层次分析步骤汇总
层次分析法的具体步骤
![层次分析法的具体步骤](https://img.taocdn.com/s3/m/bcfee0d849649b6648d74786.png)
层次分析法的具体步骤(1)建立层次结构模型如上所述,家纺纺织产业实施循环经济评价指标体系可被分为四层,最上层为最高层(目标层),即纺织企业循环经济各个方面的综合水平;第二层为准则层,即相互独立、分别隶属于总系统层的子系统;第三层为指数层,是对准则层的进一步细分和阐述;最底层为指标层,该层隶属于准则层,是对纺织企、Ek循环经济各个方面具体的评价指标。
在层次分析法巾多采用三层分析,即目标层、准则层和指标层。
(2)构造比较判断矩阵根据层次结构模型,通过对某层次中各元素的相对重要性做出比较判断,即对于上一层次某一推则而言,在其下一层次中所有与之相关的元素中依次两两比较,从而得出逐层进行判断评分,进而构成两两判断矩阵,如表6—2所示。
如A1,A2,…,久,在考虑相对上一层准则H:前提下构造判断矩阵H‘—A。
具体的做法是:先将矩阵左侧的指标A1依次与矩阵上边一排所列的指标Al—A。
相对于目标Hf做两两比较,比较结果按AHP法设计的范围标度(表6—3)对它的重要性给予量化,并相应填入矩阵第一行;接着依次用左列指标A2,A3,…,A4重复进行上述比较,以完成矩阵的第二行至第n行。
对于每个准则层以及每个准则下的指标群,进行同样过程,这样也就形成了多级比较判断矩阵。
AHP采用这种标度方法,不仅能克服一些指标和指标子系统无标度情况下无法测量、统计等困难,而且这种标度法有特定的科学依据,这主要表现为:第一。
实验心理学有关研究表明,人们对不同程度刺激的感觉区别,最佳的区别个数为7土2,若取其最大的极限,恰好是9个。
也就是说,人们对某个事物的属性同时进行比较,要使其前后的判断基本保持一致,最多只能对9个不向事物向时进行比较判断。
按照人们惯用的相邻标度差为1的离散标度值确定法,对1—9种事物进行比较判别时,其比例标度恰好为[1,9]间的整数。
第二,人们在估计事物问区别时,习惯采用五种判断表述:相等、较强、强、4硼、绝对强。
若需要更高精度,还可在这五种相邻判断之间做出比较,这样共有9个等级。
层次分析法步骤及案例分析
![层次分析法步骤及案例分析](https://img.taocdn.com/s3/m/52b678a90875f46527d3240c844769eae009a338.png)
层次分析法步骤及案例分析层次分析法(AHP)是一种通过对比判断不同因素的重要性来进行决策的方法。
它由匹兹堡大学的数学家托马斯·萨蒙在20世纪70年代初提出,并逐渐应用于各个领域。
本文将介绍层次分析法的步骤,并通过一个实际案例来进行分析。
一、层次分析法的步骤层次分析法主要包括以下几个步骤:1. 确定层次结构:首先,需要明确决策问题的层次结构。
将问题划分为若干个层次,从总目标到具体的子目标,形成一棵树状结构。
例如,在一个购车的决策问题中,总目标可以是“选择一辆适合自己的车”,下面的子目标可以包括“价格”、“外观”、“安全性”等因素。
2. 构造判断矩阵:在每个层次中,需要对不同因素之间的两两比较进行判断。
判断可以基于专家经验、问卷调查或实际数据。
对于两两比较,通常采用一个1到9的比较尺度,其中1表示相等,3表示略微重要,5表示中等重要,7表示强烈重要,9表示绝对重要。
如果因素A相对于因素B的重要性大于1,则B相对于A的重要性是1/A。
3. 计算权重向量:根据判断矩阵中的比较结果,可以计算出每个层次中各个因素的权重向量。
通过对判断矩阵的特征值和特征向量进行计算,可以得到各个因素的权重。
4. 一致性检验:在进行层次分析时,需要检验判断矩阵的一致性。
一致性是指在两两比较中的逻辑关系的一致性。
通常使用一致性指数和一致性比率来判断判断矩阵的一致性程度。
5. 综合评价:通过将各层次中因素的权重向量进行乘积运算,并将结果汇总得到最后的评价结果。
在这一步骤中,可以对不同的决策方案进行排序或进行多目标决策。
二、案例分析为了更好地了解层次分析法的应用,我们来看一个实际案例。
假设某公司需要选择新的供应商,供应商选择的主要考虑因素包括产品质量、交货周期和价格。
我们可以按照以下步骤进行决策:1. 确定层次结构:总目标是选择合适的供应商,下面的子目标是产品质量、交货周期和价格。
2. 构造判断矩阵:对于每个子目标,可以进行两两比较。
层次分析法的实施——五步骤
![层次分析法的实施——五步骤](https://img.taocdn.com/s3/m/136e59e587c24028905fc3ce.png)
准则层
C1 调动职工生产
积极性
C2 提高企业
技术水平
C3 改善职工物质
文化生活
方案层
P1 发奖金
P2 扩建福
利设施
P3 办学校
P4 建图书
馆或俱
乐部
P5 技术改造
. #;
A
C1
C2
…
Ck
(2)建立判断矩阵 C1
a12
a11
…
a1k
参见(P136)标度
C2
a21
a22
…
a2k
判断矩阵A-C:
Ck
ak1
对Wi进行归一化处理: Wi
Wi
n
Wj
j 1
(i, j 1,2, , n)
. #;
(4)层次总排序
所谓层次总排序就是针对最高层目标而言,本层次 各要素重要性的次序排序。
C层
P层 P1 P2 … Pn
因素及权重
C1
C2
1(1) 2(1) …
CK
k(1)
11(2) 12(2)
…
21(2) 22(2)
P5 0.046 0.263
0
0.172
方案 排序
4 3 1 5 2
P1
P2
发奖金 扩建福
利设施
P3
P4
P5
办学校 建图书 技术改造
馆或俱
乐部
. #;
3. 层次分析法
(1)分析复杂系统所包含的因素及其相互关系,形成多层次的分析 结构模型;
(2)将各要素及上层要素进行两两比较判断,得到其相对重要程度 的比较标度,建立判断矩阵;
方案层
方案1 方案2 方案3
层次分析法的基本原理和步骤
![层次分析法的基本原理和步骤](https://img.taocdn.com/s3/m/5f387579b80d6c85ec3a87c24028915f804d8423.png)
层次分析法的基本原理和步骤层次分析法(Analytic Hierarchy Process, AHP)是一种定量分析方法,用于多准则决策问题的分析和决策。
它的基本原理是将复杂的决策问题层次化,通过对准则和方案的比较与评价,得出优先级权重,进而得到最佳方案。
1.确定决策目标:确定决策问题的目标,明确要达到的结果。
2.构建层次结构:将决策问题分解成一个层次结构,包括目标层、准则层和方案层。
目标层表示最终要达到的目标,准则层表示影响目标实现的准则因素,方案层表示可供选择的决策方案。
3.构建判断矩阵:在准则层和方案层中,两两比较各个准则或方案之间的重要性或优劣程度。
根据专家判断或个人主观意见,使用尺度(1-9)对两两比较进行评分,构建判断矩阵。
4.计算准则权重:根据判断矩阵的评分,使用特征值法或最大特征向量法计算准则权重。
首先对判断矩阵的列向量进行归一化处理,然后计算归一化后的特征向量,最后将特征向量的元素相加,并按比例得到准则的权重。
5.一致性检验:通过计算一致性指标和一致性比率来检验判断矩阵的一致性。
一致性指标表示判断矩阵与一致性判断矩阵之间的差异程度,一致性比率表示判断矩阵的一致性程度。
如果一致性指标小于一定阈值,且一致性比率接近1,则认为判断矩阵具有满足一致性的权重。
6.计算方案权重:将计算得到的准则权重与判断矩阵相乘,计算每个方案的权重。
权重值越大,表示方案的优先级越高。
7.一致性检验:对方案权重进行一致性检验,与准则权重的一致性检验类似。
8.敏感性分析:通过增加或减少一些因素的权重,分析结果的稳定性和可靠性。
敏感性分析可以帮助决策者了解权重对决策结果的影响程度。
9.最终决策:根据方案的权重和准则的权重,对各个方案的优先级进行排序,选择权重最高的方案作为最终决策。
层次分析法的基本原理是将决策问题逐层分解,通过两两比较和权重计算,理性地确定各个因素的优先级和权重。
通过分析和评价不同方案,辅助决策者做出最佳选择。
层次分析法步骤
![层次分析法步骤](https://img.taocdn.com/s3/m/2c9f07d50342a8956bec0975f46527d3240ca68e.png)
层次分析法步骤一、准备阶段1、定义分析目标。
泛化层次分析法是一种比较主观的方法,用于评估潜在变量或多个变量之间的关系。
在这种情况下,需要确定分析的目标,也就是对变量之间的关系进行分析,了解情况的发展趋势、分析变量的稳定性或不稳定性等。
2、选择分析变量。
分析变量是用来衡量指标的变量,可以为定性变量或定量变量,而且根据研究需要精选变量数量。
3、数据收集。
利用特定的数据收集工具收集相关信息,以便对变量进行分析。
二、建模阶段1、构建层次结构。
首先,要明确需要分析的参数,并将参数归类成不同的层次。
这将是建模和构建层次结构的基础。
2、选择比较参数。
选择可以产生有效的结果的参数作为比较参数,以估算不同层次之间或相同层次之间变量的重要程度。
3、定量化变量并建立模型。
将变量定量化,并根据层次结构和参数选择建立模型,以获得有意义的结果。
三、结果分析阶段1、模型结果检查。
在建模阶段产生的模型结果中,需要检查模型结果。
检查是要确定模型的准确性,检查模型是否满足该分析的要求。
2、变量重要性重要性是指分析中衡量变量重要性的指标,是指由变量的框架和公式组成的模型的可靠性和准确性。
3、层次分析。
层次分析旨在定量的相关变量之间的层次结构的优先关系和重要性。
4、数据可视化。
为了更加清楚地描述结果,需要图形表示,比如柱状图、折线图或饼型图等进行数据可视化。
五、结论根据层次分析法的结果,可以总结出变量的重要性,分析变量的层次之间的关系,用图表的形式表示数据的可视化,更加清楚地为研究者提供了一种量化测量变量之间关系的方法。
(完整版)层次分析法步骤
![(完整版)层次分析法步骤](https://img.taocdn.com/s3/m/c5bff078ba0d4a7302763ada.png)
层次分析法实例与步骤结合一个具体例子,说明层次分析法的基本步骤和要点。
【案例分析】市政工程项目建设决策:层次分析法问题提出市政部门管理人员需要对修建一项市政工程项目进行决策,可选择的方案是修建通往旅游区的高速路(简称建高速路)或修建城区地铁(简称建地铁)。
除了考虑经济效益外,还要考虑社会效益、环境效益等因素,即是多准则决策问题,考虑运用层次分析法解决。
1. 建立递阶层次结构应用AHP解决实际问题,首先明确要分析决策的问题,并把它条理化、层次化,理出递阶层次结构。
AHP要求的递阶层次结构一般由以下三个层次组成:●目标层(最高层):指问题的预定目标;●准则层(中间层):指影响目标实现的准则;●措施层(最低层):指促使目标实现的措施;通过对复杂问题的分析,首先明确决策的目标,将该目标作为目标层(最高层)的元素,这个目标要求是唯一的,即目标层只有一个元素。
然后找出影响目标实现的准则,作为目标层下的准则层因素,在复杂问题中,影响目标实现的准则可能有很多,这时要详细分析各准则因素间的相互关系,即有些是主要的准则,有些是隶属于主要准则的次准则,然后根据这些关系将准则元素分成不同的层次和组,不同层次元素间一般存在隶属关系,即上一层元素由下一层元素构成并对下一层元素起支配作用,同一层元素形成若干组,同组元素性质相近,一般隶属于同一个上一层元素(受上一层元素支配),不同组元素性质不同,一般隶属于不同的上一层元素。
在关系复杂的递阶层次结构中,有时组的关系不明显,即上一层的若干元素同时对下一层的若干元素起支配作用,形成相互交叉的层次关系,但无论怎样,上下层的隶属关系应该是明显的。
最后分析为了解决决策问题(实现决策目标)、在上述准则下,有哪些最终解决方案(措施),并将它们作为措施层因素,放在递阶层次结构的最下面(最低层)。
明确各个层次的因素及其位置,并将它们之间的关系用连线连接起来,就构成了递阶层次结构。
【案例分析】市政工程项目进行决策:建立递阶层次结构在市政工程项目决策问题中,市政管理人员希望通过选择不同的市政工程项目,使综合效益最高,即决策目标是“合理建设市政工程,使综合效益最高”。
层次分析法步骤范文
![层次分析法步骤范文](https://img.taocdn.com/s3/m/520a63a2541810a6f524ccbff121dd36a32dc41d.png)
层次分析法步骤范文1.问题分解:第一步是将决策问题进行合理的分解,将复杂的问题分解成一系列相对简单的子问题。
2.构造层次结构:在层次分析法中,层次结构是由目标、准则、指标和方案组成的。
目标是决策问题的最终目的,准则是评价和选择方案的标准,指标是用于评价和选择方案的具体指标,方案是待选方案。
在构造层次结构时,应该首先确定目标,然后确定相应的准则、指标和方案。
3.确定权重:在确定权重时,需要使用专家判断法或问卷调查等方法。
专家判断法是指邀请相关领域的专家给出权重,而问卷调查则是通过收集大量的样本数据来计算权重。
4.计算权重:在层次分析法中,通过对准则两两之间的比较以及指标和方案相对于准则的比较,可以得到一个比较矩阵。
比较矩阵的元素表示准则或指标相对于其他准则或指标的重要程度。
通过对比较矩阵进行一些数学运算,可以得到各个准则和指标的权重。
5.一致性检验:在层次分析法中,一致性检验是为了检查专家判断的一致性。
一致性的检验通常使用一致性指标来衡量,最常用的一致性指标是Consistency Index(CI)和Random Index(RI)。
一致性指标的计算公式为:CI=(λmax-n)/(n-1),其中λmax是比较矩阵的最大特征根,n是比较矩阵的阶数。
6.结果分析:在层次分析法中,通过计算得到的权重可以进行分析和决策。
可以比较不同方案的权重,选择最优方案。
此外,还可以通过调整比较矩阵中的元素,重新计算权重,来进行灵敏性分析。
总的来说,层次分析法是一种结构化的决策方法,它通过将复杂的决策问题分解成一系列相对简单的子问题,通过构造层次结构、确定权重、计算权重、一致性检验和结果分析等步骤,帮助决策者做出合理的决策。
层次分析法的基本步骤和要点
![层次分析法的基本步骤和要点](https://img.taocdn.com/s3/m/69261e28dcccda38376baf1ffc4ffe473368fd1c.png)
层次分析法的基本步骤和要点层次分析法(Analytic Hierarchy Process, AHP)是一种用于解决复杂决策问题的定量分析方法,它通过构建一个层次结构,对不同因素进行定量比较和权重分配,以便对不同方案进行排序和选择。
以下是层次分析法的基本步骤和要点:1.确定问题及目标:首先要明确决策问题,并确定具体的目标。
问题应该明确、具体和可操作,目标要清晰明确,以便为后续步骤提供指导。
2.建立层次结构:将决策问题按照一定的层次结构进行划分和组织,形成一个决策层次结构。
层次结构应该包含目标层、准则层和方案层,每一层包含若干个因素或指标。
3.构建判断矩阵:对于每一层的因素或指标,通过一对一的比较,构建判断矩阵。
判断矩阵是一个正互反矩阵,矩阵中的元素表示各个因素之间的相对重要性。
比较的方式可以用语言描述、对比法、比例尺法或者问卷调查等方法。
4.计算特征向量:对于判断矩阵,可以通过特征值分解的方法求得其最大特征值和对应的特征向量,特征向量表示各个因素的权重。
5. 一致性检验:通过计算一致性指标(Consistency Index, CI)和一致性比率(Consistency Ratio, CR),检验判断矩阵的一致性。
如果CR小于0.1,则判断矩阵合理,否则需要进行修正。
6.权重分配:将特征向量中的权重归一化,得到各个因素的权重比例。
从目标层到准则层再到方案层,逐层进行权重分配。
7.一致性检验和修正:对层次结构中的不同层次进行一致性检验,并修正不一致的地方。
8.综合评价和排序:通过加权求和的方式,将各个方案得到的权重与各个层次的权重进行综合,得到各个方案的最终得分,从而对方案进行排序和选择。
要点:-层次分析法是逐层进行的,每层次的因素必须具备互斥、完备和排他的性质。
在构建层次结构时,应注意每一层次的因素之间的关系和层次之间的逻辑关系。
-在比较因素之间的重要性时,应该主观客观相结合,充分考虑专家经验和实际情况。
层次分析法步骤介绍
![层次分析法步骤介绍](https://img.taocdn.com/s3/m/46de2f2cfad6195f312ba65c.png)
层次分析法整个计算过程包括以下五个部分。
(1)建立递阶层次结构应用AHP解决实际问题,首先明确目标;接下来分析影响目标决策的各个因素,并将它们之间的关系条理化、层次化;最后,用线将各个层次、各个因素间的关系连接起来就构成了递阶层次结构。
[25]通常,递阶层次结构包括以下三个基本层次:1.目标层:通过分析,明确目标是什么,将其作为最高层的元素,必须是唯一的,如:选择最合适的供应商2.准则层:即中间层,元素包含所有可能影响目标实现的准则,且会随着问题的复杂程度增多。
这时,需要详细分析各准则元素间的相互关系(是同级关系还是隶属关系)。
如果是隶属关系,则需要构建子准则层甚至更下一层准则。
3.措施层:即方案层。
分析解决问题的方案有哪些,并将其作为最底层因素。
(2)构造判断矩阵并赋值1.构造判断矩阵:将每一个具有向下隶属关系的元素作为判断矩阵的第一个元素(位于左上角),隶属于它的各个元素依次排列在其后的第一行和第一列。
2.填写判断矩阵:最常用的方法是咨询专家,将两个元素两两比较,按照重要性程度表赋值(见下表)。
表3 重要性标度含义表设填写后的判断矩阵为A=(a ij)n×n,判断矩阵具有如下三个性质:1.a ii=12.a ji=1/a ij3.a ij>0(3)层次单排序与检验1.层次单排序利用数学方法将专家填写后的判断矩阵进行层次排序。
层次单排序是将每一个因2素对于其准则的重要性进行排序,实际就是计算权向量。
计算权向量有特征根法、和法等,以下详细介绍特征根法的计算方法。
A. 计算判断矩阵每一行元素的乘积∏==nj ij i a M 1 (3.2)式中:M i 第i 行各元素的乘积a ij 第i 个元素与第j 个元素的关系比值B. 计算Mi 的n 次方根n i i M W = (3.3)式中:W i 第i 行各元素的乘积的n 次方根M i 第i 行各元素的乘积C. 对向量正规化(归一化处理)∑==ni i ii W W W 1 (3.4)式中:i W 特征向量W i 第i 行各元素的乘积的n 次方根D. 计算判断矩阵的特征根 j nj ij i W a ∑-=1λ (3.5) 式中:λi 第i 个特征根 a ij 第i 个元素与第j 个元素的关系比值W j 第j 个特征向量E. 计算判断矩阵的最大特征根∑=⨯=n i i iW n 1max λλ (3.6) 式中:λmax 最大特征根λi 特征根n 判断矩阵的阶数W 特征向量2. 层次单排序一致性检验需要特别注意:在层层排序中,要对判断矩阵进行一致性检验。
(完整word版)层次分析法步骤
![(完整word版)层次分析法步骤](https://img.taocdn.com/s3/m/d5f5138258fafab068dc02d2.png)
利用层次分析进行风险分析的过程共有5个步骤: 1、建立递阶层次结构模型自上而下通常包括目标层、准则层和方案层,其中目标层是指层次结构中的最高层次,是管理者所追求的最高目标。
准则层是指评判方案优劣的准则,可再细分为子准则层、亚准则层.方案层是指可实行的方案等。
2、就用两两比较法构造比较判断矩阵比较判断矩阵是层次分析的核心,是以上一层某个要素Hs 作为判断标准,对下一层次要素进行两两比较确定的元素值。
例如,在Hs 判断标准下有n 个要素,是对于Hs 准则可得到阶的比较判断矩阵A=(aij )nXn.()()()。
,,,,,,,,。
须进行一致性检验进行决策前利用估计的判断矩阵因此第四条性质不一定满足也就是比较判断矩阵的而存在估计误差一致性不可能做到判断的完全制评价者知识和经验的限由于采用两两比较时因素然而人们对复杂事物各性则该矩阵具有完全一致具有如下性质比较判断矩阵因此的重要性的权重目标一准则个要素对于上一层次某表示某层第即要性的相对重对要素的角度考虑要素表示从判断准则比较判断矩阵中元素jkik ijijjiijii s jijiij j i s ij a a ;a;a a ;aa :A ,。
H j i w ,w w w a ,A A H a =≥===011((1)确定判断准则(九级标度两两比较评分标准)(2)构造判断矩阵3、确定项目风险要素的相对重要性,并进行一致性检验专家对各风险因素进行两两比较评分后,需要知道A 关于HS 的相对重要度,即A 关于HS 的权重、排序和一致性检验,计算如下:⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=......................)1(21222211nn n n n n 1211a a a a a a a a a A ,A 设比较判断矩阵重这也是各因素的相对权的特征向量首先确定判断矩阵()()[]()[]()()[]。
i AW AW nW AW :D 、W W W W ,,,,n ,i WW WW W W W C 、,,,,n ,i ,b B 、,,,,n ,i ,aa b :A A 、i ni iiTn ni iiiTnnj iji ni ijijij 分量的第为向量矩阵征值计算判断矩阵的最大特即为所求的特征向量则归一化将向量判断矩阵按行相加每一列经过归一化后的的每一列归一化将判断矩阵和积法∑∑∑∑=============1max 2112111...21:,...2121*λW :.,,1.0.........\..,.,.,,,.,,1.0..,,..;,0..,1..)2(maxmax 判断否则重新进行两两比较可以接受认为判断矩阵的一致性即只要指标的为衡量判断矩阵一致性并取更为合理的见下表于是引入修正值致性的要求故应放宽对高维矩阵一判断一致性将越差判断矩阵的维数越大判断否则重新进行两两比较可以接受认为判断矩阵的一致性要一般只越差判断矩阵的完全一致性值越大为完全一致当即计算一致性指标须进行一致性检验因此每一个要素满足阵并不能使得比较判断矩不是很精确由于判断矩阵是估计的如前所述一致性判断≤=≤==--==R C I R I C R C R C I R I C I C I C n n nI C :,,,a aa ,,,jkik ij λλ4、计算综合重要度以上分析只得出相对重要度,因此在层次分析法中,还需要计算同一层次所有要素对最高层次(总标准)进行排序,方法是从最上层开始,自上而下地求出各层要素关于总体的综合重要度。
层次分析法的计算步骤
![层次分析法的计算步骤](https://img.taocdn.com/s3/m/0803553526284b73f242336c1eb91a37f1113223.png)
层次分析法的计算步骤层次分析法(Analytic Hierarchy Process, AHP)是一种用于多准则决策的定量分析方法,由美国学者Thomas L. Saaty于1970年代提出。
它通过将一个复杂的多准则问题分解为一系列的层次结构,然后利用专家判断来确定每个层次的权重以及相对优先级,最终得出最佳决策。
下面将详细介绍层次分析法的计算步骤。
1.确定决策的目标和准则:首先明确决策的目标,以及实现这一目标所需的准则。
例如,如果我们要决定购买一台新的汽车,目标可能是选择性价比最高的汽车,准则可能包括价格、燃油经济性、安全性、舒适性等。
3.构建判断矩阵:为了确定每个层次之间的重要性比较,需要构建判断矩阵。
判断矩阵是一种由专家根据经验、知识或直觉所得到的关于准则之间相对重要性的矩阵。
对于每个层次,需要构建一个判断矩阵。
例如,在准则层次,专家需要判断每个准则与其他准则之间的相对重要性。
4.对判断矩阵进行标准化:将判断矩阵进行标准化是为了消除专家主观性的影响。
标准化的方法可以有多种,最常用的方法是将每列元素除以该列元素之和,使每列元素之和等于15.计算权重向量:通过对标准化的判断矩阵进行特征值分解,可以得到特征值和对应的特征向量。
特征向量的元素表示各个准则相对于目标的权重。
为了保证权重之和等于1,需要将特征向量进行归一化。
归一化的方法是将每个元素除以所有元素之和。
6.一致性检验:进行一致性检验是为了评估专家的判断是否一致和合理。
一致性指标(Consistency Index, CI)是用来度量判断矩阵的一致性程度的指标,其计算方法为CI=(λmax-n)/(n-1),其中λmax为最大特征值,n为准则数目。
为了验证判断矩阵的一致性,还需要计算一个随机一致性指标(Random Index, RI)作为对照。
如果CI<0.1,则认为判断矩阵是一致的。
7.一致性修正:如果判断矩阵不一致,可以通过进行一致性修正来提高一致性。
层次分析法步骤及案例分析
![层次分析法步骤及案例分析](https://img.taocdn.com/s3/m/27600242cd1755270722192e453610661ed95ab7.png)
层次分析法步骤及案例分析层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决决策问题的定性与定量相结合的方法。
该方法通过建立分层结构模型,对各个因素进行比较和权重分配,从而帮助决策者做出较为科学的决策。
本文将介绍层次分析法的步骤,并通过一个实际案例进行分析。
一、层次分析法的步骤层次分析法的步骤主要包括问题定义、建立层次结构模型、构建判断矩阵、计算权重和一致性检验等。
下面将详细介绍每个步骤。
1. 问题定义在使用层次分析法前,首先需要明确要解决的问题。
通过明确问题的目标和约束条件,可以确定出适合使用层次分析法的决策问题。
2. 建立层次结构模型在问题定义的基础上,需要建立层次结构模型,将整个问题分解为若干层次,并确定各个层次之间的关系。
通常,层次结构包括目标层、准则层和方案层。
目标层表示要达到的最终目标,准则层表示实现目标所需的评价因素,方案层表示可供选择的备选方案。
3. 构建判断矩阵构建判断矩阵是层次分析法的核心步骤。
判断矩阵用于比较和评价不同层次的因素,确定它们之间的重要性。
通过专家判断或问卷调查等方式,将各个因素两两进行比较,并赋予相应的重要性权值。
根据专家判断或调查结果,可以构建出一个全排列的判断矩阵。
4. 计算权重通过计算判断矩阵,可以获取各个因素的权重值。
常用的计算方法包括特征向量法、层次递推法和最大特征值法等。
根据计算结果,可以得到每个因素的相对权重值,从而进行比较和排序。
5. 一致性检验为了确保判断矩阵的一致性,需要进行一致性检验。
一致性指标主要包括一致性比率和一致性指数。
一致性比率用于评估判断矩阵的不一致程度,一致性指数用于判断判断矩阵是否满足一致性要求。
如果一致性比率超过一定阈值,表明判断矩阵存在较大的不一致性,需要重新调整判断矩阵。
二、案例分析为了更好地理解层次分析法的应用,下面以选择旅游目的地为例进行案例分析。
假设你准备进行一次旅行,有三个备选目的地:A、B和C。
层次分析步骤汇总
![层次分析步骤汇总](https://img.taocdn.com/s3/m/10ceb3e1a8114431b80dd8b8.png)
第一节层次分析的基本原理为了说明AHP的基本原理,首先分析下面这个简单的事实。
假定我们已知n只西瓜的重量和为1,每只西瓜的重量分别为W1,W2,…,Wn。
把这些西瓜两两比较(相除),很容易得到表示n 只西瓜相对重量关系的比较矩阵(以后称之为判断矩阵):= (a ij)n×n (7.1.1)显然a ii= 1,a ij =1/a ij,a ij =a ik/a jk,i,j ,k = 1,2,…,n且AW = = = n W (7.1。
2)即n是A的一个特征根,每只西瓜的重量A对应于特征根n的特征向量的各个分量.很自然,我们会提出一个相反的问题,如果事先不知道每只西瓜的重量,也没有衡器去称量,我们如能设法得到判断矩阵(比较每两只西瓜的重量是最容易的),能否导出西瓜的重量呢?显然是可以的,在判断矩阵具有完全一致的条件下,我们可以通过解特征值问题AW = λmax W求出正规化特征向量(即假设西瓜总重量为1),从而得到n只西瓜的相对重量.同样,对于复杂的社会公共管理问题,通过建立层次分析结构模型,构造出判断矩阵,利用特征值方法即可确定各种方案和措施的重要性排序权值,以供决策者参考。
事业AHP,判断矩阵的一致性是十分重要的。
所谓判断矩阵的一致性,即判断矩阵是否满足如下关系:a ij = ,i,j ,k = 1,2,…,n (7.1.4)上式完全成立是,称判断矩阵具有完全一致性。
此时矩阵的最大特征根λmax =n ,其余特征根均为零。
在一般情况下,可以证明判断矩阵的最大特征根为单根,且λmax 〉=n。
当判断矩阵具有满意的一致性时,稍大于矩阵阶数n,其余特征根接近于0,这时,基于AHP得出的结论才基本合理。
但由于客观事物的复杂性和人们认识上的多样性,要求所以判断都有完全的一致性是不可能的,但我们要求一定程度上的判断一致,因此对构造的判断矩阵需要进行一致性检验.第二节层次分析法的步骤用AHP分析问题大体要经过以下五个步骤:(1)建立层次结构模型;(2)构造判断矩阵;(3)层次单排序;(4)层次总排序;(5)一致性检验.其中后三个步骤在整个过程中需要逐层地进行。
层次分析法实施的步骤
![层次分析法实施的步骤](https://img.taocdn.com/s3/m/297a46190622192e453610661ed9ad51f01d54fa.png)
层次分析法实施的步骤概述层次分析法(Analytic Hierarchy Process,简称AHP)是一种用于解决复杂决策问题的数学模型和方法。
它通过层次化的结构来分析问题,并对各个因素进行权重的判断和排序,最终得出最佳的决策结果。
在实施AHP时,按照以下步骤进行操作。
步骤一:明确问题及目标在实施AHP之前,首先需要明确解决的问题以及所需达到的目标。
这个步骤是决策过程的起点,只有明确了问题和目标,才能有效地进行后续的分析和判断。
步骤二:建立层次结构在明确了问题和目标后,接下来需要建立问题的层次结构。
层次结构是将问题划分为一系列具有层次关系的因素和子因素,形成一个树状结构。
这样做的目的是为了明确问题的结构和因素之间的依赖关系,便于后续的分析和权重判断。
步骤三:构造判断矩阵判断矩阵是AHP的核心工具,用于判断不同因素和子因素之间的相对重要性。
在这一步骤中,需要对每个因素和子因素进行两两比较,根据相对重要性进行评分。
为了进行比较,需要设置一个评分标准,通常使用1到9的数字表示相对重要性,其中1表示相对重要性相等,9表示相对重要性极高。
根据个人对比较的感觉,对每个因素和子因素进行配对比较,填写判断矩阵。
步骤四:计算权重向量在构造判断矩阵后,需要对判断矩阵进行计算,得出每个因素和子因素的权重。
一般使用特征向量法来计算权重向量。
首先,将判断矩阵的每一列进行归一化处理,然后计算归一化后矩阵的特征向量。
特征向量的计算可以使用特征值法或一致性指标法。
最后,得出的特征向量即为权重向量。
步骤五:一致性检验在计算权重向量后,需要进行一致性检验。
一致性检验是判断所构造的判断矩阵是否满足一致性要求的过程。
如果一致性比率超过一定阈值,则需要调整判断矩阵,重新进行计算。
一般情况下,可以计算判断矩阵的一致性指标CI和一致性比例CR。
如果CR 小于0.1,则判断矩阵通过一致性检验,可以继续进行后续的分析和决策。
步骤六:综合判断和决策在计算了权重向量并通过一致性检验后,可以将得到的权重向量应用于问题的层次结构中。
层次分析法的具体步骤
![层次分析法的具体步骤](https://img.taocdn.com/s3/m/712c664edcccda38376baf1ffc4ffe473368fd6c.png)
层次分析法的具体步骤
层次分析法是一种多因素决策方法,其具体步骤如下:
1. 确定决策目标:明确决策的目标,确定需要选择的方案或选项。
2. 列出准则:对于每个可选方案,列出与目标相关的准则或要素。
这些准则应该是可以量化的,例如成本、效益、质量等等。
3. 构建层次结构:将需要比较的准则按照层次结构排序。
通常情况下,决策目标位于最高层,准则位于下一级,再下一级是具体的备选方案。
这种结构可以用一个树状图表示。
4. 建立判断矩阵:对于每个准则与备选方案之间的重要程度或权重,依据专家意见和实际情况构建判断矩阵。
5. 计算权重向量:通过计算判断矩阵的特征向量,得到每个准则和备选方案的权重。
6. 一致性检验:对于每个准则和备选方案,验证其在判断矩阵中的数值是否一致。
若不一致,则需要对判断矩阵进行修正,重新计算权重向量,直至满足一致性要求为止。
7. 得出结论:根据各个备选方案的权重值,确定最优解或多个备选解,并进行评价和比较以做出最终决策。
总之,层次分析法可以帮助人们在复杂的多因素决策过程中,合理地评估各种因素的重要程度,提高决策的科学性和准确性。
层次分析法的具体实施步骤
![层次分析法的具体实施步骤](https://img.taocdn.com/s3/m/677807471611cc7931b765ce05087632311274fd.png)
层次分析法的具体实施步骤引言层次分析法(Analytic Hierarchy Process,AHP)是一种用于多因素决策的定量方法。
它于1970年由美国运筹学家托马斯·L·赛蒂斯(Thomas L. Saaty)提出,被广泛应用于决策分析、评估以及资源分配等领域。
本文将介绍层次分析法的具体实施步骤,以帮助读者快速理解和应用该方法。
步骤一:明确决策目标在使用层次分析法进行决策之前,首先需要明确决策的目标。
这个目标应该是明确的、可操作的,并且对于决策者来说具有一定的重要性。
步骤二:构建层次结构在明确了决策目标之后,下一步是构建层次结构。
层次结构是指将决策问题拆分为一系列层级的因素,以及这些因素之间的关系。
通常,层次结构由目标层、准则层和方案层组成。
2.1 目标层目标层是决策问题的最高层级,代表决策的最终目标。
在这一层级上,需要明确决策的总体目标是什么。
2.2 准则层准则层是决策目标下一级的层次,代表实现目标的准则和要素。
在这一层级上,需要列出能够影响决策目标实现的所有准则,并对其进行量化。
2.3 方案层方案层是决策问题的最底层,代表可选择的决策方案。
在这一层级上,需要列出所有可以选择的方案,并且对每个方案进行量化和评估。
步骤三:建立判断矩阵建立判断矩阵是层次分析法的核心步骤之一。
判断矩阵用于评估在不同层级之间的因素之间的相对重要性。
通过对判断矩阵的填写和计算,可以确定每个因素相对于其他因素的权重。
3.1 构建准则层判断矩阵在准则层,需要对每个准则两两进行比较,以确定它们之间的相对重要性。
比较可以用数字(1-9)来表示,其中1表示两个因素完全相同的重要性,9表示其中一个因素比另一个因素极其重要。
3.2 构建方案层判断矩阵在方案层,需要对每个方案两两进行比较,以确定它们之间的相对优劣。
同样地,比较可以用数字来表示。
步骤四:计算权重向量在建立了判断矩阵之后,下一步是计算权重向量。
权重向量用于表示每个因素相对于其他因素的重要性,是决策结果的依据。
层次分析法步骤
![层次分析法步骤](https://img.taocdn.com/s3/m/7b0cea9385254b35eefdc8d376eeaeaad1f31615.png)
层次分析法步骤层次分析法是一种多因素决策分析方法,它通过比较不同因素对决策目标的影响程度来确定最优的决策方案。
该方法在各个领域中被广泛应用,如项目管理、市场调研、风险评估等。
层次分析法主要分为以下几个步骤:第一步:明确决策目标在使用层次分析法进行决策之前,首先需要明确决策目标。
决策目标可以是一个具体的问题,也可以是一项任务或一项计划。
第二步:确定准则和因素在确定决策目标之后,需要确定相关的准则和因素。
准则是评价决策目标的标准,而因素是影响决策目标实现的因素。
第三步:建立层次结构在第二步确定的准则和因素之间可能存在着复杂的关系,需要建立一个层次结构来明确它们之间的关系。
层次结构是由上级准则到下级准则、因素组成的一个树状结构。
第四步:建立判断矩阵建立了层次结构之后,需要对各个因素进行比较和评价。
使用判断矩阵可以将比较和评价过程转化为数值计算。
判断矩阵是一个方阵,其中的元素表示两个因素之间的相对重要性。
第五步:计算权重向量通过对判断矩阵进行数值计算,可以得到一个权重向量,用来表示各个因素对决策目标的重要程度。
权重向量的计算可以采用特征向量法或最大特征值法。
第六步:一致性检验在计算完权重向量之后,需要对判断矩阵进行一致性检验,以确定计算结果的可靠性。
一致性检验可以采用一致性指标和一致性比率来进行。
第七步:综合评价和决策通过将各个因素的权重与其对决策目标的评价结果进行综合,可以得到对各个方案的比较和评价结果。
根据这些结果,可以进行最终的决策。
层次分析法的实施过程中需要注意以下几点:首先,判断矩阵的建立应该充分考虑到实际情况,尽量减少主观因素的影响;其次,一致性检验是确保决策结果可靠的关键步骤,应该进行认真的分析和判断;最后,由于层次分析法涉及到大量的比较和评价,因此需要有足够的数据支持和专业知识。
总之,层次分析法是一种有效的决策分析方法,可以帮助人们在面对复杂的决策问题时做出合理的决策。
通过明确决策目标、确定准则和因素、建立层次结构、建立判断矩阵、计算权重向量、进行一致性检验以及综合评价和决策,可以得到最优的决策方案。
AHP(层次分析法)方法、步骤
![AHP(层次分析法)方法、步骤](https://img.taocdn.com/s3/m/07004385f01dc281e43af0ab.png)
2、基本模型—单层次模型
(1) 单层次模型结构
C
A1 C—目标
A2
…… An
Ai—隶属C的n个评价元素
决策者:由决策者在这个目标意义下对这n 个元素进行评 价,对他们进行优劣排序并作出相对重要性的权量。
2009.11
2、基本模型—单层次模型
(2) 思想:
❖整体判断
n个元素的两两比较。
2009.11
AHP方法计算原理
实际评价时,并不知道这权重向量 比较Ai与Aj重要性时,通过询问决策者只能得到近
似的比值aij aij~wi/wj
得到的判断矩阵是近似的判断矩阵A. A~A
精确判断矩阵A 的最大特征值的向量 W= (w1, w2, …,wn) T
是完全精确的权重向量 近似判断矩阵A最大特征值的向量
AW= λ W max
由此得到的特征向量W= (w1, w2, …,wn) T 就作 为对应评价单元的权重向量。 λmax和W的计算一般采用幂法、和法和方根法
2009.11
方根法
1 1/ 5 1/ 3
A 5 1
3
3 1/ 3 1
计算Mi 的n次方根
M1
111 53
1 0.067 15
M2 15, M3 1
W= (w1, w2, …,wn) T 可以作为近似的权重向量
2009.11
(3)计算步骤
❖iii. 单层次判断矩阵A的一致性检验
在单层次判断矩阵A中,当 a ij 进行一致性检验的步骤如下:
a ik a jk
时,称判断矩阵为一致性矩阵。
(a)计算一致性指标C.I.:C.I. maxn ,式中n为判断矩阵阶数。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
层次分析步骤汇总
层次分析法(Analytic Hierarchy Process, AHP)是一种常用的决策分析方法,主要适用于多目标、多因素的决策问题。
该方法通过对决策问题进行分层和层次化处理,并对不同层次的因素进行权重分配和层次决策,最终得到最优方案。
以下是层次分析的步骤汇总:
步骤一:问题建模
首先需要把复杂的决策问题建模,将问题分解成多层的结构,将决策问题描述为一组准则和指标,同时建立每个指标与标准的关系,从而形成决策层次结构。
这个过程需要对决策问题进行严格的描述,而且对问题模型的建立需要考虑实际问题的特点、复杂程度以及数据的可获得性等多个因素。
步骤二:构造判断矩阵
在建立完层次结构后,需要对层次结构中每一对相邻的因素进行比较,得出判断矩阵。
判断矩阵是一个关于因素之间关系的数学表达式,揭示了因素之间的相对重要性,最终形成一个权重矩阵。
步骤三:计算判断一致性
因为判断矩阵的构造存在主观性,所以需要对判断矩阵的一致性进行检验。
通过计算一致性指标 CR(Consistency Ratio),来评估判断矩阵的一致性。
如果 CR 值小于等于0.1,则可以认为该矩阵是具有较高信度和一致性的。
步骤四:计算权重向量
根据判断矩阵和 CR 值计算权重向量,用于表示每个因素相对于上一级因素的重要程度。
具体计算出来的权重向量可以用于计算每个因素在目标指标集中具有的综合得分。
步骤五:计算一致性检验
在计算权重向量之后,可以通过计算一致性检验来检测上述步骤是否有误,包括判断矩阵、CR 和权重向量。
如果检验结果符合要求,则可用于评估因素的重要性及最终的决策结果。
步骤六:进行灵敏度分析
当权重矩阵中存在误差时,就需要进行灵敏度分析,探讨这种误差对决策结果的影响。
通过改变权重矩阵的自变量,可以测量对因变量的影响。
在错误或违反合理性的情况下,灵敏度分析可以揭示某些因素对最终决策结果具有明显的影响。
总结
层次分析法是一种多因素、多目标决策问题应用比较广泛的方法,可以广泛应用于各种涉及多个因素的决策问题中。
以上六个步骤展现了层次分析法的流程和基本算法,秉承严谨的理性思维,通过该方法可以较为客观的评估因素的重要性和帮助决策者在复杂的决策中做出科学理性而高效的决策。