高中数学对数与对数函数知识点及例题讲解

合集下载

对数及对数函数要点及解题技巧讲解

对数及对数函数要点及解题技巧讲解

的最大值与最小值之差为12,则 a 等于( )

A. 2
B.2 或12

B

C.2 2
D.4 或14
分析:∵a>1 与 0<a<1 时,f(x)的单调性不同,∴最
小值、最大值也不同,故需分类讨论.
第2章 函数
高考数学总复习
解析:当 0<a<1 时,f(x)在[a,2a]上单调递减,由题意
得,logaa-loga2a=12,∴loga2=-12,∴a=14.
人 教
B
当 a>1 时,∴f(x)=logax 在[a,2a]上为增函数,

∴loga2a-logaa=12,解得 a=4,故选 D.
答案:D
第2章 函数
(2011·江苏四市联考)已知函数 f(x)=|log2x|,正实 数 m、n 满足 m<n,且 f(m)=f(n),若 f(x)在区间[m2,
高考数学总复习
二、对数函数的图象与性质
定义
y=logax(a>0,a≠1)
人 教
B

图象
第2章 函数
高考数学总复习
(1)定义域:(0,+∞) (2)值域:R
(3)过点(1,0),即当 x=1 时,y=0.

性质 (4)当 a>1 时,在(0,+∞)是增函数;

B
当 0<a<1 时,在(0,+∞)上是减函数.
B

(2)原式=llgg23+llgg29·llgg34+llgg38
=llgg23+2llgg23·2llgg32+3llgg32=32llgg23·56llgg32=54.
答案:(1)2

专题37 高中数学对数函数的性质及其应用(解析版)

专题37 高中数学对数函数的性质及其应用(解析版)

专题37 对数函数的性质及其应用知识点一 对数函数y =log a x (a >0,且a ≠1)的性质(1)定义域: (0,+∞). (2)值域: (-∞,+∞). (3)定点: (1,0).(4)单调性:a >1时,在(0,+∞)上是增函数;0<a <1时,在(0,+∞)上是减函数. (5)函数值变化当a >1,x >1时,y ∈ (0,+∞);0<x <1时,y ∈ (-∞,0); 当0<a <1,x >1时,y ∈ (-∞,0);0<x <1时,y ∈ (0,+∞).可简记为“底真同,对数正;底真异,对数负”,“同”指同大于1或同小于1,“异”指一个大于1一个小于1.(6)复合函数的单调性,按照“同增异减”的性质求解.知识点二 反函数的概念对数函数y =log a x (a >0,且a ≠1)与指数函数y =a x 互为反函数,它们的图象关于直线y =x 对称.对数函数y =log a x 的定义域是指数函数y =a x 的值域,而y =log a x 的值域是y =a x 的定义域.(1)并非任意一个函数y =f (x )都有反函数,只有定义域和值域满足“一一对应”的函数才有反函数. (2)一般来说,单调函数都有反函数,且单调函数的反函数与原函数有相同的单调性. (3)若一个奇函数存在反函数,则它的反函数也是奇函数. (4)求反函数的步骤: ①求出函数y =f (x )的值域; ②由y =f (x )解出x =f -1(y );③把x =f -1(y )改写成y =f -1(x ),并写出函数的定义域(即原函数的值域).题型一 比较对数值的大小1.比较下列各组值的大小:(1)log 534与log 543;(2)log 132与log 152;(3)log 23与log 54.[解析](1)法一(单调性法):对数函数y =log 5x 在(0,+∞)上是增函数,而34<43,所以log 534<log 543.法二(中间值法):因为log 534<0,log 543>0,所以log 534<log 543.(2)法一(单调性法):由于log 132=1log 213,log 152=1log 215,又因对数函数y =log 2x 在(0,+∞)上是增函数,且13>15,所以0>log 213>log 215,所以1log 213<1log 215,所以log 132<log 152.法二(图象法):如图,在同一坐标系中分别画出y =log 13x 及y =log 15x 的图象,由图易知:log 132<log 152.(3)取中间值1,因为log 23>log 22=1=log 55>log 54,所以log 23>log 54. 2.比较下列各组值的大小:(1)log 230.5,log 230.6;(2)log 1.51.6,log 1.51.4;(3)log 0.57,log 0.67;(4)log 3π,log 20.8.[解析](1)因为函数y =log 23x 是减函数,且0.5<0.6,所以log 230.5>log 230.6.(2)因为函数y =log 1.5x 是增函数,且1.6>1.4,所以log 1.51.6>log 1.51.4. (3)因为0>log 70.6>log 70.5,所以1log 70.6<1log 70.5,即log 0.67<log 0.57. (4)因为log 3π>log 31=0,log 20.8<log 21=0,所以log 3π>log 20.8. 3.比较下列各组中两个值的大小:(1)log 31.9,log 32;(2)log 23,log 0.32;(3)log a π,log a 3.14(a >0,a ≠1). [解析](1)因为y =log 3x 在(0,+∞)上是增函数,所以log 31.9<log 32. (2)因为log 23>log 21=0,log 0.32<log 0.31=0,所以log 23>log 0.32.(3)当a >1时,函数y =log a x 在(0,+∞)上是增函数,则有log a π>log a 3.14; 当0<a <1时,函数y =log a x 在(0,+∞)上是减函数,则有log a π<log a 3.14. 综上所得,当a >1时,log a π>log a 3.14;当0<a <1时,log a π<log a 3.14. 4.比较下列各组数的大小(1)log 0.13与log 0.1π;(2)log 45与log 65;(3)3log 45与2log 23;(4)log a (a +2)与log a (a +3)(a >0且a ≠1). [解析] (1)∵函数y =log 0.1x 是减函数,π>3,∴log 0.13>log 0.1π.(2)法一:∵函数y =log 4x 和y =log 6x 都是增函数,∴log 45>log 44=1,log 65<log 66=1.∴log 45>log 65. 法二:画出y =log 4x 和y =log 6x 在同一坐标系中的图象如图所示,由图可知log 45>log 65.(3)∵3log 45=log 453=log 4125=log 2125log 24=12log 2125=log 2125,2log 23=log 232=log 29,又∵函数y =log 2x 是增函数,125>9,∴log 2125>log 29,即3log 45>2log 23. (4)∵a +2<a +3,故①当a >1时,log a (a +2)<log a (a +3);②当0<a <1时,log a (a +2)>log a (a +3). 5.比较下列各组中两个值的大小:(1)ln0.3,ln2;(2)log 30.2,log 40.2;(3)log 3π,log π3;(4)log a 3.1,log a 5.2(a>0,且a ≠1). [解析] (1)因为函数y =lnx 是增函数,且0.3<2,所以ln0.3<ln2.(2)解法一:因为0>log 0.23>log 0.24,所以1log 0.23<1log 0.24,即log 30.2<log 40.2.解法二:如图所示,由图可知log 40.2>log 30.2.(3)因为函数y =log 3x 是增函数,且π>3,所以log 3π>log 33=1.因为函数y =log πx 是增函数,且π>3,所以log π3<log ππ=1.所以log 3π>log π3.(4)当a>1时,函数y =log a x 在(0,+∞)上是增函数,又3.1<5.2,所以log a 3.1<log a 5.2; 当0<a<1时,函数y =log a x 在(0,+∞)上是减函数,又3.1<5.2,所以log a 3.1>log a 5.2. 6.已知实数a =log 45,b =⎝⎛⎭⎫120,c =log 30.4,则a ,b ,c 的大小关系为( )A .b<c<aB .b<a<cC .c<a<bD .c<b<a[解析]由题知,a =log 45>1,b =⎝⎛⎭⎫120=1,c =log 30.4<0,故c<b<a.[答案] D 7.下列式子中成立的是( )A .log 0.44<log 0.46B .1.013.4>1.013.5C .3.50.3<3.40.3D .log 76<log 67[解析]选D ,因为y =log 0.4x 为减函数,故log 0.44>log 0.46,故A 错;因为y =1.01x 为增函数, 所以1.013.4<1.013.5,故B 错;由幂函数的性质知,3.50.3>3.40.3,故C 错. 8.已知a =2-13,b =log 213,c =log 1213,则( )A .a >b >cB .a >c >bC .c >b >aD .c >a >b[解析]∵0<a =213<20=1,b =log 213<log 21=0,c =log 1213>log 1212=1,∴c >a >b .故选D.9.如果log 12 x <log 12y <0,那么( )A .y <x <1B .x <y <1C .1<x <yD .1<y <x[解析]对数函数y =log 12 x 在(0,+∞)上单调递减,则由log 12 x <log 12 y <0=log 12 1,可得1<y <x .10.设a =log 32,b =log 52,c =log 23,则( )A .a >c >bB .b >c >aC .c >b >aD .c >a >b[解析]a =log 32<log 33=1;c =log 23>log 22=1,由对数函数的性质可知log 52<log 32,∴b <a <c ,故选D. 11.设a =log 43,b =log 53,c =log 45,则( )A .a>c>bB .b>c>aC .c>b>aD .c>a>b[解析]a =log 43<log 44=1;c =log 45>log 44=1,由对数函数的性质可知log 53<log 43,∴b<a<c ,故选D. 12.若a =20.2,b =log 4(3.2),c =log 2(0.5),则( )A .a >b >cB .b >a >cC .c >a >bD .b >c >a[解析]∵a =20.2>1>b =l o g 4(3.2)>0>c =l o g 2(0.5),∴a >b >c .故选A. 13.已知log a 13>log b 13>0,则下列关系正确的是( )A .0<b <a <1B .0<a <b <1C .1<b <aD .1<a <b[解析]由log a 13>0,log b 13>0,可知a ,b ∈(0,1),又log a 13>log b 13,作出图象如图所示,结合图象易知a >b ,∴0<b <a <1.14.设a =log 0.20.3,b =log 20.3,则( )A .a +b <ab <0B .ab <a +b <0C .a +b <0<abD .ab <0<a +b[解析]∵a =log 0.20.3>log 0.21=0,b =log 20.3<log 21=0,∴ab <0.∵a +b ab =1a +1b=log 0.30.2+log 0.32=log 0.30.4,∴1=log 0.30.3>log 0.30.4>log 0.31=0, ∴0<a +b ab<1,∴ab <a +b <0.15.已知f (x )=|lg x |,且1c>a >b >1,试比较f (a ),f (b ),f (c )的大小.[解析]先作出函数y =lg x 的图象,再将图象位于x 轴下方的部分折到x 轴上方, 于是得f (x )=|lg x |图象(如图),由图象可知,f (x )在(0,1)上单调递减,在(1,+∞) 上单调递增.由1c >a >b >1得:f 1c >f (a )>f (b ),而f 1c =⎪⎪⎪⎪lg 1c =|-lg c |=|lg c |=f (c ). ∴f (c )>f (a )>f (b ).题型二 求单调区间或根据单调性求参1.函数f (x )=ln(2-x )的单调减区间为________.[解析]由2-x >0,得x <2.又函数y =2-x ,x ∈(-∞,2)为减函数, ∴函数f (x )=ln(2-x )的单调减区间为(-∞,2). 2.函数f (x )=log 2(1+2x )的单调增区间是______.[解析]易知函数f (x )的定义域为-12,+∞,又因为函数y =log 2x 和y =1+2x 都是增函数,所以f (x )的单调增区间是⎝⎛⎭⎫-12,+∞. 3.求函数y =log 12(1-x 2)的单调递增区间.[解析]要使函数有意义,则有1-x 2>0⇔x 2<1⇔-1<x <1.∴函数的定义域为(-1,1). 令t =1-x 2,x ∈(-1,1).在(-1,0)上,x 增大,t 增大,y =log 12 t 减小,即在(-1,0)上,y 随x 的增大而减小,为减函数;在[0,1)上,x 增大,t 减小,y =log 12 t 增大,即在[0,1)上,y 随x 的增大而增大,为增函数.∴y =log 12 (1-x 2)的单调递增区间为[0,1).4.求函数y =log 0.7(x 2-3x +2)的单调区间.[解析]因为x 2-3x +2>0,所以x<1或x>2.所以函数的定义域为(-∞,1)∪(2,+∞),令t =x 2-3x +2, 则y =log 0.7t ,显然y =log 0.7t 在(0,+∞)上是单调递减的,而t =x 2-3x +2在(-∞,1),(2,+∞)上分 别是单调递减和单调递增的,所以函数y =log 0.7(x 2-3x +2)的单调递增区间为(-∞,1), 单调递减区间为(2,+∞).5.求函数y =lg (x 2-2x )的单调递增区间.[解析]由已知,得x 2-2x >0,解得x >2或x <0.因为y =x 2-2x 在[1,+∞)上是增函数,在(-∞,1]上是减函数,而y =lg x 在(0,+∞)上是增函数,所以y =lg (x 2-2x )的单调递增区间为(2,+∞). 6.函数f (x )=ln(x +2)+ln(4-x )的单调递减区间是________.[解析]由⎩⎪⎨⎪⎧x +2>0,4-x >0得-2<x <4,因此函数f (x )的定义域为(-2,4).f (x )=ln(x +2)+ln(4-x )=ln(-x 2+2x +8)=ln [-(x -1)2+9], 设u =-(x -1)2+9,又y =ln u 是增函数,u =-(x -1)2+9在(1,4)上是减函数,因此f (x )的单调递减区间为(1,4). 7.函数f (x )=|log 12x |的单调递增区间是( )A.⎝⎛⎦⎤0,12 B .(0,1] C .(0,+∞)D .[1,+∞)[解析]f (x )的图象如图所示,由图象可知单调递增区间为[1,+∞).]8.已知函数f (x )=log a (3-ax )(a >0,且a ≠1).当x ∈[0,2]时,函数f (x )恒有意义,求实数a 的取值范围. [解析]∵a >0且a ≠1,设t (x )=3-ax ,则t (x )=3-ax 为减函数,当x ∈[0,2]时,t (x )的最小值为3-2a . ∵当x ∈[0,2]时,f (x )恒有意义,即x ∈[0,2]时,3-ax >0恒成立.∴3-2a >0,∴a <32.又a >0且a ≠1,∴0<a <1或1<a <32,∴实数a 的取值范围为(0,1)∪⎝⎛⎭⎫1,32. 9.已知y =log a (2-ax )是[0,1]上的减函数,则a 的取值范围为( )A .(0,1)B .(1,2)C .(0,2)D .[2,+∞)[解析]∵f (x )=l o g a (2-ax )在[0,1]上是减函数,且y =2-ax 在[0,1]上是减函数,∴⎩⎪⎨⎪⎧ f (0)>f (1),a >1,即⎩⎪⎨⎪⎧ log a 2>log a (2-a ),a >1,∴⎩⎪⎨⎪⎧a >1,2-a >0,∴1<a <2. 10.若y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,则a 的取值范围是________. [解析]因为y =log a (ax +3)(a >0且a ≠1)在区间(-1,+∞)上是增函数,所以⎩⎪⎨⎪⎧-a +3≥0,a >1,a >0且a ≠1,解得1<a ≤3.故a 的取值范围是(1,3].11.是否存在实数a ,使函数y =log a (ax 2-x )在区间[2,4]上是增函数?如果存在,求出a 的取值范围;如果不存在,请说明理由.[解析]存在.设u =g (x )=ax 2-x ,则y =log a u .假设符合条件的a 值存在.(1)当a >1时,只需g (x )在[2,4]上为增函数,故应满足⎩⎪⎨⎪⎧12a ≤2,g (2)=4a -2>0.解得a >12.∴a >1.(2)当0<a <1时,只需g (x )在[2,4]上为减函数,故应满足⎩⎪⎨⎪⎧12a ≥4,g (4)=16a -4>0.无解.综上所述,当a >1时,函数y =log a (ax 2-x )在[2,4]上是增函数. 12.设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. (1)证明:f (x )是(a ,+∞)上的减函数; (2)若f (x )>1,求x 的取值范围.[解析] (1)证明:任取x 1,x 2∈(a ,+∞),不妨令0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=⎝⎛⎭⎫1-a x 1-⎝⎛⎭⎫1-a x 2=a (x 1-x 2)x 1x 2, ∵0<a <x 1<x 2,∴x 1-x 2<0,x 1x 2>0,∴g (x 1)-g (x 2)<0,∴g (x 1)<g (x 2),∴g (x )为增函数,又∵0<a <1,∴f (x )是(a ,+∞)上的减函数. (2)∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-a x <a ,∴1-a <ax <1.又∵0<a <1,∴1-a >0, ∴a <x <a1-a,∴x 的取值范围是⎝⎛⎭⎫a ,a 1-a .题型三 求解对数不等式1.不等式log 2(2x +3)>log 2(5x -6)的解集为( )A .(-∞,3) B.⎝⎛⎭⎫-32,3 C.⎝⎛⎭⎫-32,65 D.⎝⎛⎭⎫65,3[解析]由⎩⎪⎨⎪⎧2x +3>0,5x -6>0,2x +3>5x -6,得65<x<3.[答案] D 2.若lg(2x -4)≤1,则x 的取值范围是( )A .(-∞,7]B .(2,7]C .[7,+∞)D .(2,+∞)[解析]由lg(2x -4)≤1,得0<2x -4≤10,即2<x ≤7,故选B. 3.若log a 23<1,则a 的取值范围是________.[解析] 原不等式等价于⎩⎪⎨⎪⎧ 0<a <1,23>a 或⎩⎪⎨⎪⎧a >1,23<a ,解得0<a <23或a >1,故a 的取值范围为⎝⎛⎭⎫0,23∪(1,+∞). 4.已知log a (3a -1)恒为正,求a 的取值范围. [解析]由题意知log a (3a -1)>0=log a 1.当a>1时,y =log a x 是增函数,∴⎩⎪⎨⎪⎧3a -1>1,3a -1>0,解得a>23,∴a>1;当0<a<1时,y =log a x 是减函数,∴⎩⎪⎨⎪⎧3a -1<1,3a -1>0,解得13<a<23.∴13<a<23.综上所述,a 的取值范围是⎝⎛⎭⎫13,23∪(1,+∞).5.函数f (x )=⎩⎪⎨⎪⎧log 2x ,x >0,log 12(-x ),x <0,若f (a )>f (-a ),则实数a 的取值范围是( )A .(-1,0)∪(0,1)B .(-∞,-1)∪(1,+∞)C .(-1,0)∪(1,+∞)D .(-∞,-1)∪(0,1)[解析]若a >0,由f (a )>f (-a ),得log 2a >log 12 a =-log 2a ,即log 2a >0,则a >1;若a <0,则由f (a )>f (-a ),得log 12 (-a )>log 2(-a ),即-log 2(-a )>log 2(-a ),则log 2(-a )<0,得0<-a <1,即-1<a <0.综上所述,a 的取值范围是(-1,0)∪(1,+∞).6.已知定义域为R 的偶函数f (x )在[0,+∞)上是增函数,且f ⎝⎛⎭⎫12=0,则不等式f (log 4x )<0的解集是___. [解析]由题意可知,f (log 4x )<0⇔-12<log 4x <12⇔log 44-12<log 4x <log 4412⇔12<x <2.7.(1)已知log a 12>1,求a 的取值范围;(2)已知log 0.7(2x )<log 0.7(x -1),求x 的取值范围. [解析] (1)由log a 12>1得log a 12>log a a .①当a >1时,有a <12,此时无解.②当0<a <1时,有12<a ,从而12<a <1.所以a 的取值范围是⎝⎛⎭⎫12,1.(2)因为函数y =log 0.7x 在(0,+∞)上为减函数,所以由log 0.7(2x )<log 0.7(x -1)得⎩⎪⎨⎪⎧2x >0,x -1>0,2x >x -1,解得x >1.即x 的取值范围是(1,+∞).8.已知2log a (x -4)>log a (x -2),求x 的取值范围.[解析]由题意,得x >4,原不等式可变为log a (x -4)2>log a (x -2). 当a >1时,y =log ax 为定义域内的增函数,∴⎩⎪⎨⎪⎧ (x -4)2>x -2,x -4>0,x -2>0,解得x >6.当0<a <1时,y =log ax 为定义域内的减函数,∴⎩⎪⎨⎪⎧(x -4)2<x -2,x -4>0,x -2>0,解得4<x <6.综上所述,当a >1时,x 的取值范围为(6,+∞);当0<a <1时,x 的取值范围为(4,6). 9.已知函数f (x )=log a (x -1),g (x )=log a (6-2x )(a >0,且a ≠1).(1)求函数φ(x )=f (x )+g (x )的定义域; (2)试确定不等式f (x )≤g (x )中x 的取值范围.[解析] (1)由⎩⎪⎨⎪⎧x -1>0,6-2x >0,解得1<x <3,∴函数φ(x )的定义域为{x |1<x <3}.(2)不等式f (x )≤g (x ),即为log a (x -1)≤log a (6-2x ),①当a >1时,不等式等价于⎩⎪⎨⎪⎧ 1<x <3,x -1≤6-2x ,解得1<x ≤73;②当0<a <1时,不等式等价于⎩⎪⎨⎪⎧1<x <3,x -1≥6-2x ,解得73≤x <3.综上可得,当a >1时,不等式的解集为⎝⎛⎦⎤1,73;当0<a <1时,不等式的解集为⎣⎡⎭⎫73,3. 10.函数f (x )=2x -log 31+x 1-x,x ∈(0,1),求不等式f (x 2)>f ⎝⎛⎭⎫13的解集.[解析]∵y =2x 在(0,1)上为减函数,y =-log 31+x 1-x =log 31-x 1+x =log 3⎝ ⎛⎭⎪⎫-1+2x +1在(0,1)上也为减函数, ∴f (x )=2x -log 31+x 1-x在(0,1)上单调递减.∴x 2<13.∴0<x <33,∴解集为⎝⎛⎭⎫0,33.题型四 与对数函数有关的值域问题1.下列函数中,值域是[0,+∞)的是( ) A .f(x)=log 2(x -1) B .f(x)=log 2(x -1) C .f(x)=log 2(x 2+2)D .f(x)=log 2x -1[解析]A 、D 中因为真数大于0,故值域为R ,C 中因为x 2+2≥2,故f(x)≥1. 只有B 中log 2(x -1)≥0,f(x)的值域为[0,+∞).[答案] B2.若函数f (x )=a x +log a (x +1)在[0,1]上的最大值和最小值之和为a ,则a 的值为( )A.14B.12C .2D .4 [解析]当a >1时,a +log a 2+1=a ,log a 2=-1,a =12(舍去).当0<a <1时,1+a +log a 2=a ,∴log a 2=-1,a =12.3.函数f (x )=log 12(x 2+2x +3)的值域是________.[解析]f (x )=log 12(x 2+2x +3)=log 12[(x +1)2+2],因为(x +1)2+2≥2,所以log 12[(x +1)2+2]≤log 122=-1,所以函数f (x )的值域是(-∞,-1].4.函数y =log 0.4(-x 2+3x +4)的值域是________.[解析]-x 2+3x +4=-⎝⎛⎭⎫x -322+254≤254,∴有0<-x 2+3x +4≤254, ∴根据对数函数y =log 0.4x 的图象(图略)即可得到:log 0.4(-x 2+3x +4)≥log 0.4254=-2,∴原函数的值域为[-2,+∞). 5.求函数y =log 13(-x 2+4x -3)的值域.[解析]由-x 2+4x -3>0,解得1<x<3,∴函数的定义域是(1,3). 设u =-x 2+4x -3(1<x<3),则u =-(x -2)2+1.∵1<x<3,∴0<u ≤1,则y ≥0,即函数的值域是[0,+∞).6.求下列函数的值域:(1)y =log 2(x 2+4);(2)y =log 12(3+2x -x 2).[解析] (1)y =log 2(x 2+4)的定义域是R.因为x 2+4≥4,所以log 2(x 2+4)≥log 24=2. 所以y =log 2(x 2+4)的值域为[2,+∞).(2)设u =3+2x -x 2=-(x -1)2+4≤4.因为u >0,所以0<u ≤4. 又y =log 12 u 在(0,4]上为减函数,所以log 12 u ≥log 12 4=-2,所以y =log 12 (3+2x -x 2)的值域为[-2,+∞). 7.求下列函数的值域:(1)y =log 2(|x|+4);(2)f(x)=log 2(-x 2-4x +12).[解析] (1)因为|x|+4≥4,所以log 2(|x|+4)≥log 24=2,所以函数的值域为[2,+∞).(2)因为-x 2-4x +12=-(x +2)2+16≤16,所以0<-x 2-4x +12≤16,故log 2(-x 2-4x +12)≤log 216=4,函数的值域为(-∞,4].8.求函数y =(log 2x)2-4log 2x +5(1≤x ≤2)的最值.[解析]令t =log 2x ,则0≤t ≤1且y =t 2-4t +5,由二次函数的图象可知,函数y =t 2-4t +5在[0,1]上为减函数,∴2≤y ≤5.故y max =5,y min =2.9.求函数y =log 2(2x)·log 2x ⎝⎛⎭⎫12≤x ≤2的最大值和最小值. [解析]y =log 2(2x)·log 2x =(1+log 2x)·log 2x =⎝⎛⎭⎫log 2x +122-14. ∵12≤x ≤2,即-1≤log 2x ≤1,∴当log 2x =-12时,y min =-14;当log 2x =1时,y max =2. 10.函数f (x )=log 2x ·log 2(2x )的最小值为________.[解析]f (x )=log 2x ·log 2(2x )=12log 2x ·2log 2(2x )=log 2x (1+log 2x ).设t =log 2x (t ∈R),则原函数可以化为y =t (t +1)=⎝⎛⎭⎫t +122-14(t ∈R),故该函数的最小值为-14.故f (x )的最小值为-14. 11.已知2x ≤256且log 2x ≥12,求函数f (x )=log 2x 2×log 2 x2的最大值和最小值.[解析]由2x ≤256,得x ≤8,所以log 2x ≤3,即12≤log 2x ≤3.f (x )=(log 2x -1)×(log 2x -2)=(log 2x )2-3log 2x +2=⎝⎛⎭⎫log 2x -322-14. 当log 2x =32,即x =22时,f (x )min =-14,当log 2x =3,即x =23=8时,f (x )max =2.12.求函数f(x)=log 2(4x)·log 42x,x ∈⎣⎡⎦⎤12,4的值域. [解析]f(x)=log 2(4x)·log 42x =(log 2x +2)·⎣⎡⎦⎤12(1-log 2x )=-12[(log 2x)2+log 2x -2]. 设log 2x =t.∵x ∈⎣⎡⎦⎤12,4,∴t ∈[-1,2],则有y =-12(t 2+t -2),t ∈[-1,2], 因此二次函数图象的对称轴为t =-12,∴它在⎣⎡⎦⎤-1,-12上是增函数,在⎣⎡⎦⎤-12,2上是减函数, ∴当t =-12时,有最大值,且y max =98.当t =2时,有最小值,且y min =-2.∴f(x)的值域为⎣⎡⎦⎤-2,98. 13.函数f (x )=|log 3x |在区间[a ,b ]上的值域为[0,1],则b -a 的最小值为________.[解析]根据图象可知,|log 3x |=0,则x =1,|log 3x |=1,则x =13或3.由图可知(b -a )min =1-13=23.14.若函数y =log 2(x 2-2)(a ≤x ≤b )的值域是[1,log 214],则a ,b 的值分别为( )A .⎩⎪⎨⎪⎧ a =-4,b =-2B .⎩⎪⎨⎪⎧a =2,b =4C .⎩⎪⎨⎪⎧a =-4,b =2D .⎩⎪⎨⎪⎧ a =-4,b =-2或⎩⎪⎨⎪⎧a =2,b =4[解析]由1≤log 2(x 2-2)≤log 214得2≤x 2-2≤14,得4≤x 2≤16,得-4≤x ≤-2或2≤x ≤4.由x 2-2>0得x <-2或x >2,故b <-2或a > 2.当a >2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递增得2≤x ≤4,故a =2,b =4;当b <-2时,由函数y =log 2(x 2-2)(a ≤x ≤b )单调递减得-4≤x ≤-2, 故a =-4,b =-2.15.已知函数y =(log 2x -2)⎝⎛⎭⎫log 4x -12,2≤x ≤8. (1)令t =log 2x ,求y 关于t 的函数关系式,并写出t 的范围; (2)求该函数的值域.[解析] (1)y =12(t -2)(t -1)=12t 2-32t +1,又2≤x ≤8,∴1=log 22≤log 2x ≤log 28=3,即1≤t ≤3.(2)由(1)得y =12⎝⎛⎭⎫t -322-18,1≤t ≤3, 当t =32时,y min =-18;当t =3时,y max =1,∴-18≤y ≤1,即函数的值域为⎣⎡⎦⎤-18,1.16.已知函数f (3x -2)=x -1,x ∈[0,2],将函数y =f (x )的图象向右平移2个单位长度,再向上平移3个单位长度可得函数y =g (x )的图象.(1)求函数y =f (x )与y =g (x )的解析式;(2)设h (x )=[g (x )]2+g (x 2),试求函数y =h (x )的最值.[解析] (1)设t =3x -2,t ∈[-1,7],则x =log 3(t +2),于是有f (t )=log 3(t +2)-1,t ∈[-1,7]. ∴f (x )=log 3(x +2)-1,x ∈[-1,7],根据题意得g (x )=f (x -2)+3=log 3x +2,x ∈[1,9]. ∴函数y =f (x )的解析式为f (x )=log 3(x +2)-1,x ∈[-1,7], 函数y =g (x )的解析式为g (x )=log 3x +2,x ∈[1,9]. (2)∵g (x )=log 3x +2,x ∈[1,9],∴h (x )=[g (x )]2+g (x 2)=(log 3x +2)2+2+log 3x 2=(log 3x )2+6log 3x +6=(log 3x +3)2-3, ∵函数g (x )的定义域为[1,9],∴要使函数h (x )=[g (x )]2+g (x 2)有意义,必须有⎩⎪⎨⎪⎧1≤x 2≤9,1≤x ≤9,即1≤x ≤3.∴0≤log 3x ≤1,∴6≤(log 3x +3)2-3≤13.∴函数y =h (x )的最大值为13,最小值为6. 17.已知函数f (x )=lg (ax 2+2x +1).(1)若f (x )的值域为R ,求实数a 的取值范围; (2)若f (x )的定义域为R ,求实数a 的取值范围.[解析] (1)∵f (x )的值域为R ,∴要求u =ax 2+2x +1的值域包含(0,+∞). 当a <0时,显然不可能; 当a =0时,u =2x +1∈R 成立;当a >0时,若u =ax 2+2x +1的值域包含(0,+∞), 则Δ=4-4a ≥0,解得0<a ≤1. 综上可知,a 的取值范围是0≤a ≤1. (2)由已知,u =ax 2+2x +1的值恒为正,∴⎩⎪⎨⎪⎧a >0,Δ=4-4a <0,解得a 的取值范围是a >1.18.已知函数f (x )=log 2⎣⎡⎦⎤ax 2+(a -1)x +14. (1)若定义域为R ,求实数a 的取值范围; (2)若值域为R ,求实数a 的取值范围.[解析]1)要使f (x )的定义域为R ,则对任意实数x 都有t =ax 2+(a -1)x +14>0恒成立.当a =0时,不合题意;当a ≠0时,由二次函数图象可知⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a <0. 解得3-52<a <3+52.故所求a 的取值范围为⎝ ⎛⎭⎪⎫3-52,3+52. (2)要使f (x )的值域为R ,则有t =ax 2+(a -1)x +14的值域必须包含(0,+∞).当a =0时,显然成立;当a ≠0时,由二次函数图象可知,其二次函数图象必须与x 轴相交且开口向上,∴⎩⎪⎨⎪⎧a >0,Δ=(a -1)2-a ≥0,即0<a ≤3-52或a ≥3+52.故所求a 的取值范围为⎣⎢⎡⎦⎥⎤0,3-52∪⎣⎢⎡⎭⎪⎫3+52,+∞. 题型五 对数函数性质的综合应用1.函数f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1+x 是( )A .奇函数B .偶函数C .既奇又偶函数D .非奇非偶函数[解析]f (x )定义域为R ,f (-x )+f (x )=lg ⎝ ⎛⎭⎪⎫1x 2+1-x +lg ⎝ ⎛⎭⎪⎫1x 2+1+x =lg1(x 2+1)-x 2=lg 1=0, ∴f (x )为奇函数,故选A.2.设函数f (x )=ln (1+x )-ln (1-x ),则f (x )是( )A .奇函数,且在(0,1)上是增函数B .奇函数,且在(0,1)上是减函数C .偶函数,且在(0,1)上是增函数D .偶函数,且在(0,1)上是减函数[解析]由题意可得,函数f (x )的定义域为(-1,1),且f (-x )=ln (1-x )-ln (1+x )=-f (x ), 故f (x )为奇函数.又f (x )=ln 1+x 1-x =ln ⎝ ⎛⎭⎪⎫21-x -1,易知y =21-x -1在(0,1)上为增函数,故f (x )在(0,1)上为增函数.故选A .3.当0<x ≤12时,4x <log a x ,则a 的取值范围是( )A .(2,2)B .(1,2)C.⎝⎛⎭⎫22,1D.⎝⎛⎭⎫0,22 [解析]当0<x ≤12时,函数y =4x 的图象如图所示,若不等式4x <log a x 恒成立,则y =log a x 的图象恒在y =4x 的图象的上方(如图中虚线所示),∵y =log a x 的图象与y =4x 的图象交于⎝⎛⎭⎫12,2点时,a =22, 故虚线所示的y =log a x 的图象对应的底数a 应满足22<a <1,故选C.4.已知函数f (x )=ln(3+x )+ln(3-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性.[解析](1)要使函数有意义,则⎩⎪⎨⎪⎧3+x >0,3-x >0,解得-3<x <3,故函数y =f (x )的定义域为(-3,3).(2)由(1)可知,函数y =f (x )的定义域为(-3,3),关于原点对称. 对任意x ∈(-3,3),则-x ∈(-3,3).∵f (-x )=ln(3-x )+ln(3+x )=f (x ),∴由函数奇偶性可知,函数y =f (x )为偶函数.5.设常数a >1,实数x ,y 满足log a x +2log x a +log x y =-3,若y 的最大值为2,则x 的值为________. [解析]实数x ,y 满足log a x +2log x a +log x y =-3,化为log a x +2log a x +log a ylog a x =-3.令log a x =t ,则原式化为log a y =-⎝⎛⎭⎫t +322+14. ∵a >1,∴当t =-32时,y 取得最大值2,∴log a 2=14,解得a =4,∴log 4x =-32,∴x =4-32=18.6.已知函数f (x )=log a (1-x )+log a (x +3),其中0<a <1.(1)求函数f (x )的定义域;(2)若函数f (x )的最小值为-4,求a 的值.[解析] (1)要使函数有意义,则有⎩⎪⎨⎪⎧1-x >0,x +3>0,解得-3<x <1,所以函数的定义域为(-3,1).(2)函数可化为f (x )=log a (1-x )(x +3)=log a (-x 2-2x +3)=log a [-(x +1)2+4],因为-3<x <1,所以0<-(x +1)2+4≤4. 因为0<a <1,所以log a [-(x +1)2+4]≥log a 4,即f (x )min =log a 4,由log a 4=-4,得a -4=4,所以a =4-14=22.7.已知函数f(x)=log a 1+x1-x(a>0,且a ≠1).(1)求f(x)的定义域; (2)判断函数的奇偶性;(3)求使f(x)>0的x 的取值范围.[解析](1)由1+x1-x >0,得-1<x<1,故f(x)的定义域为(-1,1).(2)∵f(-x)=log a 1-x 1+x =-log a 1+x1-x=-f(x),又由(1)知f(x)的定义域关于原点对称,∴f(x)是奇函数. (3)当a>1时,由log a 1+x 1-x >0=log a 1,得1+x1-x >1.所以0<x<1.当0<a<1时,由log a 1+x 1-x >0=log a 1,得0<1+x1-x<1,所以-1<x<0.故当a>1时,x 的取值范围是{x|0<x<1};当0<a<1时,x 的取值范围是{x|-1<x<0}. 8.已知函数f (x )=lg (2+x )+lg (2-x ).(1)求函数y =f (x )的定义域; (2)判断函数y =f (x )的奇偶性;(3)若f (m -2)<f (m ),求m 的取值范围.[解析](1)要使函数f (x )有意义,则⎩⎪⎨⎪⎧2+x >0,2-x >0,解得-2<x <2.∴函数y =f (x )的定义域为{x |-2<x <2}.(2)由(1),可知函数y =f (x )的定义域为{x |-2<x <2},关于原点对称,对任意x ∈(-2,2),有-x ∈(-2,2). ∵f (-x )=lg (2-x )+lg (2+x )=lg (2+x )+lg (2-x )=f (x ),∴函数y =f (x )为偶函数. (3)∵函数f (x )=lg (2+x )+lg (2-x )=lg (4-x 2),当0≤x <2时,函数y =f (x )为减函数,当-2<x <0时,函数y =f (x )为增函数, ∴不等式f (m -2)<f (m )等价于|m |<|m -2|,解得m <1.又⎩⎪⎨⎪⎧-2<m -2<2,-2<m <2,解得0<m <2. 综上所述,m 的取值范围是{m |0<m <1}.9.已知f (x )是定义在R 上的奇函数,且当x >0时,f (x )=log 12(x +7).(1)求f (1),f (-1); (2)求函数f (x )的表达式;(3)若f (a -1)-f (3-a )<0,求a 的取值范围. [解析](1)f (1)=log 128=-3,f (-1)=-f (1)=3.(2)因为f (x )在R 上为奇函数,所以f (0)=0,令x <0,则-x >0, 所以f (x )=-f (-x )=-log 12(-x +7),(3)当x ∈(0,+∞)时,y =log 12 (x +7),令u =x +7,则y =log 12 u .由于u =x +7是增函数,y =log 12 u 是减函数,则y =log 12 (x +7)在(0,+∞)上是减函数,又由于f (x )是奇函数且f (0)=0,所以y =f (x )是R 上的减函数.由f (a -1)<f (3-a ),得a -1>3-a ,解得a >2. 10.已知a >0且满足不等式22a +1>25a -2.(1)求实数a 的取值范围;(2)求不等式log a (3x +1)<log a (7-5x )的解集;(3)若函数y =log a (2x -1)在区间[1,3]上有最小值为-2,求实数a 的值.[解析](1)∵22a +1>25a -2,∴2a +1>5a -2,即3a <3,∴a <1,即0<a <1.∴实数a 的取值范围是(0,1). (2)由(1)得,0<a <1,∵log a (3x +1)<log a (7-5x ),∴⎩⎪⎨⎪⎧3x +1>0,7-5x >0,3x +1>7-5x ,即⎩⎪⎨⎪⎧x >-13,x <75,x >34,解得34<x <75.即不等式的解集为⎝⎛⎭⎫34,75. (3)∵0<a <1,∴函数y =log a (2x -1)在区间[1,3]上为减函数,∴当x =3时,y 有最小值为-2,即log a 5=-2,∴a -2=1a 2=5,解得a =55.11.已知函数f (x )=lga -x1+x. (1)若f (x )为奇函数,求a 的值;(2)在(1)的条件下,若f (x )在(m ,n )上的值域为(-1,+∞),求m ,n 的值. [解析] (1)∵f (x )为奇函数,∴f (x )+f (-x )=0,即lg a -x 1+x +lg a +x 1-x =0,∴(a -x )(a +x )1-x 2=1,解得a =1(a =-1舍去).(2)由(1)知f (x )=lg1-x 1+x ,则1-x1+x>0, 即⎩⎪⎨⎪⎧ 1-x >0,1+x >0或⎩⎪⎨⎪⎧1-x <0,1+x <0,解得-1<x <1,即其定义域为(-1,1). ∵x ∈(-1,1)时,t =1-x 1+x =-1+21+x为减函数,而y =lg t 在其定义域内为增函数,∴f (x )=lg 1-x 1+x 在其定义域内是减函数,则m =-1,由题意知f (n )=lg 1-n 1+n =-1,解得n =911,即m =-1,n =911.题型六 反函数的应用1.写出下列函数的反函数(用x 表示自变量,用y 表示函数): (1)y =2.5x ;(2)y =log 16x .[解析](1)函数y =2.5x 的反函数是y =log 2.5x (x >0).(2)由y =log 16 x 得x =⎝⎛⎭⎫16y ,所以函数y =log 16x 的反函数为y =⎝⎛⎭⎫16x .2.函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),则a 的值为( )A .2B .12C .2或12D .3[解析]法一:函数y =a x (a >0,且a ≠1)的反函数为y =log a x (a >0,且a ≠1),故y =log a x 的图象过点(a ,a ),则a =log a a =12.法二:∵函数y =a x (a >0,且a ≠1)的反函数的图象过点(a ,a ),∴函数y =a x (a >0,且a ≠1)的图象过点(a ,a ),∴a a=a =a 12,即a =12.3.已知函数f (x )=a x -k (a >0,且a ≠1)的图象过点(1,3),其反函数的图象过点(2,0),求函数f (x )的解析式. [解析] 由于函数f (x )的反函数的图象过点(2,0),∴f (x )的图象过点(0,2),∴2=a 0-k ,即k =-1, ∴f (x )=a x +1.又f (x )的图象过点(1,3),∴3=a +1,即a =2,∴f (x )=2x +1.4.若函数y =f (x )的图象与函数y =lg (x +1)的图象关于直线x -y =0对称,则f (x )=( )A .10x -1B .1-10xC .1-10-xD .10-x -1[解析]若两函数图象关于直线y =x 对称,则两函数互为反函数,故y =lg (x +1),则x +1=10y , x =10y -1,即y =10x -1.故选A .5.已知函数y =e x 的图象与函数y =f (x )的图象关于直线y =x 对称,则( )A .f (2x )=e 2x (x ∈R)B .f (2x )=ln 2·ln x (x >0)C .f (2x )=2e x (x ∈R)D .f (2x )=ln x +ln 2(x >0)[解析]因为函数y =e x 的图象与函数f (x )的图象关于直线y =x 对称,所以f (x )是y =e x 的反函数, 即f (x )=ln x ,故f (2x )=ln 2x =ln x +ln 2(x >0),故选D .6.设函数f (x )=log 2x 的反函数为y =g (x ),且g (a )=14,则a =________.[解析]∵函数f (x )=log 2x 的反函数为y =2x ,即g (x )=2x .又∵g (a )=14,∴2a =14,∴a =-2.。

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结

对数与对数函数知识点及题型归纳总结知识点精讲一、对数概念(0)log (01)x a a N N n N a a =>⇔=>≠且,叫做以a 为底N 的对数.注:①0N >,负数和零没有对数;②log 10,log 1a a a ==; ③10lg log ,ln log e N N N N ==. 二、对数的运算性质(1)log ()log log (,);(2)log log log (,);(3)log log ();log (4)log (01,0,01)log a a a a a a n a a c a c MN M N M N R M M N M N R N M n M M R bb a a bc c a+++=+∈⎛⎫=-∈ ⎪⎝⎭=∈=>≠>>≠且且(换底公式)特殊地1log (,01,1)log a b b a b a b a=>≠≠且; log (5)log log (,0,0,1,)(6)(0,01)(6)log (,01).m a n a a NN a nb b a b m a n R ma N N a a a N N R a a =>≠≠∈=>>≠=∈>≠;且;且化常数为指数、对数值常用这两个恒等式.三、对数函数(1)一般地,形如log (01)a y x a a =>≠且的函数叫对数函数. (2)对数函数log (01)a y x a a =>≠且的图像和性质,如表2-7所示.log a y x =1a > 1a <图像题型归纳及思路提示题型1 对数运算及对数方程、对数不等式 思路提示对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正. 一、对数运算例2.56552log 10log 0.25+=( ).0A.1B.2C.4D分析log log log log log ().n m n ma a a a a n x m y x y x y +=+=解析225555552log 10log 0.25log 10log 0.25log (1000.25)log 52+=+=⨯==故选C .评注熟记对数的各种运算性质是求解本类问题的前提. 变式1 已知,x y 为正实数,则( )lg lg lg lg .222x y x y A +=+lg()lg lg .222x y x y B +=⋅ lg lg lg lg .222x y x y C ⋅=+lg()lg lg .222xy x y D =⋅变式2 22(lg 2)lg 4lg5(lg5)+⋅+= ________.. 变式3 222lg5lg8lg5lg 20(lg 2)3++⋅+= ________.. 例2.57274log 81log 8+=________. .解析324327342324433log 81log 3log 3,log 8log 2log 2.3322====== 所以原式4317.326=+= 变式1 = ________.. 例2.58 lg30lg0.515()3⨯= ________.. 分析(,0)log log .c c a b a b a b =>⇒= 解析lg30lg0.515(),3x ⨯=则()lg0.5lg30lg0.5lg30111lg lg 5()lg 5lg lg30lg5lg 0.5lg 333x ⎡⎤⎛⎫=⨯=+=⋅+⋅ ⎪⎢⎥⎣⎦⎝⎭(lg30lg3)lg5(lg5lg10)(lg1lg3)lg5lg3lg5lg 3lg5lg3=+⋅+--=+⋅-⋅+lg15=所以15x = 二、对数方程例2.59解下列方程:22111(1)(lg lg3)lg5lg(10);22(2)log (231) 1.x x x x x --=---+= 分析利用对数的运算性质化简后求解. 解析(1)11(lg lg3)lg5lg(10)22x x -=--,首先方程中的x 应满足10x >,原方程可变形为lg lg32lg5lg(10)x x -=--,即25lg lg310x x =-,得25310x x =-,从而15x =或5x =-(舍),经检验,15x =是原方程的解.(2)221log (231)1x x x --+=,222210112311x x x x x ⎧->-≠⎪⇔⎨-+=-⎪⎩且,解得2x =. 经检验2x =是方程的解.评注解对数方程一定要注意对数方程成立条件下x 的取值范围,是检验求出的解是否为增根的主要依据.变式1 函数2()log (41).xf x ax =+-(1)若函数()f x 是R 上的偶函数,求实数a 的值; (2)若4a =,求函数()f x 的零点.三、对数不等式例2.60设01a <<,函数()2()log 22x x a f x a a =--,则使()0f x <的x 的取值范围是().(,0)A -∞.(0,)B +∞.(,log 3)a C -∞.(log 3,)a D +∞分析先将对数不等式化为同底的形式,再利用单调性转化为指数不等式求解.解析()2()log 220log 1x x a a f x a a =--<=,又01a <<,函数log a y x =在(0,)+∞上单调递减,得22221230(3)(1)0x x x x x x a a a a a a -->-->⇒-+>即,因为10x a +>,故3x a >,又01a <<,所以log 3.a x <故选.C变式1 已知函数()f x 为R 上的偶函数,且在[]0,+∞上为增函数,103f ⎛⎫= ⎪⎝⎭,则不等式13log 0f x ⎛⎫> ⎪⎝⎭的解集为 .例2.61设2554log 4,(log 3),log 5,a b c ===则( ).Aa c b <<.Bb c a << .C a b c <<.Db a c <<分析利用对数函数的单调性来比较对数的大小,通常借助0和1作为分界点. 解析因为5log y x =在(0,)+∞上单调递增,所以25545554log 3log 41,log 51(log 3)log 3log 41log 5b a c <<>⇒<<<<⇒<<且故选D .变式1 设2lg ,(lg ),a e b e c === ).Aa b c >> .B a c b >> .C c a b >>.Dc b a >>变式2 设324log 0.3log 3.4log 3.615,5,5a b c ⎛⎫=== ⎪⎝⎭,则( ).Aa b c >> .Bb a c >> .C a c b >>.Dc a b >>变式4 (2012大纲全国理9)已知125ln ,log 2,x y z eπ-===,则().A x y z << .B z x y << .C z y x <<.D y z x <<题型2 对数函数的图像与性质思路提示研究和讨论题中所涉及的函数图像与性质是解决有关函数问题最重要的思路和方法.图像与性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向. 一、对数函数的图像例2.62如图2-15所示,曲线1234,,,C C C C 是底数分别为,,,a b c d 的对数函数的图像,则曲线1234,,,C C C C 对应的底数,,,a b c d 的取值依次为()11.3,2,,32A11.2,3,,32B11.2,3,,23C11.3,2,,23D分析给出曲线的图像,判定1234,,,C C C C 所对应的,,,a b c d 的值,可令1y =求解.解析如图2-16所示,作直线1y =交1234,,,C C C C 于,,,A B C D ,其横坐标大小为01c d a b <<<<<,那么1234,,,C C C C 所对应的底数,,,abcd的值可能一次为112,3,,32.故选B .评注对数函数在同一直角坐标系中的图像的相对位置与底数大小的关系如图2-16所示,则01c d a b <<<<<.log (01)a y x a a =>≠且在第一象限的图像,a 越大,图像越靠近x 轴;a 越小,图像越靠近y 轴.变式 1 若函数()(01)xf x a a a -=>≠且是定义域为R 的增函数,则函数()log (1)a f x x =+的图像大致是( )变式2 设,,a b c 均为正数,且11222112log ,log ,log 22b caa b c ⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,则().Aa b c <<.B c b a <<.C c a b <<.Db a c <<例2.63函数log (1)2a y x =++的图像必过定点.分析对数函数log (01)a y x a a =>≠且的图像过定点(1,0),即log 10a =.解析因为log (01)a y x a a =>≠且恒过点(1,0),故令11,0x x +==即时,log (1)0a y x =+=,故log (1)2a y x =++恒过顶点(0,2).变式1 函数log (2)21a y x x =++-的图像过定点. 二、对数函数的性质(单调性、最值(值域))例2.64 设1a >,函数()log a f x x =在区间[],2a a 上的最大值与最小值之差为12,则a =( ) 分析本题考查对数函数的单调性和最值.解析因为对数函数的底1a >,所以函数()log a f x x =在区间[],2a a 上单调递增,故max min 1()log 2,()log 1,log 212a a a f x a f x a a ===-=,即1log 22a =解得4a =故选D . 变式1 若函数()log (01)a f x x a =<<在区间[],2a a 上的最大值是最小值的3倍,则a 等于( )AB1.4C1.2D 例2.65设21122222(log )7log 30,()log log 24x x x x f x ⎛⎫⎛⎫++≤=⋅ ⎪ ⎪⎝⎭⎝⎭求的最大值和最小值. 解析2111122222(log )7log 30(2log 1)(log 3)0x x x x ++≤⇔+⋅+≤1213log 2x ⇔-≤≤-8x ≤≤.又22222()(log 1)(log 2)(log )3log 2f x x x x x =--=-+.令21log ,32t x ⎡⎤=∈⎢⎥⎣⎦,则2()()32f x g t t t ==-+当3,2t x ==即min max 1();3,8,() 2.4f x t x f x =-===当即时 变式1 已知[]3()2log (1,9)f x x x =+∈,求函数[]22()()()g x f x f x =+的最大值与最小值.例2.66若函数212log (0)()log ()(0)x x f x x x >⎧⎪=⎨-<⎪⎩,且()()f a f a >-则实数a 的取值范围是.解析依题意,函数()f x 的图像如图2-17所示,知()f x 为奇函数,由()()f a f a >-的得()0f a >,解得(1,0)(1,)a ∈-+∞.变式1 已知函数()lg f x x =,若0a b <<,且()()f a f b =,则2a b +的取值范围是( )2,)A +∞).32,B ⎡+∞⎣.(3,)C +∞[).3,D +∞变式2 定义区间[]1212,()x x x x <的长度为21x x -,已知函数12()log f x x =的定义域为[],a b ,值域为[]0,2,则区间[],a b 的长度的最大值与最小值的差为 .题型3 对数函数中的恒成立问题 思路提示(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.例2.67 已知函数124()lg 3x xa f x ++⋅=,若(),1x ∈-∞时有意义,求a 得取值范围.解析因为124()lg 3x x a f x ++⋅=在(),1x ∈-∞上有意义,即12403x xa ++⋅>在(),1-∞上恒成立. 所以1142x x a ⎡⎤⎛⎫⎛⎫>-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦在(),1-∞上恒成立.令()11(),,142x x g x x ⎡⎤⎛⎫⎛⎫=-+∈-∞⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦.因为14x y ⎛⎫= ⎪⎝⎭与12xy ⎛⎫= ⎪⎝⎭在(),1-∞上为减函数,故()g x 在(),1-∞上为增函数,所以对任意的(),1x ∈-∞时,3()(1)4g x g <=-.因为1142x x a ⎡⎤⎛⎫⎛⎫>-+⎢⎥ ⎪ ⎪⎝⎭⎝⎭⎢⎥⎣⎦在(),1-∞上恒成立,所以34a ≥-.所以a 的取值范围是3,4⎡⎫-+∞⎪⎢⎣⎭. 评注为了求a 的取值范围,把a 进行了分离,若()g x 存在最大值,则()g x a <恒成立等价于max ()g x a <;若()g x 不存在最大值,设其值域为()(),g x m n ∈,则()g x a <恒成立等价于a n ≥. 变式1 当(1,2)x ∈时,不等式()21log a x x -<恒成立,则a 的取值范围是().(0,1)A .(1,2)B (].1,2C 1.0,2D ⎛⎫⎪⎝⎭变式 2 函数()log (3)(01)a f x x a a a =->≠且,当点(,)P x y 是函数()y f x =图像上的点时,点(2,)Q x a y --是函数()y g x =图像上的点.(1)写出函数()y g x =的解析式;(2)当[]2,3a a a ∈++时,恒有()()1f x g x -≤,试确定a 的取值范围.最有效训练题1.设0.211221log 2,log 3,2a b c ⎛⎫=== ⎪⎝⎭,则( ).Aa b c <<.B a c b <<.C b c a <<.Db a c <<2.设函数2log (1)(2)()11(2)2x x x f x x -≥⎧⎪=⎨⎛⎫-<⎪⎪⎝⎭⎩,若0()1f x >,则0x 的取值范围是( ).(,0)(2,)A -∞+∞.(0,2)B.(,1)(3,)C -∞-+∞.(1,3)D -3.设定义在区间(,)b b -上的函数1()lg12axf x x+=-是奇函数(,2)a b R a ∈≠且,则b a 的取值范围是( )(.A(.BCD4.已知log (2)a y ax =-在[]0,1上是x 的减函数,则a 的取值范围是( ).(0,1)A.(1,2)B.(0,2)C.(2,)D +∞5.已知lg lg 0a b +=,则函数()xf x a =与函数()log b g x x =-的图像可能是( )6.已知函数()f x 是R 上的偶函数,且(1)(1)f x f x -=+,当[]0,1x ∈时,2()f x x =,则函数5()log y f x x =-的零点个数是( ).3A.4B.5C.6D7.设函数()ln(1)f x x =+,若1()()a b f a f b -<<=且,则a b +的取值范围是________. 8.已知lg lg 2lg(23)x y x y +=-,则23log y x ⎛⎫=⎪⎝⎭________. 9.若函数2log (1)a y x ax =-+在[]1,2上为增函数,则实数a 的取值范围是________..10.已知函数2()log f x x =,正实数,m n 满足m n <,且()()f m f n =,若()f x 在区间2,m n ⎡⎤⎣⎦上的最大值为2,则m n +=________.11.设121()log 1ax f x x -⎛⎫= ⎪-⎝⎭为奇函数,a 为常数. (1)求a 的值;(2)证明:()f x 在区间(1,)+∞内单调递增;(3)若对于区间[]3,4上的每一个x 值,不等式1()2xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.12.已知集合1,22P ⎡⎤=⎢⎥⎣⎦,函数22log (22)y ax x =-+的定义域为Q .(1)若P Q ≠∅,求实数a 的取值范围;(2)若方程22log (22)2ax x -+=在P 内有解,求实数a 的取值范围.。

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

专题10 对数与对数函数 (学生版)高中数学53个题型归纳与方法技巧总结篇

【考点预测】1.高中数学53个题型归纳与方法技巧总结篇专题10对数与对数函数对数式的运算(1)对数的定义:一般地,如果(0x a N a =>且1)a ≠,那么数x 叫做以a 为底N 的对数,记作log a x N =,读作以a 为底N 的对数,其中a 叫做对数的底数,N 叫做真数.(2)常见对数:①一般对数:以(0a a >且1)a ≠为底,记为log Na ,读作以a 为底N 的对数;②常用对数:以10为底,记为lg N ;③自然对数:以e 为底,记为ln N ;(3)对数的性质和运算法则:①1log 0a =;log 1a a =;其中0a >且1a ≠;②log Na a N =(其中0a >且1a ≠,0N >);③对数换底公式:log log log c a c bb a=;④log ()log log a a a MN M N =+;⑤log log log aa a MM N N=-;⑥log log (m na a nb b m m=,)n R ∈;⑦log a b a b =和log b a a b =;⑧1log log a b b a=;2.对数函数的定义及图像(1)对数函数的定义:函数log a y x =(0a >且1)a ≠叫做对数函数.对数函数的图象过定点(10),,即1x =时,0y =在(0)+∞,上增函数在(0)+∞,上是减函数当01x <<时,0y <,当1x ≥时,y≥当01x <<时,0y >,当1x ≥时,0y≤【方法技巧与总结】1.对数函数常用技巧在同一坐标系内,当1a >时,随a 的增大,对数函数的图象愈靠近x 轴;当01a <<时,对数函数的图象随a 的增大而远离x 轴.(见下图)a 增大a 增大【题型归纳目录】题型一:对数运算及对数方程、对数不等式题型二:对数函数的图像题型三:对数函数的性质(单调性、最值(值域))题型四:对数函数中的恒成立问题题型五:对数函数的综合问题【典例例题】题型一:对数运算及对数方程、对数不等式例1.(2022·全国·高三专题练习)(1)计算331log 2327lg 50lg 2+++;(2)已知()23log log lg 1x ⎡⎤=⎣⎦,求实数x 的值;(3)若185a =,18log 9b =,用a ,b ,表示36log 45.例2.(2022·全国·高三专题练习)(1)求23151log log 8log 2725⋅⋅的值.(2)已知9log 5=a ,37b =,试用a ,b 表示21log 35例3.(2022·全国·高三专题练习)(1)已知a ,b ,c 均为正数,且3a =4b =6c ,求证:212a b c +=;(2)若60a =3,60b =5,求12(1)12a b b ---的值.例4.(2022·全国·模拟预测)若e 4a =,e 25b =,则()A .a +b =100B .b -a =eC .28ln 2ab <D .ln 6b a ->例5.(2022·全国·模拟预测)已知实数x ,y 满足0x >,0y >,1x ≠,1y ≠,y x x y =,log 4y xx y+=,则x y +=()A .2B .4C .6D .8例6.(2022·北京昌平·二模)已知函数2()42(0)f x ax ax a =-+<,则关于x 的不等式2()log f x x >的解集是()A .(,4)-∞B .(0,1)C .(0,4)D .(4,)+∞例7.(2022·全国·江西师大附中模拟预测(文))已知函数()122log ,1,1,1,x x f x x x >⎧⎪=⎨⎪-≤⎩则不等式()(1)f x f x <-的解集为______.例8.(2022·辽宁·东北育才学校二模)若函数()f x 满足:(1)1x ∀,()20,x ∈+∞且12x x ≠,都有()()21210f x f x x x -<-;(2)()()1122x f f x f x x ⎛⎫=- ⎪⎝⎭,则()f x =___________.(写出满足这些条件的一个函数即可)例9.(2022·全国·高三专题练习)设函数()log m f x x =(0m >且1m ≠)的图像经过点()3,1.(1)解关于x 的方程()()22(1)10f x m f x m +-+-=;(2)不等式()()10f x a f x +⋅->⎡⎤⎡⎤⎣⎦⎣⎦的解集是1,93⎛⎫⎪⎝⎭,试求实数a 的值.【方法技巧与总结】对数的有关运算问题要注意公式的顺用、逆用、变形用等.对数方程或对数不等式问题是要将其化为同底,利用对数单调性去掉对数符号,转化为不含对数的问题,但这里必须注意对数的真数为正.题型二:对数函数的图像例10.(2022·山东潍坊·二模)已知函数()()log a f x x b =-(0a >且1a ≠)的图像如图所示,则以下说法正确的是()A .0a b +<B .1ab <-C .01b a <<D .log 0a b >例11.(2022·江苏省高邮中学高三阶段练习)函数log (3)1(0a y x a =+->且1)a ≠的图象恒过定点A ,若点A 在直线10mx ny ++=上,其中0mn >,则11+m n的最小值为()A .3-B .1C . 3+D .2+(多选题)例12.(2022·福建·莆田二中模拟预测)已知函数()()log a g x x k =+(0a >且1a ≠)的图象如下所示.函数()()1x xf x k a a -=--的图象上有两个不同的点()11,A x y ,()22,B x y ,则()A .1a >,2k >B .()f x 在R 上是奇函数C .()f x 在R 上是单调递增函数D .当0x ≥时,()()22f x f x ≤例13.(2022·全国·高三专题练习)已知223,20(){1ln ,021x x x f x x x -+-≤<=≤≤+,若()()g x f x ax a =--的图象与x 轴有3个不同的交点,则实数a 的取值范围为______.【方法技巧与总结】研究和讨论题中所涉及的函数图像是解决有关函数问题最重要的思路和方法.图像问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型三:对数函数的性质(单调性、最值(值域))例14.(2022·陕西·榆林市第十中学高二期中(文))函数()22log 43y x x =+-的一个单调增区间是()A .3,2⎛⎫-∞ ⎪⎝⎭B .3,2 ⎡⎫+⎪⎢⎣⎭C .31,2⎛⎫- ⎪⎝⎭D .3,42⎡⎫⎪⎢⎣⎭例15.(2022·天津·南开中学二模)已知函数()21,14log 1,1a ax x x f x x x ⎧--≤⎪=⎨⎪->⎩是R 上的单调函数,则实数a 的取值范围为()A .11,42⎡⎫⎪⎢⎣⎭B .11,42⎡⎤⎢⎥⎣⎦C .10,2⎛⎤ ⎥⎝⎦D .1,12⎛⎫ ⎪⎝⎭例16.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()Ab a<<B.b a<<Ca b<<D.a b <例17.(2022·全国·高三专题练习(理))函数f (x )=log ax (0<a <1)在[a 2,a ]上的最大值是()A .0B .1C .2D .a例18.(2022·重庆·模拟预测)若函数()2()log 341a f x x ax =-+-有最小值,则实数a 的取值范围是()A.⎫⎪⎪⎝⎭B.C.⎛ ⎝⎭D.)+∞【方法技巧与总结】研究和讨论题中所涉及的函数性质是解决有关函数问题最重要的思路和方法.性质问题是数和形结合的护体解释.它为研究函数问题提供了思维方向.题型四:对数函数中的恒成立问题例19.(2022·北京·高三专题练习)若不等式2log 0a x x -<在10,2⎛⎫ ⎪⎝⎭内恒成立,则a 的取值范围是()A .1116a ≤<B .1116a <<C .1016a <≤D .1016a <<例20.(2022·江苏·高三专题练习)已知函数22414ax x y -+⎛⎫= ⎪⎝⎭的值域为10,16⎛⎤⎥⎝⎦,若不等式()()log 4log 2x a x a t t ⋅<-在[]1,2x ∈上恒成立,则t 的取值范围是()A .2,25⎛⎫ ⎪⎝⎭B .2,5⎛⎫+∞ ⎪⎝⎭C .(,2)-∞D .()0,2例21.(2022·浙江·高三阶段练习)已知函数()29x f x x+=,()2log g x x a =+,若存在[]13,4x ∈,任意[]24,8x ∈,使得()()12f x g x ≥,则实数a 的取值范围是___________.例22.(2022·全国·高三专题练习)已知函数()ln f x x x =-,已知实数0a >,若2()e ln 0x f x a a ++≥在()0+∞,上恒成立,求实数a 的取值范围.例23.(2022·全国·高三专题练习)已知函数()log (0,1)x a f x a x a a =+>≠在[1,2]上的最大值与最小值之和为6log 2a +.(1)求实数a 的值;(2)对于任意的[2,)x ∈+∞,不等式()10kf x -≥恒成立,求实数k 的取值范围.例24.(2022·陕西安康·高三期末(文))已知函数()()()2log 2log 30,1a a f x x x a a =++>≠.(1)若()32f =,求a 的值;(2)若对任意的[]8,12x ∈,()6f x >恒成立,求a 的取值范围.例25.(2022·上海·高三专题练习)已知2()32log f x x =-,2()log g x x =.(1)当[]1,4x ∈时,求函数[]()1()y f x g x =+⋅的值域;(2)对任意12,2n n x +⎡⎤∈⎣⎦,其中常数n N ∈,不等式()2()f x f kg x ⋅>恒成立,求实数k的取值范围.【方法技巧与总结】(1)利用数形结合思想,结合对数函数的图像求解;(2)分离自变量与参变量,利用等价转化思想,转化为函数的最值问题.(3)涉及不等式恒成立问题,将给定不等式等价转化,借助同构思想构造函数,利用导数探求函数单调性、最值是解决问题的关键.题型五:对数函数的综合问题例26.(2022·河北·张家口市第一中学高三阶段练习)已知定义域为()0, +的单调递增函数()f x 满足:()0,x ∀∈+∞,有()()ln 1f f x x -=,则方程()242f x x x =-+-的解的个数为()A .3B .2C .1D .0例27.(2022·四川雅安·三模(文))设()f x 是定义在R 上的偶函数,对任意R x ∈,都有()()4f x f x +=,且当[]2,0x ∈-时,()163xf x ⎛⎫=- ⎪⎝⎭.若在区间(]2,6-内关于x 的方程()()()log 201a f x x a -+=>恰有3个不同的实数根,则a 的取值范围是().A .()1,2B .()2,+∞C .(D .)2例28.(2022·广西柳州·高一期中)已知0a b >>,且1a b +=,则()A .sin sin a b>B .11a b>C .22a b +>D .lg lg 0a b +=例29.(2022·河北保定·二模)已知函数2332xxy =-在()0,∞+上先增后减,函数3443xxy =-在()0,∞+上先增后减.若()231log log x =()321log log 0x a =>,()()242422log log log log x x b ==,()()343433log log log log 0x x c ==>,则()A .a c<B .b a<C .c a<D .a b<例30.(2022·广东·三模)已知,R a b ∈,e 是自然对数的底,若e ln b b a a +=+,则ab的取值可以是()A .1B .2C .3D .4例31.(2022·全国·高三专题练习)已知0x 是函数()22e ln 2xf x x x -=+-的零点,则020e ln x x -+=_______.【过关测试】一、单选题1.(2022·辽宁辽阳·二模)区块链作为一种新型的技术,被应用于许多领域.在区块链技术中,某个密码的长度设定为512B ,则密码一共有5122种可能,为了破解该密码,在最坏的情况下,需要进行5122次运算.现在有一台计算机,每秒能进行142.510⨯次运算,那么在最坏的情况下,这台计算机破译该密码所需的时间大约为(参考数据lg20.3≈ 1.58≈)()A .1393.1610s ⨯B .1391.5810s ⨯C .1401.5810s⨯D .1403.1610s⨯2.(2022·山东·肥城市教学研究中心模拟预测)已知1log 3m p =,9p n =,其中0m >且1m ≠,0n >且1n ≠,若20m n -=,则p 的值为()A .3log 2B .2log 3C .2D .33.(2022·河南安阳·模拟预测(文))已知正实数x ,y ,z 满足(34zx y ==,则()A .111x y z+=B .111y z x+=C .112x y z +=D .112x z y+=4.(2022·河南·南阳中学高三阶段练习(文))已知函数()()()ln 22ln 33f x x x =++-,则()f x ()A .是奇函数,且在()0,1上单调递增B .是奇函数,且在()0,1上单调递减C .是偶函数,且在()0,1上单调递增D .是偶函数,且在()0,1上单调递减5.(2022·全国·高三专题练习)函数()log (1)2a f x x =-+的图象恒过定点A .(2,2)B .(2,1)C .(3,2)D .(2,0)6.(2022·安徽六安·一模(文))设函数()2f x =,()()2ln 41g x ax x =-+,若对任意的1R x ∈,都存在实数2x ,使得()()12f x g x =成立,则实数a 的取值范围为()A .(],4-∞B .(]0,4C .[]0,4D .(]0,27.(2022·湖北·荆门市龙泉中学二模)设0a >且1a ≠,sin cos a x x x >+对(0,)4x π∈恒成立,则a 的取值范围是()A .(0,)4πB .(0,]4πC .(,1)(1,)42ππ⋃D .[,1)4π8.(2022·浙江·模拟预测)己知实数,(1,)∈+∞a b ,且33log log 3log log 4b a a b +=+,则()A b a<<B .b a<<C a b<<D .a b <二、多选题9.(2022·重庆市天星桥中学一模)已知0,0a b >>,且1a b +=,则下列结论正确的是()A .11a b+的最小值是4B .1ab ab+的最小值是2C .22a b +的最小值是D .22log log a b +的最小值是2-10.(2022·广东汕头·二模)设a ,b ,c 都是正数,且469a b c ==,则下列结论正确的是()A .2ab bc ac+=B .ab bc ac+=C .4949b b a c⋅=⋅D .121c b a=-11.(2022·河北·高三阶段练习)下列函数中,存在实数a ,使函数()f x 为奇函数的是()A .()(lg f x x =B .()2f x x ax=+C .()21xaf x e =--D .()()2ln 2xx f x x e a =+-12.(2022·江苏·南京师大附中高三开学考试)当102x <≤时,4log xa x ≤,则a 的值可以为()ABCD三、填空题13.(2022·天津·二模)已知()42log 41log x y +=+,则2x y +的最小值为__________.14.(2022·全国·高三专题练习)已知23e ln 3x x x -+=,则3e ln x x -+=__________.15.(2022·河南·模拟预测(文))已知函数()241,1log ,1x x f x x x ⎧-≤=⎨>⎩,若1()2f a <≤,则实数a的取值范围为___________.16.(2022·河南·开封高中模拟预测(文))已知函数()y f x =为奇函数,且对定义域内的任意x 都有()()11f x f x +=--.当()1,2x ∈时,()21log f x x =-.给出以下4个结论:①函数()y f x =的图象关于点()(),0k k ∈Z 成中心对称;②函数()y f x =是以2为周期的周期函数;③当()0,1x ∈时,()()2log 21f x x =--;④函数()y f x =在()(),1k k k +∈Z 上单调递减.其中所有正确结论的序号为______.四、解答题17.(2022·北京·高三专题练习)已知函数()log (0),1)a f x x a a =>≠且,设1a >,函数log a y x =的定义域为[m ,n ](m <n ),值域为[0,1],定义“区间[m ,n ]的长度等于n -m ”,若区间[m ,n ]长度的最小值...为5,6求实数a 的值;18.(2022·全国·高三专题练习(理))已知函数f (x )=log a (x +1)-log a (1-x ),a >0且a ≠1.(1)求f (x )的定义域;(2)判断f (x )的奇偶性并予以证明;(3)当a >1时,求使f (x )>0的x 的解集.19.(2022·北京·高三专题练习)已知函数()log (0)1)a f x x a a =>≠且,作出|()|y f x =的大致图像并写出它的单调性;20.(2022·全国·高三专题练习)已知函数()()44log 3log 4f x x x =-⋅.当1,164x ⎡⎤∈⎢⎥⎣⎦时,求该函数的值域;21.(2022·全国·高三专题练习)已知:函数()0.51log 1ax f x x -=-在其定义域上是奇函数,a 为常数.(1)求a 的值.(2)证明:()f x 在()1,+∞上是增函数.(3)若对于[]3,4上的每一个x 的值,不等式()12xf x m ⎛⎫>+ ⎪⎝⎭恒成立,求实数m 的取值范围.22.(2022·北京东城·高三期末)曲线ln y x =在点(,ln )A t t 处的切线l 交x 轴于点M .(1)当t e =时,求切线l 的方程;(2)O 为坐标原点,记AMO 的面积为S ,求面积S 以t 为自变量的函数解析式,写出其定义域,并求单调增区间.。

对数及对数函数知识点总结及题型分析

对数及对数函数知识点总结及题型分析

对数及对数函数1、对数的基本概念(1)一般地,如果a (1,0≠>a a )的b 次幂等于N ,就是N a b =,那么数b 叫做以a 为底N 的对数, 记作b N a=log ,其中a 叫做对数的底数,N 叫做真数,式子N a log 叫做对数式(2)常用对数:N 10log ,记作N lg ; 自然对数N e log (e =2.71828…),记作N ln .(3)指数式与对数式的关系:log xa a N x N =⇔=(0>a ,且1≠a ,0N >)(4)对数恒等式:2、对数的性质(1)负数和零没有对数,即0>N ; (2)1的对数是零,即01log =a ; (3)底的对数等于1,即1log =a a3、对数的运算性质(1)如果a >0,a ≠1,M >0,N >0,那么①N M MN a a a log log )(log +=; ②N M NMa a alog log log -=; ③M n M a n alog log =(2)换底公式: 推论:① b N N b log 1log =; ② ; ③ 1log log =⋅a b b a4、对数函数的定义:函数 叫做对数函数,其中x 是自变量(1)研究对数函数的图象与性质:由于对数函数 与指数函数 互为反函数,所以 的图像和 的图像关于直线 对称。

(2)复习)10(≠>=a a a y x且的图象和性质()010log >≠>=N a a N aNa ,且bNN a a b log log log =b mn b a na m log log =a y log x =(a 0a 1)>≠且a y log x =x y a =a y log x=xy a =y x =2.对数函数的图像:3.对数函数的性质:【回顾一下】① 定义:函数 称为对数函数,1) 函数的定义域为 ;2) 函数的值域为 ; 3) 当____ __时,函数为减函数,当_________时为增函数; 4) 函数与函数 ______ 互为反函数.① 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当时,图象向上无限接近y 轴;当时,图象向下无限接近y 轴); 4) 函数y =log a x 与 的图象关于x 轴对称. ① 函数值的变化特征:题型一、对数式的运算 例题1:填空(1)[])81(log loglog 346=_____ ___; (2)19lg 3lg 2+-= ;(3)04.0log 10log 222+=_____ ___; (4)3log 28log 316161+=_____ ___; (5)=⋅⋅⋅4log 5log 7log 3log 7352例题2:若a y x =-lg lg ,则=⎪⎭⎫⎝⎛-⎪⎭⎫ ⎝⎛332lg 2lg y x ( ).A a 3 .Ba 23 .C a .D 2a 题型二 变式、对数运算性质运用 变式1:计算变式2:3128x y ==,则11x y-= .xy a log =)1,0(≠>=a a a y x 且10<<a 1>a 2(lg 2)lg 2lg 50lg 25+⋅+题型三、解对数式方程例题1:已知216log =x ,则=x ( ).A 2 .B 4 .C 8 .D 32例题2:已知 ① 3log 1log 266-=x ,求x 的值 ; ② 2)25(log 22=--x x ,求x 的值。

高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

高一数学上册 第二章基本初等函数之对数函数知识点总结及练习题(含答案)

高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)高一数学上册第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logaabb.N;自然对数:lnN,即loge(3)常用对数与自然对数:常用对数:lgN,即log10…).e2.71828(4)对数的运算性质如果a0,a1,M①加法:logaN(其中0,N0,那么MlogaNloga(MN)M②减法:logaMlogaNlogaN③数乘:nlogaMlogaMn(nR)④alogaNNnlogaM(b0,nR)bn⑤logabM⑥换底公式:logaNlogbN(b0,且b1)logba【2.2.2】对数函数及其性质(5)对数函数函数名称定义函数对数函数yloga某(a0且a1)叫做对数函数a1y某10a1y某1yloga某yloga某图象O(1,0)O(1,0)某某定义域值域过定点奇偶性(0,)R图象过定点(1,0),即当某1时,y0.非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(某1)loga某0(0某1)a变化对图象的影响在第一象限内,a越大图象越靠低,越靠近某轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第四象限内,a越小图象越靠高,越靠近y轴(6)反函数的概念设函数果对于yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式③将某yf(某)中反解出某f1(y);f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P"(b,a)在反函数yf1(某)的图象上.③若P(a,b)在原函数④一般地,函数yf(某)要有反函数则它必须为单调函数.一、选择题:1.log89的值是log23A.()23B.1C.32D.22.已知某=2+1,则log4(某3-某-6)等于A.()C.0D.32B.54123.已知lg2=a,lg3=b,则lg12等于lg15()A.2ab1abB.a2b1abC.2ab1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某的值为 yA.1B.4()C.1或4C.(C.ln5D.4或-1()5.函数y=log1(2某1)的定义域为2A.(1,+∞)B.[1,+∞)2B.5e1,1]2D.(-∞,1)()D.log5e()y6.已知f(e某)=某,则f(5)等于A.e57.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是yyyABCD8.设集合A{某|某10},B{某|log2某0|},则AB等于A.{某|某1}C.{某|某1}B.{某|某0}D.{某|某1或某1}2O某O某O某O某()9.函数yln某1,某(1,)的反函数为()某1e某1,某(0,)B.y某e1e某1,某(,0)D.y某e1e某1,某(0,)A.y某e1e某1,某(,0)C.y某e1二、填空题:10.计算:log2.56.25+lg11log23+lne+2=10011.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.15.(lgm)0.9≤(lgm)0.8,16.25y8413,14.y=1-2某(某∈R),217.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a扩展阅读:高一数学上册_第二章基本初等函数之对数函数知识点总结及练习题(含答案)〖2.2〗对数函数【2.2.1】对数与对数运算(1)对数的定义①若a某N(a0,且a1),则某叫做以a为底N的对数,记作某logaN,其中a叫做底数,N叫做真数.②负数和零没有对数.③对数式与指数式的互化:某logaNa某N(a0,a1,N0).(2)几个重要的对数恒等式:loga10,logaa1,logbaab.(3)常用对数与自然对数:常用对数:lgN,即log10N;自然对数:lnN,即logeN(其中e2.71828…).(4)对数的运算性质如果a0,a1,M0,N0,那么①加法:logaMlogaNloga(MN)②减法:logaMlogaNlogMaN③数乘:nlogaMlogaMn(nR)log④aaNN⑤lognnabMblogaM(b0,nR)⑥换底公式:logbNaNloglog(b0,且b1)ba【2.2.2】对数函数及其性质(5)对数函数函数名称对数函数定义函数yloga某(a0且a1)叫做对数函数a10a1y某1ylog某1a某yyloga某图象(1,0)OO(1,0)某某定义域(0,)值域R 过定点图象过定点(1,0),即当某1时,y0.奇偶性非奇非偶单调性在(0,)上是增函数在(0,)上是减函数loga某0(某1)loga某0(某1)函数值的变化情况loga某0(某1)loga某0(某1)loga某0(0某1)loga某0(0某1)a变化对在第一象限内,a越大图象越靠低,越靠近某轴在第四象限内,a越大图象越靠高,越靠近y轴在第一象限内,a越小图象越靠低,越靠近某轴在第四象限内,a越小图象越靠高,越靠近y轴④一般地,函数yf(某)要有反函数则它必须为单调函数.图象的影响(6)反函数的概念设函数yf(某)的定义域为A,值域为C,从式子yf(某)中解出某,得式子某(y).如果对于y在C中的任何一个值,通过式子某(y),某在A中都有唯一确定的值和它对应,那么式子某(y)表示某是y的函数,函数某(y)叫做函数yf(某)的反函数,记作某f1(y),习惯上改写成yf1(某).(7)反函数的求法①确定反函数的定义域,即原函数的值域;②从原函数式yf(某)中反解出某f1(y);③将某f1(y)改写成yf1(某),并注明反函数的定义域.(8)反函数的性质①原函数②函数yf(某)与反函数yf1(某)的图象关于直线y某对称.yf(某)的定义域、值域分别是其反函数yf1(某)的值域、定义域.yf(某)的图象上,则P(b,a)在反函数yf(某)的图象"1③若P(a,b)在原函数上.一、选择题:1.log89log的值是23A.23B.12.已知某=2+1,则log4(某3-某-6)等于A.3B.5243.已知lg2=a,lg3=b,则lg12lg15等于A.2ab1abB.a2b1abD.a2b1ab4.已知2lg(某-2y)=lg某+lgy,则某y的值为A.1B.45.函数y=log1(2某1)的定义域为2A.(12,+∞)B.[1,+∞)1)6.已知f(e某)=某,则f(5)等于C.32()C.0()C.()C.1或4C.(12,1]()D.2D.122ab1abD.4或-1)D.(-∞,()A.e5B.5eC.ln5D.log5e7.若f(某)loga某(a0且a1),且f1(2)1,则f(某)的图像是()yyyyABCDO某O某某OO某8.设集合A{某|某210},B{某|lo2某g0|}则,AB等于()A.{某|某1}B.{某|某0}C.{某|某1}D.{某|某1或某1}9.函数yln某1某1,某(1,)的反函数为()A.ye某1e某1,某(0,)B.ye某1e某1,某(0,)C.ye某1e某1e某1,某(,0)D.ye某1,某(,0)二、填空题:10.计算:log2.56.25+lg1100+lne+21log23=(11.函数y=log4(某-1)2(某<1的反函数为__________.12.函数y=(log1某)2-log1某2+5在2≤某≤4时的值域为______.44三、解答题:13.已知y=loga(2-a某)在区间{0,1}上是某的减函数,求a的取值范围.14.已知函数f(某)=lg[(a2-1)某2+(a+1)某+1],若f(某)的定义域为R,求实数a的取值范围.15.已知f(某)=某2+(lga+2)某+lgb,f(-1)=-2,当某∈R时f(某)≥2某恒成立,求实数a的值,并求此时f(某)的最小值?一、选择题:.132,14.y=1-2某(某∈R),15.(lgm)0.9≤(lgm)0.8,16.254y817.解析:因为a是底,所以其必须满足a>0且a不等于1a>0所以2-a某为减函数,要是Y=loga(2-a某)为减函数,则Y=loga(Z)为增函数,得a>1又知减函数区间为[0,1],a必须满足2-a某0>02-a某1>0即得a。

对数与对数函数-高考数学复习课件

对数与对数函数-高考数学复习课件
> 1,
故有ቊ
解得1< a ≤3.
6 − 2≥0,
(2)(2024·河南郑州模拟)设函数 f ( x )=ln| x +3|+ln| x -3|,则
f ( x )( A
)
A. 是偶函数,且在(-∞,-3)上单调递减
B. 是奇函数,且在(-3,3)上单调递减
C. 是奇函数,且在(3,+∞)上单调递增
因为0< a < b ,所以ln a <0,ln b >0,
所以0< a <1, b >1,
所以-ln a =ln b , 所以ln a +ln b =ln( ab )=0,
1
所以 ab =1,则 b = ,

2
所以 a +2 b = a + .

2
令 g ( x )= x + (0< x <1),
a >1
0< a <1
图象
定义域
(0,+∞)

值域
性质
R
过定点 (1,0)
,即 x = 1
时, y = 0

a >1
0< a <1
当 x >1时, y >0 ;
当0< x <1时, y <0

性质
在(0,+∞)上是 增


当 x >1时, y <0 ;
当0< x <1时, y >0




在(0,+∞)上是 减
内容索引
必备知识
自主梳理
关键能力
重点探究
课时作业
巩固提升
必备知识 自主梳理
[知识梳理]
知识点一 对数与对数运算
1. 对数的概念
如果 ax = N ( a >0,且 a ≠1),那么数 x 叫做以 a 为底 N 的对数,记作

对数函数知识点及典型例题讲解

对数函数知识点及典型例题讲解

对数函数知识点1.对数:(1) 定义:如果N a b =)1,0(≠>a a 且,那么称 为 ,记作 ,其中a 称为对数的底,N 称为真数. ① 以10为底的对数称为常用对数,N 10log 记作___________.② 以无理数)71828.2( =e e 为底的对数称为自然对数,N e log 记作_________. (2) 基本性质:① 真数N 为 (负数和零无对数);② 01log =a ;③ 1log =a a ; ④ 对数恒等式:N a N a =log . (3) 运算性质:① log a (MN)=___________________________; ② log a NM =____________________________;③ log a M n= (n ∈R).④ 换底公式:log a N = (a >0,a ≠1,m >0,m ≠1,N>0)⑤ log mna a nb b m = .2.对数函数:① 定义:函数 称为对数函数,1) 函数的定义域为( ;2) 函数的值域为 ;3) 当______时,函数为减函数,当______时为增函数;4) 函数x y a log =与函数)1,0(≠>=a a a y x且互为反函数. ② 1) 图象经过点( ),图象在 ;2) 对数函数以 为渐近线(当10<<a 时,图象向上无限接近y 轴;当1>a 时,图象向下无限接近y 轴);4) 函数y =log a x 与 的图象关于x 轴对称. ③ 函数值的变化特征:例1 计算:(1))32(log32-+(2)2(lg 2)2+lg 2·lg5+12lg )2(lg 2+-;(3)21lg 4932-34lg 8+lg 245.例2 比较下列各组数的大小.(1)log 332与log 556; (2)log 1.10.7与log 1.20.7;(3)已知log 21b <log 21a <log 21c,比较2b ,2a ,2c 的大小关系.例3已知函数f(x)=log a x(a >0,a ≠1),如果对于任意x ∈[3,+∞)都有|f(x)|≥1成立, 试求a 的取值范围.函数y=log 2x 的图象交于C 、D 两点.例4 已知过原点O 的一条直线与函数y=log 8x 的图象交于A 、B 两点,分别过A 、B 作y 轴的平行与 (1)证明:点C 、D 和原点O 在同一直线上; (2)当BC 平行于x 轴时,求点A 的坐标.1解:(1)方法一 利用对数定义求值 设)32(log32-+=x, 则(2+3)x=2-3=321+=(2+3)-1,∴x=-1.方法二 利用对数的运算性质求解)32(log 32-+=32log +321+=32log+(2+3)-1=-1.(2)原式=lg 2(2lg 2+lg5)+12lg 2)2(lg 2+-=lg 2(lg2+lg5)+|lg 2-1| =lg 2+(1-lg 2)=1. (3)原式=21(lg32-lg49)-34lg821+21lg245 =21 (5lg2-2lg7)-34×2lg 23+21 (2lg7+lg5) =25lg2-lg7-2lg2+lg7+21lg5=21lg2+21lg5 =21lg(2×5)= 21lg10=21. 2解:(1)∵log 332<log 31=0, 而log 556>log 51=0,∴log 332<log 556.(2)方法一 ∵0<0.7<1,1.1<1.2, ∴0>2.1log 1.1log 7.00.7>, ∴2.1log 11.1log 17.07.0<,即由换底公式可得log 1.10.7<log 1.20.7.方法二 作出y=log 1.1x 与y=log 1.2x 的图象. 如图所示两图象与x=0.7相交可知log 1.10.7<log 1.20.7. (3)∵y=x 21log 为减函数,且c a b 212121log log log <<, ∴b >a >c,而y=2x 是增函数,∴2b >2a >2c .3解:当a >1时,对于任意x ∈[3,+∞),都有f(x)>0. 所以,|f(x)|=f(x),而f(x)=log a x 在[3,+∞)上为增函数, ∴对于任意x ∈[3,+∞),有f(x)≥log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立. 只要log a 3≥1=log a a 即可,∴1<a ≤3. 当0<a <1时,对于x ∈[3,+∞),有f(x)<0, ∴|f(x)|=-f(x). ∵f (x )=log a x 在[3,+∞)上为减函数,∴-f (x )在[3,+∞)上为增函数. ∴对于任意x ∈[3,+∞)都有 |f(x)|=-f(x)≥-log a 3. 因此,要使|f(x)|≥1对于任意x ∈[3,+∞)都成立, 只要-log a 3≥1成立即可, ∴log a 3≤-1=log a a1,即a 1≤3,∴31≤a <1. 综上,使|f(x)|≥1对任意x ∈[3,+∞)都成立的a 的取值范围是:(1,3]∪[31,1).例4(1)证明 设点A 、B 的横坐标分别为x 1、x 2, 由题设知x 1>1,x 2>1,则点A 、B 的纵坐标分别为log 8x 1、log 8x 2. 因为A 、B 在过点O 的直线上,所以228118log log x x x x =点C 、D 的坐标分别为(x 1,log 2x 1)、(x 2,log 2x 2), 由于log 2x 1=2log log 818x =3log 8x 1,log 2x 2=3log 8x 2, OC 的斜率为k 1=118112log 3log x x x x =, OD 的斜率为,log 3log 2282222x x x x k ==由此可知k 1=k 2,即O 、C 、D 在同一直线上. (2)解: 由于BC 平行于x 轴,知log 2x 1=log 8x 2,即得log 2x 1=31log 2x 2,x 2=x 31, 代入x 2log 8x 1=x 1log 8x 2,得x 31log 8x 1=3x 1log 8x 1,由于x 1>1,知log 8x 1≠0,故x 31=3x 1, 又因x 1>1,解得x 1=3,于是点A 的坐标为(3,log 83).训练1:化简求值. (1)log 2487+log 212-21log 242-1; (2)(lg2)2+lg2·lg50+lg25; (3)(log 32+log 92)·(log 43+log 83).训练2:已知0<a <1,b >1,ab >1,则log a bb bba1log ,log ,1的大小关系是 ( )A.log a bb bba1loglog 1<< B.bbb baa1log 1log log << C.b bb aba1log 1log log << D.b bb aablog 1log 1log <<训练3:已知函数f (x )=log 2(x 2-ax-a)在区间(-∞, 1-3]上是单调递减函数.求实数a 的取值范围.训练4:已知函数f(x)=log 211-+x x +log 2(x-1)+log 2(p-x). (1)求f(x)的定义域;(2)求f(x)的值域.1解:(1)原式=log 2487+log 212-log 242-log 22=log 2.232log 221log 242481272322-===⨯⨯⨯-(2)原式=lg2(lg2+lg50)+lg25=2lg2+lg25=lg100=2.(3)原式=(.452lg 63lg 5·3lg 22lg 3)2lg 33lg 2lg 23lg (·)3lg 22lg 3lg 2lg ==++2解: C3解:令g(x)=x 2-ax-a,则g(x)=(x-2a )2-a-42a , 由以上知g(x )的图象关于直线x=2a 对称且此抛物线开口向上.因为函数f(x)=log 2g(x)的底数2>1, 在区间(-∞,1-3]上是减函数, 所以g(x)=x 2-ax-a 在区间(-∞,1-3]上也是单调减函数,且g(x)>0.∴⎪⎩⎪⎨⎧>-----≥⎪⎩⎪⎨⎧>-≤-0)31()31(3220)31(2312a a a g a ,即解得2-23≤a <2.故a 的取值范围是{a|2-23≤a <2}.4解:(1)f(x)有意义时,有⎪⎪⎪⎩⎪⎪⎪⎨⎧>->->-+,③0,②01,①011x p x x x 由①、②得x >1,由③得x <p,因为函数的定义域为非空数集,故p >1,f(x)的定义域是(1,p).(2)f(x)=log 2[(x+1)(p-x)] =log 2[-(x-21-p )2+4)1(2+p ] (1<x <p), ①当1<21-p <p ,即p >3时, 0<-(x-4)1(4)1()21222+≤++-p p p , ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x ≤2log 2(p+1)-2. ②当21-p ≤1,即1<p ≤3时, ∵0<-(x-),1(24)1()2122-<++-p p p ∴log 2⎥⎦⎤⎢⎣⎡++---4)1()21(22p p x <1+log 2(p-1). 综合①②可知: 当p >3时,f(x)的值域是(-∞,2log 2(p+1)-2]; 当1<p ≤3时,函数f(x)的值域是(-∞,1+log 2(p-1)). 1.处理对数函数的有关问题,要紧密联系函数图象,运用数形结合的思想进行求解.2.对数函数值的变化特点是解决含对数式问题时使用频繁的关键知识,要达到熟练、运用自如的水平,使用时常常要结合对数的特殊值共同分析.3.含有参数的指对数函数的讨论问题是重点题型,解决这类问题最基本的分类方案是以“底”大于1或小于1分类. 4.含有指数、对数的较复杂的函数问题大多数都以综合形式出现,与其它函数(特别是二次函数)形成的函数问题,与方程、不等式、数列等内容形成的各类综合问题等等,因此要注意知识的相互渗透或综合.。

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析

对数与对数运算知识点及例题解析1、对数的定义①若(0,1)x a N a a =>≠且,则x 叫做以a 为底N 的对数,记作log a x N =,其中a 叫做底数,N 叫做真数.②负数和零没有对数.③对数式与指数式的互化:log (0,1,0)x a x N a N a a N =⇔=>≠>. 2、以10为底的对数叫做常用对数,log 10N 记作lg N .3、以无理数e=2.718 28…为底的对数称为自然对数,logeN 记作ln N4、对数的性质: (1)log 10,log 1a a a ==(2)对数恒等式①a log aN =N ;②log a a N =N (a >0,且a ≠1).5、对数的运算性质 如果0,1,0,0a a M N >≠>>,那么①加法:log log log ()a a a M N MN +=②减法:log log log a a a M M N N-= ③数乘:log log ()na a n M M n R =∈⑤log a m M n =n mlog a M . ⑥换底公式:log log (0,1)log b a b NN b b a=>≠且特殊情形:log a b =1log b a,推广log a b ·log b c ·log c d =log a d .类型一、指数式与对数式互化及其应用例1、将下列指数式与对数式互化:(1);(2);(3);(4);(5);(6).思路点拨:运用对数的定义进行互化. 解:(1);(2);(3);(4);(5);(6).例2、求下列各式中x 的值:(1) (2) (3)lg100=x (4)思路点拨:将对数式化为指数式,再利用指数幂的运算性质求出x.解:(1);(2);(3)10x =100=102,于是x=2; (4)由例3、若x=log43,则(2x-2-x)2等于( )A.94B.54C.103D.43解由x=log43,得4x=3,即2x=3,2-x=33,所以(2x-2-x)2=⎝⎛⎭⎪⎫2332=43.类型二、利用对数恒等式化简求值例4、求值:解:.总结升华:对数恒等式中要注意格式:①它们是同底的;②指数中含有对数形式;③其值为真数例5、求的值(a,b,c∈R+,且不等于1,N>0)思路点拨:将幂指数中的乘积关系转化为幂的幂,再进行运算.解:.类型三、积、商、幂的对数例6、已知lg2=a,lg3=b,用a、b表示下列各式.(1)lg9 (2)lg64 (3)lg6 (4)lg12 (5)lg5 (6) lg15解:(1)原式=lg32=2lg3=2b(2)原式=lg26=6lg2=6a(3)原式=lg2+lg3=a+b(4)原式=lg22+lg3=2a+b(5)原式=1-lg2=1-a(6)原式=lg3+lg5=lg3+1-lg2=1+b-a例7、(1) (2)lg2·lg50+(lg5)2 (3)lg25+lg2·lg50+(lg2)2解:(1)(2)原式=lg2(1+lg5)+(lg5)2=lg2+lg2lg5+(lg5)2=lg2+lg5(lg2+lg5)=lg2+lg5=1(3)原式=2lg5+lg2(1+lg5)+(lg2)2=2lg5+lg2+lg2lg5+(lg2)2=1+lg5+lg2(lg5+lg2)=1+lg5+lg2=2.例8、已知3a=5b=c,,求c的值.解:由3a=c得:同理可得.例9、设a、b、c为正数,且满足a2+b2=c2.求证:.证明:.例10、已知:a2+b2=7ab,a>0,b>0. 求证:.证明:∵a2+b2=7ab,∴a2+2ab+b2=9ab,即(a+b)2=9ab,∴lg(a+b)2=lg(9ab),∵a>0,b>0,∴2lg(a+b)=lg9+lga+lgb ∴2[lg(a+b)-lg3]=lga+lgb即 .类型四、换底公式的运用例11、(1)已知log x y=a,用a表示;(2)已知log a x=m,log b x=n,log c x=p,求log abc x.解:(1)原式=;(2)思路点拨:将条件和结论中的底化为同底.方法一:a m=x,b n=x,c p=x,;方法二:.例12、求值:(1);(2);(3).解:(1)(2);(3)法一:法二:.总结升华:运用换底公式时,理论上换成以大于0不为1任意数为底均可,但具体到每一个题,一般以题中某个对数的底为标准,或都换成以10为底的常用对数也可.类型五、对数运算法则的应用例13、求值(1) log89·log2732(2)(3)(4)(log2125+log425+log85)(log1258+log254+log52)解:(1)原式=.(2)原式=(3)原式=(4)原式=(log2125+log425+log85)(log1258+log254+log52)例14、已知:log23=a,log37=b,求:log4256=?解:∵∴,。

高中数学对数与对数函数知识点与经典例题讲解

高中数学对数与对数函数知识点与经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果 a b=N (a > 0,a ≠ 1),那么 b 叫做以 a 为底 N 的对数,记作 log a N=b. (2)指数式与对数式的关系: a b=N log a N=b (a >0,a ≠ 1,N >0).两个式子表示的 a 、b 、N 三个数之间的关系是一样的,并且可以互化 .(3)对数运算性质 : ① log a (MN )=log a M+log a N.② log a M=log a M -log a N.N③ log a M n =nlog a M.(M >0,N > 0,a > 0,a ≠1)④对数换底公式: log b N= loglog a a N (a >0,a ≠1,b >0,b ≠1,N >0).b 2.对数函数(1)对数函数的定义函数 y=log a x (a >0,a ≠ 1)叫做对数函数,其中 x 是自变量,函数的定义域是( 0,+∞) .注意: 真数式子没根号那就只要求真数式大于零 ,如果有根号 ,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0, 或=1 的时候是会有相应 b 的值的。

但是,根据对数定义 : log a a=1 ;如果 a=1 或 =0 那么 log a a 就可以等于一切实数(比如 log 1 1 也可以等于 2 ,3, 4,5,等等)第二,根据定义1运算公式: log a M^n = nlog a M 如果 a<0, 那么这个等式两边就不会成立(比如, log(-2)4^(-2) 就不等于 (-2)*log (-2) 4 ;一个等于 1/16 ,另一个等于 -1/16 )(2)对数函数的图象y yy=l og a x(a> 1)1O 1 x O xy=l og a x(0<a<1)底数互为倒数的两个对数函数的图象关于x 轴对称 .(3)对数函数的性质 :①定义域:( 0,+∞).②值域: R .③过点( 1, 0),即当 x=1 时, y=0.④当 a>1 时,在( 0,+∞)上是增函数;当0<a<1 时,在( 0,+∞)上是减函数 .基础例题1.函数 f(x)=|log2x|的图象是 ?2.若 f -1(x)为函数 f(x)=lg(x+1)的反函数,则 f -1(x)的值域为___________________.23.已知 f( x)的定义域为[ 0,1],则函数 y=f[log 1 ( 3-x)]的定义2域是 __________.4.若 log x 7 y =z,则 x、y、z 之间满足A. y7=x zB.y=x7zC.y=7x zD.y=z x5.已知 1<m<n,令 a=(log n m)2,b=log n m2,c=log n(log n m),则A. a<b< cB.a<c<bC.b<a<cD.c< a<b6.若函数f( x)=logax( 0<a<1)在区间[ a,2a]上的最大值是最小值的 3 倍,则 a 等于A. 2B. 2C. 1D. 14 2 4 27.函数 y=log2|ax-1|( a≠0)的对称轴方程是x=- 2,那么 a 等于(x=-2 非解 )A. 1B.-1C.2D.-22 28.函数 f(x)=log2|x|,g(x) =-x2+2,则 f(x)·g( x)的图象只可能是y yO xOxA By yO x O x C D39.设 f -1(x)是 f(x)=log2( x+1)的反函数,若[ 1+ f -1(a)][1+ f -1(b)]=8,则 f(a+b)的值为A.1B.2C.3D.log2310.方程 lgx+lg (x+3)=1 的解 x=___________________.典型例题【例 1】已知函数 f(x)= (1x2), x4, 则 f(2+log23)的值为f( x 1), x 4 ,A. 1B. 1C. 1D. 13 6 12 24【例 2】求函数 y= log2| x|的定义域,并画出它的图象,指出它的单调区间 .【例 3】已知 f(x)=log 1[3-( x- 1)2],求 f(x)的值域及单调3区间 .4【例 4】已知 y=log a(3-ax)在[ 0,2]上是 x 的减函数,求 a 的取值范围 .【例 5】设函数 f(x)=lg(1- x),g(x)=lg(1+x),在 f(x)和g(x)的公共定义域内比较 |f(x)|与 |g( x)|的大小 .【例 6】求函数 y=2lg(x-2)- lg( x-3)的最小值 .1【例 7】在 f1(x)=x 2 , f2(x)=x2,f3(x) =2x,f4(x)=log 1x 四2个函数中, x > x >1 时,能使1[f(x )+f(x )]< f(x1 x 2)成1 2 1 22 2立的函数是1A. f1(x) =x 2 (平方作差比较 )B.f2 (x)=x2C.f3(x)=2xD.f4(x) =log 1 x25探究创新1.若 f(x)=x2-x+b,且 f(log2a)=b, log2[ f( a)]=2(a≠1).(1)求 f(log2x)的最小值及对应的 x 值;(2)x 取何值时, f(log2x)> f( 1)且 log2[f(x)]< f(1)?2.已知函数 f(x)=3x+k(k 为常数),A(- 2k,2)是函数 y= f -1(x)图象上的点 .(1)求实数 k 的值及函数 f -1(x)的解析式;(2)将 y= f -1( x)的图象按向量a=(3, 0)平移,得到函数y=g(x)的图象,若 2 f -1(x+ m -3)- g(x)≥ 1 恒成立,试求实数 m 的取值范围 .6。

对数函数考点分析及经典例题讲解

对数函数考点分析及经典例题讲解

对数函数考点分析及经典例题讲解1. 对数函数的定义:函数 x y log =)10(≠>a a 且叫做对数函数,定义域是 (0,)+∞a 的取值 0<a <1a >1定义域(0,)+∞图 象图像特征在y 轴的右侧,过定点(1,0)即x =1时,y =0当x>0且x →0时,图象趋近于 y 轴正半轴. 当x>0且x →0时,图象趋近于 y 轴负半轴.值域 R性 质 过定点(1,0),在(0,+∞)上是减函数在(0,+∞)上是增函数 函数值的变化规律当0<x<1时,y ∈(0,+∞)当x=1 时,y=0; 当x>1 时, y<0.当0<x<1时,y<0; 当x=1时, y=0 ; 当x>1时, y>0 .3.对数函数y=log a x(a>0,且a ≠1)与指数函数y=a x(a>0,且a ≠1)互为反函数 .它们的图象关于x y =对称.案例分析: 考点一、比较大小例1、比较下列各组数中两个值的大小:(1)log 23.4,log 23.8; (2)log 0.51.8,log 0.52.1;(3)log a 5.1,log a 5.9; (4)log 75,log 67.(5); (6)6log ,7log 768.0log ,log 23π变式训练:1、已知函数x y 2log =,则当1>x 时,∈y ;当10<<x 时,∈y .考点二、求定义域例2、求下列函数的定义域(1)0.2log (4);y x =-; (2)log ay =(0,1).a a >≠;(3)2(21)log (23)x y x x -=-++ (4)y =例3、选择题:若03log 3log <<n m 则m 、n 满足的条件是( )A 、m>n>1B 、n>m>1C 、0<m<n<1D 、0<n<m<1例4 、函数)352(log 221++-=x x y 在什么区间上是增函数?在什么区间上是减函数?1、函数f (x )=log a [(a -1)x +1]在定义域上( )A .是增函数B .是减函数C .先增后减D .先减后增 2、方程)13lg()3lg(222+-=x x 的解集是 .3、已知函数f (x )=⎩⎪⎨⎪⎧3x +1x ≤0log 2x x >0,则使函数f (x )的图象位于直线y =1上方的x 的取值范围是________.4、若0<)12(log )1(log 22-<+a a ,则实数a 的取值范围是 .5、方程()lg 3x +-()lg 3x -=()lg 1x -的解是 .考点三、求值域例1、(1)、12);4x -(-x log y 221+=(2)、3);-2x -(x log y 221=(3)y=log a (a-a x)(a>1).1、求下列函数的定义域、值域:⑴ ⑵⑶⑷41212-=--x y )52(log 22++=x x y )54(log 231++-=x x y )(log 2x x y a --=)10(<<a2、求函数y =log 2(x 2-6x +5)的定义域和值域.3、已知x 满足条件09log 9)(log 221221≤++x x ,求函数)4(log )3(log )(22xx x f ⋅=的最大值.4、已知)23lg(lg )23lg(2++=-x x x ,求222log x 的值。

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解

对数与对数函数知识点与例题讲解知识梳理: 一、对数1、定义:一般地,如果()0,1x a N a a =>≠,那么实数x 叫做以a 为底N 的对数,记作a x log N =,其中a 叫做对数的底数,N 叫做对数的真数.2、特殊对数⑴通常以10为底的对数叫做常用对数,并把10log N 记为lgN ; ⑵通常以e 为底的对数叫做自然对数,并把e log N 记为lnN . 3、对数的运算⑴运算性质:如果0,1,0,0a a M N >≠>>且,那么:①()a a a log MN log M log N =+;②a a a Mlog log M log N N=-;③()n a a log M nlog M n R =∈;④(),0m na a n log M log M n R m m=∈≠;⑤1a b log b log a =;⑥a log N a N =.⑵换底公式:c a c log blog b log a=.二、对数函数1、定义:一般地,函数()01a y log x a a =>≠,且叫做对数函数,其中x 是自变量,函数的定义域是()0,+∞.2、图像和性质1>a10<<a图像性质定义域: 值域:过定点 ,即当1=x 时,0=y在R 上是在R 上是非奇非偶函数3、同底的指数函数xa y =与对数函数x y a log =互为反函数,它们的图像关于直线x y =对称.【课前小测】1、2193-⎛⎫= ⎪⎝⎭写成对数式,正确的是( )A 、9123log =- B 、1392log =- C 、()1329log -= D 、()9123log -= 2、函数()0,1a y log x a a =>≠的图像过定点( )A 、()1,1B 、()1,0C 、()0,1D 、()0,0 3、49343log 等于( ) A 、7 B 、2 C 、23 D 、324、函数()()31f x lg x =+的定义域是( )A 、1,3⎛⎫-+∞ ⎪⎝⎭ B 、()0,+∞ C 、(),0-∞ D 、1,3⎛⎫-∞- ⎪⎝⎭5、函数()21f x log x =+的定义域是( )A 、(),-∞+∞B 、()0,+∞C 、1,2⎡⎫+∞⎪⎢⎣⎭D 、10,2⎛⎤ ⎥⎝⎦考点一、化简和求值例1、⑴552log 10log 0.25+=( ) A 、0 B 、1 C 、2 D 、4 解析:2log 510+log 50.25=log 5100+log 50.25=log 525=2 ⑵计算:3948(log 2log 2)(log 3log 3)+⋅+. 解:原式lg 2lg 2lg3lg3lg 2lg 2lg3lg3()()()()lg3lg9lg 4lg8lg32lg32lg 23lg 2=+⋅+=+⋅+3lg 25lg 352lg 36lg 24=⋅=. 变式、⑴(辽宁卷文10)设25abm +=,且112a b+=,则m =( ) A 、10 B 、10 C 、20 D 、100 ⑵已知32a=,用a 表示33log 4log 6-;⑶已知3log 2a =,35b=,用a 、b 表示 30log 3.考点二、比较大小例2、较下列比较下列各组数中两个值的大小:⑴6log 7,7log 6; ⑵3log π,2log 0.8; ⑶0.91.1, 1.1log 0.9,0.7log 0.8; ⑷5log 3,6log 3,7log 3. 答案:⑴>;⑵>;⑶>,>;⑷>,>.变式、⑴已知函数()|lg |f x x =,若11a b c>>>,则()f a 、()f b 、()f c 从小到大依次为 ;a c b <<⑵已知log 4log 4m n <,比较m ,n 的大小. 解:∵log 4log 4m n <, ∴4411log log m n <,当1m >,1n >时,得44110log log m n<<,∴44log log n m <, ∴1m n >>.当01m <<,01n <<时,得44110log log m n<<,∴44log log n m <, ∴01n m <<<.当01m <<,1n >时,得4log 0m <,40log n <, ∴01m <<,1n >, ∴01m n <<<.综上所述,m ,n 的大小关系为1m n >>或01n m <<<或01m n <<<. 考点三、解与对数相关的不等式 例3、⑴解不等式2)1(log 3≥--x x .解:原不等式等价于⎪⎩⎪⎨⎧-≥->->-2)3(11301x x x x 或⎪⎩⎪⎨⎧-≤-<-<>-2)3(113001x x x x解之得:4<x ≤5 ∴原不等式的解集为{x |4<x ≤5}⑵解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a . 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x(其实中间一个不等式可省,为什么?让学生思考)当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴当a >1时不等式的解集为221<<x ;当0<a <1时不等式的解集为42<<x ⑶解不等式24log ax x xxa > 解:两边取以a 为底的对数:当0<a <1时原不等式化为:2log 29)(log 2-<x x a a ∴0)1log 2)(4(log <--x x a a ,4log 21<<x a , ∴a x a <<4 当a >1时原不等式化为:2log 29)(log 2->x x a a ∴0)1log 2)(4(log >--x x a a ,∴ 21log 4log <>x x a a 或 ,∴a x a x <<>04或 ∴原不等式的解集为}10,|{4<<<<a a x a x 或}1,0|{4><<>a a x a x x 或考点四、对数型函数的性质 ① 定义域、值域例4、⑴函数2()lg(31)f x x ++的定义域是( ) A 、1(,)3-+∞ B 、1(,1)3- C 、11(,)33- D 、1(,)3-∞-⑵函数(21)log x y -= )A 、()2,11,3⎛⎫+∞⎪⎝⎭B 、()1,11,2⎛⎫+∞ ⎪⎝⎭C 、2,3⎛⎫+∞⎪⎝⎭ D 、1,2⎛⎫+∞ ⎪⎝⎭⑶函数()()2log 31xf x =+的值域为( )A 、()0,+∞B 、[)0,+∞C 、()1,+∞D 、[)1,+∞ 变式、求函数y =的定义域.② 单调性、奇偶性例5、⑴函数y =log 3(x 2-2x )的单调减区间是________. 解: 令u =x 2-2x ,则y =log 3u . ∵y =log 3u是增函数,u =x 2-2x >0的减区间是(-∞,0),∴y =log 3(x 2-2x )的减区间是(-∞,0).⑵设0<a <1,函数f (x )=log a (a 2x -2a x -2),则使f (x )<0的x 的取值范围是( ) A 、(-∞,0) B 、(0,+∞) C 、(-∞,log a 3)D 、(log a 3,+∞)解:由f (x )<0,即a 2x -2a x -2>1,整理得(a x -3)(a x +1)>0,则a x >3.∴x <log a 3. ⑶函数y =log 22-x2+x 的图象( )A 、关于原点对称B 、关于直线y =-x 对称C 、关于y 轴对称D 、关于直线y =x 对称解:∵f (x )=log 22-x 2+x ,∴f (-x )=log 22+x 2-x =-log 22-x2+x∴f (-x )=-f (x ),∴f (x )是奇函数.故选A .变式、⑴若011log 22<++aa a,则a 的取值范围是( ) A 、),21(+∞ B 、),1(+∞ C 、)1,21( D 、)21,0(⑵若02log )1(log 2<<+a a a a ,则a 的取值范围是 .⑶若函数)2(log )(22a x x x f a ++= 是奇函数,则a = .③综合应用例6、设函数f (x )=log a ⎝⎛⎭⎫1-ax ,其中0<a <1. ⑴证明:f (x )是(a ,+∞)上的减函数; ⑵解不等式f (x )>1.解析:⑴证明:设0<a <x 1<x 2,g (x )=1-ax ,则g (x 1)-g (x 2)=1-a x 1-1+a x 2=a (x 1-x 2)x 1x 2<0,∴g (x 1)<g (x 2).又∵0<a <1,∴f (x 1)>f (x 2). ∴f (x )在(a ,+∞)上是减函数.⑵∵log a ⎝⎛⎭⎫1-a x >1,∴0<1-ax <a ,解得:⎩⎪⎨⎪⎧x >a ,x <a 1-a ,∴不等式的解集为:{x |a <x <a1-a}.变式、已知函数22()log (32)f x x x =+-.⑴求函数()f x 的定义域;⑵求证()f x 在(1,3)x ∈上是减函数;⑶求函数()f x 的值域. 随堂巩固1、6632log log +等于( )A 、6B 、5C 、1D 、65log 2、在()23a b log -=中,实数a 的取值范围是( )A 、2a <B 、2a >C 、23,3a a <<>或D 、3a > 3、下列格式中成立的是( )A 、22a a log b log b = B 、a a a log xy log x log y =+C 、()()()a a a log xy log x log y =•D 、a a a xlog log y log x y=- 4、213alog > ,则a 的取值范围是( ) A 、312a <<B 、30112a a <<<<或C 、213a <<D 、2013a a <<>或 5、已知ab M =()0,0,1a b M >>≠,且log M b x =,则log M a 等于( ) A 、1x - B 、1x + C 、1xD 、1x - 6、(08山东济宁)已知8log 9a =,2log 5b =,则lg 3等于( ) A 、1ab - B 、()321a b - C 、()321a b + D 、()312a b -7、已知函数()()32f x lg x =+的定义域为F ,函数()()()12g x lg x lg x =-+-的定义域为G ,那么( )A 、G F ≠⊂B 、G F =C 、F G ⊆D 、FG =∅8、(08山东)已知函数()2300x x f x log x x ⎧≤=⎨>⎩,,,12f f ⎡⎤⎛⎫ ⎪⎢⎥⎝⎭⎣⎦( ) A 、1- B、log CD 、139、若()6430log log log x =⎡⎤⎣⎦,则12x -等于( )A 、9B 、91C 、3D 、3310、若M =⋅32log 4log 3log 3132 ,则M 的值是( ) A 、5 B 、6 C 、7 D 、8 11、已知3log 2a =,那么33log 82log 6-用a 表示是( )A 、2a -B 、5a -C 、23(1)a a -+ D 、231a a -- 12、已知偶函数()x f 在[]4,2上单调递减,那么)8(log 21f 与)(π-f 的大小关系是( )A 、)8(log 21f >)(π-f B 、)8(log 21f =)(π-fC 、)8(log 21f < )(π-f D 、不能确定13、若312log 19x-=,则x = ; 14、已知:lg 21.3a =,则lg0.213=___________;15、()2211log log 1a a x x -->+,则a 的取值范围为________________; 16、比较大小⑴8.1log 3 7.2log 3;⑵5log 6 7log 6; 17、若14log 3=x ,则=+-xx44___________;18、已知log 1a x =,log 2b x =,log 4c x =,则log abc x =____________; 19、(08山东) 知()lg lg 2lg 2x y x y +=-,求的值.20、⑴已知a =2lg ,b =3lg ,试用b a 、表示5log 12;⑵已知a =3log 2,b =7log 3,试用b a 、表示56log 14.21、已知())lgf x x =.⑴求()f x 的定义域; ⑵求证:()f x 是奇函数.22、解关于x 的不等式:)1,0(,2log )12(log )34(log 2≠>>---+a a x x x a a a 解:原不等式可化为)12(2log )34(log 2->-+x x x a a当a >1时有221234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧<<-<<->⇒⎪⎩⎪⎨⎧->-+>-+>-x x x x x x x x x x当0<a <1时有42234121)12(23403401222<<⇒⎪⎪⎩⎪⎪⎨⎧>-<<<->⇒⎪⎩⎪⎨⎧-<-+>-+>-x x x x x x x x x x x 或∴ 当a >1时不等式的解集为221<<x ; 当0<a <1时不等式的解集为42<<x课后巩固1、()0,1,0log >≠>=N b b a N b 对应的指数式是( )A 、N a b =B 、N b a =C 、b a N= D 、a b N =2、设255lg =x,则x 的值等于( )A 、10B 、0.01C 、100D 、1000 3、()[]0log log log 234=x ,那么21-x等于( )A 、2B 、21C 、4D 、414、化简9log 8log 5log 4log 8543•••的结果是( ) A 、1 B 、23C 、2D 、3 5、函数()1log 21-=x y 的定义域是( )A 、()+∞,1B 、()2,∞-C 、()+∞,2D 、(]2,1 6、若09log 9log <<n m ,那么n m ,满足的条件是( )A 、1>>n mB 、1>>m nC 、10<<<m nD 、10<<<n m7、若132log <a ,则a 的取值范围是( )A 、()+∞⎪⎭⎫ ⎝⎛,132,0B 、⎪⎭⎫ ⎝⎛+∞,32C 、⎪⎭⎫⎝⎛1,32 D 、⎪⎭⎫ ⎝⎛+∞⎪⎭⎫ ⎝⎛,3232,08、函数()176log 221+-=x x y 的值域是( )A 、RB 、[)+∞,8C 、()3,-∞-D 、[)+∞,39、函数⎪⎭⎫⎝⎛--=112lg x y 的图像关于( ) A 、y 轴对称 B 、x 轴对称 C 、原点对称 D 、直线x y =对称 10、图中的曲线是x y a log =的图像,已知a 的值为51,103,34,2,则相应曲线4321,,,C C C C 的a 依次为( )A 、103,51,34,2B 、51,103,34,2C 、2,34,103,51D 、51,103,2,3411、比较两个对数值的大小:7ln 12ln ;7.0log 5.0 8.0log 5.0. 12、计算()=•+50lg 2lg 5lg 2.13、函数()()x xx f -+=1lg2是 函数.(填“奇”、“偶”或“非奇非偶”).14、函数xa y =的反函数的图像经过点()2,9,则a 的值为 . 15、已知函数()()1log +=x x f a ,()()x x g a -=1log ()10≠>a a ,且 ⑴求函数()()x g x f +的定义域;(10分) ⑵判断函数()()x g x f +的奇偶性.(10分)16、已知log 4log 4m n <,比较m ,n 的大小。

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

专题09 对数与对数函数(重难点突破)原卷版附答案.pdf

ab 2b
2
.
11
(2). 求下列函数的定义域: 1
(1)f(x)=lg(x-2)+x-3;(2)f(x)=log(x+1)(16-4x). 【解析】 (1)要使函数有意义,需满足Error!解得 x>2 且 x≠3, 所以函数定义域为(2,3)∪(3,+∞). (2)要使函数有意义,需满足Error!解得-1<x<0 或 0<x<4, 所以函数定义域为(-1,0)∪(0,4).
底数,N 叫做真数.
重难点二 对数的性质、换底公式与运算性质
(1)对数的性质:①alogaN=N;②logaab=b(a>0,且 a≠1). (2)对数的运算法则
如果 a>0 且 a≠1,M>0,N>0,那么 ①loga(MN)=logaM+logaN;
M ②loga N =logaM-logaN;
B. y ln(2 x) C. y ln(1 x)
D.
3
y ln(2 x)
(3).函数 f(x)=ax-b 的图象如图所示,其中 a,b 为常数,则下列结论正确的是( )
A.a>1,b<0
B.a>1,b>0
C.0<a<1,b>0
D.0<a<1,b<0
(4).当 a>1 时,在同一坐标系中,函数 y=a-x 与 y=logax 的图象为( )
例 2 求下列函数的定义域:
1
1
(1)f(x)=
;(2)f(x)= +ln(x+1);
1
2-x
log x+1
2
1
1
【解析】(1)要使函数 f(x)有意义,则 log x+1>0,即 log x>-1,解得 0<x<2,即函数 f(x)的定义

对数与对数函数-2025高考数学复习

对数与对数函数-2025高考数学复习

高考一轮总复习 • 数学
[解析] 因为 a=log36=1+log32,b=1+2log52,
②logaMN =_l_o_g_a_M_-__l_o_g_a_N__; ③logaMn=_n__lo_g_a_M__(n∈R).
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
知识点二 对数函数的图象与性质 1.对数函数的定义、图象和性质
定义
函数___y_=__lo_g_a_x_(_a_>__0_,__且__a_≠_1_)___叫做对数函数
a>1
0<a<1
图象
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
性质
定义域:___(_0_,__+__∞__) ________ 值域:____(-__∞__,__+__∞_)______
当x=1时,y=0,即过定点____(_1_,_0_) ______
当0<x<1时,y<0; 当x>1时,____y_>__0______
5 log4 3
5
=log2 8=3log2 3,所以 a-3b=log2 5-log2 3=log2 3= log4 2 =2log4 3=
25 log4 9 ,所以 4a-3b=
25 = 9 ,故选 C.
第二章 函数概念与基本初等函数Ⅰ
高考一轮总复习 • 数学
返回导航
8 . (2017·全 国 卷 Ⅱ ) 函 数 f(x) = ln(x2 - 2x - 8) 的 单 调 递 增 区 间 是
1 =2,∴a<c<b.故选 C.
第二章 函数概念与基本初等函数Ⅰ
返回导航
考点突破 · 互动探究

对数及对数函数 知识点总结及典例

对数及对数函数 知识点总结及典例

对数及对数函数一.知识梳理 (一).对数的概念①定义:如果)1,0(≠>a a a 且的b 次幂等于N ,就是ba = N ,那么数b 称以a 为底N 的对数,记作log a N = b 其中a 称对数的底,N 称真数。

1)以10为底的对数称常用对数,N 10log 记作N lg ;2)以无理数)71828.2( =e e 为底的对数称自然对数,log e N ,记作N ln ;3)指数式与对数式的互化 ba = N ⇔log a N =b ②基本性质:1)真数N 为正数(负数和零无对数);2)log 10a =;3)1log =a a ;4)对数恒等式:N a Na =log 。

③运算性质:如果,0,0,0,0>>≠>N M a a 则 1)N M MN a a a log log )(log +=; 2)N M N M a a a log log log -=;3)∈=n M n M a na (log log R )。

④换底公式:),0,1,0,0,0(log log log >≠>≠>=N m m a a aNN m m a1)1log log =⋅a b b a ;2)b mnb a na m log log =。

(二)对数函数1、对数函数的概念:函数0(log >=a x y a ,且)1≠a 叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).2三.【例1】比较下列各组数的大小:(1)3log 2与()23log 3x x -+(2) 1.1log 0.7与 1.2log 0.7(3)32log 3与56log 5【变式训练1】比较大小:4.0lg 4.0log 4.0log 4.0log 3211.0【变式训练2】已知01a <<,log log 0a a m n <<,则( ).A 1n m << .B 1m n << .C 1m n << .D 1n m <<【例2】下列指数式与对数式互化不正确的一组是 ( ) A 、0lg11100==与 B 、3131log 31272731-==-与 C 、39921log 213==与 D 、5515log 15==与【变式训练1】.若()125log -=-x,则x 的值为 ( )A 、25-B 、25+C 、2525+-或D 、52- 【变式训练2】.若()log lg ,x ______x ==20则【变式训练3】=-+7log 3log 49log 212121 。

高中数学对数和对数函数知识点与例题讲解

高中数学对数和对数函数知识点与例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b=N(a>0,a≠1),那么b叫做以a为底N的对数,记作logaN=b.(2)指数式与对数式的关系:a b=NlogaN=b(a>0,a≠1,N>0).两个式子表示的a、b、N三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a(MN)=log a M+log a N.②log aMN=log a M-log a N.③logaM n=nlogaM.(M>0,N>0,a>0,a≠1)④对数换底公式:logbN= l oglogaaNb(a>0,a≠1,b>0,b≠1,N>0).2.对数函数(1)对数函数的定义函数y=log a x(a>0,a≠1)叫做对数函数,其中x是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1对数函数的底数为什么要大于0且不为1呢?在一个普通对数式里a<0,或=1的时候是会有相应b的值的。

但是,根据对数定义:log a a=1;如果a=1或=0那么log a a就可以等于一切实数(比如log11也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n=nlogaM如果a<0,那么这个等式两边就不会成立(比如,log(-2)4^(-2)就不等于(-2)*log(-2)4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象yyy =l ogxa>(1)a1O1xOxy =l o g a x (<a <1) 0底数互为倒数的两个对数函数的图象关于x 轴对称. (3)对数函数的性质: ①定义域:(0,+∞). ②值域:R.③过点(1,0),即当x=1时,y=0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题题型1(对数的计算) 1.求下列各式的值. (1)35 log +25log2-1 21 50log - 514 log ;(2)log5 2 1 25 ×lo g 3 1 8 ×lo g 5 1 9. 练习题1.计算:lg 1 2 -lg5 8 +lg12.5-log 89·log 278;3.log535+21log2-log51502 -log514;3.log2125×log318×log519.1loglog4log3 4.399222.5.lg5lg2lg41(6).log24lglog27lg2log33222 7.2lg2lg3111lg0.36lg823例2.已知实数x、y、z满足3x=4y=6z>1.(1)求证:2x+1y=2z;(2)试比较3x、4y、6z的大小.练习题.已知log189=a,18b=5,用a、b表示log3645.题型二:(对数函数定义域值域问题)例1.已知函数fxlog22xx1aax的定义域为集合A,关于x的不等式22 的解集为B,若AB,求实数a的取值范围.2.设函数2ylog(ax2x2)定义域为A.2(1)若AR,求实数a的取值范围;(2)若2log(ax2x2)2在x[1,2]上恒成立,求实数a的取值范围.2练习题1.已知函数2 fxlgax2x1(1)若fx的定义域是R,求实数a的取值范围及fx的值域;(2)若fx的值域是R,求实数a的取值范围及fx的定义域2求函数y=2lg (x -2)-lg (x -3)的最小值.题型三(奇偶性及性) 例题1.已知定义域为R 的函数f (x )为奇函数足f(x +2)=-f(x),当x ∈[0,1]时,f(x)=2x -1.(1)求f(x)在[-1,0)上的解析式; (2)求f(1 log24)的值. 2 4.已知f (x )=l o g 1[3-(x -1)2],求f (x )的值域.3 5.已知y =l o g a (3-a x )在[0,2]上是x 的减函数,求a 的围.4.已知函数f(x)lg(2x)lg(2x).(Ⅰ)求函数yf(x)的定义域;(Ⅱ)判断函数yf(x)的奇偶性;(Ⅲ)若f(m2)f(m),求m的取值范围.练习题1.已知函数f(x)=loga(x+1)-loga(1-x)(a>0,a≠1)(1)求f(x)的定义域;(2)判断f(x)的奇偶性,并给出证明;(3)当a>1时,求使f(x)>0的x的取值范围2.函数f(x)是定义在R上的偶函数,f(0)0,当x0时,1f(x)logx.2 (1)求函数f(x)的解析式;(2)解不等式2f(x1)2;3.已知f(x)是定义在R上的偶函数,且x0时,1f(x)log(x1).2 (Ⅰ)求f(0),f(1);(Ⅱ)求函数f(x)的表达式;(Ⅲ)若f(a1)1,求a的取值范围.题型4(函数图像问题)例题1.函数f(x)=|log2x|的图象是yy111x-11xOOAByy111x1xOOCD6.求函数y=log2|x|的定义域,并画出它的图象,指出它的单调区间.f(x)=|lgx|,a,b为实数,且0<a<b.(1)求方程f(x)=1的解;(2)若a,b满足f(a)=f(b)=2fa b2,求证:a·b=1,a b2 >1.练习题:1.已知a0且a1,函数f(x)log(x1)a,1g(x)log a,记F(x)2f(x)g(x)1x(1)求函数F(x)的定义域及其零点;(2)若关于x的方程2 F2.已知函数f(x)=log4(4x+1)+kx(k∈R)是偶函数.(1)求k的值;(2)设g(x)=log44xa?237.函数y=log2|ax-1|(a≠0)的对称轴方程是x=-2,那么a等于题型五:函数方程1方程lgx+lg(x+3)=1的解x=___________________.5.已知函数f(x)= 1()2x,x4,则f(2+log23)的值为f(x1),x4,4.已知函数f(x)log a(axx)(a0,a1为常数). (Ⅰ)求函数f(x)的定义域;(Ⅱ)若a2,x1,9,求函数f(x)的值域;(Ⅲ)若函数f(x)ya的图像恒在直线y2x1的上方,求实数a的取值范围.1xxyloglog(2x8).5.已知函数22242(Ⅰ)令tlog2x,求y关于t的函数关系式及t的取值范围;(Ⅱ)求函数的值域,并求函数取得最小值时的x的值.8.设函数f(x)=lg(1-x),g(x)=lg(1+x),在f(x)和g(x)的公共定义域内比较|f(x)|与|g(x)|的大小.您好,欢迎您阅读我的文章,本WORD文档可编辑修改,也可以直接打印。

高中数学对数与对数函数知识点及经典例题讲解

高中数学对数与对数函数知识点及经典例题讲解

对数与对数函数1.对数(1)对数的定义:如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化.(3)对数运算性质:①log a (MN )=log a M +log a N .②log a =log a M -log a N .NM ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1)④对数换底公式:log b N =(a >0,a ≠1,b >0,b ≠1,N >0).bN a a log log 2.对数函数(1)对数函数的定义函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞).注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16)(2)对数函数的图象11))底数互为倒数的两个对数函数的图象关于x 轴对称.(3)对数函数的性质:①定义域:(0,+∞).②值域:R .③过点(1,0),即当x =1时,y =0.④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+∞)上是减函数.基础例题1.函数f (x )=|log 2x |的图象是?2.若f-1(x )为函数f (x )=lg (x +1)的反函数,则f-1(x )的值域为___________________.3.已知f (x )的定义域为[0,1],则函数y =f [log(3-x )]的定21义域是__________.4.若log x =z ,则x 、y 、z 之间满足7y A.y 7=x z B.y =x 7z C.y =7x zD.y =z x5.已知1<m <n ,令a =(log n m )2,b =log n m 2,c =log n (log n m ),则A.a <b <cB.a <c <bC.b <a <cD.c <a <b6.若函数f (x )=log a x (0<a <1)在区间[a ,2a ]上的最大值是最小值的3倍,则a 等于A.B.C. D.422241217.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于 (x=-2非解)A.B.-C.2D.-221218.函数f (x )=log 2|x |,g (x )=-x 2+2,则f (x )·g (x )的图象只可能是AB9.设f-1(x )是f (x )=log 2(x +1)的反函数,若[1+ f-1(a )][1+ f -1(b )]=8,则f (a +b )的值为A.1B.2C.3D.log 2310.方程lg x +lg (x +3)=1的解x =___________________.典型例题【例1】 已知函数f (x )=则f (2+log 23)的值为⎪⎩⎪⎨⎧<+≥,4),1(,4,21(x x f x xA.B.C.D.3161121241【例2】 求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.【例3】已知f (x )=log [3-(x -1)2],求f (x )的值域及单31调区间.【例4】已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.【例5】设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.【例6】 求函数y =2lg (x -2)-lg (x -3)的最小值.【例7】 在f 1(x )=x ,f 2(x )=x 2,f 3(x )=2x ,f 4(x )=log x 四2121个函数中,x 1>x 2>1时,能使[f (x 1)+f (x 2)]<f ()成21221x x 立的函数是A.f 1(x )=x(平方作差比较)B.f 2(x )21=x 2C.f3(x)=2xD.f4(x)=log x12探究创新1.若f(x)=x2-x+b,且f(log2a)=b,log2[f(a)]=2(a≠1).(1)求f(log2x)的最小值及对应的x值;(2)x取何值时,f(log2x)>f(1)且log2[f(x)]<f(1)?2.已知函数f(x)=3x+k(k为常数),A(-2k,2)是函数y=f -1(x)图象上的点.(1)求实数k的值及函数f-1(x)的解析式;(2)将y= f-1(x)的图象按向量a=(3,0)平移,得到函数y=g(x)的图象,若2f-1(x+-3)-g(x)≥1恒成立,试求m实数m的取值范围.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

对数与对数函数
1.对数
(1)对数的定义:
如果a b =N (a >0,a ≠1),那么b 叫做以a 为底N 的对数,记作log a N =b .
(2)指数式与对数式的关系:a b =N log a N =b (a >0,a ≠1,N >0).两个式子表示的a 、b 、N 三个数之间的关系是一样的,并且可以互化. (3)对数运算性质:
①log a (MN )=log a M +log a N . ②log a
N
M
=log a M -log a N . ③log a M n =n log a M .(M >0,N >0,a >0,a ≠1) ④对数换底公式:log b N =
b
N
a a log log (a >0,a ≠1,
b >0,b ≠1,N >0).
2.对数函数
(1)对数函数的定义
函数y =log a x (a >0,a ≠1)叫做对数函数,其中x 是自变量,函数的定义域是(0,+∞). 注意:真数式子没根号那就只要求真数式大于零,如果有根号,要求真数大于零还要保证根号里的式子大于零,底数则要大于0且不为1 对数函数的底数为什么要大于0且不为1呢?
在一个普通对数式里 a<0,或=1 的时候是会有相应b 的值的。

但是,根据对数定义: log a a=1;如果a=1或=0那么log a a 就可以等于一切实数(比如log 1 1也可以等于2,3,4,5,等等)第二,根据定义运算公式:log a M^n = nlog a M 如果a<0,那么这个等式两边就不会成立 (比如,log (-2) 4^(-2) 就不等于(-2)*log (-2) 4;一个等于1/16,另一个等于-1/16) (2)对数函数的图象
O x y y = l o g x a >
x
<a
11
( )底数互为倒数的两个对数函数的图象关于x 轴对称.
(3)对数函数的性质: ①定义域:(0,+∞). ②值域:R . ③过点(1,0),即当x =1时,y =0.
④当a >1时,在(0,+∞)上是增函数;当0<a <1时,在(0,+
基础例题
题型1(对数的计算)
1.求下列各式的值. (1)35
5log +
21
2
log 1
505
log -145log ; (2)log 2
1
25
×log 318×log 519.
练习题 1.计算:lg 12-lg 5
8
+lg12.5-log 89·log 278;
2.log 535+
21
2
log -log 5
150-log 514; 3.log 2125×log 318×log 51
9
.
4. 3991
log log 4log 32
+-. 5. 4lg 2lg 5lg 22+-
221
(6).log 24lg log lg 2log 32
+-- 7.
2lg 2lg3
111lg 0.36lg823
+++
例2.已知实数x 、y 、z 满足3x =4y =6z
>1. (1)求证:
2x +1y
=2
z ; (2)试比较3x 、4y 、6z 的大小.
练习题.已知log 189=a ,18b
=5,用a 、b 表示log 3645.
题型二:(对数函数定义域值域问题)
例1.已知函数()22log 1
x
f x x -=-的定义域为集合A ,关于x 的不等式22a a x --<的解集为B ,若A B ⊆,求实数a 的取值范围.
2.设函数22log (22)y ax x =-+定义域为A . (1)若A R =,求实数a 的取值范围;
(2)若22log (22)2ax x -+>在[1,2]x ∈上恒成立,求实数a 的取值范围.
练习题1.已知函数()()
2
lg 21f x ax x =++
(1)若()f x 的定义域是R ,求实数a 的取值范围及()f x 的值域; (2)若()f x 的值域是R ,求实数a 的取值范围及()f x 的定义域
2 求函数y =2lg (x -2)-lg (x -3)的最小值.
题型三(奇偶性及其单调性)
例题1.已知定义域为R 的函数f(x)为奇函数,且满足f(x +2)=-f(x),当x ∈[0,1]时,
f(x)=2x
-1.
(1)求f(x)在[-1,0)上的解析式; (2)求f(12
log 24)的值.
2. 已知f (x )=log 3
1[3-(x -1)2],求f (x )的值域及单调区间.
3.已知y =log a (3-ax )在[0,2]上是x 的减函数,求a 的取值范围.
4.已知函数()lg(2)lg(2)f x x x =++-. (Ⅰ)求函数()y f x =的定义域; (Ⅱ)判断函数()y f x =的奇偶性;
(Ⅲ)若(2)()f m f m -<,求m 的取值范围.
练习题1.已知函数f(x)=log a (x +1)-log a (1-x)(a >0,a≠1) (1)求f(x)的定义域;
(2)判断f(x)的奇偶性,并给出证明;
(3)当a >1时,求使f(x)>0的x 的取值范围
2.函数()f x 是定义在R 上的偶函数,(0)0f =,当0x >时,12
()log f x x =.
(1)求函数()f x 的解析式; (2)解不等式2
(1)2f x ->-;
3.已知()f x 是定义在R 上的偶函数,且0x ≤时,12
()log (1)f x x =-+.
(Ⅰ)求(0)f ,(1)f ; (Ⅱ)求函数()f x 的表达式;
(Ⅲ)若(1)1f a -<-,求a 的取值范围.
题型4(函数图像问题)
例题1.函数f (x )=|log 2x |的图象是
1 1 1 1
1 1 1
x
x
x
x y y
y y
O
O O
O A
B
C D
2.求函数y =log 2|x |的定义域,并画出它的图象,指出它的单调区间.
3.设f(x)=|lg x|,a ,b 为实数,且0<a <b. (1)求方程f(x)=1的解; (2)若a ,b 满足f(a)=f(b)=2f 2a b +⎛⎫
⎪⎝⎭
, 求证:a·b=1,2
a b
+>1.
练习题:
1.已知0>a 且1≠a ,函数)1(log )(+=x x f a ,x
x g a
-=11
log )(,记)()(2)(x g x f x F +=
(1)求函数)(x F 的定义域及其零点;
(2)若关于x 的方程2()2350F x m m -++=在区间)1,0[内仅有一解,求实数m 的取值范围.
2.已知函数f(x)=log 4(4x
+1)+kx(k∈R)是偶函数. (1)求k 的值;
(2)设g(x)=log 44•23x a a ⎡⎤⎢⎥⎣⎦
-,若函数f(x)与g(x)的图象有且只有一个公共点,求实数a
的取值范围.
3.函数y =log 2|ax -1|(a ≠0)的对称轴方程是x =-2,那么a 等于
题型五:函数方程
1方程lg x +lg (x +3)=1的解x =___________________.
2.已知函数f (x )=⎪⎩⎪⎨⎧<+≥,
4),1(,
4,)21(x x f x x
则f (2+log 23)的值为
4.已知函数1,0)((log )(≠>-=a a x ax x f a 为常数). (Ⅰ)求函数()f x 的定义域;
(Ⅱ)若2a =,[]1,9x ∈,求函数()f x 的值域; (Ⅲ)若函数()
f x y a =的图像恒在直线21y x =-+的上方,求实数a 的取值范围.
5.已知函数221log log (28).242
x x
y x =
⋅⋅≤≤ (Ⅰ)令x t 2log =,求y 关于t 的函数关系式及t 的取值范围; (Ⅱ)求函数的值域,并求函数取得最小值时的x 的值.
6.设函数f (x )=lg (1-x ),g (x )=lg (1+x ),在f (x )和 g (x )的公共定义域内比较|f (x )|与|g (x )|的大小.
注:资料可能无法思考和涵盖全面,最好仔细浏览后下载使用,感谢您的关注!。

相关文档
最新文档