中职数学基础模块下册《立体几何》课件 (一)

合集下载

高教版中职数学(基础模块)下册9.5《柱、锥、球及其简单组合体》ppt课件1

高教版中职数学(基础模块)下册9.5《柱、锥、球及其简单组合体》ppt课件1
2.如图所示,一个铸铁零件,是由半个圆柱与一个正四棱柱组合成的 几何体,圆柱的底面直径与高均为2 cm,正四棱柱底面边长为2 cm、侧棱为 3 cm.求该零件的重量(铁的比重约7.4 g/cm3).(精确到0.1 g)
9.5 柱、锥、球及简单组合体
理论升华 整体建构
圆柱、圆锥的全面积、体积公式?
S圆柱全 2 r(h r) V圆柱 r 2h
圆锥用表示轴的字母表示.如图所示的 圆锥表示为圆锥SO.
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
观察圆锥,可以得到圆锥的下列性质(证明略):
(1) 平行于底面的截面是圆; (2) 顶点与底面圆周上任意一点的距离都相等,且等于母线的长度; (3) 轴截面为等腰三角形,其底边上的高等于圆锥的高.
S圆锥全 r(l r)
V圆锥
1 3
r2h
9.5 柱、锥、球及简单组合体
自我反思 目标检测
学习方法
学习行为
学习效果
9.5 柱、锥、球及简单组合体
自我反思 目标检测
已知圆锥的底面半径为 2 cm,高为 2 cm,求这个圆锥的体积(保留4个有效数字).
9.5 柱、锥、球及简单组合体
继续探索 活动探究
9.5 柱、锥、球及简单组合体
动脑思考 探索新知
球的表面积与体积的计算公式如下:
S球 4 R2
V球
4 3
R3
其中,R为球的半径.
9.5 柱、锥、球及简单组合体
巩固知识 典型例题
例5 球的大圆周长是80 cm,求这个球的表面积与体积各为多
少?(保留4个有效数字)
解 设球的半径为R,则大圆周长为2πR
运用知识 强化练习
1.用长为 6 m,宽为 2 m的薄铁片卷成圆柱形水桶的侧面,铁片

中职数学语文版(2021)基础模块下册《空间几何体》课件

中职数学语文版(2021)基础模块下册《空间几何体》课件
如: 棱锥 S-ABCD.
S
D A
C B
简单多面体--棱锥
三、棱锥的分类
按底面多边形的边数, 可以分为三棱锥、四棱锥、 五棱锥等;如果一个棱锥的底面是正多边形,并且 顶点在底面的射影是底面的中心,这样的棱锥叫做 正棱锥。
简单旋转体
这些几何体 是如何形成 的?它们的 结构特征是
什么?
简单旋转体 轴
OA A
O B
简单旋转体--圆锥
S
(1)旋转轴叫做圆锥的轴。
(2) 垂直于轴的边旋转而成的圆
面叫做圆锥的底面。
(3)不垂直于轴的边旋转而成的
曲面叫做圆锥的侧面。
B
O
(4)无论旋转到什么位置,不垂直
于轴的边都叫做圆锥的母线。


面 母
A
线


简单旋转体--圆锥
二、圆锥的表示
特征: ① 底面是圆, ② 母线长相等, ③ 母线、底面圆半径、轴围成
这些面所围成的几何体叫做棱锥。 这个多边形叫做棱锥的底面。
S
顶点
有公共顶点的各个三角形叫做
高 D
侧棱 侧面
棱锥的侧面。 各侧面的公共顶点叫做棱锥的 顶点。
E
O
AB
C 底面
相邻侧面的公共边叫做棱锥的 侧棱。
过顶点的铅垂线与底面交点到顶点的距离叫做棱锥的高。
简单多面体--棱锥
二、棱锥的表示
用顶点和底面各顶点的 字母表示:
E F
A
D
C B
简单多面体--棱柱
三、棱柱的分类 棱柱的底面可以是三角形、四边形、五边形、 ……
按底面多边形的边数可分为三棱柱、四棱柱、五棱柱等
三棱柱

数学基础模块(下册)第九章 立体几何

数学基础模块(下册)第九章 立体几何

【课题】9.1 平面的基本性质【教学目标】知识目标:(1)了解平面的概念、平面的基本性质;(2)掌握平面的表示法与画法.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】平面的表示法与画法.【教学难点】对平面的概念及平面的基本性质的理解.【教学设计】教材通过观察平静的湖面、窗户的玻璃面、黑板面等,引入平面的概念,并介绍了平面的表示法与画法.注意,平面是原始概念,原实用文档始概念是不能定义的,教材是用“光滑并且可以无限延展的图形”来描述平面.在教学中要着重指出,平面在空间是可以无限延展的.在讲“通常用平行四边形表示平面”时要向学生指出:(1) 所画的平行四边形表示它所在的整个平面,需要时可以把它延展出去;(2) 有时根据需要也可用其他平面图形,如三角形、多边形、圆、椭圆等表示平面,故加上“通常”两字;(3) 画表示水平平面的平行四边形时,通常把它的锐角画成45 °,横边画成邻边的2倍.但在实际画图时,也不一定非按上述规定画不可;在画直立的平面时,要使平行四边形的一组对边画成铅垂线;在画其他位置的平面时,只要画成平行四边形就可以了;(4) 画两个相交平面,一定要画出交线;(5) 当用字母表示平面时,通常把表示平面的希腊字母写在平行四边形的锐角内,并且不被其他平面遮住的地方;(6) 在立体几何中,被遮住部分的线段要画成虚线或不画.“确定一个平面”包含两层意思,一是存在性,即“存在一个平面”;二是唯一性,即实用文档“只存在一个平面”.故“确定一个平面”也通常说成“有且只有一个平面”.【教学备品】教学课件.【课时安排】2课时.(90分钟)【教学过程】教学过程教师行为学生行为教学意图时间观察平静的湖面(图9−1 (1))、窗户的玻璃面(图9−1 (2))、黑板面、课桌面、墙面等,发现它们都有一个共同的特征:平坦、光滑,给我们以平面的形象,但是它们都是有限的.(1)(2)图9−1质疑引导分析思考启发学生思考8实用文档平面实用文档实用文档实用文档教 学 过 程教师 行为学生 行为教学 意图时间图9−3解 这6个面可以分别表示为:平面AC 、平面11A C 、平面1AB 、平面1BC 、平面1CD 、平面1DA . 【试一试】请换一种方法表示这6个面.引领讲解说明思考主动求解27实用文档实用文档教学过程教师行为学生行为教学意图时间分析*创设情境兴趣导入【观察】观察教室里墙角上的一个点,它是相邻两个墙面的公共点,可以发现,除这个点外两个墙面还有其他的公共点,并且这些公共点的集合就是这两个墙面的交线.质疑思考带领学生45图9−5实用文档实用文档教学过程教师行为学生行为教学意图时间此时称这两个平面相交,并把所有公共点组成的直线l叫做两个平面的交线.平面α与平面β相交,交线为l,记作lαβ=.【说明】本章中的两个平面是指不重合的两个平面,两条直线是指不重合的两条直线.讲解说明引领分析思考理解记忆带领学生分析图9−6教学过程教师行为学生行为教学意图时间画两个平面相交的图形时,一定要画出它们的交线.图形中被遮住部分的线段,要画成虚线(如图9−7(1)),或者不画(如图9−7(2)).【试一试】请画出两个相交的平面,并标注字母.仔细分析讲解关键引导式启发学生得55图9−7实用文档实用文档教学过程教师行为学生行为教学意图时间60*动脑思考探索新知【新知识】由上述实验和大量类似的事实中,归纳出平面的性质3:不在同一条直线上的三个点,可以确定一个平面(如图9−8).【说明】“确定一个平面”指的是“存在着一个平面,并且只存在着一个平面”.讲解说明思考理带领学生分图9−8教学过程教师行为学生行为教学意图时间利用三角架可以将照相机放稳(图9−9),就是性质3的应用.图9−9根据上述性质,可以得出下面的三个结论.1.直线与这条直线外的一点可以确定一个平面(如图9−10(1)).引领分析仔细分解记忆析实用文档实用文档教学过程教师行为学生行为教学意图时间(如图9−11(1));营业员用彩带交叉捆扎礼品盒(如图9−11(2)),都是上述结论的应用.(1)(2)图9−11【想一想】如何用两根细绳来检查一把椅子的4条腿的下端是否在同一个平面内?仔细分析讲解关键词忆出结果70实用文档实用文档实用文档教 学 过 程教师 行为学生 行为教学 意图时间分析 画两个相交平面的交线,关键是找出这两个平面的两个公共点.解 点A 、1D 为平面γ与平面11ADD A 的公共点,点A 、C 为平面γ与平面ABCD 的公共点,点C 、1D 为平面γ与平面11CC D D 的公共点,分别将这三个点两两连接,得到直线11AD AC CD 、、就是为由1A C D 、、三点所确定的平面γ与长方体的表面的交线(如图9−12(2)).图9−12引领讲解 说明思考主动求解注意 观察学生78γ实用文档实用文档实用文档实用文档实用文档实用文档【教师教学后记】实用文档实用文档【课题】9.2 直线与直线、直线与平面、平面与平面平行的判定与性质【教学目标】知识目标:实用文档(1)了解两条直线的位置关系;(2)掌握异面直线的概念与画法,直线与直线平行的判定与性质;直线与平面的位置关系,直线与平面平行的判定与性质;平面与平面的位置关系,平面与平面平行的判定与性质.能力目标:培养学生的空间想象能力和数学思维能力.【教学重点】直线与直线、直线与平面、平面与平面平行的判定与性质.【教学难点】异面直线的想象与理解.【教学设计】本节结合正方体模型,通过观察实验,发现两条直线的位置关系除了相交与平行外,在空间还有既不相交也不平行,不同在任何一个平面内的位置关系.由此引出了异面直线的概念.通过画两条异面直线培养学生的画图、识图能力,逐步建立空间的立体观念.实用文档空间两条直线的位置关系既是研究直线与直线、直线与平面、平面与平面的位置关系的开始,又是学习后两种位置关系的基础.因此,要让学生树立考虑问题要着眼于空间,克服只在一个平面内考虑问题的习惯.通过观察教室里面墙与墙的交线,引出平行直线的性质,在此基础上,提出问题“空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.”这样安排知识的顺序,有利于学生理解和掌握所学知识.要防止学生误认为“一条直线平行于一个平面,就平行于这个平面内的所有的直线”,教学时可通过观察正方体模型和课件的演示来纠正学生的这个错误认识.平面与平面的位置关系是通过观察教室中的墙壁与地面、天花板与地面而引入的.【教学备品】教学课件.【课时安排】实用文档2课时.(90分钟)【教学过程】实用文档实用文档教学过程教师行为学生行为教学意图时间图9−13观察教室中的物体,你能否抽象出这种位置关系的两条直线?引导分析2*动脑思考探索新知在同一个平面内的直线,叫做共面直线,平行或相交的两条直线都是共面直线.不同在任何一个平面内的两条直线叫做异面直线.图9-13所示的正方体中,直线11A B与直线AD就是两条异面直线.讲解思考实用文档教学过程教师行为学生行为教学意图时间(1) (2)图9−15利用铅笔和书本,演示图9−15(2)的异面直线位置关系.分析关键语句5*创设情境兴趣导入我们知道,平面内平行于同一条直线的两条直线一定平行.那么空间中平行于同一条直线的两条直线是否一定平行呢?质疑思启实用文档观察教室内相邻两面墙的交线(如图9−16).发现:1AA ∥1BB ,1CC ∥1BB ,并且有1AA ∥1CC .引导 分析考发 学生思考7*动脑思考 探索新知由上述观察及大量类似的事实中,归纳出平行线的性质:平行于同一条直线的两条直线平行.我们经常利用这个性质来判断两条直线平行. 【想一想】空间中,如果两个角的两边分别对应平行,那么这两个角的度数存在着什么关系?请通过演示进行说明.讲解 说明引领思考理解带领 学生分析10图9−16实用文档实用文档教 学 过 程教师 行为 学生 行为教学 意图时间A 、B 、C 、1D 四个点不在同一个平面内.图9−17质疑引领 分析思考带领学生 分析13*动脑思考 探索新知这时的四边形AB C 1D 叫做空间四边形.带.图9−18*运用知识强化练习1.结合教室及室内的物品,举出空间两条直线平行的例子.2.把一张矩形的纸对折两次,然后打开(如第2题图),说明为什么这些折痕是互相平行的?实用文档实用文档实用文档。

中职数学立体几何40页PPT

中职数学立体几何40页PPT

中职数学立体几何
31、别人笑我太疯癫,我笑他人看不 穿。(名 言网) 32、我不想听失意者的哭泣,抱怨者 的牢骚 ,这是 羊群中 的瘟疫 ,我不 能被它 传染。 我要尽 量避免 绝望, 辛勤耕 耘,忍 受苦楚 。我一 试再试 ,争取 每天的 成功, 避免以 失败收 常在别 人停滞 不前时 ,我继 续拼搏 。
33、如果惧怕前面跌宕的山岩,生命 就永远 只能是 死水一 潭。 34、当你眼泪忍不住要流出来的时候 ,睁大 眼睛, 千万别 眨眼!你会看到 世界由 清晰变 模糊的 全过程 ,心会 在你泪 水落下 的那一 刻变得 清澈明 晰。盐。
35、不要以为自己成功一次就可以了 ,也不 要以为 过去的 光荣可 以被永 远肯定 。
谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利

数学基础模块下册立体几何PPT课件

数学基础模块下册立体几何PPT课件
9.2 直线与直
平行公理
如图, 在长方体ABCDA`B`C`D`中, BB`//AA` , DD`//AA` , 那么 BB`//DD` 吗?
9.2 直线与直
平行公理
取一块长方形纸板 ABCD, E , F 分别为 AB,CD 的中 点,将纸板沿 EF 折起,在空间中 直线 AD 与 BC 的位置关系如何 ?
直线与平面平行的判定
图形表 述:
符号表 述:
} a
b
a // b
a // α “ 面外、面内、平行 ” 三条件
缺一不可
得出结论: 平面外一条直线与此平面内的一条直线平行,则该直线 与此平面平行。
9.2 直线与平
例题
如图,在长方体ABCD--A`B`C`D`
,“只有”是说平
9.1 平面的基
平面的基本性质 3结论
(1) 直线与这条直线外的一点有且只有一个平面。
(2) 两条相交直线有且只有一个平面。
(3) 两条平行直线有且只有一个平面。
A l
(1)
l1 l2
(2)
l1 l2
(3)
9.1 平面的基
9.2 判定与
直线与直线平行
观察下面两 张图,你能发现 到什么?
9.1 平面的基
平面的基本性
质2 观察下图, 你能发现到什么 ?
9.1 平面的基
平面的基本性 质2
图形表
l
述:
A●
符号表 述:
l
(平面与平面相交,交线为 l)
得出结论: 如果两个平面有一个公共点,那么它们一定还有其他公 共点,并且所有公共点的集合是过这个点的一条直线(即这两个平面相 交)。
9.1 平面的基
9.1 平面的基

中职教育-数学(基础模块)下册 第九章 立体几何.ppt

中职教育-数学(基础模块)下册 第九章   立体几何.ppt
这里“有且只有一个平面”,也就 是“确定一个平面”.因此,公理3也 可以简单地说成“不在同一直线上的三 个点确定一个平面”.
根据公理1和公理3,还可以得出以下三个推论: 推论1 经过一条直线和这条直线外一点,可以确定一个平面(如图 (a)所示). 推论2 经过两条相交直线,可以确定一个平面(如图(b)所示). 推论3 经过两条平行直线,可以确定一个平面(如图(c)所示).
AB ,BC ,CD ,DA 的中点.证明:四边形 EFGH 是一个平行四边形.
证明 因 E ,F 分别为边 A B,B C的中点,即 EF 为△ABC 的中位
线,所以
EF ∥AC ,且 EF 1 AC . 2
同理可得
GH ∥AC ,且 GH 1 AC . 2
因此,
EF ∥GH ,且 EF GH ,
(a)
(b)
为了简便,点 O 可以在两条异面直线中的一条上选取.例如,在 图中,点 O 选取在直线 b 上,过点 O 作 a∥a ,a 与 b 所成的角 θ 就是 异面直线 a ,b 所成的角.
例题解析
例 1 如图所示正方体,求直线 BA1 和 CC1 所成角的大小.
解 因 CC1 ∥BB1 ,所以直线 BA1 和 BB1 所成的角就是直线 BA1 和 CC1 所成的角.
9.1 9.2 9.3 9.4 9.5
• 平面的基本性质
• 直线与直线、直线与平面、平面 与平面平行的判定与性质
• 直线与直线、直线与平面、平面 与平面所成的角
• 直线与直线、直线与平面、平面 与平面垂直的判定与性质
• 柱、锥、球及其简单组合体

9.1 平面的基本性质
9.1.1 平面的概念及表示 数学中的平面是指光滑并且可以无限延展的图形. 为了直观形象,我们通常用一个平行四边形来表示平面,并用小写

中职数学教学立体几何 ppt课件

中职数学教学立体几何 ppt课件

放到不同 位置的本
桌子
动脑思考 探索新知
两个平面平行的性质: 如果一个平面与两个平行平面相交, 那么它们的交线平行. 如图所示,如果 // ,平面 与 、 都相交,交线分别为m、n,那么
m∥n.
运用知识 强化练习
画出下列各图形: (1)两个水平放置的互相平行的平面. (2)两个竖直放置的互相平行的平面. (3)与两个平行的平面相交的平面.
创设情境 兴趣导入
将铅笔放到与桌面平行的位置,用矩形
硬纸片的面紧贴铅笔,矩形硬纸片的一边
铅笔
紧贴桌面(如图),观察铅笔及硬纸片与桌面
的交线,发现它们是平行的.
创设情境 兴趣导入
直线与平面的三种位置关系
动脑思考 探索新知
直线与平面平行的性质: 如果一条直线与一个平面平行,并且经过这条直线的一个平面 和这个平面相交,那么这条直线与交线平行. 如图所示,设直线 l 为平面 与平面 的交线,直线m在平面 内且m ∥ 则 m ∥ l .
B
A
C
四.平面的性质 性质3:不在同一条直线上的三个点,可以确定一个平面。
“确定一个平面”指 的是“存在着一个平面, 并且只存在着一个平面” .
1.直线与这条直线外的一点可以确定一个平面. 2.两条相交直线可以确定一个平面. 3.两条平行直线可以确定一个平面.
A
(1)
(2)
(3)
例 在长方A体 BCDA1B1C1D1中,画出 A、 由C、D1
创设情境 兴趣导入
将铅笔放在桌面上,此时铅笔与桌面有无数多个公共点; 抬起铅笔的一端,此时铅笔与桌面只有1个公共点;把铅笔放到 文具盒(文具盒在桌面上)上面,铅笔与桌面就没有公共点了.
动脑思考 探索新知

中职教育数学《立体几何》优秀课件

中职教育数学《立体几何》优秀课件

平行于另一个平面。

a
a‖
a b
a
六.两个平面垂直的判定和性质
1. 两个平面垂直的定义
(1) 二面角
平面内的一条直线把平面分为两部 分,其中的每一部分叫做半平面.从 一条直线出发的两个半平面所组成 的图形叫做二面角.这条直线叫做二 面角的棱,每个半平面叫做二面角的 面. 如图,二面角及表示方法.
A
1
B
2 C
平面的斜线和它在平面内的射影成的角,是这条斜线和这 个平面内任一条直线所成的角中最小的角.
定义: 一个平面的斜线和它在这个平面内的射影的夹角, 叫做斜线和平面所成的角.
如果直线和平面垂直那么就说直线和平面所成的角是直角. 如果直线和平面平行或在平面内,就说直线和平面所成的角 是00的角.
D1
C1
A
A1
B1
O
D A
B C B
O
E
C
二面角B—B1C—A
二面角AB
E
C
D
四棱锥中 AD CE
二面角C--AD--E
例1.如图,三棱锥P-ABC的顶点P在底面ABC上的射影是
底面Rt△ABC斜边AC的中点O,若PB=AB=1,BC= ,求二
面角P-A2B-C的正切值。
解:取AB 的中点为E,连PE,OE
D1 A1
C1 B1
D A
C B
例2 已知ABCD是四个顶点不在同一个平面内的
空间四边形,E,F,G,H分别是AB,BC,CD,
DA的中点,连结EF,FG,GH,HE,求证
EFGH是一个平行四边形。
A
解题思想:
把所要解的立体几何问题 转化为平面几何的问题是 解立体几何时最主要、最 常用的一种方法。

中职数学单招一轮总复习《立体几何》复习课件

中职数学单招一轮总复习《立体几何》复习课件

典例精讲
第 13 页
例1 下列说法中,正确的是( ). A.一个平面长8 cm,宽3 cm B.2个平面叠在一起比1个平面要厚 C.空间中任意三点可以确定一个平面 D.一个矩形长4 cm,宽2 cm
解析 根据平面的概故选D.
【名师点睛】 本题考查学生对于平面概念的理解,即平面是没有大小、没有厚薄、 光滑的、可以无限延展的图形.
2.用集合符号语言表示“直线 l 与平面 α 交于一点A”:__________________.
活学活练
二、填空题
第 22 页
3.两个相交平面可以将空间分成__________部分,三个两两相交的平面最多可将空间分 成__________部分.
典例精讲
变式训练1 下列说法中,正确的是( A.空间任意三点都能确定一个平面 B.四边形一定是平面图形 C.三角形一定是平面图形 D.梯形不一定是平面图形
).
第 14 页
典例精讲
第 15 页
例2 三条直线两两平行,但不共面,它们可以确定_____________个平面.
解析 由推论3可知,经过两条平行直线,可以确定一个平面.本题中三条直线两两 平行,故可以确定3个平面,即答案为3.
活学活练
一、单项选择题
第 20 页
3.若点A在直线α上,直线α又在平面α内,则对点A、直线α与平面α之间的位置
关系表述正确的是( ).
A.A a
B.A a
C.A a
D.A a
4.下列不能确定一个平面的是( A.一条直线和这条直线外一点 C.空间中两条相交的直线
).
B.空间中的三个点 D.空间中两条平行的直线
第 17 页
证明 因为 m∥n ,所以直线 m,n 可以确定一个平面α,从而有m ,n . 因为 Am,B n,所以 A,B ,又因为 Al,Bl,所以直线 l ,从而有 直线 m,n,l 共面.

人教版中职数学《第十章,立体几何初步》全章PPT课件

人教版中职数学《第十章,立体几何初步》全章PPT课件

2.异面直线所成的角:a,b是两条异面直线,经过空间任意一点O,作 直线a’,b’,使a’//a, b’//b,直线a’,b’所成的锐角(或直角)
3、异面直线垂直:两条异面直线所成的角是直角
a b.
例3、已知:正方体ABCD-A’B’C’D’ (1)正方体的哪些棱所在的直线与直线BA’是异面直线
2、为什么自行车要支起后轮旁一只撑脚就能使自行车立在地面上
3、用集合符号表示下列语句
• (1)点A在直线L上 • (2)点B不在直线L上 • (3)直线l在平面α内 • (4)直线m与平面α有且只有一个公共点P



• 解:(1)A∈l

(2) B l

(3) l⊂α
• (4)m∩α=P

2、把一张长方形的纸对折两次,打开后如图所示,说明为什么这 些折痕是互相平行的。
•.
3、已知AC,BD是空间四边形ABCD的对角线,如图,且AC=BD,且 E,F,G,H分别是边AB,BC,CD,DA的中点, 求证:四边形EFGH是菱形
•.
• 证明:因为E,F是AB,BC的中点

所以EF// AC
• 4.解:因为AC//BD,所以PA/PB=PC/PD,即4/(4+5)=3/PD,解得

PD=27/4
三、二面角
• 1、二面角:从一条直线出发的两个半平面所组成的图形
然有平面α//平面γ?为什么? • 3.如图,设E,F,E’,F’分别是长方体ABCD-A’B’C’D’的棱
AB,,CD,A’B’,C’D’的中点,求证:平面ED’//平面BF’
•.
F′
E′
P
A
C
α

数学基础模块下册立体几何

数学基础模块下册立体几何

点、直线和平面的位置关系
点在直线上
一个点被一条直线完全包 含。
点在平面内
一个点被一个平面完全包 含。
直线在平面内
一条直线被一个平面完全 包含。
点、直线和平面的度量关系
两点之间的距离
两个点之间的最短距离。
点到直线的距离
点到直线上任意一点的最短距离。
点到平面的距离
点到平面上任意一点的最短距离。
04
空间拓展
将平面几何图形向三维空间进行拓展 ,形成空间几何图形,如长方体、球 体等。
空间几何图形的分类与性质
分类ห้องสมุดไป่ตู้
根据空间几何图形的形状、大小 和位置关系,可以分为点、线、 面、体等不同类型。
性质
空间几何图形具有不同的性质, 如对称性、平行性、垂直性等。 这些性质可以通过几何定理和性 质进行证明和应用。
培养空间思维能力
学习立体几何有助于培养学生的空间思维能力和想象力,提高他们分析问题和 解决问题的能力。这种能力不仅在数学和物理学中有重要应用,也在日常生活 中有着广泛的应用。
立体几何的历史与发展
古代起源
立体几何起源于古希腊时期,当 时的学者如欧几里德等对几何学
进行了系统化的整理和发展。
近代发展
随着数学的发展和各领域的需要 ,立体几何在近代得到了进一步 的发展和完善。例如,射影几何 的兴起和发展为几何学注入了新
光的折射和反射等都需要用到立体几何的知识。
量子力学
03
量子力学中的波函数和概率幅等概念可以用立体几何中的流形
和纤维丛等概念来描述和理解。
THANKS
感谢观看
CATALOGUE
空间几何图形的性质与证明
空间几何图形的性质

中职数学教学课件:第9章立体几何

中职数学教学课件:第9章立体几何
以达到美观和功能性的要求。
建筑空间规划
通过空间几何体的运用,建筑师 可以更好地规划和利用建筑空间, 以满足不同的使用需求,如住宅、
商业和工业建筑等。
建筑结构分析
在建筑结构分析中,空间几何体 可以用来描述和分析建筑的受力、 稳定性和抗震性能等,以确保建
筑计
在机械设计中,空间几何体被广泛应用于描述和分析各种 机械零件的形状、尺寸和位置等,以确保机械设备的正常 运转。
详细描述:在几何图形中,直线与平面的位置关系可以 通过图形的性质和定理来判断。例如,在长方体中,面 对角线所在的直线与过其顶点的平面垂直。
03
空间几何体的性质和分 类
空间几何体的性质
01
02
03
04
空间几何体具有三维空 间中的位置和大小。
空间几何体具有面、边 和顶点等基本元素。
空间几何体的面与面之 间存在相交或平行关系。
中职数学教学课件第9 章立体几何
目 录
• 立体几何简介 • 点、直线和平面的关系 • 空间几何体的性质和分类 • 空间几何体的表面积和体积 • 空间几何体的位置关系 • 空间几何体的应用
01
立体几何简介
立体几何的定义
立体几何是研究三维空间中图形和几 何对象的一门学科。它涉及到点、线 、面、体等基本元素,以及它们之间 的位置关系和度量性质。
图形分解法
将复杂的几何体分解为简单的几何 体,分别计算各部分的体积,然后 求和。
图形组合法
将两个或多个几何体组合在一起, 计算整个组合体的体积。
特殊空间几何体的表面积和体积
长方体的表面积和体积
长方体的表面积等于2ab+2bc+2ac, 体积等于长×宽×高。
正方体的表面积和体积

《立体几何》PPT课件

《立体几何》PPT课件

精选课件ppt
15
空间几何体的三视图和直观图在观察角度上有 什么区别? 提示:观察直角:三视图是从三个不同位置观 察几何体而画出的图形;直观图是从某一点观 察几何体而画出的图形.
精选课件ppt
16
1.三视图如图的几何体是
A.三棱锥 B.四棱锥 C.四棱台 D.三棱台
精选课件ppt
()
17
解析:由三视图知,该几何体是四棱锥,且其中一条棱 与底面垂直. 答案:B
第七章 立体几何
精选课件ppt
1
知识点
考纲下载
考情上线
1.认识柱、锥、台、球及其简单组
合体的结构特征,并能运用这些 特征描述现实生活中简单物体的 1.柱、锥、台、球及简单几
结构.
何体的直观图、三视图是
2.能画出简单空间图形(长方体、 球、圆柱、圆锥、棱柱等的简易
空间几何 组合)的三视图,能识别上述的
1.了解空间向量的概念,了解
空间向量的基本定理及其意
义,掌握空间向量的正交分
空间向量 解及其坐标表示.
及其运算 2.掌握空间向量的线性运算及
[理]
其坐标表示.
3.掌握空间向量的数量积及其
坐标表示,能运用向量的数
量积判断向量的共线与垂直.
1.空间向量的坐标 表示是用空间向 量解决空间平行 垂直、夹角的问 题的基础.
精选课件ppt
22
答案:D
精选课件ppt
23
4.如图所示为长方体木块堆成的几何体的三视图,此几何体
共由
块木块堆成.
解析:由三视图知,由4块木 块组成. 答案:4
精选课件ppt
24
5.如图,矩形O′A′B′C′是水平放置的一个平面图形的直

《基本立体图形》立体几何初步 PPT教学课件(第1课时棱柱、棱锥、棱台的结构特征)

《基本立体图形》立体几何初步 PPT教学课件(第1课时棱柱、棱锥、棱台的结构特征)

③棱台的侧棱所在直线均相交于同一点. 解析:棱锥是由棱柱的一个底面收缩为一个点而得到的几何体,因
而其侧面均是三角形,且所有侧面都有一个公共点,故①对.棱台
是棱锥被平行于底面的平面所截后,截面与底面之间的部分,因而
其侧面均是梯形,且所有的侧棱延长后均相交于一点(即原棱锥的顶
点),故②错,③对.因而正确的有①③. 答案:①③
栏目 导引
第八章 立体几何初步
4.一个棱柱有 10 个顶点,所有的侧棱长的和为 60 cm,则每 条侧棱长为__________cm. 解析:因为棱柱有 10 个顶点,所以棱柱为五棱柱,共有五条侧 棱,所以侧棱长为650=12(cm). 答案:12
栏目 导引
第八章 立体几何初步
空间几何体的平面展开图
(1)水平放置的正方体的六个面分别用
“前面、后面、上面、下面、左面、右面”表示,
如图是一个正方体的平面展开图(图中数字写在
正方体的外表面上),若图中的“2”在正方体的
上面,则这个正方体的下面是( )
A.1
B.9
C.快
D.乐
栏目 导引
第八章 立体几何初步
(2)如图是三个几何体的侧面展开图,请问各是什么几何体?
【解】 (1)选 B.由题意,将正方体的展开图还原成 正方体,“1”与“乐”相对,“2”与“9”相对,“0” 与“快”相对,所以下面是“9”.
栏目 导引
第八章 立体几何初步
(2)题图①中,有 5 个平行四边形,而且还有两个全等的五边形, 符合棱柱的特点;题图②中,有 5 个三角形,且具有共同的顶 点,还有一个五边形,符合棱锥的特点;题图③中,有 3 个梯 形,且其腰的延长线交于一点,还有两个相似的三角形,符合 棱台的特点,把侧面展开图还原为原几何体,如图所示:

语文版中职数学基础模块下册9.4《空间几何体的结构特征》ppt课件1

语文版中职数学基础模块下册9.4《空间几何体的结构特征》ppt课件1
(提示:考虑组成几何体的面)
多面体1:棱柱
二、分类:底面是三角形、四边形、五边形…的棱柱分别叫做三棱柱、四 棱柱、五棱柱…
三、表示方法:用表示底面各顶点的字母表示棱柱
如:四棱柱 ABCD A'B,三'C棱'柱D'
ABC A'B'C '.
D'
C'
C'
Hale Waihona Puke A'B'
A'
B'
D
C
A
B
A
C B
变式练习
2019/8/28
最新中小学教学课件
thank
you!
2019/8/28
最新中小学教学课件
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
SO
S
母线
A
轴 侧面
O.
底面
B
例题讲解
例1 如图,截面BCEF将长方体分割成两部分,这两部分是什么几何体?
D1
E
C1
A1 F
B1
C
D

数学基础模块下册立体几何PPT课件

数学基础模块下册立体几何PPT课件
于这个平面 .
.
异面直线 直线相交 平面相交 直线与平面 平行性质
41
9.2 直线与平面平行
平面与平面的位置关系
: 拿出两本书,看作两个平面,上下、左右移动和翻转,它们之间的 位置关系有几种?
通过观察可以发现,两本书可以平行,也可以是相交(平面 是无限延展的)。所以位置关系有平行与相交两种。
:(1)两个平面平行 没有公共点; (2)两个平面相交 有一条公共直线.
平面的表示方法
平面可以用希腊字母表示,如α、β、γ等。也可以用代表表示平面的平行四边形的四个顶点 或相对的两个顶点字母表示,如平面ABCD,平面AC或平面BD。
.
10
9.1 平面的基本性质
知识巩固
表示出长方体ABCD-A1B1C1D1的6个面。
平面AD1 平面AC 平面BC1 平面A1C1 平面DC1 平面AB1
(1)“不在一条直线上”和“三点”是基本性质3的重点字眼,如果没有前者,
那么只能说“有一个平面”,但不唯一。如果将“三点”改成“四点”那么过四点不一定 确定一个平面.由此可见“不在一条直线上的三点”是确定一个平面的恰到好处的条件。
(2) 深刻理解“有且只有”的含义,这里的“有”是说平面存在,“只有”是说平
ቤተ መጻሕፍቲ ባይዱ
.
45
9.2 平面与平面平行
平面与平面平行的性质
: 当第三个平面和两个平行平面都相交时,两条交线有什么关系 ?为什么?
已知: 平面 α,β,γ 满足α // β, α γ = a, β γ = b 求证: a // b 证明: α γ = a,β γ = b
a γ,b γ, a与 b 共面 又 a // β,a α,b β,
面外面内平行三条件缺一不可3792直线与平面平行例题如图在长方体abcdabcd中与ab平行的平面是与ad平行的平面是平面ac平面cd平面bc平面cd平面ac平面bc3892直线与平面平行直线与平面平行的性质如果直线a与平面平行经过直线a的平面与平面相交于直线b那么直线a的位置关系如何

高教版中职数学(基础模块)下册9.4《直线与直线、直线与平面、平面与平面垂直的判定与性》ppt课件1

高教版中职数学(基础模块)下册9.4《直线与直线、直线与平面、平面与平面垂直的判定与性》ppt课件1

动脑思考 探索新知
直线和平面垂直的性质:
垂直于同一个平面的两条直线互相平行. n
m 如果两条平行直线中的一条垂直于一个 平面,那么另一条也垂直于这个平面吗?为 什么?
9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质
巩固知识 典型例题
例3 如图,AB和CD都是平面 的垂线,垂足分别为B、D,A、C分 别在平面 的两侧,AB=4 cm,CD=8 cm,BD=5 cm,求AC的长.
创设情境 兴趣导入
如图所示,在正方体 A1C 的侧面 A1ABB1 中,作 EE1 AB ,观察
EE1与底面ABCD的关系.
D1
A1
E1
D
A
E
C1 B1
C B
9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质
动脑思考 探索新知
平面与平面垂直的性质: 如果两个平面垂直,那么一个平面内垂直于交线的直线与另一个平面垂直.
9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质
自我反思 目标检测
学习方法
学习行为
学习效果
9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质
自我反思 目标检测
一根旗杆AB高8 m,它的顶端A挂两条10 m的绳子,拉紧绳子并把 它们的两个下端固定在地面上的C、D两点,并使点C、D与旗杆脚B不 共线,如果C、D与B的距离都是6 m,那么是否可以判定旗杆AB与地 面垂直,为什么?
9.4 直线与直线、直线与平面、平面与平面垂直的判定与性质
动脑思考 探索新知
平面与平面垂直的判定方法: 一个平面经过另一个平面的垂线则两个平面垂直.
如图所示,如果 AB ,AB 在 内,那么 .
相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

中职数学基础模块下册《立体几何》课件
(一)
中职数学基础模块下册《立体几何》课件,是为中职学生编写的数学
课件,旨在帮助学生更好地掌握立体几何的知识和技能。

本文将从以
下几个方面展开探讨:该课件的概况、教学内容、教学方法和教学效果。

一. 课件概述
中职数学基础模块下册《立体几何》课件,是国家教育部根据中职教
育教学大纲编写的,全书共分为14个章节,包括平面图形、空间直线、平面的位置关系、长方体、多面体、棱台、棱锥、圆锥、球的表面积
和体积等内容。

该课件通过教学活动、课堂练习和实验演示等多种形式,将理论知识与实际操作相结合,为学生提供了一个互动式学习的
平台。

二. 教学内容
该课件的教学内容丰富、全面,既包括了立体几何的基本概念和定理,又涉及了多面体的表面积和体积计算等实际问题。

例如,第四章“长
方体”中,课件通过图示和实例,让学生了解长方体的定义和性质;
并通过运用长方体的表面积和体积公式,让学生掌握计算长方体表面
积和体积的方法;第六章“棱台”则通过立体模型和实例,让学生理
解棱台的基本属性和计算方法。

通过这些内容,帮助学生加深对立体
几何知识的理解和应用能力。

三. 教学方法
中职数学基础模块下册《立体几何》课件采用了多种教学方法,如概
念讲解、图像表述、数学公式应用和实际问题分析等。

其中,课件中
的实验演示部分,通过动态模拟实验环节,让学生更好地理解概念和
定理;而课件中的教学活动部分,则通过对课件中实例的引导和讨论,培养学生的分析和解决问题的能力。

除此之外,课件中的课堂练习和
测试部分,既可让学生自我检验学习效果,又可为教师提供有针对性
的教学反馈。

四. 教学效果
由于该课件贴近课程内容实际,注重理论知识与实践操作的结合,使
得学生更好地掌握相关知识和技能。

同时,该课件的互动式学习方式,也有效激发学生的学习兴趣和学习动力,提高了学习效率和教育效果。

综上,中职数学基础模块下册《立体几何》课件是一份系统、科学、
实用的教学工具,南加州大学该课件不仅有助于学生巩固立体几何相
关知识,还能够锻炼学生的数学思考能力和实际问题解决能力。

因此,中职教师应积极运用这份课件进行教学,为学生提供更好的数学学习
体验与成长空间。

相关文档
最新文档