2)a3=(-a)3; (3)a2=-a2; (4)a3=-a3.拓展:5、平方得9的数有几个?是什么?有没有平方得-9的有理数?为什么?6、若(a+1)2+|b-2|=0,求a2000·b3的值。
2022年人教版七年级数学上册第一章有理数教案 乘方(第1课时)

第一章有理数1.5 有理数的乘方1.5.1 乘方第1课时一、教学目标【知识与技能】1.正确理解乘方、幂、指数、底数等概念.2.会进行有理数乘方的运算.【过程与方法】通过对乘方意义的理解,培养学生观察比较、分析、归纳概括的能力,渗透转化思想.【情感态度与价值观】培养探索精神,体验小组交流、合作学习的重要性.二、课型新授课三、课时第1课时,共2课时。
四、教学重难点【教学重点】正确理解乘方的意义,掌握乘方运算法则.【教学难点】正确理解乘方、底数、指数的概念,并合理运算.五、课前准备教师:课件、直尺、计算器等。
学生:三角尺、练习本、铅笔、圆珠笔或钢笔。
六、教学过程(一)导入新课珠穆朗玛峰是世界最高的山峰,它的海拔高度约是8844米.把一张足够大的厚度为0.1毫米的纸,连续对折30次的厚度能超过珠穆朗玛峰,这是真的吗?(出示课件2)(二)探索新知1.师生互动,探究乘方的意义教师问1:我们知道,边长为2 cm的正方形的面积为2×2=4(cm2);棱长为2 cm的正方体的面积为2×2×2=8(cm2).观察式子2×2,2×2×2有何共同特点?学生回答:都是相同因数的乘法.教师问2:为了简便,我们可以将它们记作什么,读作什么?学生回答:2×2记作22,读作2的平方;2×2×2记作23,读作2的立方.教师问3:某种细胞每30分钟便由一个分裂成两个,经过3小时这种细胞由1个能分裂成多少个?(出示课件4)分裂方式如下所示:(出示课件5)学生讨论后回答:2×6=12.教师问4:这个细胞分裂一次可得多少个细胞?分裂两次呢?分裂三次呢?四次呢?那么,3小时共分裂了多少次?有多少个细胞?(出示课件6)师生共同解答如下:一次:2个两次:2×2个三次:2×2×2个四次:2×2×2×2个六次:2×2×2×2×2×2个教师问5:请比较细胞分裂四次后的个数式子:2×2×2×2和细胞分裂六次后的个数式子: 2×2×2×2×2×2. 这两个式子有什么相同点?(出示课件7)学生回答:它们都是乘法,并且它们各自的因数都相同.教师问6:这样的运算能像平方、立方那样简写吗?学生回答:2×2×2×2记作24,2×2×2×2×2×2记作26.教师问7:24读作2的4次方(幂),26读作2的6次方(幂).同样:(-2)×(-2)×(-2)×(-2)记作什么?读作什么?(-25)×(-25)×(-25)×(-25)×(-25)记作什么?读作什么?学生回答:(-2)×(-2)×(-2)×(-2)记作(-2)2,读作负2的四次方(幂).(-25)×(-25)×(-25)×(-25)×(-25)记作(-25)5,读作负五分之二的五次方(幂).教师问8:a·a·a·a·a·a可以记作什么?读作什么?学生回答:a·a·a·a·a·a可以记作a6,读作a的六次方(幂)教师问9:进一步提出:a·a·…·a,(n个a相乘)(n为正整数)呢?学生回答:可以记作a n,读作a的n次方.教师讲解:对于a n中的a,不仅可以取正数,还可以取0和负数,也就是说a可以取任意有理数.总结点拨:(出示课件8)一般地,n个相同的因数a相乘,记作a n,读作“a的n次幂(或a的n次方)”,即教师讲解:求n个相同因数的积的运算,叫做乘方.乘方的结果叫做幂,相同的因数叫做底数,相同的因数的个数叫做指数.一般地,在a n中,a取任意有理数,n取正整数.注意:乘方是一种运算,幂是乘方运算的结果.a n看做是a的n次方的结果时,也可读作a的n次幂,一个数可以看做是它本身的1次方.总结点拨:(出示课件9)这种求n个相同因数的积的运算叫做乘方,乘方的结果叫做幂.一个数可以看作这个数本身的一次方,例如,8就是81,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘法运算来进行有理数的乘方运算.例1:计算:(出示课件11)2)3.(1)(–4)3;(2)(–2)4;(3)(-3师生共同解答如下:解:(1)(–4)3=(–4)×(–4)×(–4)=–64;(2)(–2)4 =(–2)×(–2)×(–2)×(–2)=16;(3).322228333327⎛⎫⎛⎫⎛⎫⎛⎫-=-⨯-⨯-=-⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭教师问10:进一步提出问题:观察以上运算的结果,你发现负数的幂的正负有什么规律?师生共同解答如下:(出示课件12)负数的奇次幂是负数,负数的偶次幂是正数.正数的任何正整数次幂都是正数,0的任何正整数次幂都是0.例2:用计算器计算(–8)5和(–3)6.(出示课件14)师生共同解答如下:开启计算器后按照下列步骤进行:8 5显示:(-8)^ 5-32768 即(-8)5=-327683 6显示:(-3)^ 6729 即(-3)6=7298 5 =显示:-327683 6显示:729所以(-8)5=-32768 (-3)6=729 例3:计算:(出示课件16)(1)22 -3-3⨯()()(2)–23×(–32)(3)64÷(–2)5(4)(–4)3÷(–1)200+2×(–3)4师生共同解答如下:解:(1)22(-3)(-)329(-)6;3=⨯=-⨯(2)–23×(–32)= –8×(–9)=72;(3)64÷(–2)5=64÷(–32)= –2;(4)(–4)3÷(–1)200+2×(–3)4= –64÷1+2×81=98教师问11:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?(出示课件17)学生回答:先算乘方,后算乘除;如果遇到括号,就先进行括号里的运算.(三)课堂练习(出示课件19-23)1.计算(–3)2等于()A.5 B.–5C.9 D.–92.计算(–1)2017的结果是()A. –1B. 1C. 2017D. –20173.下列说法中正确的是( )A. 23表示2×3的积B. 任何一个有理数的偶次幂是正数C. -32与(-3)2互为相反数D.一个数的平方是94 ,这个数一定是 32 4.在 – |–3|3,– (–3)3, (–3)3 , –33中,最大的数是( )A.– |–3|3B.– (–3)3C. (–3)3D. –335.对任意实数a,下列各式不一定成立的是( )A. a 2= (–a)2B. a 3= (–a)3C. |a| = |–a|D. a 2 ≥06.填空:(1)–(–3)2= ______ ; (2)–32= ___________ ;(3)(–5)3= _______ ; (4)0.13= ___________ ;(5)(–1)9= ________ ; (6)(–1)12= _________;(7)(–1)2n =_________ ; (8)(–1)2n+1=________;(9)(–1)n =____________. .7.计算:(-6)2×(31-21) . 8.厚度是0.1毫米的纸,将它对折1次后,厚度为0.2毫米.(1)对折3次后,厚度为多少毫米?(2)对折7次后,厚度为多少毫米?(3)用计算器计算对折30次后纸的厚度.参考答案:1.C2.A3.C4.B5.B6.(1)-9;(2)-9;(3)-125;(4)0.001;(5)-1;(6)1;(7)1;(8)-1;(9)-1(当n 为奇数时),1(当n 为偶数时)7.解:(-6)2×(31-21)=36×21-36×31=18-12=6 8.(1)0.8毫米;(2)12.8毫米;(3)0.1×230=0.1×1073741824=107374182.4(毫米)107374182.4毫米=107374.1824米.教师补充:107374.1824米>8848.86米(珠穆朗玛峰高度)(四)课堂小结今天我们学了哪些内容:1.有理数乘方的意义2.有理数乘方运算的符号法则:负数的奇次幂是负数,负数的偶次幂是正数.正数的任何次幂都是正数,0的任何正整数次幂都是0.3.与乘方有关的探求规律问题.(五)课前预习预习下节课(1.5.1)43页到44页的相关内容。
1.5.1有理数的乘方(1)(导学案)

((1) ;
(2) ;
五
当堂测试
1、填空:
(1) 的底数是,指数是,结果是 ;
(2) 的底数是,指数是,结果是;
(3) 的底数是,指数是,结果是。
2、填空:
(1) ; ;
; ;
(2) ; ;
; 。
(3) ; ;
; .
3、计算:
(1) (2)
课后反思
学案
备注栏
一
自主学习
教师导学
1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!
请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
负数的奇次幂是数,负数的偶次幂是数,
正数的任何次幂都是数,0的任何正整次幂都是;
3、思考:(—2)4和—24意义一样吗?为什么?
4、自学例2(教师指导)
课堂练习完成P42页1,2.
【要点归纳】:
三
学生展示
教师激励
1、我们已经学习了五种运算,请把下表补充完整:
运算
加
减
乘
除
乘方
运算结果
和
2、用乘方的意义计算下列各式:
3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;
2、新知应用
1、将下列各式写成乘方(即幂)的形式:
(1)(-2)×(-2)×(-2)×(-2)=.
(2)、(— )×(— )×(— )×(— )=;
(3) • •• ••……• (2010个)=
2、例题,P41例1师生共同完成
1.5.1有理数的乘方(第一课时)(教学设计)七年级数学上册(人教版)

有理数的乘方(第一课时) 教学设计一、内容和内容解析1.内容本节课是人教版《义务教育教科书•数学》七年级上册(以下统称“教材”)第一章“有理数”1.5.1 有理数的乘方(第一课时),内容包括:有理数的乘方、幂、底数、指数的概念及意义、有理数的乘方运算.2.内容解析《有理数的乘方》是义务教育课程标准实验教科书新人教版《数学》七年级上册第一章的内容,有理数的乘方是有理数的一种基本运算,是在学生学习了有理数的加、减、乘、除运算的基础上来学习的,它既是有理数乘法的推广和延续,又是后续学习有理数的混合运算、科学记数法和八年级数学开方、整数指数幂的基础,起到承前启后、铺路架桥的作用.基于以上分析,确定本节课的教学重点为:理解并掌握有理数的乘方、幂、底数、指数的概念及意义.二、目标和目标解析1.目标(1)理解并掌握有理数的乘方、幂、底数、指数的概念及意义.(转化思想)(2)能够正确进行有理数的乘方运算.(运算能力)2.目标解析通过自主学习理解有理数乘方的乘方、底数、指数、幂的概念.通过探究掌握乘方运算的符号法则并能正确进行乘方运算.通过现实情境及题组练习让学生经历探索乘方意义及乘方符号法则的过程,发展学生的合情推理能力和演绎推理能力,体会由特殊到一般的数学思想及转化的数学思想.让学生体会在具体的情景中从数学角度去发现和解决问题,在与他人合作交流的过程中,较好地理解他人的思考方法和结论.在乘方运算中增强学生的数感,感悟乘方符号的简捷美;让学生在经历发现问题、探索规律的过程中体会到数学学习的乐趣,从而培养学生学习数学的主动性和勇于探索的精神,增强学生学好数学的自信心.三、教学问题诊断分析七年级学生思维比较活跃,喜欢发表自己的见解而且具备小组合作学习的经验,从知识体系上来说,学生已经学习了有理数的加、减、乘、除运算,对有理数运算法则及特点已经有了初步认识,具备了学习本节课的必要条件.但是学生对有理数乘方中相关概念的理解及其符号规律的推导、应用方面可能会有模糊现象.所以在本节课的教学中应予以简单明白,深入浅出的分析.基于以上学情分析,确定本节课的教学难点为:掌握有理数乘方运算的符号法则.四、教学过程设计(一)情境引入某种细胞每过30分钟便由1个分裂成2个. 经过5时,这种细胞由1个能分裂成多少个?(二)自学导航边长为2cm 的正方形的面积是2×2=4(cm 2);棱长为2cm 的正方体的体积2×2×2=8(cm 3).2×2记作22,读作“2的平方”(或“2的二次方”);2×2×2记作23,读作“2的立方”(或“2的三次方”).2×2×2×2×2×2×2×2×2×2记作_____,读作___________.(-2)×(-2)×(-2)×(-2)记作_____,读作___________.(-52)×( -52)×(-52)×(-52)×(-52)记作______,读作___________. 【归纳】一般地,n 个相同的因数a 相乘,记作a n ,读作“a 的n 次幂(或a 的n 次方)”,即乘方的定义:这种求n 个相同因数的积的运算叫做乘方,乘方的结果叫做幂.组成要素:一个数可以看作这个数本身的一次方,例如8就是81,指数1通常省略不写.【迁移应用】1.(-5)3的底数是 ,指数是 ,(-7)6表示6个 相乘,读作 ,也读作-7的 .2.(−32)5表示 个 相乘,读作 的 次方,也读作 的 次幂,其中-32叫做 ,6叫做 .(三)合作探究探究1:(-2)4与-24一样吗?为什么?(-2)4表示4个-2相乘,即:(-2)×(-2)×(-2)×(-2)-24表示4个2相乘的相反数,即:-2×2×2×2(-2)4与-24互为相反数.【归纳】负数的乘方,在书写时一定要把整个负数(连同负号)用小括号括起来. 探究2:432⎪⎭⎫ ⎝⎛与324一样吗?为什么? 32×32×32×32记作432⎪⎭⎫ ⎝⎛;32222⨯⨯⨯记作324. 432⎪⎭⎫ ⎝⎛与324是不相同的. 【归纳】分数的乘方,在书写时一定要把整个分数(连同负号)用小括号括起来.(四)考点解析例1.下列对于-34的叙述正确的是( )A.读作“-3的4次幂”B.底数是-3,指数是4C.表示4个3相乘的积的相反数D.表示4个-3相乘的积【迁移应用】1.填空:2.-35的4次幂记为( )A.-345B.-(35)4C.-(−35)4D. (−35)4例2.计算:(1)34=__________=_____; (2)(-3)4=____________________=_____;(3)53=________=_____; (4)(-5)3=_______________=_____;(5)(34)3=_________=_____; (6)(−34)3=_________________=_____;(7)-34=___________=_____; (8)(-1)2034=__________________=_____.【迁移应用】1.下列各数:-(-2),(-2)2,-22,(-2)3,其中负数的个数为( )A.1B.2C.3D.42.下列各组数中,其值相等的是( )A.23和32B.-32和(-3)2C.-23和(-2)3D. (−23)3和-233 3.计算:(1)63; (2)-53; (3)(-4)4; (4)06; (5)(-2)7; (6)(-0.3)3; (7)(-12)5. 解:(1)原式=6×6×6=216;(2)原式=-5×5×5=-125;(3)原式=(-4)×(-4)×(-4)×(-4)=256;(4)原式=0;(5)原式=(-2)×(-2)×(-2)×(-2)×(-2)×(-2)×(-2)= -128;(6)原式=(-0.3)×(-0.3)×(-0.3)=-0.027;(7)原式= (-12)×(-12)×(-12)×(-12)×(-12)=-132.(五)自学导航不计算下列各式,你能确定其结果的符号吗?从计算结果中,你能得到什么规律?⑴(-2)51; ⑴(-2)50; ⑴250; ⑴251;⑴(-1)2012; ⑴(-1)2013; ⑴02012; ⑴12013.【归纳】(1)正数的任何次幂是______;(2)负数的偶次幂是_____;负数的奇次幂是_____;(3)0的任何次幂等于____;(4)1的任何次幂等于____;(5)-1的偶次幂等于____;-1的奇次幂是_____.(六)考点解析例3.(1)比较各组中两个数的大小:⑴12_____21; ⑴23_____32; ⑴34____43; ⑴45____54.(2)将上题的结果进行归纳,比较n n+1与(n+1)n (n 为正整数)的大小.(3)根据归纳的结论,比较999998与998999的大小.解:(2)当n <3时,n n+1<(n+1)n ;当n≥3时,n n+1>(n+1)n .(3)999998<998999【迁移应用】1.比较大小:(1)(32)2_____(32)3; (2)(12)4_____(13)4.2.若a=-2×32,b=(-2×3)2,c=-(2×3)2,则( )A.a>b>cB.b>c>aC.b>a>cD.c>a>b3.将下列各数用“<”号连接起来:(1)23,(23)2,(23)3,(23)4; (2)15,25,35,45.解:(1)23=5481, (23)2=49=3681,(23)3=827=2481,(23)4=1681;所以 (23)4<(23)3<(23)2<23.(2)15=1,25=32,35=243,45=1024;所以15<25<35<45.例4.计算:(1)2233(-)(-)⨯ (2)-23×(-32) (3)64÷(-2)5(4)(-4)3÷(-1)200+2×(-3)4 22236;33解:(1)(-)(-)=9(-)⨯⨯=-(2)-23×(-32)=-8×(-9)=72;(3)64÷(-2)5=64÷(-32)=-2;(4)(-4)3÷(-1)200+2×(-3)4=-64÷1+2×81=98思考:通过以上计算,对于乘除和乘方的混合运算,你觉得有怎样的运算顺序?【运算顺序】先算乘方,后算乘除;如果遇到括号就先进行括号里的运算.【迁移应用】计算:(1)−23÷49×(−23)2; (2)−32÷23×(1−13)2; (3)(−1)9×(−2)2017×(−12)2016.(1)解原式 =−8÷49×49 =−8×94×49=-8; (2)解原式=−9×32×49=−6;(3)解原式=(−1)×(−2)×[(−2)2016×(−12)2016]=2×[(−2)×(−12)]2016=2×12016=2×1=2. 例 5.你喜欢吃拉面吗?拉面馆的师傅.用一根很粗的面条,把两头捏合在一起拉伸,再捏合、拉伸,反复多次,就能拉成许多细面条.如图所示:(1)经过第3次捏合后,可以拉出______根细面条;(2)若拉出128根细面条,则捏合的次数是多少?解:(1)根据题意得4×2=8故第三次后可以拉出8根细面条;(2)由于27=128,因此若拉出128根细面条,则捏合的次数是7.【迁移应用】当你把纸对折一次时,就得到2层,当对折两次时,就得到4层,照这样折下去.(1)当对折3次时,层数是多少;(2)如果纸的厚度是0.1mm ,求对折8次时,总厚度是多少mm ?(1)解:因为23=8,所以对折3次时,层数是8;(2)解:28×0.1=256×0.1=25.6(mm ),所以总厚度是25.6mm .例6.已知(a -7)2+|b+6|=0,求(-a -b)100的值.解:因为(a -7)2不小于0,|b+6|不小于0,(a -7)2+|b+6|=0,所以(a -7)2=0,|b+6|=0.所以a=7,b=-6.当a=7,b=-6时,原式=[-7-(-6)]100=(-1)100=1.【迁移应用】1.若|x+2|+(y -3)2=0,则x -y 的值为( )A.-5B.5C.1D.-12.若|a -1|+(a -b -2)2=0,则下列式子正确的是( )A.a=1,b=1B.a+b=1C.a+b=0D.a -b=03.|a -4|与(b+5)2互为相反数,则b a 的值为_______.例7.(1)根据已知条件填空:⑴已知(-1.2)2=1.44,计算:(-120)2=_______,(-0.012)2=________.⑴已知(-3)3=-27,计算:(-30)3=________,(-0.3)3=________.(2)观察上述计算结果我们可以看出:⑴当底数的小数点向左(或右)每移动位,它的二次幂的小数点向左(或右)移动_____位; ⑴当底数的小数点向左(或右)每移动一位,它的三次幂的小数点向左(或右)移动_____位.【迁移应用】1.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729,猜想:32025的个位上的数是_____.2.给出下列两组算式:(4×5)2与42×52; [(-13)×9]3与(-13)3×93. (1)每组的结果相等吗?(2)想一想:当n 是正整数时,(a·b)n =______.(3)用你发现的规律计算:(-0.125)20×820.解:(1)相等.(3)(-0.125)20×820=(-0.125×8)20=(-1)20=1.(七)小结梳理五、教学反思。
有理数的乘方(第1课时)教学设计及导学案

1.5.1有理数的乘方(1)【教学内容】有理数乘方的意义,有理数的乘方运算.【教学目标】1. 理解并掌握有理数的乘方、幂、底数、指数的概念及意义;2. 能够正确进行有理数的乘方运算,经历探索乘方的有关规律的过程;3. 通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.【重点难点】重点:1.幂、底数、指数的概念及其表示;2.乘方的运算.难点:有理数的乘方法则.【教学设计】1.知识回顾,导入新课.(1)背景引入,提高兴趣.你想知道拉面师傅第10次拦扣后有多少根面条吗?(2) 知识回顾.<1> 边长为的正方形的面积为 ________;<2> 棱长为的正方体的体积为 ________;<3> ________;<4> ________;<5> ________. (学生一时难以算出,为新课的学习的做铺垫.)(3)学生观察,给出概念.<1>以上五个式子,每个式子中的因数都相同,符合以下特点:________.我们已经知道 ;那么, 的积该如何表示?<2>一般的,个相同的因数相乘,即,记作,读作“的次方”,如:读作“的平方”(或“的二次方”),读作“的立方”(或“的三次方”),读作“的四次方” ,读作的四次方。
<3>求个相同因数的积的运算,叫做乘方,乘方的结果叫做幂。
在中,叫做底数,叫做指数,当看做的次方的结果时,也读作“的次幂”。
因数为正数结果为正数负因数的个数为偶数结果为正数负因数的个数为奇数结果为负数2.说出下列乘方的底数、指数并计算:(1) ; (2) ; (3) ; (4) .3.填表.底数指数幂关注:当底数是负数和分数时,要用括号表示幂。
4.判断对错.(1) ;( ) (2) ;( ) (3) ;( )(4) ; ( ) (5); ( )提出问题:由上题的和,你有什么发现?小结:负数的乘方在书写时一定要把整个负数(连同括号)用小括号括起来,这也是辨认底数的方法;分数的乘方在书写时一定要把整个分数用小括号括起来。
1.5(集体备课)有理数的乘方教案

给学生讲“从三到万”的故事,让学生体会大数的意义与表示,引入科学记数法,从学生们熟悉的移小数点切入教学。通过小数点的一“找”二“移”三“数”把一个大数表示成科学记数法的形式,再反向的相应移动小数点把科学记数法表示的数表示为一般形式。学生通过训练掌握了两者转化的方法,教师再提出思考“一般形式的数的整数位数与科学记数法中10的指数有什么关系”。
难点:用科学记数法表示近似数,描述科学记数法表示近似数的精确度。
1.5.3(课时2)
重点:熟练掌握精确到小数点前某一位的近似数的求法与表示,会由近似数求准确数的范围;了解有效数字的概念;
难点:理解精确度包含的近似数与准确数之间的数量关系。
三、教学方法
根据内容特点与教师学生的素质情况,这几个课时均以教授法,讲演法,讲练法为主,适当配以学生小组讨论与独立思考的形式进行教学。
基础训练 1.5.3近似数
1.5.3(课时2)
基础训练 拓展空间
名校课堂 第四课时 近似数
请老师们多批评指导,谢谢!
知识与技能:体会准确数与近似数的意义,掌握近似数的求法与表示;
过程与方法:回忆、类比、分析、训练
情感与价值观:体会用近似数描述生活中的量,能理解近似数与准确数之间的关系,感受描述客观世界的态度。
1.5.3(课时2)
知识与技能:熟练掌握精确到小数点前某一位的近似数的求法与表示,能由近似数确定准确数的范围,了解有效数字的概念;
(1)1,9,25,49,,;
(2) , , ,,;
(3)1,﹣2,4,﹣8,,.
1.5.3(课时1)
按要求求下列各数的近似数
(1)489960(精确到千位);
(2)783000(精确到万位);
(3)6498(精确到千位).
1.5.1有理数的乘方(1)导学案

课题:1.5.1有理数的乘方(1)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点】:有理数乘方的运算。
【导学指导】一、知识链接1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子an中 ,a叫做,n叫做2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;2、新知应用1、将下列各式写成乘方(即幂)的形式:(1)(-2)×(-2)×(-2)×(-2)=.(2)、(—14)×(—14)×(—14)×(—14)=;(3)x •x •x •……•x (2010个)=2、例题,P41例1师生共同完成从例题1 可以得出:负数的奇次幂是 数,负数的偶次幂是 数,正数的任何次幂都是 数,0的任何正整次幂都是 ;3、思考:(—2)4和—24意义一样吗?为什么?4、自学例2 (教师指导)【课堂练习】完成P42页1,2.【要点归纳】:【拓展训练】 、我们已经学习了五种运算,请把下表补充完整:和2、用乘方的意义计算下列各式:(1)42-;(2)323⎛⎫- ⎪⎝⎭; (3)223-;3.计算(1) 2221(2)2(10)4----⨯-; (2) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭;。
人教版七年级上册第一章《1.5有理数的乘方》(第1课时)教案

1.5.1《有理数的乘方》教案第1课时乘方教学内容课本第41页至第42页.教学目标1.知识与技能(1)正确理解乘方、幂、指数、底数等概念.(2)会进行有理数乘方的运算.2.过程与方法通过对乘方意义的理解,培养学生观察、比较、分析、归纳、概括的能力,渗透转化思想.3.情感态度与价值观培养探索精神,体验小组交流、合作学习的重要性.重、难点与关键1.重点:正确理解乘方的意义,掌握乘方运算法则.2.难点:正确理解乘方、底数、指数的概念,并合理运算.3.关键:弄清底数、指数、幂等概念,注意区别-a n与(-a)n的意义.教学过程一、复习提问1.几个不等于零的有理数相乘,积的符号是怎样确定的?答:几个不等于零的有理数相乘,积的符号由负因数的个数确定,当负因数的个数为奇数时,积为负;当负因数的个数为偶数时,积为正.2.正方形的边长为2,则面积是多少?棱长为2的正方体,则体积为多少?答:边长为2时,正方形的面积为2×2=22=4,棱长为2的正方体的体积为2×2×2=23=8.二、新授边长为a 的正方形的面积是a·a,棱长为a 的正方体的体积是a·a·a. a·a 简记作a 2,读作a 的平方(或二次方). a·a·a 简记作a 3,读作a 的立方(或三次方).让我们再看一个例子,某种细胞每过30分钟便由1个分裂成2个,经过5个时,这种细胞由1个分裂成多少个?1个细胞30分钟分裂成2个,1小时后分裂成2×2,1.5小时后分裂成2×2×2, …,5小时后要分裂10次,分裂成1022222⨯⨯⨯⨯个=1024(个)为了简便,可将1022222⨯⨯⨯⨯个记作210.一般地,几个相同的因数a 相乘,记作a n .即n aa a aa 个=a n这种求n 个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在a n中,a 叫底数,n 叫做指数,当a n看作a 的n 次方的结果时,也可以读作a 的n 次幂.例如,在94中,底数是9,指数是4,94读作9的4次方,或9的4次幂,它表示4个9相乘,•即9×9×9×;又如(-2)4的底数是-2,指数是4,读作-2的4次方(或-2的4次幂),它表示(-2)×(-2)×(-2)×(-2).思考:32与23有什么不同?(-2)3与-23的意义是否相同?其中结果是否一样?(-2)4与-24呢?(35)2与235呢?答:32的底数是3,指数是2,读作3的2次幂,表示3×3,结果是9;23的底数是2,•指数是3,读作2的3次幂,表示2×2×2,结果是8.(-2)3的底数是-2,指数是3,读作-2的3次幂,表示(-2)×(-2)×(-2),结果是-8;-23的底数是2,指数是3,读作2的3次幂的相反数,表示为-(2×2×2),结果是-8.(-2)3与-23的意义不相同,其结果一样.(-2)4的底数是-2,指数是4,读作-2的四次幂,表示(-2)×(-2)×(-2)×(-2),•结果是16;-24的底数是2,指数是4,读作2的4次幂的相反数,表示为-(2×2×2×2),其结果为-16.(-2)4与-24的意义不同,其结果也不同.(35)2的底数是35,指数是2,读作35的二次幂,表示35×35,结果是925;235表示32与5的商,即335,结果是95.因此,当底数是负数或分数时,一定要用括号把底数括起来.一个数可以看作这个数本身的一次方,例如5就是51,指数1通常省略不写.因为a n就是n个a相乘,所以可以利用有理数的乘方运算来进行有理数的乘方运算.例1:计算:(1)(-4)3;(2)(-2)4;(3)(-12)5;(4)33;(5)24;(6)(-13)2.解:(1)(-4)3=(-4)×(-4)×(-4)=-64 (2)(-2)4=(-2)×(-2)×(-2)×(-2)=16(3)(-12)5=(-12)×(-12)×(-12)×(-12)×(-12)=-132(4)33=3×3×3=27(5)24=2×2×2×2=16(6)(-13)2=(-13)×(-13)=19例2:用计算器计算(-8)5和(-3)6.开启计算器后按照下列步骤进行:显示:(-8)^ 5-32768 即(-8)5=-32768显示:(-3)^ 6729 即(-3)6=729显示:-32768显示:729所以(-8)5=-32768 (-3)6=729从例1和例2,你能发现正数的幂、负数的幂的正负有什么规律?底数为正数时,不论指数是偶数还是奇数,其结果都是正数.若底数为负数,当指数是偶数时,其结果是正数,当指数是奇数时其结果为负数.实际上这可以根据有理数的乘法法则,积的符号由负因数的个数来确定,负因数是奇数个时,积为负数,负因数个数为偶数时,积为正.因此,可以得出:负数的奇次幂是负数,负数的偶次幂是正数;正数的任何非零次幂都是正数;0的任何非零次幂都是0.三、巩固练习1.课本第52页练习1、2.2.补充练习.(1)下面各式计算正确的是().A.-22=-4 B.-(-2)2=4 C.(-3)2=6 D.(-3)3=1 (2)下列各式是否正确,若有错误,请改正过来.①∵43=4×3=13,34=3×4=12,∴43=34②∵(-3)2=-3×3=-9,-32=-3×3=-9,∴(-3)2=-92(3)如果(-2)m>0,则(-1)m=_______;如果(-13)n<0,则(-1)n=_____.四、课堂小结正确理解乘方的意义,a n表示n个a相乘的积.注意(-a)n与-a n•两者的区别及相互关系:(-a)n的底数是-a,表示n个-a相乘的积;-a n底数是a,表示n个a相乘的积的相反数.当n为偶数时,(-a)n与-a n互为相反数,当n为奇数时,(-a)n 与-a n相等.五、作业布置1.课本第47页习题1.5第1题,第48页第11、12题.2.选用课时作业设计.第一课时作业一、填空题.1.(-5)×(-5)×(-5)×(-5)×(-5)写成乘方的式子是_______.2.(-38)4中,底数是______,指数是_______.3.一个数的5次幂是负数,则这个数的7次幂是_____数,4次幂是_____数.4.(-0.1)2=_______,-23=______,(-12)4=_______,(-3)4=______,(23)2•=•________,2222______,33=________.5.平方等于16•的数是______,•平方等于0•的数是______,•立方等于27•的数是______,_______的立方等于0,立方得-27的数是_______.二、选择题.6.(-7)2等于().A.49 B.-49 C.-14 D.147.-43的意义是().A.3个-4相乘 B.3个-4相加C.-4乘以3 D.43的相反数8.下列各数互为相反数的是().A.32与-23 B.32与(-3)2 C.32与-32 D.-32与(-3)29.下列说法正确的是().A.一个数的平方一定大于这个数; B.一个数的平方一定是正数C.一个数的平方一定小于这个数的绝对值;D.一个数的平方不可能为负数10.下列算式中,结果正确的是().A.(-3)2=6 B.(-12)2=1; C.0.12=0.02 D.(-32)3=-278三、用计算器计算.11.(1)2.36;(2)125;(3)0.134;(4)(-5.6)3.四、计算题.12.(1)(-1)258;(2)(-1)101;(3)-12004;(4)(-0.2)2;(5)(-0.1)3;(6)-(-14)2;(7)-(-15)3;(8)(-213)2.五、解答题.13.1米长的小棒,第1次截去一半,第2次截去剩下的一半,如此截下去,第7•次后剩下的小棒有多长?六、设n为正整数,计算.14.(1)(-1)2n;(2)(-1)2n+1.。
人教版七年级上数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)(附模拟试卷含答案)

数学:1.5.1《有理数的乘方(1)》学案(人教版七年级上)【学习目标】:1、理解有理数乘方的意义;2、掌握有理数乘方运算;3、经历探索有理数乘方的运算,获得解决问题经验;【重点难点】:有理数乘方的运算。
【导学指导】一、知识链接1、看下面的故事:从前,有个“聪明的乞丐”他要到了一块面包。
他想,天天要饭太辛苦,如果我第一天吃这块面包的一半,第二天再吃剩余面包的一半,……依次每天都吃前一天剩余面包的一半,这样下去,我就永远不要去要饭了!请你们交流讨论,再算一算,如果把整块面包看成整体“1”,那第十天他将吃到面包。
2、拉面馆的师傅用一根很粗的面条,把两头捏合在一起拉伸,再捏合,再拉伸,反复多次,就能把这根很粗的面条,拉成许多很细的面条.想想看,捏合次后,就可以拉出32根面条.二、合作探究1、分小组合作学习P41页内容,然后再完成好下面的问题1)叫乘方,叫做幂,在式子an中 ,a叫做,n叫做2)式子an表示的意义是3)从运算上看式子an,可以读作,从结果上看式子an,可以读作;2、新知应用1、将下列各式写成乘方(即幂)的形式:(1)(-2)×(-2)×(-2)×(-2)=.(2)、(—14)×(—14)×(—14)×(—14)=;(3)x•x•x•……•x(2010个)=2、例题,P41例1师生共同完成从例题1 可以得出:负数的奇次幂是数,负数的偶次幂是数,正数的任何次幂都是数,0的任何正整次幂都是;3、思考:(—2)4和—24意义一样吗?为什么? 4、自学例2 (教师指导)【课堂练习】完成P42页1,2.【要点归纳】:【拓展训练】1、我们已经学习了五种运算,请把下表补充完整:2、用乘方的意义计算下列各式: (1)42-;(2)323⎛⎫- ⎪⎝⎭; (3)223-;3.计算(1) 2221(2)2(10)4----⨯-; (2) 3212(0.5)(2)(8)2⎛⎫-⨯-⨯-⨯- ⎪⎝⎭;【总结反思】:2019-2020学年七年级数学上学期期末模拟试卷一、选择题1.如图,点A 、B 在线段EF 上,点M 、N 分别是线段EA 、BF 的中点,EA :AB :BF =1:2:3,若MN =8cm ,则线段EF 的长是( )A.10 cmB.11 cmC.12 cmD.13 cm2.下列关于角的说法正确的是( ) A.两条射线组成的图形叫做角 B.角的大小与这个角的两边的长短无关 C.延长一个角的两边D.角的两边是射线,所以角不可度量3.如图,已知70AOC BOD ∠=∠=︒,30BOC ∠=︒,则AOD ∠的度数为( )A .100︒B .110︒C .130︒D .140︒4.一件工程甲独做50天可完,乙独做75天可完,现在两个人合作,但是中途乙因事离开几天,从开工后40天把这件工程做完,则乙中途离开了( )天. A.10B.20C.30D.255.今年某月的月历上圈出了相邻的三个数a 、b 、c ,并求出了它们的和为39,这三个数在月历中的排布不可能是( )A. B. C. D.6.下列说法正确的是( )A.3xy5-的系数是3- B.22m n 的次数是2次 C.x 2y 3-是多项式D.2x x 1--的常数项是17.﹣3x 2y+12x 2y 的结果为( )A .﹣52 x 4y 2B .52x 4y 2C .﹣52x 2y D .52x 2y 8.下列计算中,正确的是( ) A .x+x 2=x 3B .2x 2﹣x 2=1C .x 2y ﹣xy 2=0D .x 2﹣2x 2=﹣x 29.下列根据等式的性质变形正确的是( ) A.若3x+2=2x ﹣2,则x =0B.若12x =2,则x =1 C.若x =3,则x 2=3x D.若213x +﹣1=x ,则2x+1﹣1=3x 10.若与互为相反数,则的值为( )A .-bB .C .-8D .811.已知a 是有理数,则下列结论正确的是( )A .a≥0B .|a|>0C .﹣a <0D .|a|≥0 12.若2(1)210x y -++=,则x+y 的值为( ).A.12B.12-C.32D.32-二、填空题13.如图,∠AOB=72︒,射线OC 将∠AOB 分成两个角,且∠AOC:∠BOC=1:2,则∠BOC=_____.14.下列说法:①若a 与b 互为相反数,则a+b=0;②若ab=1,则a 与b 互为倒数;③两点之间,直线最短;④若∠α+∠β=90°,且β与γ互余,则∠α与∠γ互余;⑤若∠α为锐角,且∠α与∠β互补,∠α与∠γ互余,则∠β-∠γ=90°.其中正确的有________.(填序号) 15.若方程x+5=7﹣2(x ﹣2)的解也是方程6x+3k =14的解,则常数k =_____. 16.如果23x +与5互为相反数,那么x 等于___________. 17.化简:2(-a b )-(23a b +)= ____________.18.已知一列数-1,2,-1,2,2,-1,2,2,2,-1,…其中相邻的两个-1被2隔开,第n 对-1之问有n 个2,则第21个数是______,这一列数的前2019个数的和为______. 19.若m、n满足()2320m n -+-=,则()2007m n -的值等于_________.20.有这样一个数字游戏,将1,2,3,4,5,6,7,8,9这九个数字分别填在如图所示的九个空格中,要求每一行从左到右的数字逐渐增大,每一列从上到下的数字也逐渐增大.当数字3和4固定在图中所示的位置时,x 代表的数字是_______,此时按游戏规则填写空格,所有可能出现的结果共有_______种.三、解答题21.(1)如图,点C、D在线段AB上,点C为线段AB的中点,若AC=5cm,BD=2cm,求线段CD的长.(2)如图,已知∠COB=2∠AOC,OD平分∠AOB,且∠COD=20°,求∠AOB的度数.22.列代数式或方程:(1)a与b的平方和;(2)m的2倍与n的差的相反数;(3)某校女生占全体学生数的52%,比男生多80人,这个学校有多少学生?(设男生人数为x人)23.甲乙两车间共120人,其中甲车间人数比乙车间人数的4倍少5人.(1)求甲、乙两车间各有多少人?(2)若从甲、乙两车间分别抽调工人,组成丙车间研制新产品,并使甲、乙、丙三个车间的人数比为13∶4∶7,那么甲、乙两车间要分别抽调多少工人?24.(1)观察思考:如图,线段AB上有两个点C、D,请分别写出以点A、B、C、D为端点的线段,并计算图中共有多少条线段;(2)模型构建:如果线段上有m个点(包括线段的两个端点),则该线段上共有多少条线段?请说明你结论的正确性;(3)拓展应用:某班45名同学在毕业后的一次聚会中,若每两人握1次手问好,那么共握多少次手?请将这个问题转化为上述模型,并直接应用上述模型的结论解决问题.25.已知多项式A、B,其中,某同学在计算A+B时,由于粗心把A+B看成了A-B求得结果为,请你算出A+B的正确结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.5.1 有理数的乘方(第一课时)
【学习目标】
1. 理解乘、幂、底数、指数的概念,了解乘方概念的产生过程;
2. 掌握乘方与幂的表示法,理解幂的符号法则;
3. 学会相同因数的乘方与乘法的相互转化,掌握有理数的乘方运算。
【自主学习】
1. 乘方、幂、底数、指数的定义是什么?
注意:(1)乘方是一种运算方法
(2)掌握乘方的表示方法中各个字母的意义。
2.利用有理数的乘法运算进行有理数的乘方运算。
【合作探究】
1.和的意义是否相同?其结果是否相同?
和的意义是否相同?其结果是否相同?
(3)(和的意义是否相同?其结果是否相同?
注意:_____________________。
2.计算并寻找规律
(1)2)3(- (2)3)5.1(- (3)4
34 (4) (5)23 (6)35.1 (7)4)3
4(- (9)
归纳:负数的奇次幂是__,负数的偶次幂是__。
正数的奇次幂是__,正数的偶次幂是__。
零的任何正整数次幂都是__。
【学以致用】
1.把下列各式写乘方的形式。
(1)6×6×6= (2)2.1×2.1=
(3)(-3)(-3)(-3)(-3)=
(4)=⨯⨯⨯⨯2121212121_______________
2. 中,底数、指数各是什么?
(2) 中,3叫做什么数?5叫做什么数?
3.填空:(直接写出结果)
34= 2
31⎪⎭⎫ ⎝⎛-= ()51-= ()101-= ()32.0-= 254⎪⎭⎫ ⎝⎛-= 2
54-= 【归纳提升】
本节课你学到了哪些知识、方法和计算技巧?请好好总结.。