三角恒等变换换元法
三角恒等变换换元法
三角恒等变换换元法三角恒等变换是高等数学中的一个重要概念,它在解决三角函数方程和简化三角函数表达式中起着重要的作用。
本文将介绍三角恒等变换的定义、常见的三角恒等变换公式以及如何利用三角恒等变换来简化三角函数表达式。
一、三角恒等变换的定义三角恒等变换是指等式两边同时进行恒等变换,使等式仍然成立。
其中,恒等变换是指对一个三角函数进行某种运算后,仍然得到一个等价的三角函数。
三角恒等变换的目的是将复杂的三角函数表达式转化为简单的形式,从而更方便地进行计算和分析。
二、常见的三角恒等变换公式1. 余弦函数的恒等变换:- 和差角公式:cos(A ± B) = cosAcosB ∓ sinAsinB- 二倍角公式:cos2A = cos²A - sin²A = 2cos²A - 1 = 1 - 2sin²A- 半角公式:cos(A/2) = ±√[(1 + cosA)/2]2. 正弦函数的恒等变换:- 和差角公式:sin(A ± B) = sinAcosB ± cosAsinB- 二倍角公式:sin2A = 2sinAcosA- 半角公式:sin(A/2) = ±√[(1 - cosA)/2]3. 正切函数的恒等变换:- 和差角公式:tan(A ± B) = (tanA ± tanB)/(1 ∓ tanAtanB) - 二倍角公式:tan2A = (2tanA)/(1 - tan²A)三、利用三角恒等变换简化三角函数表达式的方法1. 利用和差角公式:当一个三角函数的参数是两个角度的和或差时,可以利用和差角公式将其转化为两个三角函数的乘积或商,从而简化表达式。
2. 利用二倍角公式:当一个三角函数的参数是一个角度的两倍时,可以利用二倍角公式将其转化为一个三角函数的平方或两个三角函数的差,从而简化表达式。
三角恒等变换总结2
简单三角恒等变换考点梳理1.两角和与两角差的正弦公式:sin()sin cos cos sin αβαβαβ±=±; 余弦公式:cos()cos cos sin sin αβαβαβ±= ;正切公式:tan tan tan()1tan tan αβαβαβ±±=.2.二倍角的正弦公式:sin 22sin cos ααα=;二倍角的余弦公式:2222cos 2cos sin 2cos 112sin ααααα=-=-=-; 二倍角的正切公式:22tan tan 21tan ααα=-.3.降幂公式:21cos 2sin 2αα-=;21cos 2cos 2αα+=.4.解题时既要会正用这些公式,也要会逆用及变形用,特别是二倍角公式,正用──化单角,逆用──降次.三、典型问题选讲(一)化简(求值)问题例1 求下列各式的值: ⑴︒︒︒80cos 40cos 20cos ; ⑵︒⋅︒-︒+︒70tan 50tan 350tan 70tan ;⑶︒+︒10tan 31(50sin ).分析:本题考查三角公式的应用,会逆用及变形用,特别是二倍角公式,正用──化单角,逆用──降次.解析:⑴[法一]原式=8120sin 8160sin 80cos 40cos 20cos 20sin 220sin 2133=︒︒=︒︒︒⋅︒⋅︒.[法二]原式=8180sin 2160sin 40sin 280sin 20sin 240sin =︒︒⋅︒︒⋅︒︒.⑵原式=tan(7050)(1tan 70tan 50)50tan 70︒+︒-︒⋅︒-︒⋅︒70tan 50=︒︒-370tan 50tan 3-=︒︒.⑶原式=︒︒+︒︒=︒︒+︒10cos )10sin 310(cos 50sin )10cos 10sin 31(50sin2sin 50(cos 60cos10sin 60sin 10)2sin 50cos 50cos10cos10︒︒︒+︒︒︒⋅︒==︒︒sin 100cos101cos10cos10︒︒===︒︒.归纳小结:在已知角求值的式子变形中,常通过“造出特殊角”、“对偶式”来简化计算过程.一般情况下,当βα±是特殊角时,使用tan tan tan()(1tan tan )αβαβαβ±=± 化简式子.例2 化简下列各式:(1)⎪⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛∈+-ππαα2232cos 21212121,; (2)⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛+-απαπαα4cos 4cot 2sin cos 222.分析:(1)若注意到化简式是开平方根和2的二倍,是的二倍,是2αααα以及取值范围不难找到解题的突破口;(2)由于分子是一个平方差,分母中的角244παπαπ=-++,若注意到这两大特征,,不难得到解题的切入点.解:(1)因为αααπαπcos cos 2cos 2121223==+<<,所以,又因2sin2sincos 2121243αααπαπ==-<<,所以,所以,原式=2sinα.(2)原式=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛-=⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-απαπααπαπα4cos 4sin 22cos 4cos 4tan 22cos 2=12cos 2cos 22sin 2cos ==⎪⎭⎫⎝⎛-αααπα.归纳小结:(1)在二倍角公式中,两个角的倍数关系,不仅限于2α是α的二倍,要熟悉多种形式的两个角的倍数关系,同时还要注意απαπα-+442,,三个角的内在联系的作用,⎪⎭⎫⎝⎛±⎪⎭⎫ ⎝⎛±=⎪⎭⎫⎝⎛±=απαπαπα4cos 4sin 222sin 2cos 是常用的三角变换.(2)化简题一定要找准解题的突破口或切入点,其中的降次,消元,切化弦,异名化同名,异角化同角是常用的化简技巧.(3)公式变形,αααsin 22sin cos =22cos 1cos 2αα+=,22cos 1sin 2αα-=.例3 已知正实数a ,b 满足的值,求ab b a b a 158tan5sin5cos5cos 5sinπππππ=-+.分析:从方程的观点考虑,如果给等式左边的分子、分母同时除以a ,则已知等式可化为关于的方ab 程,从而可求出ab ,若注意到等式左边的分子、分母都具有θθcos sin b a +的结构,可考虑引入辅助角求解.解法一:由题设得8sincos sin 55158cossincos5515b a b a ππππππ+=-,则.33tan 5158cos 5158sin 5sin 158sin 5cos 158cos 5sin158cos 5cos 158sin ==⎪⎭⎫ ⎝⎛-⎪⎭⎫ ⎝⎛-=⋅+⋅⋅-⋅=πππππππππππππa b解法二:sincos555a b πππϕ⎛⎫+=+ ⎪⎝⎭因为,cossintan 5558tan tan .51585153tan tan tan 33b a b a k k bk a πππϕϕππϕππϕππϕπππϕπ⎛⎫-=+= ⎪⎝⎭⎛⎫+= ⎪⎝⎭+=+=+⎛⎫==+== ⎪⎝⎭,其中,由题设得所以,即,故解法三:tan 85tan 151tan5ba b a πππ+=-原式可变形为:,()()tantan 85tan tan tan 5151tantan 58,5153tan tan tan 3333b a k k Z k k Z b k a παπααππαππαππαπππαπ+⎛⎫==+= ⎪⎝⎭-⋅+=+∈=+∈⎛⎫=+=== ⎪⎝⎭令,则有,由此可所以,故,即()()tan tan 85tan tan tan 5151tan tan58,5153tan tan tan 33b a k k Z k k Z b k aπαπααππαππαππαπππαπ+⎛⎫==+= ⎪⎝⎭-⋅+=+∈=+∈⎛⎫=+=== ⎪⎝⎭令,则有,由此可所以,故即归纳小结:以上解法中,方法一用了集中变量的思想,是一种基本解法;解法二通过模式联想,引入辅助角,技巧性较强,且辅助角公式()ϕααα++=+sin cos sin 22b a b a ,tan b a ϕ⎛⎫=⎪⎝⎭其中,或sin cos a b αα+()tan a b αϕϕ⎛⎫=-= ⎪⎝⎭,其中在历年高考中使用频率是相当高的,应加以关注;解法三利用了换元法,但实质上是综合了解法一和解法二的解法优点,所以解法三最佳.例4 已知2tan tan 560x x αβ-+=,是方程的两个实根,求 ()()()()222sin3sin cos cos αβαβαβαβ+-++++的值.分析:由韦达定理可得到tan tan tan tan αβαβ+⋅及的值,进而可以求出()tan αβ+的值,再将所求值的三角函数式用tan ()βα+表示便可知其值.解法一:由韦达定理得tan 6tan tan 5tan =⋅=+βαβα,, 所以tan ().1615tan tan 1tan tan -=-=⋅-+=+βαβαβα()()()()()()22222sin3sin cos cossincosαβαβαβαβαβαβ+-++++=+++原式()()()()222tan3tan 1213113tan111αβαβαβ+-++⨯-⨯-+===+++.解法二:由韦达定理得tan 6tan tan 5tan =⋅=+βαβα,, 所以tan ().1615tan tan 1tan tan -=-=⋅-+=+βαβαβα()34k k Z αβππ+=+∈于是有,223333312sin sin 2cos 13422422k k k ππππππ⎛⎫⎛⎫⎛⎫=+-+++=++= ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭原式. ()()()()()()()()。
5.5 三角恒等变换 课件(21张PPT)(2024年)
2
α是 的二倍角,
2是的二倍角,在倍角公式cos 2α=1-2sin2α中,利用换
元法,
用代替2,用
2
代替,得
cos α=1-2sin2
2
1-
2
=
2
2
新知探究
同理,在倍角公式cos
2
2α=2cos α-1中,用代替2,用
cos
2
α=2
2
−1
2
1+
(1)sin αcos β=
2
(2)sin θ+sin φ=2sin θ+φcos θ-φ
2
2
思考1:(2)式与(1)式有什么相同点和不同点?
θ+φ
θ-φ
(换元法)如果我们令α=
,β=
,
2
2
θ+φ θ-φ
θ+φ θ-φ
即α+β=
+
= ,α-β=
=φ,代入(1)中得
2
2
2
2
θ+φ
θ-φ
2sin
cos
=sin θ+sin φ
(+)+(-)
同理,我们还可以得到公式
cos αsin
cos αcos
1
β=
2
1
β=
2
(+)-(-)
(+)+(-)
1
2
sin αsin β= (-)-(+)
我们把以上四个公式叫做“积化和差公式”
例2、求证:
1
[sin(α+β)+sin(α-β)]
2
2
2
, 2 ,2 .
新知探究
例1、试以cos α表示2
(完整word版)三角恒等变换知识总结
三角恒等变换知识点总结2014/10/24一、基本内容串讲1. 两角和与差的正弦、余弦和正切公式如下:sin()sin cos cos sin αβαβαβ±=±; cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=对其变形:tan α+tan β=tan(α+β)(1— tan αtan β),有时应用该公式比较方便。
2. 二倍角的正弦、余弦、正切公式如下:sin 2sin cos ααα=. 2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-。
要熟悉余弦“倍角”与“二次”的关系(升角-降次,降角-升次).特别注意公式的三角表达形式,且要善于变形, 22cos 1sin ,22cos 1cos 22α-=αα+=α 这两个形式常用。
3.辅助角公式:sin cos4x x x π⎛⎫+=+ ⎪⎝⎭cos 2sin 6x x x π⎛⎫±=± ⎪⎝⎭()sin cos a x b x x ρ+=+。
4。
简单的三角恒等变换(1)变换对象:角、名称和形式,三角变换只变其形,不变其质.(2)变换目标:利用公式简化三角函数式,达到化简、计算或证明的目的。
(3)变换依据:两角和与差的正弦、余弦、正切公式和二倍角的正弦、余弦、正切公式。
(4)变换思路:明确变换目标,选择变换公式,设计变换途径. 5。
常用知识点:(1)基本恒等式:22sin sin cos 1,tan cos ααααα+==(注意变形使用,尤其‘1’的灵活应用,求函数值时注意角的范围);(2)三角形中的角:A B C π++=,sinA sin(B ),cosA cos(B C)C =+=-+; (3)向量的数量积:cos ,a b a b a b =,1212a b x x y y =+,12120a b x x y y ⊥⇔+=1221//0a b x y x y ⇔-=;二、考点阐述考点1两角和与差的正弦、余弦、正切公式1、sin 20cos 40cos 20sin 40+的值等于( )2、若tan 3α=,4tan 3β=,则tan()αβ-等于( ) 3、若3,4παβ+=则(1tan )(1tan )αβ--的值是________. 4、(1tan1)(1tan 2)(1tan3)(1tan 44)(1tan 45)+︒+︒+︒+︒+︒=_______________。
2019高二数学下册简单的三角恒等变换公式知识点语文
高二数学下册简单的三角恒等变换公式知识点数学在科学发展和现代生活生产中的应用非常广泛,小编准备了高二数学下册简单的三角恒等变换公式知识点,具体请看以下内容。
平方关系:tan cot=1sin csc=1cos sec=1sin/cos=tan=sec/csccos/sin=cot=csc/secsin2+cos2=11+tan2=sec21+cot2=csc2诱导公式sin(-)=-sincos(-)=cos tan(-)=-tancot(-)=-cotsin(/2-)=coscos(/2-)=sin tan(/2-)=cot cot(/2-)=tan sin(/2+)=cos 页 1 第cos(/2+)=-sin tan(/2+)=-cot cot(/2+)=-tan sin()=sincos()=-cos tan()=-tancot()=-cotsin()=-sincos()=-cos tan()=tancot()=cotsin(3/2-)=-cos cos(3/2-)=-sin tan(3/2-)=cot cot(3/2-)=tan sin(3/2+)=-cos cos(3/2+)=sintan(3/2+)=-cotcot(3/2+)=-tansin(2)=-sincos(2)=costan(2)=-tan页 2 第cot(2)=-cotsin(2k)=sincos(2k)=costan(2k)=tancot(2k)=cot(其中kZ)高二数学下册简单的三角恒等变换公式知识点就分享到这里了,更多高二数学知识点请继续关注查字典数学网高中频道!页 3 第。
简单的三角恒等变换(一)(可编辑修改word版)
, §3.2 简单的三角恒等变换(一)学习目标:⒈熟练掌握二倍角的正弦、余弦、正切公式的正用、逆用.⒉能灵活应用和(差)角公式、二倍角公式进行简单三角恒等变形.教学重点:以推导积化和差、和差化积、半角公式作为基本训练,学习三角变换的内容、思路和方法,在与代数变换相比较中,体会三角变换的特点,提高推理、运算能力.教学难点:认识三角变换的特点,并能运用数学思想方法指导变换过程的设计,不断提高从整体上把握变换过程的能力.教学方法:讲练结合. 教具准备:多媒体投影. 教学过程:(Ⅰ)复习引入:师:前面一段时间,我们学习了三角函数的和(差)角公式、二倍角公式等十一个公式,请同学们默写这些公式.生:(默写公式).师:学习了上述公式以后,我们就有了研究三角函数问题的新工具,从而使三角函数的内容、思路和方法更加丰富,为我们提高推理、运算能力提供了新的平台本节课我们将利用已有的这十一个公式进行简单的三角恒等变换,了解三角恒等变换在数学中的应用.(Ⅱ)讲授例题:例 1 试以cos 表示sin 2 , c os 2 tan 2 . 2 2 2 分析:是的二倍角,因此在仅含的正弦、余弦的二倍角公式C 中, 2 以代替就可以得到sin 2 、cos 2 (2) 2 得tan 2 .2解:略.,然后运用同角三角函数的基本关系可 2 2 师:例 1 的结果还可以表示为:sin = ± 1- c os, c os = ± 1+ c os , t an = ± 1- cos , 2 2 2 2 2 1+ cos 有些书上称之为半角公式,其符号由角终边的位置确定.2师:由例题 1 和以往的经验,你认为代数式变换与三角变换有什么不同? 生:代数式变换往往着眼于式子结构形式的变换.三角恒等变换常常首先 寻找式子所包含的角之间的联系.师:由于不同的三角函数式不仅会有结构形式方面的差异,而且还会有所包含的角,以及这些角的三角函数种类方面的差异,因此以式子所包含的角之间的关系为依据选择可以联系它们的适当公式,这是三角恒等变换的特点.例 2 求证:⑴sin cos = 1 [sin(+ ) + sin(- )];2 ⑵sin + sin = 2 sin + - cos . 2 2 分析:对于⑴我们可以从其中右式出发,利用和(差)的正弦公式展开、合并即可得出左式.我们也可以从两个式子结构形式的不同点考虑,发现sin cos 与和(差)的正弦公式之间的联系.记sin cos = x , cos sin = y , 则有 x + y = sin(+ ) , x - y = sin(- ) ,由此解出 x ,即求出了sin cos . ⑵的证明可以直接利用⑴的结果,令+ =,- =,解出、后 代如即可.证明:略师:在此例中,如果不利用⑴的结果,怎样证明⑵?大家可以从角与角之间的关系入手考虑. 生:将= + - + - + ,= - 2 2 2 2 代入左边,然后利用和(差)的 正弦公式展开、合并即可得出右式.师:在例2 的证明中,把sin cos 看成 x , cos sin 看成 y 把等式看作 x ,y 的方程,通过解方程组求得 x ,是方程思想的体现;把+ 看作,-看作,从而把包含、的三角函数式变换成、的三角函数式,是换元思想的应用.(Ⅲ)课后练习:课本 P 155 练习(Ⅳ)课时小结:⑴对于例 1 和例 2,不应只看重它的结果,而要从得到结果的过程中体会三角恒等变换的途径和思想方法.⑵进行三角恒等变换的大致过程是:分析题意,明确思维起点;选择公式, 把握思维方向;实施变换,运用数学思想.(Ⅴ)课后作业:⒈课本 P 156 习题 3.2 A 组 ⒈⑵⑶⑸⑹⑻ B 组 ⒈⒉预习课本 P 154 ~ P 155 ,思考问题:形如 y = a sin x + b cos x 的函数怎样转化为 y = A sin(x +) 的形式?转化过程体现了怎样的思想?板书设计:教学后记: §3.2 简单的三角恒等变换(一) 例 1 例 2 小结预习提纲。
高一数学上期三角函数恒等变换知识归纳与整理
《三角函数恒等变换》知识归纳与整理一、 基本公式1、必须掌握的基本公式(1) 两角和与差的三角函数 S S C C C βαβαβα =±)( 同名乘积的和与差S C C S S βαβαβα±=±)( 异名乘积的和与差T T T T T βαβαβα1)(±=±(2) 二倍角的三角函数 C S S ααα22=S C S C C 222222112ααααα-=-=-= 差点等于1T T T2212ααα-=(3) 半角的三角函数212C Sαα-±=212C C αα+±=C C Tααα+-±=112θθθθθs i n c o s1c o s 1s i n 2-=+=T2、理解记忆的其他公式 (1) 积化和差][21)()(C C C C βαβαβα-++= =S S βα][21)()-(C C βαβα+- ][21)()(S S C S βαβαβα-++= ][21)()(S S S C βαβαβα-+-=(2) 和差化积][222C S S S βαβαβα-+=+][222C S S S βαβαβα+-=-][222C C C C βαβαβα-+=+][222S S C C βαβαβα-+-=-(3) 万能公式(全部用正切来表示另外的三角函数称为万能公式)T T S 22212ααα+=T T C 222211ααα+-=T T T 22212ααα-=(4) 辅助角公式)s i n (c o s s i n22ϕ++=+x x b x a b a其中:ab=ϕtan常见的几种特殊辅助角公式:① )4sin(2cos sin π+=+x x x ② )3sin(2cos 3sin π+=+x x x③)6sin(2cos sin 3π+=+x x x ④ )4s i n (2c o s s i nπ-=-x x x⑤ )3s i n (2c o s 3s i nπ-=-x x x ⑥ )6s i n (2c o s s i n 3π-=-x x x二、 理解证明1、两个基本公式的证明①S S C C C βαβαβα-=+)(的证明方法:在单位圆内利用两点间的距离公式证明。
三角恒等变换公式大全
三角恒等变换公式大全三角函数恒等变换是指将一个三角函数用其他三角函数表示的等式,称为三角函数的恒等变换公式。
通过恒等变换可以将复杂的三角函数表达式转化为简化的形式,从而方便计算和求解。
以下是一些常用的三角函数恒等变换公式:1.正弦函数的恒等变换公式:- 正余弦关系:$\sin^2x+\cos^2x=1$- 正弦的平方变换:$1-\cos^2x=\sin^2x$- 余弦的平方变换:$1-\sin^2x=\cos^2x$- 和差化积:$\sin(x\pm y)=\sin x\cos y\pm \cos x\sin y$2.余弦函数的恒等变换公式:- 正余弦关系:$\sin^2x+\cos^2x=1$- 余弦的平方变换:$1-\sin^2x=\cos^2x$- 正弦的平方变换:$1-\cos^2x=\sin^2x$- 和差化积:$\cos(x\pm y)=\cos x\cos y\mp \sin x\sin y$3.正切函数的恒等变换公式:- 正切的定义:$\tan x=\frac{\sin x}{\cos x}$- 正切的倒数关系:$\tan x=\frac{1}{\cot x}$- 倍角公式:$\tan 2x=\frac{2\tan x}{1-\tan^2x}$- 和差化积:$\tan(x\pm y)=\frac{\tan x\pm \tan y}{1\mp \tan x\tan y}$4.余切函数的恒等变换公式:- 余切的定义:$\cot x=\frac{1}{\tan x}$- 余切的倒数关系:$\cot x=\frac{1}{\tan x}$- 倍角公式:$\cot 2x=\frac{\cot^2 x - 1}{2\cot x}$- 和差化积:$\cot(x\pm y)=\frac{\cot x\cot y \mp 1}{\cot y \pm \cot x}$5.正割函数的恒等变换公式:- 正割的定义:$\sec x=\frac{1}{\cos x}$- 正割的倒数关系:$\sec x=\frac{1}{\cos x}$- 平方关系:$\sec^2x=1+\tan^2x$6.余割函数的恒等变换公式:- 余割的定义:$\csc x=\frac{1}{\sin x}$- 余割的倒数关系:$\csc x=\frac{1}{\sin x}$- 平方关系:$\csc^2x=1+\cot^2x$7.和差化积公式:- $\sin(x\pm y)=\sin x\cos y\pm \cos x\sin y$- $\cos(x\pm y)=\cos x\cos y\mp \sin x\sin y$- $\tan(x\pm y)=\frac{\tan x\pm \tan y}{1\mp \tan x\tan y}$ - $\cot(x\pm y)=\frac{\cot x\cot y \mp 1}{\cot y \pm \cot x}$8.二倍角公式:- $\sin 2x=2\sin x\cos x$- $\cos 2x=\cos^2 x - \sin^2 x$- $\tan 2x=\frac{2\tan x}{1-\tan^2 x}$9.平方关系公式:- $\sin^2 x+\cos^2 x=1$- $1+\tan^2 x=\sec^2 x$- $1+\cot^2 x=\csc^2 x$10.二分公式:- $\sin^2 x=\frac{1-\cos 2x}{2}$- $\cos^2 x=\frac{1+\cos 2x}{2}$- $\tan^2 x=\frac{1-\cos 2x}{1+\cos 2x}$以上是一些常用的三角函数恒等变换公式,这些公式在三角函数的计算和求解中经常被使用。
换元求解的方法和技巧
换元求解的方法和技巧换元求解是解决数学问题中的一种常用方法,它通过引入新的自变量,从而将原始方程转化为一个更简单的形式来进行求解。
换元求解方法和技巧可以帮助我们解决各种类型的方程和积分问题。
下面,我将详细介绍一些常见的换元求解方法和技巧。
1. 利用三角恒等变换:当我们遇到包含三角函数的方程时,可以尝试使用三角恒等变换。
例如,对于含有平方根的三角函数,我们可以使用三角恒等变换将其转换为较简单的形式,然后再进行求解。
2. 利用自然对数的换元法:当我们遇到含有指数函数的方程时,可以尝试使用自然对数的换元法。
通过取对数,我们可以将指数函数转换为对数函数,从而将原始方程转化为一个更容易求解的形式。
3. 利用代换法:代换法是换元求解中最常用的方法之一。
通过引入新的自变量,可以将原始方程转化为一个更简单的形式。
例如,对于含有分式的方程,我们可以通过引入新的自变量,将分式转换为一个更简单的整式,然后再进行求解。
4. 利用幂函数的换元法:当我们遇到含有幂函数的方程时,可以尝试使用幂函数的换元法。
通过引入新的自变量,我们可以将幂函数转换为一个更简单的形式,从而将原始方程转化为一个更容易求解的形式。
5. 利用逆函数的换元法:当我们遇到含有逆函数的方程时,可以尝试使用逆函数的换元法。
通过引入逆函数,我们可以将原始方程转换为一个更简单的形式,然后再进行求解。
6. 利用线性变换:线性变换是一种将原始方程转化为线性方程的方法。
通过引入新的自变量,并进行线性变换,我们可以将原始方程转换为一个线性方程,从而更容易求解。
除了以上方法和技巧外,换元求解还需要注意以下几点:1. 选择合适的换元:在进行换元求解时,我们需要选择合适的换元方法,以使得原始方程转换为一个更简单的形式。
通过观察原始方程的特点和性质,选择合适的换元方法是非常重要的。
2. 注意换元后的边界问题:在进行换元求解时,我们需要注意换元后的边界条件。
有时候换元后的方程在某些特定点上是不可解的,这时我们需要重新考虑边界条件,以使得方程有解。
3.2简单的三角恒等变换课件人教新课标
[类题尝试] 已知函数 f(x)=sin2x-sin2x-π6,x∈R. (1)求 f(x)的最小正周期;
(2)求 f(x)在区间-π3,π4上的最大值和最小值. 解:(1)由已知,有 f(x)=1-c2os 2x-1-cos22x-π3 =12
12cos
2x+
3 2 sin
2x
-
1 2
cos
2x =
6 A. 6
B.-
6 6
30 C. 6
D.-
30 6
解析:由题意知α2∈0,π2,所以 cos α2>0,
α2=
1+cos 2
α=
30 6.
答案:C
3.已知 cos α=35,α∈32π,2π,则 sin α2等于(
)
A.
5 5
B.-
5 5
4
25
C.5
D. 5
解析:由题知α2∈34π,π,所以 sin α2>0,
2 θ 2
=
1 θθ
cos 2sin 2
=sin2 θ=右边.
所以原式成立.
法二 左边=((1+1+sinsiθn-θ+cocsoθs)θ)2+((1+1+sisninθθ-+cocsosθθ))2
=2((11++ssiinn
θ)2+2cos2 θ θ)2-cos2 θ
=2si4n+θ+4s2insiθn2 θ
1.半角公式
[知识提炼·梳理]
温馨提示 对于半角公式,要求会推导,不要求记忆.
2.辅助角公式
asin x+bcos x=
a2+b2sin(x+φ)cos φ=
a a2+b2,
sin φ= a2b+b2,其中 φ 称为辅助角,它的终边所在象
三角恒等变换技巧
三角恒等变换技巧三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具〞.而且由于三角公式众多.方法灵活多变,假设能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对开展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦“切割化弦〞就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是〞‘归一〞思想. 【例1】证明:ααααααααcot tan cos sin 2cot cos tan sin 22+=++证明:左边ααααααααcos sin 2sin cos cos cos sin sin22+⋅+⋅= ααααααααααααcos sin 1cos sin )cos (sin cos sin cos cos sin 2sin 2224224=+=++=右边ααααααααααcos sin 1cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证.点评“切割化弦〞是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类. 【例2】θ同时满足b a b a b a 2sec cos 2cos sec 22=-=-θθθθ和,且b a ,均不为零,试求“b a ,〞b 的关系.解:⎪⎩⎪⎨⎧=-=-②① b a b a b a 2sec cos 2cos sec 22θθθθ显然0cos ≠θ,由①×θ2cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ又0≠a ,∴ab-=θcos 代入①得a a b b a 2223=+0)(222=-⇔b a ∴22b a =点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径. 【例3】化简)10tan 31(50sin 00+解:原式=000000010cos )10sin 2310cos 21(250sin )10cos 10sin 31(50sin +⋅=+ 110cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 000000000===+⋅=点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为ββα-+)(;α2可变为)()(βαβα-++;βα-2可变为αβα+-)(;α可视为2α的倍角;)45(0α±可视为)290(0α+的半角等等.【例4】〔2005年全国卷〕设α为第四象限角,假设513sin 3sin =αα,那么=α2tan _______. 解: 513tan 1tan 3tan 2tan tan 2tan sin 2cos cos 2sin sin 2cos cos 2sin sin 3sin 22=+-=-+=-+=αααααααααααααααα ∴91tan 2=α 又∵α为第四象限角 ∴31tan -=α∴43tan 1tan 22tan 2-=-=ααα 点评这里将α3写成αα+2,将α写成αα-2是解题的切人点.根据三角表达式的结构特征,寻求它与三角公式间的相互关系是解题的关键.【例5】锐角α、β满足)cos(2csc sin βααβ+=,2πβα≠+,求βtan 的最大值及β的值。
三角恒等变换
综合练习题
● 题目:求证 sin(α + β) = sinαcosβ + cosαsinβ 解析:利用三角函数的加法公式,将左边展开,与右边进行比 较,得出结论。
● 解析:利用三角函数的加法公式,将左边展开,与右边进行比较,得出结论。
● 题目:已知 cos(α + β) = 1/3,cos(α - β) = 2/3,求 tanαtanβ 的值 解析:利用三角函数的加法公式和减法 公式,将已知条件代入,解出 tanαtanβ 的值。
公式形式:sin(x+y)=sinxcosy+cosxsiny 公式证明:利用三角函数的和差化积公式证明 应用场景:在三角函数图像变换、求解三角函数方程等问题中广泛应用 注意事项:使用时需要注意x、y的取值范围,避免出现错误的结果
三角恒等变换的 技巧和方法
代数恒等变换方法
代数恒等变换的定义和性质
交流电分析:在交流电 的分析中,三角恒等变 换用于计算交流电的相 位和幅度,以及进行电 路分析。
振动分析:三角恒等变 换用于描述简谐振动的 合成与分解,以及分析 复杂振动的模式。
光学应用:在光学中, 三角恒等变换用于描述 光的干涉和衍射现象, 以及分析光学仪器的性 能。
三角恒等变换在实际问题中的应用
三角函数在解析几何中的应用,例如求解极坐标方程、圆和椭圆的参数方程等。
三角函数在求解微分方程中的应用,例如求解振动问题、波动问题等。 三角恒等变换在信号处理中的应用,例如傅里叶变换、拉普拉斯变换等。 三角恒等变换在复数运算中的应用,例如求解复数方程、进行复数运算等。
三角恒等变换的 注意事项和易错 点
● 解析:利用三角函数的加法公式和减法公式,将已知条件代入,解出 tanαtanβ 的值。
人教版高中数学必修二第十章三角恒等变换第10章章末复习课精品课程及课后练习(必学!)
例 3 已知向量 a=(cos α,sin α),b=(cos β,sin β),|a-b|=255. (1)求cos(α-β)的值;
解 因为向量a=(cos α,sin α),b=(cos β,sin β), |a-b|= cos α-cos β2+sin α-sin β2= 2-2cosα-β=255, 所以 2-2cos(α-β)=45,所以 cos(α-β)=35.
(2)若-π2<β<0<α<π2,且 sin β=-153,求 sin α 的值.
解 因为 0<α<π2,-π2<β<0,所以 0<α-β<π, 因为 cos(α-β)=35, 所以 sin(α-β)=45,且 sin β=-153,cos β=1123, 所以sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β
例 1 (1)cossi2n15151°0-°ssinin22105°5°的值为
A.-12
√B.12
3 C. 2
D.-
3 2
解析 原式=sinc7o0s°3s1in0°20°=cosc2o0s°s5i0n°20° 1
=2ssiinn4400°°=12.
1 (2)设α为钝角,且3sin 2α=cos α,则sin α=_6__.
解 f(α)=sin2α-6π=17,2α 是第一象限角,即 2kπ<2α<π2+2kπ(k∈Z),
∴2kπ-π6<2α-π6<π3+2kπ(k∈Z),
∴cos2α-6π=4 7 3,
∴sin 2α=sin2α-π6+6π=sin2α-π6·cos
π6+cos2α-π6·sin
高中数学三角恒等式变形解题常用方法
高中数学三角恒等式变形解题常用方法一.知识分析1. 三角函数恒等变形公式(1)两角和与差公式(2)二倍角公式(3)三倍角公式(4)半角公式(5)万能公式,,(6)积化和差,,,(7)和差化积,,,2. 网络结构3. 基础知识疑点辨析(1)正弦、余弦的和差角公式能否统一成一个三角公式?实际上,正弦、余弦的和角公式包括它们的差角公式,因为在和角公式中,是一个任意角,可正可负。
另外,公式虽然形式不同,结构不同,但本质相同:。
(2)怎样正确理解正切的和差角公式?正确理解正切的和差角公式需要把握以下三点:①推导正切和角公式的关键步骤是把公式,右边的“分子”、“分母”都除以,从而“化弦为切”,导出了。
②公式都适用于为任意角,但运用公式时,必须限定,都不等于。
③用代替,可把转化为,其限制条件同②。
(3)正弦、余弦、正切的和差角公式有哪些应用?①不用计算器或查表,只通过笔算求得某些特殊角(例如15°,75°,105°角等)的三角函数值。
②能由两个单角的三角函数值,求得它们和差角的三角函数值;能由两个单角的三角函数值与这两个角的范围,求得两角和的大小(注意这两个条件缺一不可)。
③能运用这些和(差)角公式以及其它有关公式证明三角恒等式或条件等式,化简三角函数式,要注意公式可以正用,逆用和变用。
运用这些公式可求得简单三角函数式的最大值或最小值。
(4)利用单角的三角函数表示半角的三角函数时应注意什么?先用二倍角公式导出,再把两式的左边、右边分别相除,得到,由此得到的三个公式:,,分别叫做正弦、余弦、正切的半角公式。
公式中根号前的符号,由所在的象限来确定,如果没有给出限制符号的条件,根号前面应保持正、负两个符号。
另外,容易证明。
4. 三角函数变换的方法总结三角学中,有关求值、化简、证明以及解三角方程与解几何问题等,都经常涉及到运用三角变换的解题方法与技巧,而三角变换主要为三角恒等变换。
三角恒等变换在整个初等数学中涉及面广,是常用的解题工具,而且由于三角公式众多,方法灵活多变,若能熟练掌握三角恒等变换的技巧,不但能加深对三角公式的记忆与内在联系的理解,而且对发展数学逻辑思维能力,提高数学知识的综合运用能力都大有益处。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角恒等变换换元法
三角函数是高中数学中的重要内容,它们在数学、物理、工程等领域中都有广泛的应用。
在解决三角函数的问题时,我们经常需要用到三角恒等变换换元法。
本文将从定义、分类、应用等方面介绍三角恒等变换换元法。
一、定义
三角恒等变换换元法是指通过三角函数的恒等式和变换公式,将一个三角函数转化为另一个三角函数的方法。
它是解决三角函数问题的重要方法之一。
二、分类
三角恒等变换换元法可以分为以下几类:
1. 基本恒等式变形法
基本恒等式变形法是指通过对基本恒等式进行变形,将一个三角函数转化为另一个三角函数的方法。
例如,对于正弦函数,我们可以利用基本恒等式sin^2x+cos^2x=1,将sin^2x转化为1-cos^2x,从而将sinx 转化为cosx。
2. 和差化积法
和差化积法是指将两个三角函数的和或差转化为一个三角函数的积的方法。
例如,对于sin(x+y),我们可以利用和差公式
sin(x+y)=sinxcosy+cosxsiny,将其转化为两个三角函数的积
sinxcosy+cosxsiny。
3. 积化和差法
积化和差法是指将一个三角函数的积转化为两个三角函数的和或差的方法。
例如,对于sinxcosx,我们可以利用倍角公式sin2x=2sinxcosx,将其转化为两个三角函数的和sin2x/2。
4. 半角公式法
半角公式法是指通过半角公式将一个三角函数转化为另一个三角函数的方法。
例如,对于tan2x,我们可以利用半角公式tan2x=2tanx/(1-
tan^2x),将其转化为tanx的函数。
三、应用
三角恒等变换换元法在解决三角函数问题时有广泛的应用。
例如,在求解三角方程sinx+cosx=1时,我们可以利用和差化积法将sinx+cosx
转化为一个三角函数的积,从而得到sin(x+45°)=√2/2,进而求得x=45°或x=135°。
此外,在求解三角函数的极值、最值、导数等问题时,三角恒等变换换元法也有重要的应用。
总之,三角恒等变换换元法是解决三角函数问题的重要方法之一,掌握它对于提高数学水平和解决实际问题都有重要的意义。