[2018年最新整理]微积分发展历程(二)

合集下载

微积分的历史与现代发展

微积分的历史与现代发展

微积分的历史与现代发展微积分,作为数学的一个重要分支,起源于古代的几何学和无穷小分析,经过漫长的历史发展,逐渐完善并在现代科学中扮演着不可或缺的角色。

本文将从微积分的起源开始,探究其历史演变和现代发展。

一、古代的几何学与无穷小分析微积分最早的雏形可以追溯到古代希腊的几何学。

几千年前,人们就开始通过几何方法来研究曲线的长度、面积和体积等问题。

在这个过程中,人们发现了一些计算面积和弧长的方法,这些方法成为后来微积分理论的基础。

另一方面,无穷小分析的思想也在不同的文化和时期得到了独立的发展。

在古印度、中国和中世纪欧洲,人们通过无穷小量的概念,探索了数列、级数和曲线的性质。

而这些合并到一起的思想,为微积分的产生奠定了基础。

二、牛顿与莱布尼茨的微积分革命17世纪,英国科学家牛顿和德国数学家莱布尼茨几乎同时独立发明了微积分的基本原理。

他们分别创造了微分和积分的概念,并建立了微积分的核心理论。

牛顿的《自然哲学的数学原理》和莱布尼茨的符号法成为微积分学科的奠基之作。

牛顿和莱布尼茨的微积分革命,为科学的飞速发展提供了工具和理论基础。

微积分的应用广泛涉及物理学、工程学、经济学等领域,为解决实际问题提供了强大的工具。

三、微积分的拓展与独立发展近代,微积分得到了更进一步的发展。

19世纪初,法国数学家拉格朗日和法国数学家傅里叶对微积分做出了巨大贡献。

拉格朗日提出了微积分的最优化原理,傅里叶则将微积分应用于热传导的研究中,从而开辟了新的领域。

20世纪,微积分随着计算机技术的发展进一步拓展。

数值计算方法的出现,使得微积分的应用更加便捷和高效。

微积分的概念也得到了进一步的推广和深化,例如广义函数、多元微积分等。

现代,微积分已经和许多其他学科紧密结合,形成了数理科学的基础。

在物理学、工程学、计算机科学等领域,微积分被广泛运用于模型的建立、数据分析和问题求解等过程中。

总结起来,微积分的历史源远流长,经过几千年的演变和发展,从几何学和无穷小分析到牛顿和莱布尼茨的创新,再到近代的拓展与独立发展,微积分已经成为现代科学中不可或缺的工具和理论基础。

微积分发展历程(二).

微积分发展历程(二).

微积分发展历程(二)微积分学的诞生随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。

不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。

这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。

这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。

1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()23....22..112123vv v x z v x x x x z z z∴+=++++其中v 为独立变量z 的增量,.x 和.z 为流数。

泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”:()()()()22!h f x h f x hf x f x '''+=+++。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

微积分的发展历史

微积分的发展历史

微积分的发展历史1. 古希腊时期:微积分的起源可以追溯到古希腊时期,早在公元前5世纪,数学家祖克里斯特斯(Zeno of Elea)就提出了诸如阿基里斯赛跑等著名的悖论,引发了对无穷小和无穷大的思考。

2. 阿基米德和群测强微积分:在古希腊和古罗马时期,一些数学家如阿基米德和群测强(Archimedes)开始探索几何学和代数学的基本概念,在解决实际问题的过程中也涉及到了微积分的雏形。

3.牛顿和莱布尼兹的发现:17世纪,英国科学家牛顿和德国数学家莱布尼兹几乎同时独立发现了微积分的基本原理。

牛顿将微积分用于机械学和物理学的研究,而莱布尼兹则用它来解决代数和几何方程。

这两位伟大的数学家将微积分作为一门独立的学科加以发展并系统化。

4. 微积分的形式化建立:18世纪,欧拉(Leonhard Euler)将微积分的概念进一步抽象化和形式化,构建了函数和级数的理论,为微积分的应用奠定了坚实的基础。

5. 国际象棋问题的解决:19世纪初,法国数学家拉格朗日(Joseph-Louis Lagrange)研究国际象棋中的一个问题,首次利用微积分的方法进行了解决。

这个问题不仅使微积分在数学界引起了重视,也增强了人们对微积分的研究兴趣。

6. 分析学的发展:19世纪,数学分析学迎来了一个又一个的里程碑。

来自法国的布尔巴基(Augustin-Louis Cauchy)和庞加莱(Henri Poincaré)等人对极限、连续性和导数等概念进行了严格的定义和证明,进一步完善了微积分的理论。

7.微积分的应用:20世纪初期,微积分得到了广泛应用,特别是在物理学、工程学和经济学等领域。

爱因斯坦的相对论理论、量子力学的发展以及现代金融学等都离不开微积分的支持。

8.持续发展和改进:自20世纪起,微积分一直在不断发展和改进。

函数论、复分析及它们与微积分的关系等新理论的出现,使微积分的应用更加广泛,对更加复杂的问题提供了更加深入的分析。

微积分发展简史(二)

微积分发展简史(二)
17世纪后期和18世纪,为了适应航海、天文学和地理学的发展,摆在数学家们面前的问题之一是函数表的插值。由于对函数表的精确度要求较高,数学家们开始寻求较好的插值方法,牛顿和格雷戈里给出了著名的内插公式。1721年,泰勒(B. Taylor,1685~1731)在牛顿-格雷戈里公式的基础上,提出了函数展开为无穷级数的一般方法,建立了著名的泰勒定理。18世纪末,拉格朗日在研究泰勒级数时,给出了我们今天所谓的泰勒定理,即
三.无穷级数
在数学史上级数出现的很早。古希腊时期,亚里士多德就知道公比小于1(大于零)的几何级数可以求出和数。阿基米德(Archimedes, BC.287~BC.212)也求出了公比为的几何级数的和。14世纪的法国数学家奥雷姆证明了调和级数的和为无穷,并把一些收敛级数和发散级数区别开来。但直到微积分发明的时代,人们才把级数作为独立的概念。
函数项级数的一致收敛性概念最初由斯托克斯和德国数学家赛德尔认识到。1842年,维尔斯特拉斯给出一致收敛概念的确切表述,并建立了逐项积分和微分的条件。狄里克莱在1837年证明了绝对收敛级数的性质,并和黎曼(B. Riemann,1826~1866)分别给出例子,说明条件收敛级数通过重新排序使其和不相同或等于任何已知数。到19世纪末,无穷级数收敛的许多法则都已经建立起来。
个人花费大量时二)
微积分的创立,由于运算的完整性和应用的广泛性,使其成为研究自然科学的有力工具,被誉为"人类精神的最高胜利"。自18世纪以来,微积分在被广泛应用的同时,也得到了不断发展和完善,内容越来越丰富。
重积分的概念,牛顿在他的《原理》中讨论球与球壳作用于质点上的万有引力时就已经涉及到,但他是用几何形式论述的。在18世纪上半叶,牛顿的工作被以分析的形式加以推广。1748年,欧拉用累次积分算出了表示一厚度为的椭圆薄片对其中心正上方一质点的引力的重积分:

微积分的发展史简述(两篇)

微积分的发展史简述(两篇)

引言:微积分是数学中的一个重要分支,对于解决各种实际问题具有重要意义。

本文将继续探讨微积分的发展史,重点关注于17世纪到19世纪初期这段时间内微积分的发展。

通过了解微积分的历史,我们可以更好地理解微积分的概念和应用。

概述:17世纪至19世纪初期是微积分发展的关键时期。

在这个时期,许多数学家和科学家对微积分的理论和应用进行了深度研究。

他们的贡献奠定了现代微积分的基础。

正文:一、近似计算方法的改进1.1泰勒级数的发现1.2泰勒级数在近似计算中的应用1.3拉格朗日中值定理的发展与应用1.4极限的概念的确立二、变分法的兴起2.1最速降线问题的解决2.2欧拉对变分法的贡献2.3欧拉拉格朗日方程的建立2.4变分法在物理学领域的应用三、微分方程的研究3.1微分方程的基本概念与分类3.2欧拉对微分方程理论的贡献3.3柯西与克拉末对微分方程的研究3.4微分方程在物理学和工程学中的应用四、复变函数与积分变换4.1复变函数的引入与发展4.2柯西黎曼方程的建立4.3积分变换的概念与应用4.4拉普拉斯变换的研究与应用五、极限分析的深化5.1极限分析理论的完善5.2庞加莱对极限理论的贡献5.3序列与级数的研究5.4极限分析在数学和物理学中的应用总结:微积分的发展经历了17世纪至19世纪初期的重要阶段。

通过改进近似计算方法、变分法的兴起、微分方程的研究、复变函数与积分变换以及极限分析的深化等方面的努力,微积分的理论和应用得到了极大的发展。

这些成果为现代数学、物理学和工程学的发展奠定了坚实的基础,并在解决实际问题中发挥着重要作用。

了解微积分发展史的过程,有助于我们更好地理解微积分的概念和应用,并能够更加深入地探索微积分在各领域中的应用前景。

微积分的发展史简述引言概述:微积分是数学中的一个重要分支,它是解析几何和数学分析的基础。

从古代到现代,微积分的发展历程经历了众多数学家和科学家的探索和贡献。

本文将以引言概述、五个大点和详细的小点阐述微积分的发展史,并在文末进行总结。

微积分的发展史

微积分的发展史

微积分的发展史微积分的发展史微积分是数学中的一个重要分支,发挥着重要的作用,它具有重要的实用价值,是现代数学中一门重要的学科。

微积分在古代有着很长的历史,从古至今,在发展的过程中,受到了许多著名的数学家的不懈努力,其演变虽然有一定的规律,但是发展也呈现出复杂的趋势,下面来看看微积分的发展历史。

一:古代的微积分古代微积分的发源可以追溯到公元前三世纪古希腊哲学家斐波那契和欧几里德的古典时代,他们最早提出了微积分的相关概念,比如斐波那契提出的“变化率”的思想,欧几里德提出的“误差积分”的思想,他们发明出来的数学模型也是微积分发展的基础。

二:新罗马时代的微积分新罗马时期的微积分研究已经开始流行,公元七世纪达·索马里(d’Alembert)等科学家在此期间正式提出“积分”的概念,但他们只是把微积分引入到数学体系中,并没有真正深入的研究。

三:十七世纪的微积分在十七世纪,英国数学家派克完成了微积分的重大突破,他把斐波那契和欧几里德的相关概念作为微积分的基础,将微积分作为一个独立的学科,开始全面系统地研究微积分,由此开创了微积分的新观念,彻底改变了古代的微积分的思维模式,他的成果也在欧洲开始流行。

四:十八世纪的微积分到了十八世纪,派克的微积分在欧洲开始广泛受到关注和应用,微积分的研究开始更加深入和系统化,出现了许多在微积分领域有重大贡献的著名数学家,比如拉格朗日,瓦西里和弗拉基米尔,他们的成就使微积分的研究得到进一步的发展。

五:十九世纪的微积分到了十九世纪,微积分的研究开始发生重大变化,出现了许多在微积分领域有重大贡献的著名数学家,比如高斯,尤金和庞加莱,他们的发现把微积分推向了新的高度。

同时也有一些新的应用,使微积分的研究发生了重大变化,这个时期也是微积分发展史上的一个重要时期。

六:二十世纪的微积分到了二十世纪,微积分的研究取得了重大的进展,出现了许多在微积分领域有重大贡献的著名数学家,比如黎曼,爱因斯坦和明斯基,他们的成就使微积分的研究取得了突破性的进展,使微积分得到了全面的发展,成为现代数学中重要的学科之一。

微积分发展历程

微积分发展历程

微积分发展历程微积分的发展历程是数学史上一个充满辉煌成就的章节。

微积分为我们提供了一种强大的工具,用于理解和描述自然界的各种现象,从运动的轨迹到电磁场的行为,从物质的变化到概率的推断,微积分无处不在。

在下面的文章中,我们将探讨微积分的发展历程,包括其起源、关键人物和里程碑事件。

1. 古希腊时期:微积分的历史可以追溯到古希腊时期。

古希腊数学家阿基米德(Archimedes)被认为是微积分的奠基人之一。

他在计算曲线下的面积和体积时使用了无限小的方法,这可以看作微积分的初步尝试。

2. 牛顿和莱布尼兹:微积分的真正发展始于17世纪末。

英国科学家艾萨克·牛顿和德国数学家戈特弗里德·莱布尼兹独立地开发了微积分的基本原理。

牛顿的工作集中在运动和力学方面,而莱布尼兹则更侧重于符号表示法。

他们的成就为微积分的未来发展奠定了坚实的基础。

3. 分析学的建立:18世纪,微积分逐渐成为一门独立的学科,被称为"分析学"。

法国数学家奥古斯丁·路易·柯西(Augustin-Louis Cauchy)和卡尔·威尔斯特拉斯(Karl Weierstrass)等人在微积分中引入了极限概念,从而解决了一些问题的严格性。

4. 黎曼几何和复分析:19世纪中期,德国数学家伯纳尔·黎曼的工作将微积分与几何学相结合,创立了黎曼几何,为曲线和曲面的研究提供了新的工具。

复分析的发展也为微积分的应用领域提供了更多可能性。

5. 泛函分析和分布理论:20世纪,微积分领域进一步扩展,引入了泛函分析和分布理论等新的数学工具,用于研究函数空间和广义函数。

这些理论在数学、物理学、工程学和经济学等领域的应用中发挥了重要作用。

6. 现代微积分的应用:现代微积分广泛应用于科学、工程、计算机科学、经济学和社会科学等各个领域。

它不仅有助于解决实际问题,还推动了数学自身的发展。

微积分的方法和概念也在其他数学分支中找到了应用,如微分方程、积分方程和泛函分析。

论述微积分发展简史

论述微积分发展简史

论述微积分发展简史1一、微积分的萌芽微积分的思想萌芽可以追溯到古代,早在希腊时期,人类已经开始讨论无穷、极限以及无穷分割等概念。

这些都是微积分的中心思想;虽然这些讨论从现代的观点看有很多漏洞,有时现代人甚至觉得这些讨论的论証和结论都很荒谬,但无可否认,这些讨论是人类发展微积分的第一步。

公元前五世纪,希腊的德谟克利特提出原子论:他认為宇宙万物是由极细的原子构成。

在中国,《庄子.天下篇》中所言的一尺之捶,日取其半,万世不竭,亦指零是无穷小量。

这些都是最早期人类对无穷、极限等概念的原始的描述。

二、微积分的创立微积分的产生一般分为三个阶段:极限概念;求积的无限小方法;积分与微积分的互逆关系。

最后一个阶段是由牛顿、莱布尼茨完成的。

前两个阶段的工作,欧洲的大批数学家一直追溯到希腊的阿基米德都做出了各自的贡献。

中世纪时期,欧洲科学发展停滞不前,人类对无穷、极限和积分等观念的想法都没有甚麼突破。

中世纪以后,欧洲数学和科学急速发展,微积分的观念也於此时趋於成熟。

在积分方面,一六一五年,开普勒把酒桶看作一个由无数圆薄片积累而成的物件,从而求出其体积。

而伽利略的学生卡瓦列里即认为一条线由无穷多个点构成;一个面由无穷多条线构成;一个立体由无穷多个面构成。

这些想法都是积分法的前驱。

在微分方面,十七世纪人类也有很大的突破。

费马在一封给罗贝瓦的信中,提及计算函数的极大值和极小值的步骤,而这实际上已相当於现代微分学中所用,设函数导数為零,然后求出函数极点的方法。

另外,巴罗亦已经懂得透过「微分三角形」(相当於以dx、dy、ds為边的三角形)求出切线的方程,这和现今微分学中用导数求切线的方法是一样的。

由此可见,人类在十七世纪已经掌握了微分的要领。

英国著名数学家、物理学家牛顿从研究物理问题出发创立了微积分(1665—1666),牛顿称之为“流数术理论”.牛顿的“流数术”中,有三个重要的概念:流动量、流动率、瞬.牛顿的流数术以力学中的点的连续运动为原型,把随时问连续变化的量而产生的一个连续变化的变量,即以时间为独立变数的函数(生长中的量)称为流动量,流动率是流动量的变化速度,即变化率(生长率),称为导数牛顿专论微积分的著作有两部,第一部正式的、系统的论述流数术的重要著作是《流数术和无穷级数》,于1671年写成,在1736年才正式出版.另一部著作是《曲线求积论》,于1676—1691年写成,在1704年出版.德国数学家莱布尼兹从儿何角度出发独立地创立了微积分(1675—1676).莱布尼兹当时把微积分称为“无穷小算法”.他的微积分符号的使用最初体现在1675年的手稿中.1684年他在《教师学报》杂志上发表了微分法的论文《一种求极大值、极小值和切线的新方法,它也适用于无理量,以及这种新方法的奇妙类型的计算》.这是历史上最早发表的关于微积分的文章.1686年他在该杂志上又发表了最早的积分法的论文《潜在的几何与不可分量和无限的分析》。

微积分的历史与发展

微积分的历史与发展

微积分的历史与发展微积分是数学中的一门重要学科,它研究的是变化和连续性的数学分支。

微积分的历史可以追溯到古希腊时期,而其发展经历了许多重要的里程碑。

本文将介绍微积分的历史与发展,从古代到现代逐步展开,帮助读者了解该学科的演进过程。

古代的微积分先驱们展示了对变化的基本理解。

在古希腊,数学家Zeno of Elea以悖论而闻名,他提出了无限可分割的运动悖论。

这种思想激发了人们对变化和连续性的思考,并为后来微积分的发展奠定了基础。

进入17世纪,微积分的概念正式开始形成。

众所周知的牛顿和莱布尼茨被公认为微积分的创始人。

牛顿以其经典力学和引力定律的发现而著名,而莱布尼茨则发明了微积分符号和符号推导法。

他们的贡献为微积分奠定了坚实的数学基础,并将其应用于物理学和其他学科的发展中。

随着时间的推移,微积分得到了持续的发展和改进。

18世纪和19世纪,欧洲的数学家们继续推动微积分领域的研究。

拉格朗日、欧拉、高斯等数学家们为微积分理论提供了许多重要的贡献。

他们的研究使微积分得以从几何学的观点转向更加抽象和符号化的方法,这为后来微积分的发展提供了重要的基础。

20世纪,微积分进入了现代阶段,特别是与数学分析的发展相结合。

数学家们进一步探索了微积分的基础,发展了更加严格和深入的理论和方法。

对于微分学和积分学的理论基础的巩固和完善,使得微积分在数学和应用领域中的地位更加牢固。

在现代应用中,微积分广泛应用于物理学、工程学、计算机科学、经济学等学科。

例如,在物理学中,微积分被用于描述物体的运动、力学和量子力学等领域。

在工程学中,微积分为电路、信号处理和结构设计等提供了数学工具。

在计算机科学中,微积分为算法和数据分析提供了基础。

在经济学中,微积分被用于经济模型的建立和分析。

总结起来,微积分的历史与发展经历了漫长的过程,从古代的思考和猜测,到牛顿和莱布尼茨的创立,再到现代的深入研究和应用拓展。

微积分不仅是数学领域中的重要学科,也是许多其他学科中的基础和工具。

微积分的发展历程

微积分的发展历程

微积分的发展历程微积分是数学中一个重要的分支,它涉及到极限、导数、积分等概念和方法,被广泛应用于物理学、工程学、经济学等领域。

本文将简要介绍微积分的发展历程。

一、古代的预备工作在微积分出现之前,人们对于一些基本数学问题已经有了一些认识和解决方法。

例如,古希腊的毕达哥拉斯学派就研究了直线的长度、面积和体积等问题。

此后,阿基米德提出了可以计算曲线面积的方法,称为阿基米德法则。

这些古代数学家为微积分的发展打下了基础。

二、牛顿和莱布尼茨的贡献17世纪,牛顿和莱布尼茨几乎同时独立地发明了微积分学。

牛顿通过研究物体的运动和力学问题,提出了“极限”的概念,并建立了微分和积分的基本运算法则。

莱布尼茨则通过研究曲线的切线和面积问题,独立地发展了微积分的方法和符号体系。

他们的贡献使得微积分有了系统的理论基础。

三、分析学的建立18世纪,欧拉、柯西等数学家对微积分进行了深入研究,逐渐建立了分析学的框架。

欧拉通过引入指数和对数运算,为微积分提供了更加方便的计算工具。

柯西则对极限、连续和导数等概念进行了严格的定义和证明,奠定了微积分的数学基础。

此后,分析学成为了微积分的主要研究方法。

四、微积分的应用微积分的发展不仅带来了丰富的数学理论,还在实际应用中发挥了巨大的作用。

在物理学中,微积分被应用于描述质点的运动、电磁场的变化等问题,成为了理论物理学的基础工具。

在工程学中,微积分被用于求解曲线的切线、曲面的切平面等问题,为工程设计提供了精确的计算方法。

在经济学中,微积分被用于分析经济变量之间的关系、优化经济模型等,为经济研究提供了理论支持。

五、微积分的发展趋势随着科学技术的不断进步,微积分的应用领域也在不断扩展。

例如,微分几何将微积分与几何学相结合,研究曲线的性质和空间的几何结构。

微分方程则将微积分与方程学相结合,研究动力系统、波动现象等。

此外,近年来的计算机技术的发展也使得微积分的计算更加便捷和高效。

总结起来,微积分是一个源远流长、发展迅速的学科。

微积分的发展历史

微积分的发展历史

微积分的发展历史微积分是数学中的一个重要分支,它的发展历史可以追溯到古希腊时期。

在这篇文章中,我们将探讨微积分的发展历史,从古希腊时期到现代,逐步了解微积分的发展过程。

古希腊时期,数学家欧多克斯提出了一种叫做“尽量大与尽量小”的方法,这种方法可以用来求解一些几何问题。

这种方法后来被称为“极限法”,它是微积分的基础之一。

在17世纪,牛顿和莱布尼茨分别独立地发明了微积分。

牛顿主要研究物理学问题,他发明了微积分中的“微分法”,用来研究物体的运动和力学问题。

莱布尼茨则主要研究数学问题,他发明了微积分中的“积分法”,用来求解曲线下面积和一些几何问题。

18世纪,欧拉和拉格朗日等数学家对微积分进行了深入的研究和发展。

欧拉发明了欧拉公式,它将三角函数、指数函数和虚数单位i 联系在了一起。

拉格朗日则发明了拉格朗日乘数法,用来求解约束条件下的极值问题。

19世纪,高斯和柯西等数学家对微积分进行了更加深入的研究和发展。

高斯发明了高斯-黎曼方程,它是复变函数理论的基础。

柯西则发明了柯西积分定理和柯西-黎曼方程,它们是复变函数理论的重要组成部分。

20世纪,微积分在应用数学和物理学中得到了广泛的应用。

微积分被用来研究物理学中的力学、电磁学、热力学等问题,也被用来研究应用数学中的概率论、统计学、控制论等问题。

微积分的应用范围越来越广泛,成为现代科学和工程技术的基础。

微积分的发展历史可以追溯到古希腊时期,经过了欧多克斯、牛顿、莱布尼茨、欧拉、拉格朗日、高斯、柯西等数学家的不断研究和发展,逐步形成了现代微积分的体系。

微积分在应用数学和物理学中得到了广泛的应用,成为现代科学和工程技术的基础。

微积分发展史

微积分发展史

近代数学本质上可以说是变量数学。

文艺复兴以来资本主义生产力的发展,对科学技术提出了全新的要求:机械的普遍使用引起了对机械运动的研究;世界贸易的高涨促使航海事业的空前发达,而测定船舶位置问题要求准确地研究天体运行的规律;武器的改进刺激了弹道问题的探讨,等等,总之,到了16世纪,对运动与变化的研究已变成自然科学的中心问题。

这就迫切地需要一种新的数学工具,从而导致了变量数学亦即近代数学的诞生。

变量数学的第一个里程碑是解析几何的发明。

解析几何的基本思想是在平面上引进所谓“坐标”的概念,并借助这种坐标在平面上的点和有序实数对(),x y 之间建立一一对应的关系。

每一对实数(),x y 都对应于平面上的一个点;反之,每一个点都对应于它的坐标(),x y 。

以这种方式可以将一个代数方程(,)0f x y =与平面上一条曲线对应起来,于是几何问题便可归结为代数问题,并反过来通过代数问题的研究发现新的几何结果。

借助坐标来确定点的位置的思想古代曾经出现过,古希腊的阿波罗尼奥斯关于圆锥曲线性质的推导,阿拉伯人通过圆锥曲线交点求解三次方程的研究,都蕴涵着这种思想。

解析几何最重要的前驱是法国数学家奥雷斯姆(N 。

Oresme ,1323—1382),他在《论形态幅度》这部著作中提出的形态幅度原理(或称图线原理),甚至已接触到函数的图象表示,在这里,奥雷斯姆借用了“经度”、“纬度”这两个地理学术语来描述他的图线,相当于横坐标与纵坐标。

不过他的图线概念是模糊的,至多是一种图表,还未形成清晰的坐标与函数图象的概念。

解析几何的真正发明还要归功于法国另外两位数学家笛卡儿(R 。

Descartes ,1596—1650)与费马(P 。

de Fermat ,1601—1665)。

他们工作的出发点不同,但却殊途同归。

费马工作的出发点是竭力恢复失传的阿波罗尼奥斯的著作《论平面轨迹》,他为此而写了一本题为《论平面和立体的轨迹引论》(1629)的书。

微积分的发展历史

微积分的发展历史

微积分的发展历史微积分是数学中的一个重要分支,它主要研究一些连续变化的函数之间的关系,以及这些函数的一些量的变化规律。

微积分的历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。

以下是微积分的发展历史。

1. 古希腊时期古希腊数学家阿基米德(287 BC - 212 BC)就是微积分的先驱之一。

他发明了一种称为“方法论”的技术,这种技术可以用来求解一些几何问题,例如圆的面积和球体的体积。

这种技术可以用来求解一些连续变化的函数的面积或体积问题。

2. 17世纪初期17世纪初期,数学家牛顿(1643-1727)和莱布尼茨(1646-1716)几乎同时发明了微积分。

他们的发现彻底改变了数学的面貌。

牛顿的微积分是基于几何直觉的发现,而莱布尼茨的微积分则是基于代数记号的发现。

3. 18世纪在18世纪,微积分的研究得到了进一步发展。

法国数学家欧拉(1707-1783)和拉格朗日(1736-1813)在微积分的研究中做出了重要的贡献。

欧拉在微积分中引入了复数,这对微积分的发展具有重要的意义。

拉格朗日发现了微积分中的一些基本定理,例如拉格朗日中值定理和柯西中值定理。

4. 19世纪19世纪是微积分的发展中最重要的一个世纪。

数学家高斯(1777-1855)和魏尔斯特拉斯(1815-1897)在微积分的研究中做出了重要的贡献。

高斯发现了极值问题的解法,魏尔斯特拉斯则首次使用了极限的概念来解决微积分中的一些问题。

5. 20世纪20世纪是微积分发展的最后一个世纪。

在这个世纪里,微积分的研究得到了深入的发展。

数学家费曼(1918-1988)提出了路径积分理论,这个理论对微积分的研究有着重要的意义。

同时,微积分还应用于物理学、工程学和经济学等领域,在这些领域中发挥着至关重要的作用。

微积分的发展历史可以追溯到古希腊时期,但是直到17世纪初期,微积分才真正成为独立的数学分支。

在18世纪和19世纪,微积分得到了进一步的发展,20世纪中期,微积分已经成为了一个重要的数学分支,并被广泛应用于各个领域。

微积分的发展历程

微积分的发展历程

微积分的发展历程微积分的创立,被誉为“人类精神的最高胜利”,在18世纪,微积分进一步深入发展,这种发展与广泛的应用紧密交织在一起,刺激和推动了许多数学新分支的产生,从而形成了“分析”这样一个在观念和方法上都具有鲜明特点的数学领域。

在数学史上,18世纪可以说是分析研究的时代,也是向现代数学过渡的重要时期。

1)微积分的发展无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor)、麦克劳林(C.Maclaurin)、棣莫弗(A.de Moivre)、斯特林(J.Stirling)等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理其中v为独立变量z的增量,和为流数。

泰勒假定z随时间均匀变化,故为常数,从而上述公式相当于现代形式的“泰勒公式”:。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。

麦克劳林之后,英国数学陷入了长期停滞的状态。

微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。

微积分的发展历史

微积分的发展历史

微积分的产生——划时代的成就.1 微积分思想的萌芽1.1 古希腊罗马——微分、积分思想的发源地原子论朴素的微分和积分思想.古希腊的原子论者具有朴素的微分和积分思想,该学派的创始人是留基伯(Leucippcus of Miletus),代表人物则是百科全书式的学者德漠克利特(Democritus of Abdera).原子论者把宇宙间的万物看成由不可再分的原子构成,以及原子虽然不能再分但仍有内部结构的思想,表现在数学上就是对于表示有限的长度、面积和体积的量x ,进行了一次微分(dx)和二次微分(dx 2). 德漠克利特曾用原子论思想第一次算出圆锥和棱锥的体积分别等于和它们同底同高的圆柱和棱柱体积的三分之一.极限法的早期形式穷竭法.为了计算曲边形的面积和体积,欧多克斯(Eudoxus of Cnidos )曾提出了一个计算方法,这个方法在17世纪时被人称为“穷竭法”.用现代的符号表示就是:如果对于任意的正整数n ,等式k b a nn =(常数)成立,且当n →∞时,A a n →,B b n →,则有k BA =.他用这个方法证明了德漠克利特已得出的求圆锥和棱锥体积的公式.阿基米德(Archimedes)对穷竭法也作出了重要贡献,他在《圆的度量》、《论圆柱和球》、《抛物线求积》、《论螺线》等著作中,应用了穷竭法,并引用了近似现代微积分中的“大和”与“小和”概念.并且他用这种方法计算出了球的体积和表面积、抛物线弓形的面积以及一些旋转体的体积等数学问题.芝诺的拟难.芝诺(Zero of Elea)是古希腊爱利亚学派的代表人,他虽然不是一个科学家,更谈不上是一位数学家,但他提出的四个拟难——二分法、阿基里斯追龟、飞箭、运动场,客观上把微积分中的离散和连续的对立统一惹人注目地摆了出来,对微积分发展有一定的影响.其中“二分法”和“阿基里斯追龟”涉及无穷运算问题,比如,收敛的无穷级数,虽有无穷多项,但其和仍为有限的;“飞箭”则是一个典型的导数问题,运动的物体在每一时刻不仅有速度,而且还有加速度等;“运动场”明显地同运动的两个相反的方向即正负概念有关.1.2 阿拉伯和欧洲中世纪——无限和运动的研究在整个中世纪,希腊文化遗产在某种程度上是由逐渐缩小的、以君士坦丁堡为中心的拜占庭帝国保存下来的.但是,在黑暗时代的几个世纪中,有效地利用这些遗产,并且最后把它们输送到西欧去的,却是地中海地区的阿拉伯政权.代数和三角学的确立.从7世纪开始,阿拉伯帝国逐渐崛起,到8世纪,它已成为一个地跨亚、欧、非三洲,阿拉伯帝国在所辖的较大城市建立图书馆和天文馆,政府组织人力进行天文观测,编制星表,集中学者翻译和注释希腊罗马古典名著.正当欧洲处在黑暗时期,“阿拉伯数学”却成了这时期西方科学的代表.希腊罗马的古典名著正是通过“阿拉伯人”的工作才得以保存下来,这是阿拉伯人对人类文明的重要贡献之一.不仅如此,阿拉伯也是东西科学文化交流的桥梁,今天通行的“印度—阿拉伯数码”以及我国古代“四大发明”等,都是通过阿拉伯从东方传到西方去的,这为欧洲以后科学文化的复苏创造了重要条件.有继承才有发展,阿拉伯人在保留古希腊罗马文化和传统文化的同时,也有一定的发展和创造.代数和三角学的确立就是他们对数学所做出的贡献.对无限和运动的研究.这一时期,除了“印度—阿拉伯数码”的逐渐普及,代数和三角学已经确立以及数学符号化已有端倪外,对无限的讨论以及对运动和速度的研究已成为数学家们注意的中心.例如德国的红衣主教库萨的尼古拉,把圆与三角形分别看成边数最多和边数最少的多边形,把无限大和零分别看成自然数的上界和下界.他还说尽管“世界不是无限的,但毕竟不能认为它是有限的,因为世界没有一条把它包围起来的界限”,这表明了他把无限看作一个过程的潜无限思想.14世纪英国很有声誉的数学家苏依塞斯的重要著作《算术》中,已有变量、极大和极小概念的原始形式,预示了变数和导数即将进入数学领域.他所使用的“流数”、“流量”等概念,被300年后的牛顿所采用.在无限问题上他指出,要解决所有关于无限的诡辩,只要认识到有限和无限不能有它们的比就行了,这是关于对有限和无限应有不同的论证的最早认识.1.3 古代中国——面积、体积与极限思想的丰富简单几何图形面积和体积的计算.在微积分的发展历史上,对任意封闭的平面曲线围成图形面积的计算,和任意封闭的空间曲线包围立体图形体积的计算,是产生积分概念的主要途径之一.计算面积和体积可以追溯到原始农业社会,根据我国甲骨文记载,约在300年以前的殷代,就把耕种的土地分成方形小块以求面积.积分概念就是在初等几何计算面积和体积的基础上逐渐形成的.《庄子》和《墨经》中的极限思想.极限概念是微积分区别于初等数学的特有概念,没有极限概念就没有现代的微积分.战国时代的《庄子·天下篇》中,有不少极限思想,其中最脍炙人口的一句话是:“一尺之椎,日取其半,万世不竭.”可以理解为无穷无尽、永远达不到极限的潜无限思想.无穷或无限概念,是极限概念的特殊情况,是微积分的重要概念.《墨经》也是战国时代的重要著作之一,该书对有穷和无穷作了明确的区分.该书说,“穷,或有前,不容尺也”,意思是有穷就是有边界的区域,用尺沿一个方向去量它一定能量完;“穷,或不容尺,有穷;莫不容尺,无穷也”,即有穷就是能量尽这个区域,如果量不尽,就是无穷.与此同时《墨经》也有丰富的微分思想,比如:“端,体之无厚而最前者也”;“端,无间也”;“非半则不动,说在端”.第一句话就是说,“端”就是不可度量且位于物体的最前面的东西.第二和第三句是说,如果没有空隙、也不能再进行分割的就是端.这是对构成物质的最基本的元素相当精确的定义,实际上就是对物体经“化整为零”后的微分概念.极限思想的运用——割圆术.我国三国时的数学家刘徽提出的“割圆术”,他从圆内接正六边形做起,令边数成倍地增加,逐步推求圆内接正12边形,正24边形,……,直到正3072边形,用这个正3072边形面积来逼近圆面积,就得到π的较精确的值3.1416,“割之弥细,所失弥少;割之又割,以至于不可割,则与圆周合体而无所失矣.”这就包含着微积分中“无限细分,无限求和”的思想方法.另外,古代与中世纪中国学者在天文历法研究中曾涉及到天体运动的不均匀性及有关的极大、极小值问题,如郭守敬《授时历》中求“月离迟疾”(月亮运行的最快点和最慢点)、求月亮白赤道交点与黄赤道交点距离的极值(郭守敬甚至称之为“极数”)等问题,但东方学者以惯用的数值手段(“招差术”,即有限差分计算)来处理,从而回避了连续变化率.总之,在17世纪以前,真正意义上的微分学研究的例子可以说是较少的.2微积分孕育的半个世纪在历史上,积分概念和方法的产生先于微分.积分的原理,溯源于古希腊人所创造的计算面积、体积和弧长相联系的求和方法,在古代的穷竭法中就已萌芽.微分思想虽然可追溯到古希腊,但它的概念和法则几乎是16世纪下半叶后与近代力学同时产生和发展起来的.微分思想和积分思想起初互不相干,基本上是平行而又独立地发展着,都是对具体问题采取具体的方法,尽管在思想上有某些相似之处,但毕竟没有形成统一的方法.这两个统一方法形成后建立起其间联系又晚一些.直至17世纪上半叶,以力学为中心的一系列问题向数学提出了挑战,迫使数学家探索新的数学思想和方法来解决求曲线的长度、曲线围成的面积和体积、物体的重心、变化率和切线、函数的极值、物体在任意时刻的速度和加速度等大量生产、科研实践中提出的数学问题.对上述问题的研究以及对二项式定理和级数的讨论所形成的数学思想和方法的成熟和发展,孕育了微积分的诞生.2.1积分学概念和方法的产生在积分概念和方法的形成过程中,最有代表性的工作主要有:2.1.1 开普勒的同维无穷小方法开普勒(Johannes Kepler,1571-1630)是德国著名天文学家、力学家和数学家,在大学学习时曾接触到哥白尼学说,他的思想受毕达哥拉斯和柏拉图的影响较大,认为宇宙是上帝安排的和谐的体系,但他不象前人那样盲目相信,而是尊重事实.他寻求宇宙是和谐体系的显著成绩是先后总结出行星运动三定律,其中第一定律认为行星绕日运动并非是匀速运动,其轨道也不是圆而是椭圆.这就从根本上打破了传统的、权威的观念,是对哥白尼的天文学的重大发展. 图5-1 开普勒开普勒的父亲好喝酒,以开酒馆为业,少年时期的开普勒常帮父亲营业.他发现当时酒商求奥地利酒桶容积的方法不精确,经过研究在1615年发表《测量酒桶的新立体几何》,该书分为三个部分,第一部分是阿基米德式的空间几何,其中大约有90个旋转体的体积是阿基米德没有研究过的;第二部分重点是研究酒桶体积的求法;第三部分是这一方法的应用.在该书中,开普勒对古希腊的原子论方法作了发展——用无数个同维小元素之和来确定曲边形的面积及旋转体的体积.例如,把圆当作无限多个边的正多边形从而把无限多个以圆心为顶点的等腰三角形面积之和计为圆面积,于是得到圆面积等于周长乘半径之半. []n S S S A ∆++∆+∆=2121 221r rs π== 图 5-2他还认为球的体积是无数个小圆锥的体积之和,这些圆锥的顶点在球心,底面则是球面的一部分;将圆锥看成是极薄的圆盘之和,并由此计算出它的体积,然后进一步证明球的体积是半径乘以球面面积的三分之一⎪⎭⎫ ⎝⎛⨯⨯=3142R R V π.开普勒还用类似的方法算出了圆柱、圆环以及苹果形、柠檬形等的体积.开普勒的方法并不严格.比如,当圆分解为其底为一点之等腰三角形时,无异于说这时的三角形是一个线段,圆的面积是无数条线段(即半径)之和.在一些问题中,开普勒也确认面积就是直线之和.用无数个同维无穷小之和计算面积和体积是开普勒的基本思想,虽然还不严格,但确有合理之处,这也是开普勒方法的精华,他化曲为直和微小元求和的思想,对积分学很富有启发性. 2.1.2卡瓦列里和托里拆利的不可分量法“不可分元”并无严格的定义,费尔马、帕斯卡和罗伯瓦尔等都有类似思想,但是以卡瓦列里的思想最典型. 卡瓦列里(BonaventuraCavalieri,1598-1647)是意大利的牧师,也是伽俐略的学生.他的积分思想同古代原子论一脉相承,但比开普勒的方法更普遍,称之为“不可rS i O分元法”.这一思想集中体现在他的《用新方法促进的连续不可分量的几何学》(1635)和《六个几何问题》中两部著作之中.卡瓦列里认为线是由无限多个点组成,就象链条由珠子穿成的一样;面是由无限多条平行线段组成,就象布是由线织成的一样;立体则是由无限多个平行平面组成,就象书是由每一页积累成的一样;不过它们都是对无穷多个组成部分来说的.换句话说,他把几何图形看成是比它低一维的几何元素构成的:线是点的总和,平面是直线的总和, 图5-3 卡瓦列里立体是平面的总和,他分别把这些元素叫做线、面和体的“不可分量”.他建立了一条关于这些不可分量的普遍原理,后以“卡瓦列里原理”著称:两个等高的立体,如果它们的平行于底面且离开底面有相等距离的截面面积之间总有给定的比,那么这两个立体的体积之间也有同样的比.卡瓦列里利用这条原理计算出许多立体图形的体积,然而他对积分学创立最重要的贡献还在于证明了:如果两线段之比为2:1,则其平方和之比为3:1,立方和之比为4:1,直到九次方和之比为10:1,实际上已相当于今天的积分式⎰++=an n a n dx x 0111 (n 为自然数) 使早期的积分学突破了体积计算的现实原型而向一般算法过渡.卡瓦列里的不可分量方法比他的前人包括开普勒所使用的方法更接近于普遍的积分学算法,开普勒曾向同行们提出一个挑战问题:求抛物线弓形绕弦旋转而成的旋转体体积.卡瓦列里用自己的方法解决了开普勒的问题.人们认为,以卡瓦列里为代表的不可分量法就是17世纪初期的积分法,也是牛顿和莱布尼茨以前积分思想发展的高峰.卡瓦列里虽然克服了开普勒用各自不同的直线图形表示不同的曲边图形对应的不可分量之间的关系,而非每个面积中的不可分量全体,这就避免了无限的概念,自然就造成了理论上的不可克服的矛盾.同时,卡瓦列里求积法还具有不注意代数和算术的纯几何缺点.对卡瓦列里不可分量法作出重要修正的是他的朋友、伽利略的学生、意大利的托里拆利(E.Torricelli,1608-1647).1646年卡瓦列里发表《关于无限抛物线》中批评说:“把不可分元看成是相等的,即把点与点在长度上、线与线在宽度上、面与面在厚度上看成相等的说法纯属空话,它既难以证明,又无直观基础.”他以圆和三角形的不可分元为例说明二者的不可分元并不相同:一个是具有极小中心角的扇形,一个是具 图 5-4有微小宽度的带状体.所以他用开普勒的同维无穷小去代替卡瓦列利的不可分量,同时又保留了不可分量法在求积上的有效性,不但取得了曲线求积问题的许多成果,而且在理论上向近代积分靠近了一步.2.1.2 费马、帕斯卡和沃里斯等人的推进费马于1636年提出了一个相当于近代定积分的积分法,用统一的矩形条分割曲线形;用矩形面积近似地代替曲边形面积;利用曲线方程求出矩形面积,并以其构成的几何级数之和近似地得到曲线面积;对和式取极限使近似值转化为精确值.而帕斯卡则采取等分x 轴上的区间和略去无穷序列之和的高阶差的方法,这对牛顿、莱布尼茨产生了很大的影响.费马还将其积分法用于求弧长,他把曲线长视为微小线段长之和,再把线段长度之和转化为求曲线围成的面积来获得结果.英国数学家沃里斯1656年发表《无穷的算术》,使卡瓦列里、费马的不可分法得到系统的推广.他用数的语言把几何方法算术化,使无限的概念以解析的形式出现,开辟了用级数表示函数的道路,使得无限算术代替了有限算术,这对确立微积分奠定了重要的思想基础.沃里斯还利用微分三角形,给出了近代意义的弧微分概念和计算公式:22dy dx ds +=,但未能给出弧长的计算方法.到17世纪60年代,求积法已取得十分丰富的成果,发展得相当完善了.2.2微分学概念和法则的发展以上介绍的微积分准备阶段的工作,主要采用几何方法并集中于积分问题,解析几何的诞生改变了这一状况.解析几何的两位创始人笛卡儿和费马,都是将坐标方法引入微分学问题研究的前锋.2.2.1费马借助微小增量作切线费马在1637年发表了《求最大值和最小值的方法》,记述了一个求曲线切线的方法,这个方法的大意如下:设PT 是曲线在P 点的切线(如图5-5),TQ 叫次切线,只要知其长,就可确定T 点,再连接PT 就可以了.为了确定TQ ,设QQ 1为TQ 的微小增量,其长为E (即今之△x ), ∵△TQP ∽△PRT 1 ∴1RT PRQP TQ = 费马认为,当E(=PR)很小时,RT 1同RP 1几乎相等,因此有QPP Q E RP E QP TQ -==111 图 5-5 用现在的符号,把QP 写成)(x f ,于是有)()()(x f E x f E x f TQ -+= 即 )()()(x f E x f x f E TQ -+⋅=这时,费马先用E 除分子和分母,然后再让E=0就得到TQ 的数值(即今之)()(x f x f TQ '=).费马用这个方法解决了许多难题,应当说,这是微分方法的第一个真正值得注意的先驱工作.但是,他没有通过割线移动来决定切线,也没有通过计算斜率的极限来求切线.割线移动决定切线的思想,是笛卡儿1638年提出来的.2.2.2笛卡儿“圆法”求曲线)(x f y =过点))(,(x f x P 的切线,笛卡儿的方法是首先确定曲线在点P 处的法线与x 轴的焦点C 的位置,然后作该法线的过点P 的垂线,便可得到所求的切线.如图5-6,过C 点作半径r=CP 的圆,因CP 是曲线)(x f y =在P 点处的法线,那么点P 应是该曲线与圆222)(r v x y =-+的“重交点”(在一般情况下所作圆与曲线还会相交于P 点附近的另一点).如果[]2)(x f 是多项式,有垂交点就相当于方程 222)()]([r x v x f =-+ P T 1P 1RT Q Q 1将以P 点的横坐标x 为重根.但具有重根e x =的多项式的形式必须是∑⋅-i i x c e x 2)(,笛卡儿把上述方程有重根 的条件写成: ∑-=--+i i x c e x r x v x f 2222)()()]([, 图 5-6然后用比较系数法求得v 与e 的关系.带入x e =,就得到用x 表示的v ,这样过点P 的切线的斜率就是)(x f x v -. 以抛物线kx y =2为例,kx x f y ==)(,方程22)(r x v kx =-+有重根的条件为: 222)()(e x r x v kx -=--+令x 的系数相等,得e v k 22-=-,即k e v 21+=.代入x e =,于是次法距k x v 21=-,求出抛物线过点()kx x ,的切线斜率是xk kx k x f x v 212/)(==-. 笛卡儿的代数方法在推动微积分的早期发展方面有很大的影响,牛顿就是以笛卡儿圆法为起跑点而踏上研究微积分的道路的.笛卡儿圆法在确定重根时会导致极繁复的代数计算,1658年荷兰数学家胡德(J.Hudde)提出了一套构造曲线切线的形式法则,称为“胡德法则”.胡德法则为确定笛卡儿圆法所需的重根提供了机械的算法,可以完成求任何代数曲线的切线斜率时所要进行的计算.2.2.3费马求极值的方法用代数方法求函数的极大值和极小值,是产生微分学的重要途径之一.记载费马求极大值与极小值方法这份手稿,实际上是他写给梅森(M.Mersenne)的一封信,梅森是当时欧洲科学界领头任务伽利略、费马、笛卡儿、帕斯卡等人之间保持书信交往的中心.费马的方法用现在的符号表示大意如下:设)(x f 是x (x 就是费马的A )的某个多项式,现在讨论)(x f y =的极大值.如果)(x f 在x 点达到极大值,则对充分小的E>0必有:)(E x f +<)(x f 和)(E x f -<)(x f将此二不等式之左边展开则有:+++=+2)()()()()(E x Q x E x P x f E x f <)(x f-+-=-2)()()()()(E x Q x E x P x f E x f <)(x f消去这两个不等式两边的共同项,再用E 除则分别给出下面两个不等式:++E x Q x P )()(<0-+-E x Q x P )()(<0当E 充分小时,此二式左边的符号完全由)(x P 确定.可见,当)(x P 0≠时,此二式不可能有同一的符号,因此必须)(x P =0,从此式解出x 就是所求的极大值.同理可以求出极小值.费马的方法实际上就是,当计算有理整函数)(x f 的极值时,先计算它的导数x x f x x f x f x ∆-∆+='→∆)()(lim )(0,再令0)(='x f ,解之就是极值点. 不难看出,费马的方法尚有不足之处:第一,费马没有引入无穷小概念,我们在解释他的E 时设为“充分小”,是为了同今天的思想相一致,但费马并没有如此表述;第二,正如他自己所说,把求极值的方法普遍化问题尚缺乏证明;第三,令0)(=x P ,只是求出极值的必要条件,而不是充分条件.尽管费马求极值方法尚有不足之处,但已接近今天之形式,他已经看到了求切线和求极值有相同的数学结构.可以认为,在微分学的先驱工作中,费马是比较成熟的一个,无论是求切线还是求极值,他的方法在当时的影响都比较大.2.3微积分系统理论探索的前夜这里将要介绍的是帕斯卡、沃里斯和巴罗等人的工作,他们的工作对牛顿和莱布尼茨的微积分的产生有着直接的关系,如过把卡瓦列利和费马等人看作微积分先驱的杰出代表,则这几个人的工作是向牛顿和莱布尼茨微积分的过渡.2.3.1帕斯卡等的无穷小方法布莱斯·帕斯卡(Pascal Blaise,1623-1662)的一生,虽然只有39岁,而他的一段黄金时期(30-35岁)又专门研究神学,但是他在数学上的成就却很大.他是世界上第一架计算机的设计者,是概率论和射影几何的奠基人之一,提出了西方数学史所谓的“帕斯卡三角形”,他也是一位哲学家,并很有写作才能.他同罗伯瓦尔和费马一起,被称为当时法国数学界的三巨头.帕斯卡在积分学方面做的工作,是以他名字命名的三角形有 图5-7 帕斯卡一定关系.因为用这个三角形可以比较容易地求出自然数幂的二项式的展开式,不过帕斯卡是用文字表述的.他凭借这个结果并引入无穷小概念,算出了以曲线n x y =为一边的曲边梯形的面积.他把无穷小概念也应用于微分学,在他的《四分之一圆的正弦论》(1659)这部著作中,有一幅被称之为“微分三角形”的图形(图5-8).他说,当区间(即图中的RR=EK)很小时,则“弧可以代替切线”.通过“微分三角形”说明可以用直线代替,并进一步作出切线.把无穷小概念引入数学,是微积分发展史上的重要事件.以无穷小作基础才能把曲线看成直线.有人认为,如果帕斯卡能在无穷小的基础上寄兴趣于算术的考虑并致力于切线的求法,那么他就有可能比牛顿和莱布尼茨更早地击中微积 图 5-8分的要害.事实上,帕斯卡的工作对莱布尼茨的微积分产生了直接的影响. 2.3.2沃里斯的算术化英国的沃里斯(J.Wallis,1616-1703)是一位牧师的儿子,受过良好的古典教育.在剑桥大学学习期间专攻神学,以后对数学感兴趣.从1649年B AR I D KR E E C起任牛津大学的“沙维教授”,是17世纪时的英国仅次于牛顿的著名数学家.在微积分的先驱者中,沃斯里的算术化工作很有意义,可以说,没有算术化就没有牛顿的微积分.沃里斯接受了韦达、笛卡儿和费马等前辈们的思想——应用代数研究几何问题,他试图使算术完全脱离几何表示.另外在求积问题上,他 图5-9 沃里斯接受卡瓦列利的不可分元思想和流行的略去无穷小方法,并且应用尚不精确的无穷大和无穷小概念.他在数学史上第一次用符号∞表示无穷大,用∞1表示无穷小或零量,并把它们和有限数同样看待,一起参加运算.沃里斯在他的重要著作《无穷算术》(1655)一书中用算术方法得到如下的定理:“若有一无穷数列,从0开始按任意指数不断增加,那么,这些数之和与各数均等于其最大数的同样数目之和的比值为该指数+11.”用今天的符号表示就是⎰+=1011n dx x n (n 是整数或分数),这表明卡瓦列利和帕斯卡等所确定的关系⎰++=a n n a n dx x 0111 (n 为正整数),当n 为分数时仍然成立. 2.3.3巴罗的求切线和求积的互逆性 英国的伊萨克·巴罗(Isaac Barrow,1630-1677)是微积分发展史上最重要的人物之一,他本人也是神学家,精通希腊文和阿拉伯文,所以对希腊古典著作很有造诣;曾任剑桥大学教授、副校长,是牛顿的老师,1669年即牛顿26岁的那年,他主动宣布牛顿的学识已超过自己,并把“卢卡斯教授”职位让给牛顿,成了数学史上的佳话.他的主要著作是《光学和几何讲义》.巴罗的数学观基本上与希腊人相同,认为只有几何才是数学,而代数他认为不应该看成数学,应包括到逻辑中去.尽管他偏爱几何,但对 图5-10 巴罗 即将临产的微积分也有深刻的理解.巴罗曾设想曲线是由所谓的“线元”构成的,而线则是线元之延长,这是不可分元的不同说法,不过巴罗最有意义的贡献是把“求切线”和“求积”作为互逆问题联系起来.比如,他的《几何讲义》第十讲的命题十一和第十一讲的命题十九,用今天的符号表示分别是:(1)如果⎰=xzdx y 0,则zdx dy = (2)如果zdx dy =,则⎰=xy zdx 0 (设x=0时y=0)巴罗还采用帕斯卡二十年代提出而沃里斯正在使用的“微分三角形”思想来求曲线的切线.微分三角形是指由自变量增量x ∆和函数增量y ∆为直角边所构成的直角三角形.他第一个认识到xy ∆∆对于决定切线有重大意义,于是将微分三角形和费马的方法结合起来,从而得到比费马更优越的方法.实际上,巴罗已经接触到了微分的本质,因为x y ∆∆可以用来决定导数. 微积分的先驱们的工作,以费马和巴罗为标志而结束,由于历史的局限性,上述数学家关注的是具体几何特有的解答方法,而未注意大量成果的优越性、创造性和普遍性能够提炼成新的统一的方法构成一门新的学科,也就是需要创立具有普遍意义的抽象概念、具有一般符号和一整套解析形式与规则的可以应用的微积分学.牛顿和莱布尼茨正是在这样的时刻出。

微积分的发明历程

微积分的发明历程

微积分的发明历程如果将整个数学比作一棵大树,那么初等数学是树的根,名目繁多的数学分支是树枝,而树干的主要部分就是微积分。

微积分堪称是人类智慧最伟大的成就之一。

从17世纪开始,随着社会的进步和生产力的发展,以及如航海、天文、矿山建设等许多课题要解决,数学也开始研究变化着的量,数学进入了“变量数学”时代,即微积分不断完善成为一门学科。

整个17世纪有数十位科学家为微积分的创立做了开创性的研究,但使微积分成为数学的一个重要分枝还是牛顿和莱布尼茨。

微积分的思想从微积分成为一门学科来说,是在17世纪,但是,微分和积分的思想早在古代就已经产生了。

公元前3世纪,古希腊的数学家、力学家阿基米德(公元前287~前212)的著作《圆的测量》和《论球与圆柱》中就已含有微积分的萌芽,他在研究解决抛物线下的弓形面积、球和球冠面积、螺线下的面积和旋转双曲线的体积的问题中就隐含着近代积分的思想。

作为微积分的基础极限理论来说,早在我国的古代就有非常详尽的论述,比如庄周所著的《庄子》一书中的“天下篇”中,著有“一尺之棰,日取其半,万世不竭”。

三国时期的高徽在他的割圆术中提出“割之弥细,所失弥少,割之又割以至于不可割,则与圆合体而无所失矣”。

他在1615年《测量酒桶体积的新科学》一书中,就把曲线看成边数无限增大的直线形。

圆的面积就是无穷多的三角形面积之和,这些都可视为黄型极限思想的佳作。

意大利数学家卡瓦列利在1635年出版的《连续不可分几何》,就把曲线看成无限多条线段(不可分量)拼成的。

这些都为后来的微积分的诞生作了思想准备。

解析几何为微积分的创立奠定了基础由于16世纪以后欧洲封建社会日趋没落,取而代之的是资本主义的兴起,为科学技术的发展开创了美好前景。

到了17世纪,有许多著名的数学家、天文学家、物理学家都为解决上述问题做了大量的研究工作。

笛卡尔1637年发表了《科学中的正确运用理性和追求真理的方法论》(简称《方法论》),从而确立了解析几何,表明了几何问题不仅可以归结成为代数形式,而且可以通过代数变换来发现几何性质,证明几何性质。

微积分的发展史

微积分的发展史

微积分的发展历史摘要:我国和西方古代微积分的萌芽到近现代微积分的巨大发展,以及从牛顿到柯西等人为微积分的发明。

关键词:微积分;中国;西方;牛顿;“流数术”;微积分(Calculus)是高等数学中研究函数的微分、积分以及有关概念和应用的数学分支。

它是数学的一个基础学科。

内容主要包括极限、微分学、积分学及其应用。

微分学包括求导数的运算,是一套关于变化率的理论。

它使得函数、速度、加速度和曲线的斜率等均可用一套通用的符号进行讨论。

积分学,包括求积分的运算,为定义和计算面积、体积等提供一套通用的方法。

(一)我国的微积分思想萌芽:公元前5世纪,战国时期名家的代表作《庄子•天下篇》中记载了惠施的一段话:“一尺之棰,日取其半,万世不竭”,是我国较早出现的极限思想。

魏晋时期的数学家刘徽的“割圆术”开创了圆周率研究的新纪元,用他的话说,就是:“割之弥细,所失弥少。

割之又割,以至于不可割,则与圆合体,而无所失矣。

”(二)西方的微积分思想萌芽:安提芬的“穷竭法”。

他在研究化圆为方问题时,提出用圆内接正多边形的面积穷竭圆面积,从而求出圆面积。

之后,阿基米德借助穷竭法解决了一系列几何图形的面积、体积计算问题。

刺激微分学发展的主要科学问题是求曲线的切线、求瞬时变化率以及求函数的极大值极小值等问题。

(三)近现代微积分的发展:1635年意大利数学家卡瓦列里在其著作《用新方法促进的连续不可分量的几何学》中发展了系统的不可分量方法。

1665年,牛顿对微积分问题的研究始于,当时他反复阅读笛卡儿《几何学》,牛顿首创了小○记号表示x 的无限小且最终趋于零的增量。

并发明“正流数术”(微分法),次年5月又建立了“反流数术”(积分法),这就是牛顿的“流数术”。

在牛顿发明“流数术”的同时,莱布尼茨几乎和牛顿取得了同样的成就,并得到了著名的牛顿—莱布尼茨公式:从17世纪到18世纪的过渡时期,法国数学家罗尔在其论文《任意次方程一个解法的证明》中给出了微分学的一个重要定理,也就是我们现在所说的罗尔微分中值定理。

微积分的发展史简述

微积分的发展史简述

微积分的发展史简述作者:周锐来源:《当代人(下半月)》2018年第04期摘要:微积分是数学的一个分支,在数学史上占有重要地位。

本文根据时间进程阐述了微积分的发展史及其简要应用。

关键词:微积分;发展史;牛顿;莱布尼兹微积分是数学中的基础学科,也是近现代数学中的重要基石和起点。

它在物理、化学、生物等自然学科中被普遍利用,在社会、经济、人文等范畴也是重要的研究工具之一。

本文将沿着微积分学的发展时间历程,简要论述微积分的发展史。

一、微积分的萌芽之初微积分学发展得最早的是积分学的思想,可以追溯到古希腊时期[1]。

其中做出重要贡献的有古希腊数学家芝诺提出的四大悖论。

古希腊哲学家德谟克利特斯的原子论则充分体现了近代积分的思想,他认为任意事物都是由原子构成。

古希腊诡辩家安提丰提出的“穷竭法”是极限理论最早的表现形式。

古希腊数学家欧多克斯进一步研究原子论和穷竭法,使这两个理论得以稳健前进。

古希腊著名数学家阿基米德所提出的“平衡法”实质上是一种较原始的“积分法”。

他在著作《抛物线求积法》一书中运用穷竭法求出了抛物线构成的弓形的面积。

二、微积分创立之前的酝酿由于种种影响,微积分的概念在15世纪之前一直处于萌芽阶段[2]。

推动欧洲崛起的新航路开辟和文艺复兴是15世纪的大事件。

从14世纪到16世纪的文艺复兴在意大利各城市兴起,之后推广到西欧各国,带来了一场关于科学与艺术的革命。

随着文艺复兴的兴起,生产的发展带动了科学的发展。

与此同时希腊的著作大量进入欧洲,随着活板印刷的发明,知识的传播更加迅速,自然学科开始活跃,自然学科中的数学得以有进一步发展的机会。

在时代背景下,数学成为唯一被公认的真理得以推广。

天文学、光学、力学等自然学科的发展被生产力的发展所推动,为数学带来了大量的研究问题[3],许多学者开始考虑研究微积分的思想[4]。

开普勒是德国杰出的天文学家、物理学家、数学家和哲学家。

他在《测量酒桶的新立体几何》一书中主要对如何求解旋转体体积的方法进行研究。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

微积分发展历程(二)
微积分学的诞生
随着时代的发展,实践中提出了越来越多的数学问题,待数学家们加以解决,如曲线切线问题、最值问题、力学中速度问题、变力做功问题……初等数学方法对此越来越无能为力,需要的是新的数学思想、新的数学工具。

不少数学家为此做了不懈努力,如笛卡尔、费马、巴罗……并取得了一定成绩,正是站在这些巨人的肩膀上,牛顿、莱布尼兹以无穷思想为据,成功运用无限过程的运算,创立了微积分学。

这新发现、新方法的重要性使当时的知识界深感震惊,因而出现了一门崭新的数学分支:数学分析。

这一学科的创立在数学发展史上翻开了崭新一页,谱写了光辉动人的乐章。

1)微积分的发展
无限小算法的推广,在英国和欧洲大陆国家是循着不同的路线进行的。

不列颠的数学家们在剑桥、牛津、伦敦和爱丁堡等著名的大学里教授和研究牛顿的流数术,他们中的优秀代表有泰勒(B.Taylor )、麦克劳林(C.Maclaurin )、棣莫弗(A.de Moivre )、斯特林(J.Stirling )等。

泰勒(1685_1731)做过英国皇家学会秘书。

他在1715年出版的《正的和反的增量方法》一书中,陈述了他早在1712年就已获得的著名定理()2
3
....22..112123v
v v x z v x x x x z z z
∴+=++++其中v 为独立变量z 的增量,.x 和.
z 为流数。

泰勒假定z 随时间均匀变化,故.z 为常数,从而上述公式相当于现代形式的“泰勒公式”:
()()()()2
2!h f x h f x hf x f x '''+=+++。

泰勒公式使任意单变量函数展为幂级数成为可能,是微积分进一步发展的有力武器。

但泰勒对该定理的证明很不严谨,也没有考虑级数的收敛性。

泰勒公式在x=0时的特殊情形后来被爱丁堡大学教授麦克劳林重新得到,现代微积分教科书中一直把x=0时的泰勒级数称为“麦克劳林级数”。

麦克劳林(1698_1746)是牛顿微积分学说的竭力维护者,他在这方面的代表性著作《流数论》,以纯熟却难读的几何语言论证流数方法,试图从“若干无例外的原则”出发严密推演牛顿的流数论,这是使微各分形式化的努力,但因囿于几何传统而并不成功。

《流数论》中还包括有麦克劳林关于旋转可耻椭球体的引力定理,证明了两个共焦点的椭球体对其轴或赤道上一个质点的引力与它们的体积成正比。

麦克劳林之后,英国数学陷入了长期停滞的状态。

微积分发明权的争论滋长了不列颠数学家的民族保守情绪,使他们不能摆脱牛顿微积分学说中弱点的束缚。

与此相对照,在英吉利海峡的另一边,新分析却在莱布尼茨的后继者们的推动下蓬勃发展起来。

2)积分技术与椭圆积分
18世纪数学家们以高度的技巧,将牛顿和莱布尼茨的无限小算法施行到各类不同的函数上,不仅发展了微积分本身,而且作出了许多影响深远的新发现。

在这方面,积分技术的推进尤为明显。

当18世纪的数学家考虑无理函数的积分时,他们就在自己面前打开了一片新天地,因为他们发现许多这样的积分不能用已知的初等函数来表示。

例如雅各布•伯努利在求双纽线
(在极坐标下方程为22cos2r αθ=)弧长时,
得到弧长积分20r s =
⎰。

在天文学中很重要的椭圆弧长计算则引导到积分
221t
k t dt s a -=⎰。

欧拉在
1774年处理弹性问题时也得到积分2
0x x x dx αβγ++⎰。

所有这些积分都属于后来所说的
“椭圆积分”的范畴,它们既不能用代数函数,也不能用通常的初等超越函数(如三角函数、对数函数等)表示出来。

椭圆积分的一般形式是⎰。

勒让德后来将所有的椭圆积分
归结为三种基本形式。

在18世纪,法尼亚诺、欧拉、拉格朗日和勒让德等还就特殊类型的椭圆积分积累了大量结果。

对椭圆积分的一般研究在19世纪20年代被阿贝尔和雅可比分别独立地从反演的角度发展为深刻的椭圆函数理论。

(待续)。

相关文档
最新文档