数列的通项与求和(一)教案 高三数学一轮复习

合集下载

人教课标A高考一轮复习精品课件6.4数列的通项及数列求和

人教课标A高考一轮复习精品课件6.4数列的通项及数列求和

§6.4数列的通项及数列求和基础知识自主学习要点梳理1 •若已知数列{a}W/£a n+1-a n=f (n),且f (1) + f (2) +…+f (n)可求,则可用—求数列的通项和累加法2•若已知数列{a}满足=f (n),且f⑴・f(2)・…・f (n)可求,则可用_求数列的通项a..©+1累积法推导方法:乘公比,错位相减法.■ % —jq\_q\_q3 •等差数列前n 项和S 产推导方法:— 等比数列前n 项和n(a x +a n )n(n-V). na x H d[到序相加法q#1.4 •常见数列的前n项和(1)(2)(3);n(n + V) 2+4+6+…+2n= _____ ; 21+3+5+...+(2n-1)=_; n2+n*1+2+3+…+n=(4) 12+22+32+..+n2= ;n2(5) 13+23+33+.. +n3=«(n + l)(2n + l)⑷+ 1)]22j5. (1)分组求和:把一个数列分成几个可以直接求和的数列.(2)拆项相消:有时把一个数列的通项公式分成两项差的形式,相加过程消去中间项,只剩有限项再求和.(3)错位相减:适用于一个等差数列和一个等比数列对应项相乘构成的数列求和.(4)倒序相加:例如,等差数列前n项和公式的推导.6 •常见的拆项公式有⑴1n(n +l)1 1n n + 1"2)(2M-1)(2〃 + 1) 2n +1⑶]Qn + Yn +1=、/ H +1—、ft ・基础自测1 •已知等比数^ij{a n},a1=3,>4a1> 2a2> 83成等差数列,则a34-a4+a5等于()A.33B.72C.84D.189解析由题意可设公比为q,贝!Ia2=a1q,a3=a1q2, •/4a2=4a14-a3,-,4a1q=4a14-a1q2,Xa1=3,/.q=2 ・ a3+a4+a5=a1q2(1+q4-q2)=3X4X(1+2+4)=84 ・2如蹈鶯肆严,…,ag…是首项为1,公比为3的等A. B. Cc.23〃+3 2解析时二先®)+ (a3-a2)3* ^(a^)2=a n=2lx(l_3")1一3 '_3〃一1 "" ■•2=n2f-F — 1 1 —i2 222〃 321, 1 164=5 +M,AA2~1 +23-已知数列6}的通项公式是a 产,其中前侦柚卜A.13 劇64解析*-*a n = 则项数n 等于)C.9D.62"D1 戶, 1 心+前,.*/6n=n -4•若数列{aj 的通项公式为a n =2n +2n-1,K>J 数列{a ;}的前n 项和为A.2n +n 2-1 C.2n+1+n 2-2解析S n =2(1_2") | 卅(1 + 2—1)B.2n+1+n 2-1 D.2n +n 2-2=2n+1-2+n 2.5擞列J_ _! _____ 5麺1项________ ! _______ A 2・5'5・8'8・11,© —1)・(3〃 + 2)‘和为()BA. B.n C・——.n 6n + 43n + 2解析餾数列通项公式71 + 16〃+ 4 n + 2得前n项和1 =1 _______________ 1(3〃一1)•⑶2 + 2) _ 3 3〃一1 _3n + 2c1Z1 1 1 1 1 1 1 1S =—( ------- 1 ------- 1 ---------nA H -------------------------- "3 2 5 5 8 8 11 3〃一1 3n + 2= 1(1__1 “ 〃 .32 3n + 2 6n + 4题型分类深度剖析题型一由递推公式求通项公式【例1】分别求满足下列条件的数列的通项公式.(1)设{a」是首项为1的正项数列,且(n+1) +a n+1a n=O(n=1,2,3,...);⑵已知数列代}满足酩尸,a1=2.依据已知数列的递推关系适当地进行变形"+1 n的差百%或通项的商_2—匕La n + 2的规律融H-12 2%卄1 _ na n可寻找数列的通项解(1)方法一•・•数列{aj是首项为1的正项数列,#0/.令=t,/.(n+1)t2+t-n=0, a n為+i・•・[伽(t+1)=0,・・t=。

高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

高考数学一轮复习 第六章 数列 第四节 数列求和教案 理(含解析)苏教版-苏教版高三全册数学教案

第四节 数列求和1.公式法(1)等差数列{a n }的前n 项和S n =n a 1+a n2=na 1+n n -1d2.推导方法:倒序相加法.(2)等比数列{a n }的前n 项和S n =⎩⎪⎨⎪⎧na 1,q =1,a 11-q n1-q,q ≠1.推导方法:乘公比,错位相减法. (3)一些常见的数列的前n 项和: ①1+2+3+…+n =n n +12;②2+4+6+…+2n =n (n +1); ③1+3+5+…+2n -1=n 2. 2.几种数列求和的常用方法(1)分组求和法:一个数列的通项公式是由若干个等差或等比或可求和的数列组成的,则求和时可用分组求和法,分别求和而后相加减.(2)裂项相消法:把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得前n 项和.常用的裂项公式有:①1nn +1=1n -1n +1; ②12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;③1n +n +1=n +1-n .(3)错位相减法:如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么求这个数列的前n 项和即可用错位相减法求解.(4)倒序相加法:如果一个数列{a n }与首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法求解.[小题体验]1.等比数列1,2,4,8,…中从第5项到第10项的和为________. 解析:由a 1=1,a 2=2,得q =2,∴S 10=1×1-2101-2=1 023,S 4=1×1-241-2=15,∴S 10-S 4=1 008. 答案:1 0082.数列112,314,518,7116,…,(2n -1)+12n ,…的前n 项和S n 的值等于________.答案:n 2+1-12n3.已知数列{}a n 的通项公式a n =1n +n +1,则该数列的前________项之和等于9.解析:由题意知,a n =1n +n +1=n +1-n ,所以S n =(2-1)+(3-2)+…+(n +1-n )=n +1-1=9,解得n =99.答案:991.直接应用公式求和时,要注意公式的应用范围,如当等比数列公比为参数(字母)时,应对其公比是否为1进行讨论.2.在应用错位相减法时,注意观察未合并项的正负号;结论中形如a n ,a n +1的式子应进行合并.3.在应用裂项相消法时,要注意消项的规律具有对称性,即前剩多少项则后剩多少项. [小题纠偏]1.设f (n )=2+24+27+210+…+23n +10(n ∈N *),则f (3)=________.答案:27(87-1)2.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =________. 答案:(n -1)2n +1+23.求和:11×2+12×3+…+1n -1n=________.解析:原式=⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1-1n =1-1n .答案:1-1n考点一 公式法求和 基础送分型考点——自主练透[题组练透]1.(2019·南师大附中月考)《张丘建算经》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有女不善织,日减功迟,初日织五尺,末日织一尺,今共织九十尺,问织几日?”已知“日减功迟”的具体含义是每天比前一天少织同样多的布,则此问题的答案是________日.解析:易知每日织布数量构成一个等差数列,设此数列为{}a n ,则a 1=5,a n =1,S n =90,所以n 5+12=90,解得n =30.答案:302.(2018·无锡期末)设公比不为1的等比数列{a n }满足a 1a 2a 3=-18,且a 2,a 4,a 3成等差数列,则数列{a n }的前4项和为________.解析:设数列{a n }的公比为q (q ≠1).由等比数列的性质可得a 1a 2a 3=a 32=-18,所以a 2=-12.因为a 2,a 4,a 3成等差数列,所以2a 4=a 2+a 3,即2a 2q 2=a 2+a 2q ,化简得2q 2-q -1=0,即(q -1)(2q +1)=0,解得q =-12或q =1(舍去).又因为a 1=a 2q=1,所以S 4=a 11-q 41-q=1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-1241-⎝ ⎛⎭⎪⎫-12=58.答案:583.已知等差数列{a n }满足a 3=2,前3项和S 3=92.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得⎩⎪⎨⎪⎧ a 1+2d =2,3a 1+3×22d =92,化简得⎩⎪⎨⎪⎧a 1+2d =2,a 1+d =32,解得⎩⎪⎨⎪⎧a 1=1,d =12,故{a n }的通项公式a n =1+n -12,即a n =n +12.(2)由(1)得b 1=1,b 4=a 15=15+12=8. 设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2,故{b n }的前n 项和T n =b 11-q n 1-q =1×1-2n1-2=2n-1.[谨记通法]几类可以使用公式法求和的数列(1)等差数列、等比数列以及由等差数列、等比数列通过加、减构成的数列,它们可以使用等差数列、等比数列的求和公式求解.(2)奇数项和偶数项分别构成等差数列或等比数列的,可以分项数为奇数和偶数时,分别使用等差数列或等比数列的求和公式.考点二 分组转化法求和重点保分型考点——师生共研[典例引领](2018·天一中学检测)已知数列{a n }的首项a 1=3,通项a n =2n p +nq (n ∈N *,p ,q 为常数),且a 1,a 4,a 5成等差数列.求:(1)p ,q 的值;(2)数列{a n }前n 项和S n .解:(1)由a 1=3,得2p +q =3,①又由a 4=24p +4q ,a 5=25p +5q ,且a 1+a 5=2a 4, 得3+25p +5q =25p +8q ,② 由①②解得p =1,q =1. (2)由(1),知a n =2n+n .所以S n =(2+22+ (2))+(1+2+…+n )=21-2n1-2+n 1+n2=2n +1-2+n 2+n2.[由题悟法]分组转化法求和的常见类型[提醒] 某些数列的求和是将数列转化为若干个可求和的新数列的和或差,从而求得原数列的和,注意在含有字母的数列中对字母的讨论.[即时应用]1.求数列1+1,1a +4,1a 2+7,1a 3+10,…,1an -1+(3n -2)的前n 项和.解:设数列的通项为a n ,前n 项和为S n ,则a n =1a n -1+(3n -2),∴S n =⎝⎛⎭⎪⎫1+1a +1a2+…+1a n -1+[1+4+7+…+(3n -2)].当a =1时,S n =n +n 1+3n -22=3n 2+n 2;当a ≠1时,S n =1-1a n1-1a+n1+3n -22=a n-1a n -a n -1+n3n -12. 2.(2018·南京四校联考)在等差数列{a n }中,a 2+a 7=-23,a 3+a 8=-29. (1)求数列{a n }的通项公式;(2)设数列{a n +b n }是首项为1,公比为q 的等比数列,求{b n }的前n 项和S n . 解:(1)设等差数列{a n }的公差是d . 因为a 3+a 8-(a 2+a 7)=2d =-6, 所以d =-3,所以a 2+a 7=2a 1+7d =-23,解得a 1=-1, 所以数列{a n }的通项公式为a n =-3n +2.(2)因为数列{a n +b n }是首项为1,公比为q 的等比数列, 所以a n +b n =qn -1,即-3n +2+b n =qn -1,所以b n =3n -2+q n -1.所以S n =[1+4+7+…+(3n -2)]+(1+q +q 2+…+q n -1)=n 3n -12+(1+q +q2+…+qn -1),故当q =1时,S n =n 3n -12+n =3n 2+n 2;当q ≠1时,S n =n 3n -12+1-q n1-q. 考点三 错位相减法求和重点保分型考点——师生共研[典例引领](2018·徐州调研)已知数列{a n }的前n 项和为S n ,满足S n =2a n -1,n ∈N *.数列{b n }满足nb n +1-(n +1)b n =n (n +1),n ∈N *,且b 1=1.(1)求数列{a n }和{b n }的通项公式;(2)若c n =a n ·b n ,数列{c n }的前n 项和为T n ,对任意的n ∈N *,都有T n ≤nS n -a ,求实数a 的取值范围.解:(1)当n =1时,S 1=2a 1-1=a 1,所以a 1=1. 当n ≥2时,S n =2a n -1,S n -1=2a n -1-1, 两式相减得a n =2a n -1,所以数列{a n }是首项a 1=1,公比q =2的等比数列, 故数列{a n }的通项公式为a n =2n -1.由nb n +1-(n +1)b n =n (n +1)两边同除以n (n +1), 得b n +1n +1-b nn=1, 所以数列⎩⎨⎧⎭⎬⎫b n n 是首项b 1=1,公差d =1的等差数列,所以b n n=n , 故数列{b n }的通项公式为b n =n 2. (2)由(1)得c n =a n ·b n =n ·2n -1,于是T n =1×20+2×2+3×22+…+n ×2n -1, 所以2T n =1×2+2×22+3×23+…+n ×2n,两式相减得-T n =1+2+22+…+2n -1-n ×2n=1-2n1-2-n ×2n,所以T n =(n -1)·2n+1, 由(1)得S n =2a n -1=2n-1, 因为对∀n ∈N *,都有T n ≤nS n -a , 即(n -1)·2n+1≤n (2n-1)-a 恒成立, 所以a ≤2n-n -1恒成立, 记c n =2n -n -1, 所以a ≤(c n )min , 因为c n +1-c n =[2n +1-(n +1)-1]-(2n -n -1)=2n-1>0,从而数列{c n }为递增数列,所以当n =1时,c n 取最小值c 1=0,于是a ≤0, 所以实数a 的取值范围为(-∞,0].[由题悟法]用错位相减法求和的3个注意事项(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式;(3)在应用错位相减法求和时,若等比数列的公比为参数,应分公比等于1和不等于1两种情况求解.[即时应用](2019·海门中学月考)已知数列{a n }的前n 项和为S n ,S n =n 2+n . (1)求{a n }的通项公式a n ;(2)若a k +1,a 2k ,a 2k +3(k ∈N *)恰好依次为等比数列{b n }的第一、第二、第三项,求数列⎩⎨⎧⎭⎬⎫n b n 的前n 项和T n .解:(1)当n =1时,a 1=S 1=12+1=2.当n ≥2时,a n =S n -S n -1=(n 2+n )-[(n -1)2+(n -1)]=2n . 当n =1时,符合上式, ∴a n =2n (n ∈N *).(2)由题意知a k +1,a 2k ,a 2k +3成等比数列,∴a 22k =a k +1·a 2k +3, 即(2·2k )2=2(k +1)·2(2k +3),解得k =3. ∴b 1=a 4=8,b 2=a 6=12,公比q =128=32,∴b n =8·⎝ ⎛⎭⎪⎫32n -1,∴n b n =18n ·⎝ ⎛⎭⎪⎫23n -1, ∴T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+2×⎝ ⎛⎭⎪⎫231+…+n ×⎝ ⎛⎭⎪⎫23n -1. ① ∴23T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫231+2×⎝ ⎛⎭⎪⎫232+…+n -1×⎝ ⎛⎭⎪⎫23n -1+n ×⎝ ⎛⎭⎪⎫23n . ② ①-②,得13T n =18×⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫230+⎝ ⎛⎭⎪⎫231+…+⎝ ⎛⎭⎪⎫23n -1-18×n ×⎝ ⎛⎭⎪⎫23n =38-3+n 8⎝ ⎛⎭⎪⎫23n ,则T n =98-9+3n 8⎝ ⎛⎭⎪⎫23n.考点四 裂项相消法求和 题点多变型考点——多角探明[锁定考向]裂项相消法求和是历年高考的重点,命题角度凸显灵活多变,在解题中要善于利用裂项相消的基本思想,变换数列a n 的通项公式,达到求解目的.常见的命题角度有: (1)形如a n =1nn +k 型; (2)形如a n =1n +k +n型;(3)形如a n =n +1n 2n +22型.[题点全练]角度一:形如a n =1nn +k型 1.(2019·启东一中检测)在数列{}a n 中,a 1=1,当n ≥2时,其前n 项和S n 满足S 2n =a n ⎝⎛⎭⎪⎫S n -12.(1)求S n 的表达式; (2)设b n =S n2n +1,求{}b n 的前n 项和T n . 解:(1)∵S 2n =a n ⎝ ⎛⎭⎪⎫S n -12,a n =S n -S n -1(n ≥2),∴S 2n =(S n -S n -1)⎝ ⎛⎭⎪⎫S n -12,即2S n -1S n =S n -1-S n . 由题意得S n -1·S n ≠0, ∴1S n -1S n -1=2,∴数列⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=1,公差为2的等差数列,∴1S n=1+2(n -1)=2n -1,∴S n =12n -1. (2)∵b n =S n 2n +1=12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,∴T n =b 1+b 2+…+b n=12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1=12⎝⎛⎭⎪⎫1-12n +1=n 2n +1. 角度二:形如a n =1n +k +n型2.已知函数f (x )=x α的图象过点(4,2),令a n =1f n +1+f n,n ∈N *.记数列{a n }的前n 项和为S n ,则S 2 018=________.解析:由f (4)=2可得4α=2,解得α=12,则f (x )=x 12.所以a n =1fn +1+f n =1n +1+n=n +1-n ,S 2 018=a 1+a 2+a 3+…+a 2 018=(2-1)+(3-2)+(4-3)+…+( 2 018-2 017)+( 2 019- 2 018)= 2 019-1. 答案: 2 019-1 角度三:形如a n =n +1n 2n +22型3.正项数列{a n }的前n 项和S n 满足:S 2n -(n 2+n -1)S n -(n 2+n )=0. (1)求数列{a n }的通项公式a n ; (2)令b n =n +1n +22a 2n ,数列{b n }的前n 项和为T n .证明:对于任意的n ∈N *,都有T n <564. 解:(1)由S 2n -(n 2+n -1)S n -(n 2+n )=0, 得[S n -(n 2+n )](S n +1)=0.由于{a n }是正项数列,所以S n >0,S n =n 2+n . 于是a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+n -(n -1)2-(n -1)=2n .综上,数列{a n }的通项公式为a n =2n . (2)证明:由于a n =2n , 故b n =n +1n +22a 2n =n +14n 2n +22=116⎣⎢⎡⎦⎥⎤1n2-1n +22.T n =116⎣⎢⎡1-132+122-142+132-152+…+1n -12-1n +12+⎦⎥⎤1n2-1n +22=116⎣⎢⎡⎦⎥⎤1+122-1n +12-1n +22<116⎝ ⎛⎭⎪⎫1+122=564. [通法在握]利用裂项相消法求和的注意事项(1)抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项; (2)将通项裂项后,有时需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.如:若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2. [演练冲关](2018·镇江调研)已知等差数列{a n }中,2a 2+a 3+a 5=20,且前10项和S 10=100. (1)求数列{a n }的通项公式; (2)若b n =1a n a n +1,求数列{b n }的前n 项和.解:(1)由已知得⎩⎪⎨⎪⎧2a 2+a 3+a 5=4a 1+8d =20,10a 1+10×92d =10a 1+45d =100,解得⎩⎪⎨⎪⎧a 1=1,d =2.所以{a n }的通项公式为a n =1+2(n -1)=2n -1. (2)b n =12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1,所以数列{b n }的前n 项和T n =12⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-13+⎝ ⎛⎭⎪⎫13-15+…+⎝ ⎛⎭⎪⎫12n -1-12n +1= 12×⎝ ⎛⎭⎪⎫1-12n +1=n 2n +1. 一抓基础,多练小题做到眼疾手快1.(2019·镇江调研)已知{}a n 是等差数列,S n 为其前n 项和,若a 3+a 7=8,则S 9=_______.解析:在等差数列{}a n 中,由a 3+a 7=8,得a 1+a 9=8, 所以S 9=a 1+a 9×92=8×92=36.答案:36 2.数列{1+2n -1}的前n 项和为________.解析:由题意得a n =1+2n -1,所以S n =n +1-2n1-2=n +2n-1.答案:n +2n-13.数列{a n }的通项公式是a n =(-1)n(2n -1),则该数列的前100项之和为________. 解析:根据题意有S 100=-1+3-5+7-9+11-…-197+199=2×50=100. 答案:1004.(2018·泰州期末)已知数列{}a n 的通项公式为a n =n ·2n -1,前n 项和为S n ,则S n =________.解析:∵a n =n ·2n -1,∴S n =1×1+2×2+3×22+…+n ×2n -1, 2S n =1×2+2×22+3×23+…+n ×2n,两式相减可得-S n =1+2+22+…+2n -1-n ·2n=1-2n1-2-n ·2n,化简可得S n =(n -1)2n+1. 答案:(n -1)2n+15.已知等比数列{}a n 的公比q >1,且a 5-a 1=30,a 4-a 2=12,则数列⎩⎨⎧⎭⎬⎫a na n -1a n +1-1的前n 项和为________. 解析:因为a 5-a 1=30,a 4-a 2=12, 所以a 1(q 4-1)=30,a 1(q 3-q )=12, 两式相除,化简得2q 2-5q +2=0, 解得q =12或2,因为q >1, 所以q =2,a 1=2. 所以a n =2·2n -1=2n.所以a na n -1a n +1-1=2n2n-12n +1-1=12n -1-12n +1-1, 所以T n =1-13+13-17+…+12n -1-12n +1-1=1-12n +1-1.答案:1-12n +1-16.若数列{a n }满足a n -(-1)na n -1=n (n ≥2),S n 是{a n }的前n 项和,则S 40=________. 解析:当n =2k 时,即a 2k -a 2k -1=2k ,① 当n =2k -1时,即a 2k -1+a 2k -2=2k -1,② 当n =2k +1时,即a 2k +1+a 2k =2k +1,③ ①+②得a 2k +a 2k -2=4k -1, ③-①得a 2k +1+a 2k -1=1,S 40=(a 1+a 3+a 5+...+a 39)+(a 2+a 4+a 6+a 8+...+a 40)=1×10+(7+15+23+ (79)=10+107+792=440. 答案:440二保高考,全练题型做到高考达标1.在数列{a n }中,若a 1=2,且对任意正整数m ,k ,总有a m +k =a m +a k ,则{a n }的前n 项和S n =________.解析:依题意得a n +1=a n +a 1,即有a n +1-a n =a 1=2,所以数列{a n }是以2为首项、2为公差的等差数列,a n =2+2(n -1)=2n ,S n =n 2+2n2=n 2+n .答案:n 2+n2.已知数列{a n }中,a n =-4n +5,等比数列{b n }的公比q 满足q =a n -a n -1(n ≥2)且b 1=a 2,则|b 1|+|b 2|+|b 3|+…+|b n |=________.解析:由已知得b 1=a 2=-3,q =-4, 所以b n =(-3)×(-4)n -1,所以|b n |=3×4n -1,即{|b n |}是以3为首项,4为公比的等比数列. 所以|b 1|+|b 2|+…+|b n |=31-4n1-4=4n-1.答案:4n-13.已知数列5,6,1,-5,…,该数列的特点是从第二项起,每一项都等于它的前后两项之和,则这个数列的前16项之和S 16=________.解析:根据题意这个数列的前7项分别为5,6,1,-5,-6,-1,5,6,发现从第7项起,数列重复出现,所以此数列为周期数列,且周期为6,前6项和为5+6+1+(-5)+(-6)+(-1)=0.又因为16=2×6+4,所以这个数列的前16项之和S 16=2×0+7=7. 答案:74.对于数列{a n },定义数列{a n +1-a n }为数列{a n }的“差数列”,若a 1=2,数列{a n }的“差数列”的通项为2n,则数列{a n }的前n 项和S n =________.解析:因为a n +1-a n =2n,所以a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1=2n -1+2n -2+…+22+2+2=2-2n 1-2+2=2n -2+2=2n ,所以S n =2-2n +11-2=2n +1-2.答案:2n +1-25.(2019·宿迁调研)已知数列{}a n 中,a 1=1,a 2=3,若a n +2+2a n +1+a n =0对任意n ∈N *都成立,则数列{}a n 的前n 项和S n =________.解析:∵a 1=1,a 2=3,a n +2+2a n +1+a n =0, ∴a n +2+a n +1=-(a n +1+a n ),a 2+a 1=4.则数列{}a n +1+a n 是首项为4,公比为-1的等比数列, ∴a n +1+a n =4×(-1)n -1.当n =2k -1时,a 2k +a 2k -1=4×(-1)2k -2=4.∴S n =(a 1+a 2)+(a 3+a 4)+…+(a 2k -1+a 2k )=4k =2n . 当n =2k 时,a 2k +1+a 2k =-4.S n =a 1+(a 2+a 3)+…+(a 2k -2+a 2k -1)=1-4×(k -1)=5-4k =5-4×n +12=3-2n .∴S n =⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数.答案:⎩⎪⎨⎪⎧3-2n ,n 为奇数,2n ,n 为偶数6.在等差数列{a n }中,首项a 1=3,公差d =2,若某学生对其中连续10项进行求和,在漏掉一项的前提下,求得余下9项的和为185,则此连续10项的和为________.解析:由已知条件可得数列{a n }的通项公式a n =2n +1,设连续10项为a i +1,a i +2,a i +3,…,a i +10,i ∈N ,设漏掉的一项为a i +k,1≤k ≤10,由a i +1+a i +10×102-a i +k =185,得(2i +3+2i +21)×5-2i -2k -1=185,即18i -2k =66,即9i -k =33,所以34≤9i =k +33≤43,3<349≤i ≤439<5,所以i =4,此时,由36=33+k 得k =3,所以a i +k =a 7=15,故此连续10项的和为200.答案:2007.(2019·邵阳模拟)《九章算术》是我国古代的数学名著,书中《均属章》有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知A ,B ,C ,D ,E 五人分5钱,A ,B 两人所得与C ,D ,E 三人所得相同,且A ,B ,C ,D ,E 每人所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).在这个问题中,E 分得________钱.解析:由题意,设A 所得为a -4d ,B 所得为a -3d ,C 所得为a -2d ,D 所得为a -d ,E 所得为a ,则⎩⎪⎨⎪⎧5a -10d =5,2a -7d =3a -3d ,解得a =23,故E 分得23钱.答案:238.已知数列{a n }中,a 1=2,a 2n =a n +1,a 2n +1=n -a n ,则{a n }的前100项和为________. 解析:由a 1=2,a 2n =a n +1,a 2n +1=n -a n ,得a 2n +a 2n +1=n +1,所以a 1+(a 2+a 3)+(a 4+a 5)+…+(a 98+a 99)=2+2+3+…+50=1 276,因为a 100=1+a 50=1+(1+a 25)=2+(12-a 12)=14-(1+a 6)=13-(1+a 3)=12-(1-a 1)=13,所以a 1+a 2+…+a 100=1 276+13=1 289.答案:1 2899.(2018·苏北四市期末)已知正项数列{a n }的前n 项和为S n ,且a 1=a ,(a n +1)(a n +1+1)=6(S n +n ),n ∈N *.(1)求数列{a n }的通项公式;(2)若对于∀n ∈N *,都有S n ≤n (3n +1)成立,求实数a 的取值范围. 解:(1)当n =1时,(a 1+1)(a 2+1)=6(S 1+1),故a 2=5. 当n ≥2时,(a n -1+1)(a n +1)=6(S n -1+n -1),所以(a n +1)(a n +1+1)-(a n -1+1)(a n +1)=6(S n +n )-6(S n -1+n -1), 即(a n +1)(a n +1-a n -1)=6(a n +1).又a n >0,所以a n +1-a n -1=6,所以a 2k -1=a +6(k -1)=6k +a -6,a 2k =5+6(k -1)=6k -1,故a n =⎩⎪⎨⎪⎧3n +a -3,n 为奇数,3n -1,n 为偶数.(2)当n 为奇数时,S n =12(3n +a -2)(n +1)-n ,由S n ≤n (3n +1),得a ≤3n 2+3n +2n +1恒成立,令f (n )=3n 2+3n +2n +1,则f (n +1)-f (n )=3n 2+9n +4n +2n +1>0,所以a ≤f (1)=4.当n 为偶数时,S n =12n (3n +a +1)-n ,由S n ≤n (3n +1)得,a ≤3(n +1)恒成立, 所以a ≤9.又a 1=a >0,所以实数a 的取值范围是(0,4].10.(2019·宿迁中学调研)已知各项均为正数的数列{a n }的首项a 1=1,S n 是数列{a n }的前n 项和,且满足a n S n +1-a n +1S n +a n -a n +1=λa n a n +1(λ≠0,n ∈N *).(1)若a 1,a 2,a 3成等比数列,求实数λ的值; (2)若λ=12,求S n .解:(1)令n =1,得a 2=21+λ. 令n =2,得a 2S 3-a 3S 2+a 2-a 3=λa 2a 3, 所以a 3=2λ+4λ+12λ+1.由a 22=a 1a 3,得⎝⎛⎭⎪⎫21+λ2=2λ+4λ+12λ+1, 因为λ≠0,所以λ=1.(2)当λ=12时,a n S n +1-a n +1S n +a n -a n +1=12a n a n +1,所以S n +1a n +1-S n a n +1a n +1-1a n =12,即S n +1+1a n +1-S n +1a n =12, 所以数列⎩⎨⎧⎭⎬⎫S n +1a n 是以2为首项,12为公差的等差数列,所以S n +1a n =2+(n -1)·12, 即S n +1=⎝ ⎛⎭⎪⎫n 2+32a n ,①当n ≥2时,S n -1+1=⎝ ⎛⎭⎪⎫n2+1a n -1,② ①-②得,a n =n +32a n -n +22a n -1,即(n +1)a n =(n +2)a n -1,所以a n n +2=a n -1n +1(n ≥2),所以⎩⎨⎧⎭⎬⎫a n n +2是常数列,且为13,所以a n =13(n +2).代入①得S n =⎝ ⎛⎭⎪⎫n 2+32a n -1=n 2+5n 6. 三上台阶,自主选做志在冲刺名校1.(2018·启东检测)《九章算术》中的“两鼠穿墙题”是我国数学的古典名题:“今有垣厚若干尺,两鼠对穿,大鼠日一尺,小鼠也日一尺,大鼠日自倍,小鼠日自半,问何日相逢,各穿几何?”题意是“有两只老鼠从墙的两边打洞穿墙,大老鼠第一天进一尺,以后每天加倍;小老鼠第一天也进一尺,以后每天减半.”如果墙足够厚,S n 为前n 天两只老鼠打洞长度之和,则S n =________尺.解析:依题意大老鼠每天打洞的距离构成以1为首项,2为公比的等比数列,所以前n 天大老鼠打洞的距离共为1×1-2n1-2=2n-1.同理可得前n 天小老鼠打洞的距离共为1×⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n 1-12=2-12n -1,所以S n =2n -1+2-12n -1=2n-12n -1+1. 答案:2n-12n -1+12.(2018·苏州高三暑假测试)等差数列{a n }的前n 项和为S n ,且a n -S n =n 2-16n +15(n ∈N *),若对任意n ∈N *,总有S n ≤S k ,则k 的值为________.解析:设等差数列{a n }的公差为d ,则a n -S n =a 1+(n -1)d -⎣⎢⎡⎦⎥⎤na 1+n n -12d =-d 2n 2+⎝ ⎛⎭⎪⎫32d -a 1n +a 1-d =n 2-16n +15,所以⎩⎪⎨⎪⎧-d2=1,32d -a 1=-16,a 1-d =15,解得⎩⎪⎨⎪⎧a 1=13,d =-2,所以S n =13n +n n -12×(-2)=-n 2+14n =-(n -7)2+49,所以(S n )max =S 7,所以S n ≤S 7对任意n ∈N *恒成立,所以k 的值为7.答案:73.(2019·南京一模)平面内的“向量列”{a n },如果对于任意的正整数n ,均有a n +1-a n =d ,则称此“向量列”为“等差向量列”,d 称为“公差向量”;平面内的“向量列”{b n },如果对于任意的正整数n ,均有b n +1=q ·b n (q ≠0),则称此“向量列”为“等比向量列”,常数q 称为“公比”.(1)如果“向量列”{a n }是“等差向量列”,用a 1和“公差向量”d 表示a 1+a 2+…+a n ; (2)已知{a n }是“等差向量列”,“公差向量”d =(3,0),a 1=(1,1),a n =(x n ,y n ),{b n }是“等比向量列”,“公比”q =2,b 1=(1,3),b n =(m n ,k n ),求a 1·b 1+a 2·b 2+…+a n ·b n .解:(1)∵“向量列”{a n }是“等差向量列”, ∴a 1+a 2…+a n =n a 1+(1+2+…+n -1)d =n a 1+n n -12d.(2)∵a 1=(1,1),d =(3,0),∴a n =(3n -2,1). ∵b 1=(1,3),q =2,∴b n =(2n -1,3·2n -1).∴a n ·b n =(3n -2,1)·(2n -1,3·2n -1)=(3n -2)·2n -1+3·2n -1=(3n +1)·2n -1,设S n =a 1·b 1+a 2·b 2+…+a n ·b n , 则S n ==4·20+7·21+…+(3n +1)·2n -1,2S n =4·2+7·22+…+(3n +1)·2n, 两式相减可得,-S n =4+3(2+22+…+2n -1)-(3n +1)·2n=4+3·21-2n -11-2-(3n +1)·2n =(2-3n )·2n-2,∴a 1·b 1+a 2·b 2+…+a n ·b n =(3n -2)·2n+2.。

高考数学一轮复习 第六章数列6.4数列的通项与求和教学案 理 新人教A版

高考数学一轮复习 第六章数列6.4数列的通项与求和教学案 理  新人教A版

6.4 数列的通项与求和考纲要求1.熟练掌握等差、等比数列的前n 项和公式. 2.掌握非等差、等比数列求和的几种常见方法.数列求和的常用方法 1.公式法(1)直接用等差、等比数列的求和公式. (2)掌握一些常见的数列的前n 项和. ①1+2+3+…+n =__________;②1+3+5+…+(2n -1)=__________; ③2+4+6+…+2n =__________; ④12+22+32+…+n 2=__________; ⑤13+23+33+…+n 3=__________=__________. 2.倒序相加法如果一个数列{a n },与首末两端等“距离”的两项的和相等或等于同一常数,那么求这个数列的前n 项和即可用倒序相加法,如__________数列的前n 项和公式即是用此法推导的.3.错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,那么这个数列的前n 项和即可用此法来求,如__________数列的前n 项和公式就是用此法推导的.4.裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和. 5.分组转化法把数列的每一项分成多个项或把数列的项重新组合,使其转化成等差数列或等比数列,然后由等差、等比数列求和公式求解.6.并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和.形如a n =(-1)nf (n )类型,可采用两项合并求解.例如S n =1002-992+982-972+…+22-12=(100+99)+(98+97)+…+(2+1)=5 050.1.11×4+14×7+17×10+…+13n -23n +1等于( ). A .n 3n +1 B .3n 3n +1C .1-1n +1D .3-13n +12.已知数列{a n }的通项公式是a n =2n-12n ,其前n 项和S n =32164,则项数n 等于( ).A .13B .10C .9D .63.数列{(-1)n(2n -1)}的前2 012项和S 2 012=( ). A .-2 012 B .2 012 C .-2 011 D .2 0114.已知数列{a n }的前n 项和为S n 且a n =n ·2n,则S n =__________.一、分组转化法求和【例1】已知函数f (x )=2x-3x -1,点(n ,a n )在f (x )的图象上,{a n }的前n 项和为S n . (1)求使a n <0的n 的最大值;(2)求S n . 方法提炼1.数列求和应从通项入手,若无通项,则先求通项,然后通过对通项变形,转化为等差数列或等比数列或可求数列的前n 项和的数列求和.2.常见类型及方法(1)a n =kn +b ,利用等差数列前n 项和公式直接求解;(2)a n =a ·q n -1,利用等比数列前n 项和公式直接求解;(3)a n =b n ±c n ,数列{b n },{c n }是等比数列或等差数列,采用分组求和法求{a n }的前n 项和.请做演练巩固提升4二、裂项相消法求和【例2-1】等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.【例2-2】已知各项均不相等的等差数列{a n }的前四项和S 4=14,且a 1,a 3,a 7成等比数列.(1)求数列{a n }的通项公式;(2)设T n 为数列⎩⎨⎧⎭⎬⎫1a n a n +1的前n 项和,若T n ≤λa n +1对一切n ∈N *恒成立,求实数λ的最小值.方法提炼1.利用裂项相消法求和时,应注意抵消后并不一定只剩下第一项和最后一项,也有可能前面剩两项,后面也剩两项.将通项裂项后,有时候需要调整前面的系数,使裂开的两项之差和系数之积与原通项相等.2.一般情况如下,若{a n }是等差数列,则1a n a n +1=1d ⎝ ⎛⎭⎪⎫1a n -1a n +1,1a n a n +2=12d ⎝ ⎛⎭⎪⎫1a n -1a n +2.此外根式在分母上时可考虑利用分母有理化相消求和.3.常见的拆项公式有:(1)1n n +1=1n -1n +1; (2)1n n +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k ; (3)12n -12n +1=12⎝ ⎛⎭⎪⎫12n -1-12n +1;(4)1n n +1n +2=12⎣⎢⎡⎦⎥⎤1n n +1-1n +1n +2; (5)1n +n +k =1k(n +k -n ).请做演练巩固提升3三、错位相减法求和【例3-1】(2012浙江高考)已知数列{a n }的前n 项和为S n ,且S n =2n 2+n ,n ∈N *,数列{b n }满足a n =4log 2b n +3,n ∈N *.(1)求a n ,b n ;(2)求数列{a n ·b n }的前n 项和T n .【例3-2】已知在数列{a n }中,a 1=3,点(a n ,a n +1)在直线y =x +2上. (1)求数列{a n }的通项公式;(2)若b n =a n ·3n,求数列{b n }的前n 项和T n . 方法提炼1.用错位相减法求和时,应注意:(1)要善于识别题目类型,特别是等比数列公比为负数的情形;(2)在写出“S n ”与“qS n ”的表达式时应特别注意将两式“错项对齐”以便下一步准确写出“S n -qS n ”的表达式.2.利用错位相减法求和时,转化为等比数列求和.若公比是个参数(字母),则应先对参数加以讨论,一般情况下分等于1和不等于1两种情况分别求和.提醒:利用裂项相消法求和时要注意:(1)在把通项裂开后,是否恰好等于相应的两项之差;(2)在正负项抵消后,是否只剩下了第一项和最后一项,或有时前面剩下两项,后面也剩下两项.请做演练巩固提升5分类讨论思想在数列求和中的应用【典例】(13分)(2012湖北高考)已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.规范解答:(1)设等差数列{a n }的公差为d ,则a 2=a 1+d ,a 3=a 1+2d ,由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1a 1+d a 1+2d =8.解得⎩⎪⎨⎪⎧a 1=2,d =-3,或⎩⎪⎨⎪⎧a 1=-4,d =3.(4分)所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7. 故a n =-3n +5,或a n =3n -7.(6分)(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不满足条件; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.(8分)记数列{|a n |}的前n 项和为S n . 当n =1时,S 1=|a 1|=4;(9分) 当n =2时,S 2=|a 1|+|a 2|=5; 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7)=5+n -2[2+3n -7]2=32n 2-112n +10,当n =2时,满足此式.(12分)综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.(13分)答题指导:分类讨论思想在数列求和时经常遇到,尤其是含绝对值的求和问题,与等比数列有关的问题,还有分奇偶项进行讨论的问题,此类问题讨论时要掌握不遗漏、不重复的原则.1.在各项均为正数的等比数列{a n }中,a 3a 5=4,则数列{log 2a n }的前7项和等于( ).A .7B .8C .27D .282.已知等比数列{a n }的首项为1,若4a 1,2a 2,a 3成等差数列,则数列⎩⎨⎧⎭⎬⎫1a n 的前5项和为( ).A .3116B .2C .3316D .16333.数列12×4,14×6,16×8,…,12n 2n +2,…的前n 项和为( ).A .n 2n +2B .n 4n +4C .2n n +1D .2n 2n +1 4.求下面数列的前n 项和.1+1,1a+4,1a 2+7,…,1an -1+3n -2,….5.已知数列{a n }是首项a 1=1的等比数列,且a n >0,{b n }是首项为1的等差数列,又a 5+b 3=21,a 3+b 5=13.(1)求数列{a n }和{b n }的通项公式;(2)求数列⎩⎨⎧⎭⎬⎫b n 2a n 的前n 项和S n .参考答案基础梳理自测 知识梳理1.(2)①n (n +1)2 ②n 2③n (n +1) ④n (n +1)(2n +1)6 ⑤⎣⎢⎡⎦⎥⎤n (n +1)22n 2(n +1)24 2.等差 3.等比 基础自测1.A 解析:S n =13⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-14+⎝ ⎛⎭⎪⎫14-17+…+⎦⎥⎤⎝ ⎛⎭⎪⎫13n -2-13n +1=13·⎝ ⎛⎭⎪⎫1-13n +1=n 3n +1. 故选A.2.D 解析:∵a n =2n-12n =1-12n ,∴S n =n -⎝ ⎛⎭⎪⎫12+122+ (12)=n -1+12n .而32164=5+164. ∴n -1+12n =5+164.∴n =6.3.B 解析:S 2 012=-1+3-5+7+…-(2×2 011-1)+(2×2 012-1)=1006222+++6447448L =2 012. 故选B.4.(n -1)·2n +1+2 解析:∵S n =2+2·22+3·23+…+n ·2n,①∴2S n =22+2·23+3·24+…+(n -1)·2n +n ·2n +1.②①-②,得-S n =2+22+23+…+2n -n ·2n +1=2(1-2n)1-2-n ·2n +1=2n +1-2-n ·2n +1,∴S n =(n -1)·2n +1+2. 考点探究突破【例1】解:(1)依题意a n =2n-3n -1,∴a n <0,即2n-3n -1<0.函数f (x )=2x-3x -1在[1,2]上为减函数,在[3,+∞)上为增函数.当n =3时,23-9-1=-2<0,当n =4时,24-12-1=3>0, ∴2n-3n -1<0中n 的最大值为3.(2)S n =a 1+a 2+...+a n =(2+22+ (2))-3(1+2+3+…+n )-n =2(1-2n)1-2-3·n (n +1)2-n =2n +1-n (3n +5)2-2.【例2-1】解:(1)设数列{a n }的公比为q .由a 32=9a 2a 6得a 32=9a 42,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n (n +1)2.故1b n=-2n (n +1)=-2⎝ ⎛⎭⎪⎫1n -1n +1,1b 1+1b 2+…+1b n=-2⎣⎢⎡ ⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎦⎥⎤⎝ ⎛⎭⎪⎫1n -1n +1=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.【例2-2】解:(1)设公差为d .由已知得⎩⎪⎨⎪⎧4a 1+6d =14,(a 1+2d )2=a 1(a 1+6d ), 联立解得d =1或d =0(舍去), ∴a 1=2,故a n =n +1.(2)1a n a n +1=1(n +1)(n +2)=1n +1-1n +2, ∴T n =12-13+13-14+…+1n +1-1n +2=12-1n +2=n 2(n +2).∵T n ≤λa n +1,∴n2(n +2)≤λ(n +2).∴λ≥n2(n +2)2.又n2(n +2)2=12⎝⎛⎭⎪⎫n +4n+4≤12(4+4)=116.∴λ的最小值为116.【例3-1】解:(1)由S n =2n 2+n ,得当n =1时,a 1=S 1=3; 当n ≥2时,a n =S n -S n -1=4n -1.所以a n =4n -1,n ∈N *.由4n -1=a n =4log 2b n +3,得b n =2n -1,n ∈N *.(2)由(1)知a n b n =(4n -1)·2n -1,n ∈N *.所以T n =3+7×2+11×22+…+(4n -1)·2n -1,2T n =3×2+7×22+…+(4n -5)·2n -1+(4n -1)·2n,所以2T n -T n =(4n -1)2n -[3+4(2+22+…+2n -1)]=(4n -5)2n+5.故T n =(4n -5)2n +5,n ∈N *.【例3-2】解:(1)∵点(a n ,a n +1)在直线y =x +2上,∴a n +1=a n +2, 即a n +1-a n =2.∴数列{a n }是以3为首项,2为公差的等差数列, ∴a n =3+2(n -1)=2n +1.(2)∵b n =a n ·3n ,∴b n =(2n +1)·3n.∴T n =3×3+5×32+7×33+…+(2n -1)·3n -1+(2n +1)·3n,①∴3T n =3×32+5×33+…+(2n -1)·3n +(2n +1)·3n +1.②①-②得-2T n =3×3+2(32+33+…+3n )-(2n +1)·3n +1=9+2×9(1-3n -1)1-3-(2n +1)·3n +1=-2n ·3n +1∴T n =n ·3n +1. 演练巩固提升1.A 解析:在各项均为正数的等比数列{a n }中,由a 3a 5=4,得a 42=4,a 4=2. 设b n =log 2a n ,则数列{b n }是等差数列,且b 4=log 2a 4=1.所以{b n }的前7项和S 7=7(b 1+b 7)2=7b 4=7.2.A 解析:设数列{a n }的公比为q ,则有4+q 2=2×2q ,解得q =2,所以a n =2n -1.1a n =12n -1,所以S 5=1-⎝ ⎛⎭⎪⎫1251-12=3116. 故选A.3.B 解析:∵12n (2n +2)=12⎝ ⎛⎭⎪⎫12n -12n +2, ∴S n =12⎝ ⎛ 12-14+14-16+…+⎭⎪⎫12n -12n +2=12⎝ ⎛⎭⎪⎫12-12n +2 =12·2n 2(2n +2)=n 4n +4. 4.解:前n 项和为S n =(1+1)+⎝ ⎛⎭⎪⎫1a+4+⎝ ⎛⎭⎪⎫1a2+7+…+⎝ ⎛⎭⎪⎫1an -1+3n -2=⎝ ⎛⎭⎪⎫1+1a +1a 2+…+1a n-1+[1+4+7+…+(3n -2)], 设T 1=1+1a +1a 2+…+1an -1,当a =1时,T 1=n ;当a ≠1时,T 1=a n -1a n -an -1,T 2=1+4+7+…+(3n -2)=(3n -1)n2. ∴当a =1时,S n =T 1+T 2=n +(3n -1)n 2=(3n +1)n2;当a ≠1时,S n =T 1+T 2=a n -1a n -a n -1+(3n -1)n2.5.解:(1)设数列{a n }的公比为q ,{b n }的公差为d , 则由已知条件得: ⎩⎪⎨⎪⎧q 4+1+2d =21,q 2+1+4d =13, 解之得⎩⎪⎨⎪⎧d =2,q =2或q =-2(舍去).∴a n =2n -1,b n =1+(n -1)×2=2n -1.(2)由(1)知b n 2a n =2n -12n .∴S n =12+322+523+…+2n -32n -1+2n -12n .①∴12S n =122+323+…+2n -32n +2n -12n +1.② ①-②得,12S n =12+222+223+…+22n -2n -12n +1=12+⎝ ⎛⎭⎪⎫12+122+…+12n -1-2n -12n +1=12+12⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫12n -11-12-2n -12n +1 =12+1-⎝ ⎛⎭⎪⎫12n -1-2n -12n +1. ∴S n =3-2n +32n .。

高三数学复习教案:数列的通项公式复习教案

高三数学复习教案:数列的通项公式复习教案

高三数学复习教案:数列的通项公式复习教案高三数学复习教案:数列的通项公式复习教案【】欢送来到查字典数学网高三数学教案栏目,教案逻辑思路清晰,符合认识规律,培养学生自主学习习惯和能力。

因此小编在此为您编辑了此文:高三数学复习教案:数列的通项公式复习教案希望能为您的提供到帮助。

本文题目:高三数学复习教案:数列的通项公式复习教案一、课前检测1.等差数列是递增数列,前n项和为,且成等比数列,。

求数列的通项公式。

解:设数列公差为∵ 成等比数列,,即由①②得:,2.数列的前项和满足。

求数列的通项公式。

解:由当时,有经验证也满足上式,所以二、知识梳理(一)数列的通项公式一个数列{an}的与之间的函数关系,如果可用一个公式an=f(n)来表示,我们就把这个公式叫做这个数列的通项公式.解读:(二)通项公式的求法(7种方法)1.定义法与观察法(合情推理:不完全归纳法):直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于数列类型的题目;有的数列可以根据前几项观察出通项公式。

解读:2.公式法:在数列{an}中,前n项和Sn与通项an的关系为:(数列的前n项的和为 ).解读:解法:由递推式计算出前几项,寻找周期。

类型1 递推公式为解法:把原递推公式转化为,利用累加法(逐差相加法)求解。

类型2 (1)递推公式为解法:把原递推公式转化为,利用累乘法(逐商相乘法)求解。

(2)由和确定的递推数列的通项可如下求得:由递推式有,,,依次向前代入,得,这就是叠(迭)代法的根本模式。

类型3 递推公式为 (其中p,q均为常数, )。

解法:把原递推公式转化为:,其中,再利用换元法转化为等比数列求解。

三、典型例题分析题型1 周期数列例1 假设数列满足,假设,那么 =____。

答案:。

变式训练1 (2021,湖南文5)数列满足,那么 =( B ) A.0 B. C. D.小结与拓展:由递推式计算出前几项,寻找周期。

题型2 递推公式为,求通项例2 数列,假设满足,,求。

高三数学一轮教案数列的通项与求和

高三数学一轮教案数列的通项与求和

芯衣州星海市涌泉学校§数列的通项与求和【复习目的】纯熟掌握三种常用的数列{n a }求和方法:用裂项相消法、错位相减法、分组求和法; 浸透分类与转化的数学思想【重点难点】浸透分类与转化的数学思想【课前预习】1.22222210099989721-+-++-=。

2.化简)1(1431321211+++⋅+⋅+⋅n n 结果是〔〕A .12+n nB .1+n nC .12+n nD .122+n n数列,,1614,813,412,211 的前n 项和为〔〕A .n n n 21)2(212-++B .1211)1(21--++n n nC .n n n 21)2(212-+-D .)211(2)1(21n n n -++ 求数列9,99,999,9999,……的前n 项和。

【典型例题】设{an}为公差d 不为零的等差数列,化简14332211111+++++n n a a a a a a a a .例2设一个数列的通项公式为an=⎪⎩⎪⎨⎧+为偶数为奇数n n n n22,15,求这个数列的前2m 项和〔m 为正整数〕.例3求和Sn=1+2x+3x2+…+nxn-1【稳固练习】〔1〕证明:!1)!1(1!1nnnn--=-〔2〕.求和:!1!43!32nn-+++求数列-1,4,-7,…,〔-1〕n(3n-2),…,的前n项的和。

3.求和:1+(1+2)+(1+2+4)+…(1+2+4+…+2n-1)4.求和1·2+2·3+3·4+…+n(n+1)〔提示:12+22+32+…+n2=6)12)(1(++nnn〕【本课小结】【课后作业】设an=4n-2,)(2111+++=nnnnn aaaab,求数列}{n b的前n项和。

求Sn=nn2834221++++.求数列1,a+a2,a2+a3+a4,a3+a4+a5+a6,…,(a≠0)的前n项的和。

求数列}{n n a的前n项的和。

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

2024届高考一轮复习数学教案(新人教B版):数列中的综合问题

§6.6数列中的综合问题考试要求数列的综合运算问题以及数列与函数、不等式等知识的交汇问题,是历年高考的热点内容.一般围绕等差数列、等比数列的知识命题,涉及数列的函数性质、通项公式、前n 项和公式等.题型一等差数列、等比数列的综合运算例1(2023·厦门模拟)已知数列{a n }的前n 项和为S n ,且S n =32n 2+12n ,递增的等比数列{b n }满足b 1+b 4=18,b 2·b 3=32.(1)求数列{a n },{b n }的通项公式;(2)若c n =a n ·b n ,n ∈N +,求数列{c n }的前n 项和T n .解(1)当n ≥2时,a n =S n -S n -1=32n 2+12n -32(n -1)2+12(n -1)=3n -1,又∵当n =1时,a 1=S 1=2符合上式,∴a n =3n -1.∵b 2b 3=b 1b 4,∴b 1,b 4是方程x 2-18x +32=0的两根,又∵b 4>b 1,∴解得b 1=2,b 4=16,∴q 3=b4b 1=8,∴q =2,∴b n =b 1·q n -1=2n .(2)∵a n =3n -1,b n =2n ,则c n =(3n -1)·2n ,∴T n =2·21+5·22+8·23+11·24+…+(3n -1)·2n ,2T n =2·22+5·23+8·24+11·25+…+(3n -1)·2n +1,将两式相减得-T n =2·21+3(22+23+24+…+2n )-(3n -1)·2n +1=4+322(1-2n -1)1-2-(3n -1)·2n +1=(4-3n )·2n +1-8,∴T n =(3n -4)·2n +1+8.思维升华数列的综合问题常将等差、等比数列结合,两者相互联系、相互转化,解答这类问题的方法:寻找通项公式,利用性质进行转化.跟踪训练1(2022·全国甲卷)记S n 为数列{a n }的前n 项和.已知2S nn+n =2a n +1.(1)证明:{a n }是等差数列;(2)若a 4,a 7,a 9成等比数列,求S n 的最小值.(1)证明由2S nn+n =2a n +1,得2S n +n 2=2a n n +n ,①所以2S n +1+(n +1)2=2a n +1(n +1)+(n +1),②②-①,得2a n +1+2n +1=2a n +1(n +1)-2a n n +1,化简得a n +1-a n =1,所以数列{a n }是公差为1的等差数列.(2)解由(1)知数列{a n }的公差为1.由a 4,a 7,a 9成等比数列,得a 27=a 4a 9,即(a 1+6)2=(a 1+3)(a 1+8),解得a 1=-12.所以S n =-12n +n (n -1)2=n 2-25n2-6258,所以当n =12或13时,S n 取得最小值,最小值为-78.题型二数列与其他知识的交汇问题命题点1数列与不等式的交汇例2(1)已知数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n (n ∈N +),设数列{b n }满足:b n =2n +1a n a n +1,数列{b n }的前n 项和为T n ,若T n <nn +1λ(n ∈N +)恒成立,则实数λ的取值范围为()A.14,+∞C.38,+∞答案D解析数列{a n }满足a 1+12a 2+13a 3+…+1na n =n 2+n ,①当n ≥2时,a 1+12a 2+13a 3+…+1n -1a n -1=(n -1)2+(n -1),②①-②得1na n =2n ,故a n =2n 2,当n =1时,a 1=2也满足上式.数列{b n }满足:b n =2n +1a n a n +1=2n +14n 2(n +1)2=141n 2-1(n +1)2,则T n =141+…+1n 2-1(n +1)2=141-1(n +1)2,由于T n <nn +1λ(n ∈N +)恒成立,故141-1(n +1)2<n n +1λ,整理得λ>n +24n +4,因为y =n +24n +4=n ∈N +上单调递减,故当n =1=38,所以λ>38.(2)已知数列{a n }满足a 1=37,3a n ,2a n +1,a n a n +1成等差数列.{a n }的通项公式;②记{a n }的前n 项和为S n ,求证:1271S n <7528.①解由已知得4a n +1=3a n +a n a n +1,因为a 1=37≠0,所以由递推关系可得a n ≠0恒成立,所以4a n =3a n +1+1,所以4a n -4=3a n +1-3,即1a n +1-1又因为1a 1-1=73-1=43,所以数列是首项为43,公比为43的等比数列,所以1a n-1,所以a n =11.②证明由①可得a n =111-1=37×-1,所以S n ≥37+37×+…+37×-1=1271n,a n =11<1,S 1=37<7528,当n ≥2时,S n <37++ (37)1-34=7528-3<7528.综上所述,1271n≤S n <7528成立.命题点2数列与函数的交汇例3(1)(2023·龙岩模拟)已知函数f (x )=13x 3+4x ,记等差数列{a n }的前n 项和为S n ,若f (a 1+2)=100,f (a 2022+2)=-100,则S 2022等于()A .-4044B .-2022C .2022D .4044答案A解析因为f (-x )=-13x 3-4x =-f (x ),所以f (x )是奇函数,因为f (a 1+2)=100,f (a 2022+2)=-100,所以f (a 1+2)=-f (a 2022+2),所以a 1+2+a 2022+2=0,所以a 1+a 2022=-4,所以S 2022=2022(a 1+a 2022)2=-4044.(2)数列{a n }是等差数列,a 1=1,公差d ∈[1,2],且a 4+λa 10+a 16=15,则实数λ的最大值为________.答案-12解析因为a 4+λa 10+a 16=15,所以a 1+3d +λ(a 1+9d )+a 1+15d =15,令λ=f (d )=151+9d -2,因为d ∈[1,2],所以令t =1+9d ,t ∈[10,19],因此λ=f (t )=15t -2,当t ∈[10,19]时,函数λ=f (t )是减函数,故当t =10时,实数λ有最大值,最大值为f (10)=-12.思维升华(1)数列与不等式的综合问题及求解策略①判断数列问题的一些不等关系,可以利用数列的单调性比较大小或借助数列对应的函数的单调性比较大小.②以数列为载体,考查不等式恒成立的问题,此类问题可转化为函数的最值.③考查与数列有关的不等式证明问题,此类问题一般采用放缩法进行证明,有时也可通过构造函数进行证明.(2)数列与函数交汇问题的主要类型及求解策略①已知函数条件,解决数列问题,此类问题一般利用函数的性质、图象研究数列问题.②已知数列条件,解决函数问题,解决此类问题一般要利用数列的通项公式、前n 项和公式、求和方法等对式子化简变形.跟踪训练2(1)设{a n }是等比数列,函数y =x 2-x -2023的两个零点是a 2,a 3,则a 1a 4等于()A .2023B .1C .-1D .-2023答案D解析由题意a 2,a 3是x 2-x -2023=0的两根.由根与系数的关系得a 2a 3=-2023.又a 1a 4=a 2a 3,所以a 1a 4=-2023.(2)数列{a n }满足a 1=1,a n +1=2a n (n ∈N +),S n 为其前n 项和.数列{b n }为等差数列,且满足b 1=a 1,b 4=S 3.①求数列{a n },{b n }的通项公式;②设c n =1b n ·log 2a 2n +2,数列{c n }的前n 项和为T n ,证明:13≤T n <12.①解由题意知,{a n }是首项为1,公比为2的等比数列,所以a n =a 1·2n -1=2n -1.所以S n =2n-1.设等差数列{b n }的公差为d ,则b 1=a 1=1,b 4=1+3d =7,所以d =2,b n =1+(n -1)×2=2n -1.②证明因为log 2a 2n +2=log 222n +1=2n +1,所以c n =1b n ·log 2a 2n +2=1(2n -1)(2n +1)=所以T n -13+13-15+…+12n -1-因为n ∈N +,所以T n <12,=n 2n +1.当n ≥2时,T n -T n -1=n 2n +1-n -12n -1=1(2n +1)(2n -1)>0,所以数列{T n }是一个递增数列,所以T n ≥T 1=13.综上所述,13≤T n <12.课时精练1.(2022·汕头模拟)已知各项均为正数的等比数列{a n }的前4项和为15,4a 1,2a 3,a 5成等差数列,则a 1等于()A .52-5B .52+5C .52D .5答案A解析设各项均为正数的等比数列{a n }的公比为q ,q >0,由前4项和为15,4a 1,2a 3,a 5成等差数列,可得a 1+a 1q +a 1q 2+a 1q 3=15,4a 3=4a 1+a 5,即4a 1+a 1q 4=4a 1q 2,即q 2-2=0,解得q =2,a 1=52-5.2.(2023·焦作模拟)直播带货是一种直播和电商相结合的销售手段,目前受到了广大消费者的追捧,针对这种现状,某传媒公司决定逐年加大直播带货的资金投入,若该公司今年投入的资金为2000万元,并在此基础上,以后每年的资金投入均比上一年增长12%,则该公司需经过____年其投入资金开始超过7000万元()(参考数据:lg 1.12≈0.049,lg 2≈0.301,lg 7≈0.845)A .14B .13C .12D .11答案C解析设该公司经过n 年投入的资金为a n 万元,则a 1=2000×1.12,由题意可知,数列{a n }是以2000×1.12为首项,以1.12为公比的等比数列,所以a n =2000×1.12n ,由a n =2000×1.12n >7000可得n >log 1.1272=lg 7-lg 2lg 1.12≈11.1,因此,该公司需经过12年其投入资金开始超过7000万元.3.在正项等比数列{a n }中,3为a 6与a 14的等比中项,则a 3+3a 17的最小值为()A .23B .89C .6D .3答案C解析因为{a n }是正项等比数列,且3为a 6与a 14的等比中项,所以a 6a 14=3=a 3a 17,则a 3+3a 17=a 3+3·3a 3≥2a 3·3·3a 3=6,当且仅当a 3=3时,等号成立,所以a 3+3a 17的最小值为6.4.(2023·岳阳模拟)在等比数列{a n }中,a 2=-2a 5,1<a 3<2,则数列{a 3n }的前5项和S 5的取值范围是()-118,--338,-答案A解析设等比数列{a n }的公比为q ,则q 3=a 5a 2=-12,数列{a 3n }是首项为a 3,公比为q 3=-12的等比数列,则S 51+12=1116a 35.(多选)(2023·贵阳模拟)已知函数f (x )=lg x ,则下列四个命题中,是真命题的为()A .f (2),f (10),f (5)成等差数列B .f (2),f (4),f (8)成等差数列C .f (2),f (12),f (72)成等比数列D .f (2),f (4),f (16)成等比数列答案ABD解析对于A ,f (2)+f (5)=lg 2+lg 5=lg 10=1,2f (10)=2lg 10=1,故f (2),f (10),f (5)成等差数列,故是真命题;对于B ,f (2)+f (8)=lg 2+lg 8=lg 16,2f (4)=2lg 4=lg 16,故f (2),f (4),f (8)成等差数列,故是真命题;对于C ,f (2)·f (72)=lg 2×lg =lg 212=f 2(12),故f (2),f (12),f (72)不成等比数列,故是假命题;对于D ,f (2)f (16)=lg 2×lg 16=4lg 22=(2lg 2)2=lg 24=f 2(4),故f (2),f (4),f (16)成等比数列,故是真命题.6.数学家也有许多美丽的错误,如法国数学家费马于1640年提出了F n =22n+1(n =0,1,2,…)是质数的猜想,直到1732年才被善于计算的大数学家欧拉算出F 5=641×6700417,不是质数.现设a n =log 4(F n -1)(n =1,2,…),S n 表示数列{a n }的前n 项和.若32S n =63a n ,则n 等于()A .5B .6C .7D .8答案B解析因为F n =22n+1(n =0,1,2,…),所以a n =log 4(F n -1)=log 4(22n+1-1)=log 422n=2n -1,所以{a n }是等比数列,首项为1,公比为2,所以S n =1(1-2n )1-2=2n -1.所以32(2n -1)=63×2n -1,解得n =6.7.宋元时期我国数学家朱世杰在《四元玉鉴》中所记载的“垛积术”,其中“落—形”就是每层为“三角形数”的三角锥垛,三角锥垛从上到下最上面是1个球,第二层是3个球,第三层是6个球,第四层是10个球,…,则这个三角锥垛的第十五层球的个数为________.答案120解析∵“三角形数”可写为1,1+2,1+2+3,1+2+3+4,1+2+3+4+5,…,∴“三角形数”的通项公式为a n =1+2+3+…+n =n (n +1)2,∴这个三角锥垛的第十五层球的个数为a 15=15×162=120.8.已知数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,则p 的取值范围为________.答案ln 33,+∞解析数列{a n }的通项公式为a n =ln n ,若存在p ∈R ,使得a n ≤pn 对任意的n ∈N +都成立,故p ,设f (x )=ln x x ,则f ′(x )=1x ·x -ln x x 2,令f ′(x )=1-ln x x 2=0,解得x =e ,故函数f (x )的单调递增区间为(0,e),单调递减区间为(e ,+∞),所以函数在x =e 处取最大值,由于n ∈N +,所以当n =3时函数最大值为ln 33.所以p 的取值范围是ln 33,+9.记关于x 的不等式x 2-4nx +3n 2≤0(n ∈N +)的整数解的个数为a n ,数列{b n }的前n 项和为T n ,满足4T n =3n +1-a n -2.(1)求数列{b n }的通项公式;(2)设c n =2b n -,若对任意n ∈N +,都有c n <c n +1成立,试求实数λ的取值范围.解(1)由不等式x 2-4nx +3n 2≤0可得,n ≤x ≤3n ,∴a n =2n +1,T n =14×3n +1-12n -34,当n =1时,b 1=T 1=1,当n ≥2时,b n =T n -T n -1=12×3n -12,∵b 1=1适合上式,∴b n =12×3n -12.(2)由(1)可得,c n =3n -1+(-1)n -1,∴c n +1=3n +1-1+(-1)n +1,∵c n <c n +1,∴c n +1-c n =2×3n +52(-1)n >0,∴(-1)n λ>-45×2n ,当n 为奇数时,λ<45×2n ,由于45×2n 随着n 的增大而增大,当n =1时,45×2n 的最小值为85,∴λ<85,当n 为偶数时,λ>-45×2n ,由于-45×2n 随着n 的增大而减小,当n =2时,-45×2n 的最大值为-165,∴λ>-165,综上可知,-165<λ<85.10.设n ∈N +,有三个条件:①a n 是2与S n 的等差中项;②a 1=2,S n +1=a 1(S n +1);③S n =2n +1-2.在这三个条件中任选一个,补充在下列问题的横线上,再作答.若数列{a n }的前n 项和为S n ,且________.(1)求数列{a n }的通项公式;(2)若{a n ·b n }是以2为首项,4为公差的等差数列,求数列{b n }的前n 项和T n .注:如果选择多个条件分别解答,那么按第一个解答计分.解(1)选择条件①:因为a n 是2与S n 的等差中项,所以2a n =2+S n ,所以当n ≥2时,2a n -1=2+S n -1,两式相减得,2a n -2a n -1=a n ,即a n =2a n -1(n ≥2),在2a n =2+S n 中,令n =1,可得a 1=2,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件②:由a 1=2,S n +1=a 1(S n +1),知S n +1=2(S n +1),当n =1时,可求得a 2=4,所以当n ≥2时,S n =2(S n -1+1),两式相减得,a n +1=2a n (n ≥2),又a 1=2,a 2=4也满足上式,所以数列{a n }是首项为2,公比为2的等比数列,故a n =2·2n -1=2n .选择条件③:在S n =2n +1-2中,令n =1,则a 1=21+1-2=2,当n ≥2时,有S n -1=2n -2,两式相减得,a n =2n (n ≥2),当n =1时,a 1=2满足上式,所以a n =2n .(2)因为{a n ·b n }是以2为首项,4为公差的等差数列,所以a n ·b n =2+(n -1)·4=4n -2,由(1)知,a n =2n ,所以b n =2n -12n -1,所以T n =1+3+5+…+2n -12n -1,12T n =1+3+…+2n -32n -1+2n -12n ,两式相减得,12T n =1+2+2+…+2-1-2n -12n =1+2×21-12-2n -12n =3-2n +32n,所以T n =6-2n +32n -1.11.(2022·北京)设{a n }是公差不为0的无穷等差数列,则“{a n }为递增数列”是“存在正整数N 0,当n >N 0时,a n >0”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件答案C 解析设无穷等差数列{a n }的公差为d (d ≠0),则a n =a 1+(n -1)d =dn +a 1-d .若{a n }为递增数列,则d >0,则存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,所以充分性成立;若存在正整数N 0,使得当n >N 0时,a n =dn +a 1-d >0,即d >d -a 1n对任意的n >N 0,n ∈N +均成立,由于n →+∞时,d -a 1n→0,且d ≠0,所以d >0,{a n }为递增数列,必要性成立.故选C.12.已知a 1,a 2,a 3,a 4成等比数列,且a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3).若a 1>1,则()A .a 1<a 3,a 2<a 4B .a 1>a 3,a 2<a 4C .a 1<a 3,a 2>a 4D .a 1>a 3,a 2>a 4答案B 解析因为ln x ≤x -1(x >0),所以a 1+a 2+a 3+a 4=ln(a 1+a 2+a 3)≤a 1+a 2+a 3-1,所以a 4=a 1·q 3≤-1.由a 1>1,得q <0.若q ≤-1,则ln(a 1+a 2+a 3)=a 1+a 2+a 3+a 4=a 1(1+q )·(1+q 2)≤0.又a 1+a 2+a 3=a 1(1+q +q 2)≥a 1>1,所以ln(a 1+a 2+a 3)>0,矛盾.因此-1<q <0.所以a 1-a 3=a 1(1-q 2)>0,a 2-a 4=a 1q (1-q 2)<0,所以a 1>a 3,a 2<a 4.13.函数y =f (x ),x ∈[1,+∞),数列{a n }满足a n =f (n ),n ∈N +,①函数f (x )是增函数;②数列{a n }是递增数列.写出一个满足①的函数f (x )的解析式________.写出一个满足②但不满足①的函数f (x )的解析式________.答案f (x )=x 2f (x )(答案不唯一)解析由题意,可知在x ∈[1,+∞)这个区间上是增函数的函数有许多,可写为f (x )=x 2.第二个填空是找一个数列是递增数列,而对应的函数不是增函数,可写为f (x ).则这个函数在1,43上单调递减,在43,+∴f (x )在[1,+∞)上不是增函数,不满足①.而对应的数列为a n 在n ∈N +上越来越大,属于递增数列.14.设函数f (x )-4,x ≤-3,x 2+2,x >-3,数列{a n }满足a n +1=f (a n )(n ∈N +),若{a n }是等差数列.则a 1的取值范围是__________.答案(-∞,-3]∪{-2,1}解析画出函数f (x )的图象如图所示,当a 1≤-3时,a 2=f (a 1)=a 1-4≤-7,a 3=f (a 2)=a 2-4≤-11,…,数列{a n }是首项为a 1,公差为-4的等差数列,符合题意,当a 1>-3时,因为{a n }是等差数列,①若其公差d >0,则∃k 0∈N +,使得0k a >2,这与a n +1=f (a n )=2-a 2n ≤2矛盾,②若其公差d =0,则a 2=-a 21+2=a 1,即a 21+a 1-2=0,解得a 1=-2或a 1=1,则当a 1=-2时,a n =-2为常数列,当a 1=1时,a n =1为常数列,此时{a n }为等差数列,符合题意,③若其公差d <0,则∃k 0∈N +,使得0k a >-3且01k a +≤-3,则等差数列的公差必为-4,因此001k k a a +-=-4,所以2-002k k a a -=-4,解得0k a =-3(舍去)或0k a =2.又当0k a =2时,000123k k k a a a +++===…=-2,这与公差为-4矛盾.综上所述,a 1的取值范围是(-∞,-3]∪{-2,1}.15.若数列{a n }对于任意的正整数n 满足:a n >0且a n a n +1=n +1,则称数列{a n }为“积增数列”.已知“积增数列”{a n }中,a 1=1,数列{a 2n +a 2n +1}的前n 项和为S n ,则对于任意的正整数n ,有()A .S n ≤2n 2+3B .S n ≥n 2+4nC .S n ≤n 2+4nD .S n ≥n 2+3n 答案D 解析∵a n >0,∴a 2n +a 2n +1≥2a n a n +1,∵a n a n +1=n +1,∴{a n a n +1}的前n 项和为2+3+4+…+n +1=n (2+n +1)2=n (n +3)2,∴数列{a 2n +a 2n +1}的前n 项和为S n ≥2×n (n +3)2=n 2+3n .16.设{a n }是正数组成的数列,其前n 项和为S n ,并且对于所有的正整数n ,a n 与2的等差中项等于S n 与2的等比中项.(1)求数列{a n }的通项公式;(2)令b nn ∈N +),求证:b 1+b 2+b 3+…+b n <1+n .(1)解由已知a n +22=2S n (n ∈N +),整理得S n =18(a n +2)2,所以S n +1=18(a n +1+2)2.所以a n +1=S n +1-S n =18[(a n +1+2)2-(a n +2)2]=18(a 2n +1+4a n +1-a 2n -4a n ),整理得(a n +1+a n )(a n +1-a n -4)=0,由题意知a n +1+a n ≠0,所以a n +1-a n =4,而a 1=2,即数列{a n }是a 1=2,d =4的等差数列,所以a n =a 1+(n -1)d =4n -2.(2)证明令c n =b n -1,则c n +a n a n +1-=12n -1-12n +1.故b 1+b 2+…+b n -n =c 1+c 2+…+cn…1-12n +1<1.故b 1+b 2+…+b n <1+n .。

高三数学第一轮复习 —数列求和教案

高三数学第一轮复习 —数列求和教案

城东蜊市阳光实验学校一.课题:数列求和二.教学目的:1.纯熟掌握等差数列与等比数列的求和公式;2.能运用倒序相加、错位相减、拆项相消等重要的数学方法进展求和运算;3.熟记一些常用的数列的和的公式.三.教学重点:特殊数列求和的方法.四.教学过程:〔一〕主要知识:1.等差数列与等比数列的求和公式的应用;2.倒序相加、错位相减,分组求和、拆项求和等求和方法;〔二〕主要方法:1.求数列的和注意方法的选取:关键是看数列的通项公式;2.求和过程中注意分类讨论思想的运用;3.转化思想的运用;〔三〕例题分析:例1.求以下数列的前n项和n S:〔1〕5,55,555,5555,…,5(101)9n-,…;〔2〕1111,,,,,132435(2)n n⨯⨯⨯+;〔3〕na =;〔4〕23,2,3,,,na a a na;〔5〕13,24,35,,(2),n n⨯⨯⨯+;〔6〕2222sin1sin2sin3sin89++++.解:〔1〕555555555nnS=++++个5(999999999)9n=++++个235505[10101010](101)9819n n n n =++++-=--. 〔2〕∵1111()(2)22n n n n =-++,∴11111111[(1)()()()]2324352nS n n =-+-+-++-+1111(1)2212n n =+--++. 〔3〕∵na===∴11nS n =++++1)(1n =-++++1=-. 〔4〕2323n n S a a a na =++++,当1a =时,123n S =+++ (1)2n n n ++=, 当1a≠时,2323n S a a a =+++…n na +,23423n aS a a a =+++…1n na ++,两式相减得23(1)na S a a a -=+++ (1)1(1)1n n n n a a a nana a++-+-=--,∴212(1)(1)n n n na n a a S a ++-++=-.〔5〕∵2(2)2n n n n +=+,∴原式222(123=+++…2)2(123n ++⨯+++…)n +(1)(27)6n n n ++=.〔6〕设2222sin 1sin 2sin 3sin 89S =++++, 又∵2222sin 89sin 88sin 87sin 1S =++++,∴289S=,892S =. 例2.数列{}n a 的通项65()2()n n n n a n -⎧=⎨⎩为奇数为偶数,求其前n 项和n S .解:奇数项组成以11a =为首项,公差为12的等差数列,偶数项组成以24a =为首项,公比为4的等比数列;当n 为奇数时,奇数项有12n +项,偶数项有12n -项, ∴1121(165)4(14)(1)(32)4(21)221423n n n n n n n S --++--+--=+=+-, 当n 为偶数时,奇数项和偶数项分别有2n项,∴2(165)4(14)(32)4(21)221423n n n n n n n S +----=+=+-, 所以,1(1)(32)4(21)()23(32)4(21)()23n n nn n n S n n n -⎧+--+⎪⎪=⎨--⎪+⎪⎩为奇数为偶数.例3.〔高考A 方案智能训练14题〕数列{}n a 的前n 项和2()n nS p p R =+∈,数列{}n b 满足2log n n b a =,假设{}n a 是等比数列,〔1〕求p 的值及通项n a ;〔2〕求和222123()()()n T b b b =-+…12*(1)()()n n b n N -+-∈.〔解答见教师用书127页〕 〔四〕稳固练习:设数列11,(12),,(122),n -++++的前n 项和为n S ,那么n S 等于〔〕五.课后作业:高考A 方案考点22,智能训练2,4,5,12,15,16.。

高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1

高三数学人教版A版数学(理)高考一轮复习教案等差数列及其前n项和1

第二节 等差数列及其前n 项和等差数列(1)理解等差数列的概念.(2)掌握等差数列的通项公式与前n 项和公式.(3)能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题. (4)了解等差数列与一次函数的关系. 知识点一 等差数列的有关概念1.定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫作等差数列.符号表示为a n +1-a n =d (n ∈N +,d 为常数).2.等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫作a ,b 的等差中项.易误提醒1.要注意概念中的“从第2项起”.如果一个数列不是从第2项起,而是从第3项或第4项起,每一项与它前一项的差是同一个常数,那么此数列不是等差数列.2.注意区分等差数列定义中同一个常数与常数的区别.[自测练习]1.现给出以下几个数列:①2,4,6,8,…,2(n -1),2n ;②1,1,2,3,…,n ;③常数列a ,a ,a ,…,a ;④在数列{a n }中,已知a 2-a 1=2,a 3-a 2=2.其中等差数列的个数为( )A .1B .2C .3D .4解析:①由4-2=6-4=…=2n -2(n -1)=2,得数列2,4,6,8,…,2(n -1),2n 为等差数列;②因为1-1=0≠2-1=1,所以数列1,1,2,3,…,n 不是等差数列;③常数列a ,a ,a ,…,a 为等差数列;④当数列{a n }仅有3项时,数列{a n }是等差数列,当数列{a n }的项数超过3项时,数列{a n }不一定是等差数列.故等差数列的个数为2.答案:B2.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公式d =9-25-1=74,所以c -a =2d =72.答案:72知识点二 等差数列的通项及求和公式 等差数列的有关公式(1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =(a 1+a n )n2. 必记结论1.巧用等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d ,(n ,m ∈N +).(2)若{a n }为等差数列,且k +l =m +n ,(k ,l ,m ,n ∈N +),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N +)是公差为md 的等差数列.(4)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.2.前n 项和公式S n =d2n 2+⎝⎛⎭⎫a 1-d 2n 视为关于n 的一元二次函数,开口方向由公差d 的正负确定;S n =(a 1+a n )n2中(a 1+a n )视为一个整体,常与等差数列性质结合利用“整体代换”思想解题.[自测练习]3.(2016·日照模拟)已知数列{a n }为等差数列,且a 1=2,a 2+a 3=13,那么a 4+a 5+a 6等于( )A .40B .42C .43D .45解析:设等差数列公差为d ,则有a 2+a 3=2a 1+3d =4+3d =13,解得d =3,故a 4+a 5+a 6=3a 5=3(a 1+4d )=3×(2+4×3)=42,故选B.答案:B4.(2015·兰州诊断)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54D .72解析:由S 8=8×(a 1+a 8)2,又a 4+a 5=a 1+a 8=18,∴S 8=8×182=72.答案:D5.数列{a n }是公差不为0的等差数列,且a 2+a 6=a 8,则S 5a 5=________.解析:在等差数列中,由a 2+a 6=a 8得2a 1+6d =a 1+7d ,即a 1=d ≠0, 所以S 5a 5=5a 1+5×42d a 1+4d =5a 1+10da 1+4d =155=3.答案:3考点一 等差数列的基本运算|1.(2015·高考全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( ) A .5 B .7 C .9 D .11解析:法一:数列{a n }为等差数列,设公差为d ,∴a 1+a 3+a 5=3a 1+6d =3,∴a 1+2d =1,∴S 5=5a 1+5×42×d =5(a 1+2d )=5.法二:数列{a n }为等差数列,∴a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5×2a 32=5.答案:A2.等差数列{a n }中,a 1=12 015,a m =1n ,a n =1m (m ≠n ),则数列{a n }的公差d 为________.解析:∵a m =12 015+(m -1)d =1n ,a n =12 015+(n -1)d =1m ,∴(m -n )d =1n -1m ,∴d =1mn ,∴a m =12 015+(m -1)1mn =1n ,解得1mn =12 015,即d =12 015. 答案:12 0153.(2015·通州模拟)已知等差数列{a n }中,a 2=-2,公差d =-2,那么数列{a n }的前5项和S 5=________.解析:将已知条件代入公式易得S 5=5(a 2-d )+5×42d =-20.答案:-20等差数列的基本运算的两个解题策略(1)等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程组解决问题的思想.(2)数列的通项公式和前n 项和公式在解题中起到变量代换的作用,而a 1和d 是等差数列的两个基本量,用它们表示已知量和未知量是常用方法.考点二 等差数列的判断与证明|已知数列{a n }满足(a n +1-1)(a n -1)=3(a n -a n +1),a 1=2,令b n =1a n -1.(1)证明:数列{b n }是等差数列; (2)求数列{a n }的通项公式. [解] (1)证明:1a n +1-1-1a n -1=a n -a n +1(a n +1-1)(a n -1)=13,∴b n +1-b n =13,∴{b n }是等差数列.(2)由(1)及b 1=1a 1-1=12-1=1,知b n =13n +23,∴a n -1=3n +2,∴a n =n +5n +2.等差数列的四种判定方法(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数; (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)成立; (3)通项公式法:验证a n =pn +q ; (4)前n 项和公式法:验证S n =An 2+Bn .1.已知数列{a n }中,a 1=35,a n =2-1a n -1(n ≥2,n ∈N *),数列{b n }满足b n =1a n -1(n ∈N *).求证:数列{b n }是等差数列. 证明:∵a n =2-1a n -1(n ≥2,n ∈N *),b n =1a n -1, ∴当n ≥2时,b n -b n -1=1a n -1-1a n -1-1=12-1a n -1-1-1a n -1-1=a n -1a n -1-1-1a n -1-1=1. 又b 1=1a 1-1=-52,∴数列{b n }是以-52为首项,1为公差的等差数列.考点三 等差数列的性质及最值|(1)(2016·泉州质检)设等差数列{a n }的前n 项和为S n ,若a 5+a 14=10,则S 18=( )A .20B .60C .90D .100[解析] 因为{a n }是等差数列,所以S 18=18(a 1+a 18)2=9(a 5+a 14)=90,故选择C.[答案] C(2)(2015·广州模拟)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40[解析] 本题考查等差数列的性质.这个数列的项数为2n ,于是有2×n =25-15=10,2n =10,即这个数列的项数为10,故选A.[答案] A(3)已知在等差数列{a n }中,a 1=31,S n 是它的前n 项的和,S 10=S 22. ①求S n ;②这个数列前多少项的和最大?并求出这个最大值.[解] ①∵S 10=a 1+a 2+…+a 10, S 22=a 1+a 2+…+a 22,又S 10=S 22,∴a 11+a 12+…+a 22=0, 即12(a 11+a 22)2=0,即a 11+a 22=2a 1+31d =0. 又a 1=31,∴d =-2.∴S n =na 1+n (n -1)2d =31n -n (n -1)=32n -n 2.②法一:由①知,S n =32n -n 2=-(n -16)2+256, ∴当n =16时,S n 有最大值256. 法二:由①知,令⎩⎪⎨⎪⎧a n =31+(n -1)·(-2)=-2n +33≥0,a n +1=31+n ·(-2)=-2n +31≤0(n ∈N *),解得312≤n ≤332,∵n ∈N *,∴n =16时,S n 有最大值256.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q 2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.2.(2015·深圳调研)等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为( )A .S 7B .S 6C .S 5D .S 4解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:C3.设S n 为等差数列{a n }的前n 项和,若S 3=3,S 6=18,则a 8=________.解析:等差数列性质可得S 3=3,S 6-S 3=15,S 9-S 6=a 7+a 8+a 9=3a 8成等差数列,故有2(S 6-S 3)=S 3+S 9-S 6⇒2×15=3+3a 8,解得a 8=9.答案:917.整体思想在等差数列中的应用【典例】 已知S n 为等差数列{a n }的前n 项和,若S 1=1,S 4S 2=4,则S 6S 4的值为( )A.94 B.32 C.53D .4[思路点拨] 若利用a ,d 基本计算较繁,可考虑S 2,S 4-S 2,S 6-S 4成等差数列,采用整体求值较简便.[解析] 由等差数列的性质可知S 2,S 4-S 2,S 6-S 4成等差数列,由S 4S 2=4,得S 4-S 2S 2=3,则S 6-S 4=5S 2,所以S 4=4S 2,S 6=9S 2,S 6S 4=94.[答案] A[方法点评] 利用整体思想解数学问题,就是从全局着眼,由整体入手,把一些彼此独立但实际上紧密联系的量作为一个整体考虑的方法.有不少等差数列题,其首项、公差无法确定或计算烦琐,对这类问题,若从整体考虑,往往可寻得简捷的解题途径.[跟踪练习] 已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30=________. 解析:∵S 10,S 20-S 10,S 30-S 20成等差数列, 且S 10=10,S 20=30,S 20-S 10=20, ∴S 30-S 20=10+2×10=30, ∴S 30=60.答案:60A 组 考点能力演练1.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3D .4解析:设等差数列{a n }的公差为d ,则d =a 13-a 313-3=33-1310=2,故选择B.答案:B2.(2016·宝鸡质检)设等差数列{a n }的前n 项和为S n ,且S 9=18,a n -4=30(n >9),若S n=336,则n 的值为( )A .18B .19C .20D .21解析:因为{a n }是等差数列,所以S 9=9a 5=18,a 5=2,S n =n (a 1+a n )2=n (a 5+a n -4)2=n2×32=16n =336,解得n =21,故选择D.答案:D3.(2015·武昌联考)已知数列{a n }是等差数列,a 1+a 3+a 5=105,a 2+a 4+a 6=99,{a n }的前n 项和为S n ,则使得S n 达到最大的n 是( )A .18B .19C .20D .21解析:a 1+a 3+a 5=105⇒a 3=35,a 2+a 4+a 6=99⇒a 4=33,则{a n }的公差d =33-35=-2,a 1=a 3-2d =39,S n =-n 2+40n ,因此当S n 取得最大值时,n =20.答案:C4.在等差数列{a n }中,a 2+a 3+a 4+a 5=40,则3a 1+a 11=( ) A .20 B .30 C .40D .60解析:本题考查等差数列的通项公式及性质的应用.由等差数列的性质得a 2+a 3+a 4+a 5=2(a 3+a 4)=40,解得a 3+a 4=20,即a 3+a 4=2a 1+5d =20,又3a 1+a 11=4a 1+10d =2(2a 1+5d )=40,故选C.答案:C5.已知数列{a n },{b n }都是等差数列,S n ,T n 分别是它们的前n 项和,并且S n T n =7n +1n +3,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=( ) A.345 B .5 C.314D.315解析:法一:令S n =(7n +1)n ,T n =(n +3)n ,则a n =14n -6,b n =2n +2,所以a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=22+64+232+30218+22+26+34=315.法二:设等差数列{a n },{b n }的公差分别为d 1,d 2,则a 2+a 5+a 17+a 22b 8+b 10+b 12+b 16=4a 1+42d 14b 1+42d 2=2a 1+21d 12b 1+21d 2=a 1+a 22b 1+b 22=S 22T 22=7×22+122+3=315.答案:D6.(2015·广州一模)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=20,则S 11=________. 解析:因为{a n }是等差数列,所以S 8-S 3=a 4+a 5+a 6+a 7+a 8=5a 6=20,所以a 6=4,所以S 11=11(a 1+a 11)2=11a 6=44.答案:447.设数列{a n }的前n 项和为S n ,且a 1=a 2=1,{nS n +(n +2)a n }为等差数列,则{a n }的通项公式为a n =________.解析:设b n =nS n +(n +2)a n ,则b 1=1×S 1+(1+2)a 1=1×a 1+3a 1=4,b 2=2×S 2+(2+2)a 2=2×(a 1+a 2)+(2+2)a 2=8,所以等差数列{b n }的首项为4,公差为4,所以b n =4+(n -1)×4=4n ,即nS n +(n +2)a n =4n .当n ≥2时,S n -S n -1+⎝⎛⎭⎫1+2n a n -⎝ ⎛⎭⎪⎫1+2n -1a n -1=0,所以2(n +1)n a n =n +1n -1a n -1,即2·a n n =a n -1n -1,所以⎩⎨⎧⎭⎬⎫a n n 是以12为公比,1为首项的等比数列,所以a n n =⎝⎛⎭⎫12n -1,所以a n =n2n -1. 答案:n 2n-18.设等差数列{a n }满足公差d ∈N *,a n ∈N *,且数列{a n }中任意两项之和也是该数列的一项.若a 1=35,则d 的所有可能取值之和为________.解析:本题考查等差数列的通项公式.依题意得a n =a 1+(n -1)d ,a i +a j =2a 1+(i +j -2)d =a 1+(m -1)d (i ,j ,m ∈N *),即(m -i -j +1)d =a 1,kd =a 1=35(其中k ,d ∈N *),因此d 的所有可能取值是35的所有正约数,即分别是1,3,32,33,34,35,因此d 的所有可能取值之和为1-35×31-3=364. 答案:3649.已知{a n }是一个公差大于0的等差数列,且满足a 3a 6=55,a 2+a 7=16. (1)求数列{a n }的通项公式;(2)若数列{b n }满足:b 1=a 1且b n =a n +b n -1(n ≥2,n ∈N *),求数列{b n }的通项公式.解:(1)由题意得:⎩⎪⎨⎪⎧a 3a 6=55,a 3+a 6=a 2+a 7=16,∵公差d >0,∴⎩⎪⎨⎪⎧a 3=5,a 6=11,∴d =2,a n =2n -1.(2)∵b n =a n +b n -1(n ≥2,n ∈N *), ∴b n -b n -1=2n -1(n ≥2,n ∈N *).∵b n =(b n -b n -1)+(b n -1-b n -2)+…+(b 2-b 1)+b 1(n ≥2,n ∈N *),且b 1=a 1=1, ∴b n =2n -1+2n -3+…+3+1=n 2(n ≥2,n ∈N *). ∴b n =n 2(n ∈N *).10.(2015·南昌一模)已知等差数列{a n }的前n 项和为S n ,a 1=1,S 3=6,正项数列{b n }满足b 1·b 2·b 3·…·b n =2S n .(1)求数列{a n },{b n }的通项公式;(2)若λb n >a n 对n ∈N *均成立,求实数λ的取值范围. 解:(1)∵a 1=1,S 3=6,∴数列{a n }的公差d =1,a n =n .由题知,⎩⎪⎨⎪⎧b 1·b 2·b 3·…·b n =2S n ,①b 1·b 2·b 3·…·b n -1=2S n -1(n ≥2),②①÷②得b n =2S n -S n -1=2a n =2n (n ≥2), 又b 1=2S 1=21=2,满足上式,故b n =2n . (2)λb n >a n 恒成立⇒λ>n2n 恒成立,设c n =n 2n ,则c n +1c n =n +12n, 当n ≥2时,c n <1,数列{c n }单调递减,∴(c n )max =12,故λ>12. B 组 高考题型专练1.(2015·高考重庆卷)在等差数列{a n }中,若a 2=4,a 4=2,则a 6=( )A .-1B .0C .1D .6解析:由等差数列的性质知a 2+a 6=2a 4,所以a 6=2a 4-a 2=0,故选B. 答案:B2.(2015·高考全国卷Ⅰ)已知{a n }是公差为1的等差数列,S n 为{a n }的前n 项和.若S 8=4S 4,则a 10=( )A.172B.192 C .10 D .12解析:设等差数列{a n }的首项为a 1,公差为d .由题设知d =1,S 8=4S 4,所以8a 1+28=4(4a 1+6),解得a 1=12,所以a 10=12+9=192,选B. 答案:B3.(2015·高考北京卷)设{a n }是等差数列,下列结论中正确的是( )A .若a 1+a 2>0,则a 2+a 3>0B .若a 1+a 3<0,则a 1+a 2<0C .若0<a 1<a 2,则a 2>a 1a 3D .若a 1<0,则(a 2-a 1)(a 2-a 3)>0解析:若{a n }是递减的等差数列,则选项A ,B 都不一定正确.若{a n }为公差为0的等差数列,则选项D 不正确.对于C 选项,由条件可知{a n }为公差不为0的正项数列,由等差中项的性质得a 2=a 1+a 32,由基本不等式得a 1+a 32>a 1a 3,所以C 正确. 答案:C4.(2015·高考安徽卷)已知数列{a n }中,a 1=1,a n =a n -1+12(n ≥2),则数列{a n }的前9项和等于________.解析:因为a 1=1,a n =a n -1+12(n ≥2),所以数列{a n }是首项为1、公差为12的等差数列,所以前9项和S 9=9+9×82×12=27. 答案:275.(2015·高考北京卷)已知等差数列{a n }满足a 1+a 2=10,a 4-a 3=2.(1)求{a n }的通项公式;(2)设等比数列{b n }满足b 2=a 3,b 3=a 7.问:b 6与数列{a n }的第几项相等? 解:(1)设等差数列{a n }的公差为d . 因为a 4-a 3=2,所以d =2.又因为a 1+a 2=10,所以2a 1+d =10,故a 1=4. 所以a n =4+2(n -1)=2n +2(n =1,2,…).(2)设等比数列{b n }的公比为q .因为b 2=a 3=8,b 3=a 7=16,所以q =2,b 1=4.所以b 6=4×26-1=128.由128=2n +2,得n =63.所以b 6与数列{a n }的第63项相等.6.(2015·高考重庆卷)已知等差数列{a n }满足a 3=2,前3项和S 3=92. (1)求{a n }的通项公式;(2)设等比数列{b n }满足b 1=a 1,b 4=a 15,求{b n }的前n 项和T n . 解:(1)设{a n }的公差为d ,则由已知条件得a 1+2d =2,3a 1+3×22d =92, 即a 1+2d =2,a 1+d =32, 解得a 1=1,d =12, 故通项公式为a n =1+n -12,即a n =n +12. (2)由(1)得b 1=1,b 4=a 15=15+12=8.设{b n }的公比为q ,则q 3=b 4b 1=8,从而q =2, 故{b n }的前n 项和T n =b 1(1-q n )1-q =1×(1-2n )1-2=2n -1.。

2024届高考一轮复习数学课件(新教材人教A版强基版):数列求和

2024届高考一轮复习数学课件(新教材人教A版强基版):数列求和

①等差数列的前n项和公式:
na1+an Sn= 2 =
na1+nn- 2 1d
.
②等比数列的前n项和公式:
na1,q=1, Sn= _a_11_--__aq_nq_=__a_1_1_1-_-_q_q_n_,__q_≠__1__.
知识梳理
(2)分组求和法 若一个数列是由若干个等差数列或等比数列或可求和的数列组成,则求 和时可用分组求和法,分别求和后相加减. (3)并项求和法 一个数列的前n项和中,可两两结合求解,则称之为并项求和.形如an= (-1)nf(n)类型,可采用两项合并求解.
因为bn=an+ncos nπ=2n+1+(-1)nn, 所以当n为偶数时, Tn=b1+b2+…+bn =[3+5+7+…+(2n+1)]+[-1+2-3+4-…-(n-1)+n] =n3+22n+1+n2 =n2+2n+n2=n2+52n.
当n为奇数时, Tn=Tn+1-bn+1=(n+1)2+52(n+1)-[2(n+1)+1+n+1]=n2+32n-12. 综上,Tn=nn22++3252nn, -12n为 ,偶n为数奇,数.
题型二 并项求和
例2 记数列{an}的前n项和为Sn,已知Sn=2an-2n+1. (1)求数列{an}的通项公式;
当n=1时,由Sn=2an-2n+1,可得a1=S1=2a1-2+1,即有a1=1. 当n≥2时,an=Sn-Sn-1=2an-2n+1-2an-1+2(n-1)-1, 即an=2an-1+2,可得an+2=2(an-1+2),显然an-1+2≠0. 所以数列{an+2}是首项为3,公比为2的等比数列, 则an+2=3·2n-1,即有an=3·2n-1-2.
跟踪训练3 已知等差数列{an}中,a2=5,a3+a5=18. (1)求数列{an}的通项公式;

2025届高考数学一轮复习教案:数列-数列求和

2025届高考数学一轮复习教案:数列-数列求和

第五节数列求和课程标准1.熟练掌握等差、等比数列的前n项和公式.2.掌握非等差数列、非等比数列求和的几种常见方法.考情分析考点考法:高考命题常以等差、等比数列为载体,考查裂项相消、错位相减求和等数列求和方法,涉及奇偶项的求和问题是高考的热点,常以解答题的形式出现.核心素养:数学建模、数学运算、逻辑推理.【核心考点·分类突破】考点一分组、并项、倒序相加求和[例1](1)数列112,214,318,…的前n项和为S n=()A.2-1B.(r1)2+2nC.(r1)2-12+1D.2-1【解析】选C.数列112,214,318,...的前n项和为S n=(1+2+3+...+n)+(12+14+18+ (12)=(r1)2+12(1-12)1-12=(r1)2-12+1.(2)设f(x)=21+2,则f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024)=________.【解析】因为f(x)=21+2,所以f(x)+f(1)=1.令S=f(12024)+f(12023)+…+f(1)+f(2)+…+f(2024),①则S=f(2024)+f(2023)+…+f(1)+f(12)+…+f(12024),②所以2S=4047,所以S=40472.答案:40472(3)(2023·深圳模拟)已知公差为2的等差数列的前n项和为S n,且满足S2=a3.①若a1,a3,a m成等比数列,求m的值;②设b n=a n-2,求数列的前n项和T n.【解析】①由题意知数列是公差为2的等差数列,设公差为d,则d=2,又因为S2=a3,所以a1+a2=a3,即2a1+d=a1+2d,得a1=d=2,所以a n=a1+(n-1)d=2n(n∈N*).又因为a1,a3,a m成等比数列,即32=a1a m,所以36=2×2m,得m=9.②因为b n=a n-2=2n-4n,所以T n=(2×1-41)+(2×2-42)+…+(2×n-4n)=2×(1+2+…+n)-(41+42+…+4n)=2×(r1)2-4×(1-4)1-4=n(n+1)-43×(4n-1)=n2+n+43-4r13.【解题技法】分组转化与并项求和法(1)数列的项可以拆分成两类特殊数列,分别对这两类数列求和,再合并后即为原来的数列的前n项和;(2)数列的项具有一定的周期性,相邻两项或多项的和是一个有规律的常数,可以将数列分成若干组求和.【对点训练】1.已知数列的通项公式为a n=n cos(n-1)π,S n为数列的前n项和,则S2023=()A.1009B.1010C.1011D.1012【解题提示】将a n=n cos(n-1)π化为a n=n×-1-1,利用并项法求和.【解析】选D.因为当n为奇数时cos(n-1)π=1,当n为偶数时cos(n-1)π=-1,所以cos(n-1)π=-1-1,所以a n=n cos(n-1)π=n×-1-1.S2023=(1-2)+(3-4)+…+(2021-2022)+2023=-1011+2023=1012.2.设f(x)=44+2,若S=f(12024)+f(22024)+…+f(20232024),则S=________.【解析】因为f(x)=44+2,所以f(1-x)=41-41-+2=22+4,所以f(x)+f(1-x)=44+2+22+4=1.S=f(12024)+f(22024)+…+f(20232024),①S=f(20232024)+f(20222024)+…+f(12024),②①+②,得2S=[f(12024)+f(20232024)]+[f(22024)+f(20222024)]+…+[f(20232024)+f(12024)]=2023,所以S=20232.答案:202323.已知是公差d≠0的等差数列,其中a2,a6,a22成等比数列,13是a4和a6的等差中项;数列是公比q为正数的等比数列,且b3=a2,b5=a6.(1)求数列和的通项公式;(2)令c n=a n+b n,求数列的前n项和T n.【解析】(1)因为a2,a6,a22成等比数列,所以62=a2a22,即(1+5)2=(a1+d)(a1+21d)①.因为13是a4和a6的等差中项,所以a4+a6=26,即(a1+3d)+(a1+5d)=26②,由①②可得:a1=1,d=3,所以a n=1+(n-1)×3=3n-2,从而b3=a2=4,b5=a6=16.因为数列是公比q为正数的等比数列,所以b5=b3q2,即16=4q2,所以q=2,从而b n=b3q n-3=2n-1.(2)由于b n=2n-1,所以b1=1.因为c n=a n+b n,所以T n=c1+c2+…+c n=(a1+b1)+(a2+b2)+…+(a n+b n)=(a1+a2+…+a n)+(b1+b2+…+b n)=+(-1)2×3+1-21-2=2n+32n2-12n-1.考点二裂项相消法求和[例2](1)已知函数f(x)=x a的图象过点(4,2),令a n=1(r1)+(),n∈N*.记数列{a n}的前n项和为S n,则S2025=________.【解析】由f(4)=2可得4a=2,解得a=12,则f(x)=12,所以a n=1(r1)+()==+1-,S2025=a1+a2+a3+…+a2025=(2-1)+(3-2)+(4-3)+…+(2025-2024)+(2026-2025)=2026-1.答案:2026-1(2)已知数列的各项均为正数,S n是其前n项的和.若S n>1,且6S n=2+3a n+ 2(n∈N*).①求数列的通项公式;②设b n=1r1,求数列的前n项和T n.【解析】①因为6S n=2+3a n+2,(i)n=1时,6S1=6a1=12+3a1+2,即12-3a1+2=0,解得a1=2或a1=1,因为S n>1,所以a1=2;(ii)n≥2时,由6S n=2+3a n+2,有6S n-1=-12+3a n-1+2,两式相减得6(S n-S n-1)=2--12+3a n-3a n-1,所以6a n=2--12+3a n-3a n-1,所以2--12-3a n-3a n-1=0,所以(a n+a n-1)(a n-a n-1)-3(a n+a n-1)=0,所以(a n+a n-1)(a n-a n-1-3)=0.因为数列的各项均为正数,所以a n+a n-1≠0,所以a n-a n-1-3=0,即a n-a n-1=3,综上所述,是首项a1=2,公差d=3的等差数列,所以a n=a1+(n-1)d=2+(n-1)×3=3n-1,所以数列的通项公式为a n=3n-1.②由①知a n=3n-1,所以a n+1=3(n+1)-1=3n+2,所以b n=1r1=1(3-1)(3r2)=13×(3r2)-(3-1)(3-1)(3r2)=13×(13-1-13r2),所以T n=13×(12-15)+13×(15-18)+13×(18-111)+…+13×(13-1-13r2)=13×(12-15+15-18+18-111+…+13-1-13r2)=13×(12-13r2)=13×3r2-22(3r2)=6r4,所以数列的前n项和T n=6r4.【解题技法】破解裂项相消求和的关键点(1)定通项:根据已知条件求出数列的通项公式.(2)巧裂项:根据通项公式的特征进行准确裂项,把数列的每一项,表示为两项之差的形式.(3)消项求和:通过累加抵消掉中间的项,达到消项的目的,准确求和.(4)常见的裂项结论:①设等差数列的各项不为零,公差为d(d≠0),则1r1=1(1-1r1);②142-1=12(12-1-12r1);③1(r1)(r2)=12(r1)(1-1r2)=12[1(r1)-1(r1)(r2)];④242-1=14(42-1)+1442-1=14+18(12-1-12r1);⑤a n=2(2+)(2r1+)=12+-12r1+;⑥a n=r12(r2)2=14[12-1(r2)2].提醒:要注意正负相消时,可以通过写出前几项观察消去规律的方法,确定消去了哪些项,保留了哪些项,不可漏写未被消去的项.【对点训练】1.{a n }是等比数列,a 2=12,a 5=116,b n =r1(+1)(r1+1),则数列{b n }的前n 项和为()A .2-12(2+1)B .2-12+1C .12+1D .2-12+2【解析】选A .a 5=a 2·q 3,所以q 3=18,所以q =12,a 1=1,所以a n =(12)n -1.b n =(12)[(12)-1+1][(12)+1]=1(12)+1-1(12)-1+1,所以b 1+b 2+b 3+…+b n =[1(12)1+1-1(12)0+1]+[1(12)2+1-1(12)1+1]+[1(12)3+1-1(12)2+1]+…+[1(12)+1-1(12)-1+1]=1(12)+1-12=2-12(2+1).2.已知数列{a n }的前n 项和为S n ,且a 2=8,S n =r12-n -1.(1)求数列{a n }的通项公式;(2)n 项和T n .【解析】(1)因为a 2=8,S n =r12-n -1,所以a 1=S 1=22-2=2.当n ≥2时,a n =S n -S n -1=r12-n -1-(2-n ),即a n +1=3a n +2.又a 2=8=3a 1+2,所以a n +1=3a n +2,n ∈N *,所以a n +1+1=3(a n +1),所以数列{a n +1}是等比数列,且首项为a 1+1=3,公比为3,所以a n +1=3×3n -1=3n ,所以a n =3n -1.(2)因为2×3=2×3(3-1)(3r1-1)=13-1-13r1-1,r1n 项和T n =(13-1-132-1)+(132-1-133-1)+…+(13-1-13r1-1)=12-13r1-1.考点三错位相减法求和[例3]已知数列中,a 1=8,且满足a n +1=5a n -2·3n .(1)证明:数列-3为等比数列,并求数列的通项公式;(2)若b n =n (a n -3n ),求数列的前n 项和S n .【解析】(1)因为a n +1=5a n -2·3n ,所以a n +1-3n +1=5a n -5·3n =5(a n -3n ),所以数列-3是以a 1-31=5为首项,以5为公比的等比数列,所以a n -3n =5×5n -1=5n ,所以a n =3n +5n .(2)因为a n =3n +5n ,所以b n =n (a n -3n )=n ×5n ,所以S n =b 1+b 2+b 3+…+b n ,即S n =1×51+2×52+3×53+…+n ×5n ①,所以5S n =1×52+2×53+3×54+…+n ×5n +1②,由①-②得:-4S n =1×51+1×52+1×53+…+1×5n -n ×5n +1,-4S n =5(1-5)1-5-n ×5n +1,化简得:S n =5+(4-1)×5r116.【解题技法】错位相减法求和的解题策略(1)巧分拆,即将数列的通项公式分拆为等差数列与等比数列积的形式,并求出公差和公比.(2)构差式,即写出S n的表达式,再乘公比或除以公比,然后将两式相减.(3)后求和,根据差式的特征准确进行求和.提醒:错位相减法求和的注意点①在写出“S n”与“qS n”的表达式时应特别注意将两式“错项对齐”,以便于下一步准确地写出“S n-qS n”的表达式.②应用等比数列求和公式必须注意公比q是否等于1,如果q=1,应用公式S n=na1.【对点训练】已知数列的前n项和为S n=3n2+8n-6,是等差数列,且a n=b n+b n+1(n≥2).(1)求数列和的通项公式;(2)令c n=b n·2n+2n+1,求数列的前n项和T n.【解析】(1)S n=3n2+8n-6,所以n≥2时,S n-1=3(n-1)2+8(n-1)-6,所以a n=S n-S n-1=6n+5.n=1时,a1=S1=5,不满足a n=6n+5,所以a n=5(=1)6+5(≥2);设的公差为d,a n=b n+b n+1(n≥2),所以a n-1=b n-1+b n(n≥3),所以a n-a n-1=b n+1-b n-1,所以2d=6,所以d=3.因为a2=b2+b3,所以17=2b2+3,所以b2=7⇒b1=4,所以b n=3n+1;(2)c n=3(n+1)2n,所以T n=3×2+3×22+…+(+1)2①,所以2T n=32×22+3×23+…+(+1)2r1②,①-②得,-T n=3[2×2+22+23+…+2n-(n+1)2n+1]+1)2r1=-3n·2n+1,所以T n=3n·2n+1,所以数列的前n项和T n=3n·2n+1.。

2025届高考数学一轮复习教案:数列-等比数列

2025届高考数学一轮复习教案:数列-等比数列

第三节等比数列课程标准1.理解等比数列的概念并掌握其通项公式与前n项和公式.2.能在具体的问题情境中,发现数列的等比关系,并解决相应的问题.3.体会等比数列与指数函数的关系.考情分析考点考法:高考命题常以等比数列为载体,考查基本量的运算、求和及性质的应用.等差数列与等比数列的综合应用是高考的热点,在各个题型中均有出现.核心素养:数学建模、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.等比数列的有关概念定义一般地,如果一个数列从第2项起,每一项与它的前一项的比都等于同一个常数(不为零),那么这个数列叫做等比数列通项公式设{a n}是首项为a1,公比为q的等比数列,则通项公式a n=a1q n-1.推广:a n=a m q n-m(m,n∈N*)等比中项如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项.此时,G2=ab【微点拨】(1)等比数列中不含有0项;(2)同号的两个数才有等比中项,且等比中项有两个,它们互为相反数.2.等比数列的前n项和公式【微点拨】在运用等比数列的前n项和公式时,必须注意对q=1与q≠1分类讨论,防止因忽略q=1这一特殊情形而导致解题失误.3.等比数列与指数函数的关系等比数列的通项公式可整理为a n=1·q n,而y=1·q x(q≠1)是一个不为0的常数1与指数函数q x的乘积,从图象上看,表示数列1·q n中的各项的点是函数y=1·q x的图象上孤立的点.4.等比数列的性质(1)对任意的正整数m,n,p,q,若m+n=p+q,则a m·a n=a p·a q.特别地,若m+n=2p,则a m·a n=2.(2)若等比数列前n项和为S n,则S m,S2m-S m,S3m-S2m仍成等比数列(公比q≠-1).(3)数列{a n}是等比数列,则数列{pa n}(p≠0,p是常数)也是等比数列.(4)在等比数列{a n}中,等距离取出若干项也构成一个等比数列,即a n,a n+k,a n+2k,a n+3k,…为等比数列,公比为q k.(5)等比数列{a n}的单调性:当q>1,a1>0或0<q<1,a1<0时,数列{a n}是递增数列;当q>1,a1<0或0<q<1,a1>0时,数列{a n}是递减数列;当q=1时,数列{a n}是常数列.【基础小题·自测】类型辨析改编易错高考题号12341.(多维辨析)(多选题)下列结论正确的是()A.满足a n+1=qa n(n∈N*,q为常数)的数列{a n}为等比数列B.三个数a,b,c成等比数列的必要不充分条件是b2=acC.数列{a n}的通项公式是a n=a n,则其前n项和为S n=(1-)1-D.如果数列{a n}为正项等比数列,则数列{ln a n}是等差数列【解析】选BD.A中q不能为0;B中当a=b=c=0时满足b2=ac,但不是等比数列;C 中a=1时不成立;D中,a n>0,设a n=a1q n-1,则ln a n=ln a1+(n-1)ln q,{ln a n}是等差数列.2.(选择性必修第二册P29例1·变形式)若{a n}是各项均为正数的等比数列,且a1=1,a5=16,则a6-a5=()A.32B.-48C.16D.-48或16【解析】选C.由题意,q>0,则q=2,所以a6-a5=a5(q-1)=16.3.(忽视前n项和的条件致误)等比数列{a n}中,a3=6,前三项和S3=18,则公比q的值为()A.1B.-12C.1或-12D.-1或-12【解析】选C.因为S3=18,a3=6,所以a1+a2=32(1+q)=12,故2q2-q-1=0,解得q=1或q=-12.4.(2023·全国乙卷)已知{a n}为等比数列,a2a4a5=a3a6,a9a10=-8,则a7=________.【解析】设{a n}的公比为q(q≠0),则a2a4a5=a3a6=a2q·a5q,显然a n≠0,则a4=q2,即a1q3=q2,则a1q=1.因为a9a10=-8,则a1q8·a1q9=-8,则q15=(5)3=-8=(-2)3,则q5=-2,则a7=a1q·q5=q5=-2.答案:-2【巧记结论·速算】1.若{a n},{b n}(项数相同)是等比数列,则{λa n}(λ≠0),{1},{2},{a n·b n数列.2.当{a n}是等比数列且q≠1时,S n=11--11-·q n=A-A·q n.【即时练】1.设n∈N*,则“数列{a n}为等比数列”是“”的()A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【解析】选A.充分性:若数列为等比数列,公比为q,为公比为12的等比数列,充分性成立;必要性:,公比为q,则-1=±所以数列不是等比数列,必要性不成立.2.已知数列{a n}的前n项和S n=22n+1+a,若此数列为等比数列,则a=________.【解析】因为数列的前n项和S n=22n+1+a=2×4n+a,所以a=-2.答案:-2【核心考点·分类突破】考点一等比数列基本量的计算[例1](1)(一题多法)记S n为等比数列{a n}的前n项和,若a5-a3=12,a6-a4=24,则=()A.2n-1B.2-21-nC.2-2n-1D.21-n-1【解析】选B.方法一:设等比数列{a n}的公比为q,则由5-3=14-12=12,6-4=15-13=24,解得1=1,=2,所以S n=1(1-)1-=2n-1,a n=a1q n-1=2n-1,所以=2-12-1=2-21-n.方法二:设等比数列{a n}的公比为q,因为6-45-3=4(1-2)3(1-2)=43=2412=2,所以q=2,所以=1(1-)1-1-1=2-12-1=2-21-n.(2)已知等比数列{a n}的前n项和为S n,若a3a11=232,且S8+S24=mS16,则m=()A.-4B.4C.-83D.83【解析】选D.因为a3a11=232,且a n≠0,所以a11=2a3即a1q10=2a1q2,解得q8=2或q=0(舍去),因为S 8+S 24=mS 16,所以1(1-8)1-+1(1-24)1-=m ·1(1-16)1-,又因为q 8=2,a 1≠0,所以-8=-3m ,解得m =83.【解题技法】等比数列基本量的计算(1)等比数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,通过列方程(组)求解;(2)注意观察条件转化式的特点,尽量采用整体消元、代入的方法简化运算,如两式相除就是等比数列中常用的运算技巧.【对点训练】1.已知各项均为正数的等比数列{a n }的前4项和为15,且a 5=3a 3+4a 1,则a 3=()A .16B .8C .4D .2【解析】选C .设各项均为正数的等比数列{a n }的公比为q ,则1+1+12+13=15,14=312+41,解得1=1=2,所以a 3=a1q 2=4.2.已知{a n }是首项为1的等比数列,S n 是{a n }的前n 项和,且9S 3=S 6,5项和为()A .158或5B .3116或5C .3116D .158【解析】选C .若q =1,则由9S 3=S 6,得9×3a 1=6a 1,则a 1=0,不满足题意,故q ≠1.由9S 3=S 6,得9×1(1-3)1-=1(1-6)1-,解得q =2.故a n =a 1q n-1=2n -1,1=(12)n -1.1为首项,以12为公比的等比数列,所以5项和为T 5=1×[1-(12)5]1-12=3116.【加练备选】设公比为q(q>0)的等比数列{a n}的前n项和为S n.若S2=3a2+2,S4=3a4+2,则q=()A.32B.12C.23D.2【解析】选A.因为在等比数列中,S2=3a2+2,S4=3a4+2,所以S4-S2=a3+a4=3(a4-a2),所以a2(q+q2)=3a2(q2-1),又a2≠0,所以q+q2=3(q2-1),即2q2-q-3=0,又q>0,所以q=32.考点二等比数列的判定与证明[例2]已知数列{a n}中,a1=1且2a n+1=6a n+2n-1(n∈N*),(1)求证:数列+;(2)求数列{a n}的通项公式.【解析】(1)因为2a n+1=6a n+2n-1(n∈N*),所以a n+1=3a n+n-12,所以r1+r12+2=3+-12+r12+2=3+32+2=3,因为a1+12=1+12=32,所以数列+2是首项为32,公比为3的等比数列.(2)由(1)得,a n+2=32×3n-1=12×3n,所以a n=12×3n-2.【解题技法】等比数列的判定方法定义法若a n+1a n=q(q为非零常数,n∈N*)或-1=q(q为非零常数且n≥2,n∈N*),则{a n}是等比数列等比中项法若数列{a n}中,a n≠0且r12=a n·+2(n∈N*),则{a n}是等比数列【对点训练】数列{a n}中,a1=2,a n+1=r12a n(n∈N*).证明数列{}是等比数列,并求数列{a n}的通项公式.【解析】由题设得r1r1=12·,又11=2,所以数列{}是首项为2,公比为12的等比数列,所以=2×(12)n-1=22-n,a n=n·22-n=42.【加练备选】成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n}中的b3,b4,b5.(1)求数列{b n}的通项公式;(2)数列{b n}的前n项和为S n,求证:数列{S n+54}是等比数列.【解析】(1)设成等差数列的三个正数分别为a-d,a,a+d,依题意,得a-d+a+a+d=15,解得a=5.所以数列中的b3,b4,b5依次为7-d,10,18+d.依题意,有(7-d)(18+d)=100,解得d=2或d=-13(舍去),故数列的第3项为5,公比为2.由b 3=b 1·22,即5=b 1·22,解得b 1=54.所以数列是以54为首项,以2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)数列的前n 项和S n =54(1-2)1-2=5·2n -2-54,即S n +54=5·2n -2,所以S 1+54=52,r1+54+54=5·2-15·2-2=2.因此{S n +54}是以52为首项,以2为公比的等比数列.考点三等比数列性质的应用【考情提示】等比数列的性质作为解决等比数列问题的工具,因其考查数列知识较全面而成为高考命题的热点,重点解决基本量运算、条件转化等.角度1等比数列项的性质[例3]已知各项均为正数的等比数列的前n 项和为S n ,a 2a 4=9,9S 4=10S 2,则a 2+a 4的值为()A .30B .10C .9D .6【解析】选B .已知为各项均为正数的等比数列,则a n >0,可得a 1>0,q >0,因为32=a 2a 4=9,所以a 3=3,又因为9S 4=10S 2,则9(a 1+a 2+a 3+a 4)=10(a 1+a 2),可得9(a 3+a 4)=a 1+a 2,所以3+41+2=q 2=19,解得q =13,故a 2+a 4=3+a 3q =10.角度2等比数列前n 项和的性质[例4]已知正项等比数列{a n}的前n项和为S n,且S8-2S4=5,则a9+a10+a11+a12的最小值为()A.10B.15C.20D.25【解析】选C.由题意可得a9+a10+a11+a12=S12-S8,由S8-2S4=5,可得S8-S4=S4+5.又由等比数列的性质知S4,S8-S4,S12-S8成等比数列,则S4(S12-S8)=(S8-S4)2.于是a9+a10+a11+a12=S12-S8=(4+5)24=S4+254+10≥2当且仅当S4=5时等号成立.所以a9+a10+a11+a12的最小值为20.角度3等比数列的单调性[例5]已知{a n}是等比数列,a1>0,前n项和为S n,则“2S8<S7+S9”是“{a n}为递增数列”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件【解析】选B.因为数列是等比数列,a1>0,2S8<S7+S9,所以a8<a9,所以q7<q8,所以q7(q-1)>0,所以q<0或q>1,所以2S8<S7+S9的充要条件为q<0或q>1.又a1>0,数列为递增数列的充要条件为q>1,所以“2S8<S7+S9”是“为递增数列”的必要不充分条件.【解题技法】1.应用等比数列性质的两个关注点(1)转化意识:在等比数列中,两项之积可转化为另外两项之积或某项的平方,这是最常用的性质.(2)化归意识:把非等比数列问题转化为等比数列问题解决,例如有关S m,S2m,S3m的问题可利用S m,S2m-S m,S3m-S2m(S m≠0)成等比数列求解.2.等比数列的单调性的应用方法研究等比数列的单调性问题,要综合考虑首项的符号以及公比的取值范围,而涉及等比数列有关的单调性的充分必要条件问题,既要考虑数列的单调性也要善于举反例说明.【对点训练】1.设单调递增的等比数列{a n}满足12+14=1336,a1a5=36,则公比q=()A.32B.94C.2D.52【解析】选A.因为数列{a n}为等比数列,所以a1a5=a2a4=36,所以12+14=2+424=2+436=1336,则a2+a4=13,又数列{a n}单调递增,所以q>1,解得a2=4,a4=9,则q2=94,因为q>1,所以q=32.2.设无穷等比数列{a n}的前n项和为S n,若-a1<a2<a1,则()A.{S n}为递减数列B.{S n}为递增数列C.数列{S n}有最大项D.数列{S n}有最小项【解析】选D.由-a1<a2<a1可得a1>0,所以q=21<1,因为-a1<a2得q=21>-1,所以-1<q<1,因为S n=1(1-)1-,当0<q<1时,{S n}递增,当-1<q<0时,{S n}既有递增又有递减,A,B错误;当0<q<1时,S n有最小项S1,没有最大项,当-1<q<0时,a1>0,a2<0,a3>0,a4<0且a3+a4>0,S n有最小项S2,没有最大项,C错误,D 正确.3.设等比数列{a n}的前n项和为S n.若a n>0,S3=5,a7+a8+a9=20,则S15=________.【解析】由等比数列的性质可知S3,S6-S3,S9-S6,S12-S9,S15-S12是等比数列,由条件可知S3=5,S9-S6=20,则此等比数列的公比q2=205=4,又a n>0,所以q=2,S15=S3+(S6-S3)+(S9-S6)+(S12-S9)+(S15-S12),所以S15=5(1-25)1-2=155.答案:155。

高三数学一轮复习精品教案――数列

高三数学一轮复习精品教案――数列

城东蜊市阳光实验学校2021届高三数学一轮复习精品教案――数列〔附高考预测〕一、本章知识构造: 二、重点知识回忆 1.数列的概念及表示方法〔1〕定义:按照一定顺序排列着的一列数.〔2〕表示方法:列表法、解析法〔通项公式法和递推公式法〕、图象法.〔3〕分类:按项数有限还是无限分为有穷数列和无穷数列;按项与项之间的大小关系可分为单调数列、摆动数列和常数列.〔4〕n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.2.等差数列和等比数列的比较〔1〕定义:从第2项起每一项与它前一项的差等于同一常数的数列叫等差数列;从第2项起每一项与它前一项的比等于同一常数〔不为0〕的数列叫做等比数列. 〔2〕递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,.〔3〕通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.〔4〕性质等差数列的主要性质:①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=.③()()nm a a n m d m n *-=-∈N ,.④232k k k k k S S S S S --,,,…成等差数列.等比数列的主要性质:①单调性:当1001a q <⎧⎨<<⎩,或者者101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或者者1001a q >⎧⎨<<⎩时,为递减数列;当0q <时,为摆动数列;当1q =时,为常数列.②假设m n p q +=+,那么()m n p q a a a a m n p q *=∈N ··,,,.特别地,假设2m n p +=,那么2m n p a a a =·.③(0)n m nma q m n q a -*=∈≠N ,,. ④232k kk k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,假设k 为偶数,不是等比数列.假设k 为奇数,是公比为1-的等比数列.三、考点剖析考点一:等差、等比数列的概念与性质 例1.〔2021模拟〕数列.12}{2n n S n a nn -=项和的前〔1〕求数列}{n a 的通项公式;〔2〕求数列.|}{|n n T n a 项和的前解:〔1〕当111112,1211=-⨯===S a n时;、当.213])1()1(12[)12(,2221n n n n n S S a n n n n -=-----=-=≥-时,.213111的形式也符合n a -=.213}{,n a a n n -=的通项公式为数列所以、〔2〕令.6,,0213*≤∈≥-=n n n a n 解得又N当2212112||||||,6n n S a a a a a a T n n n n n -==+++=+++=≤ 时;当||||||||||,67621n n a a a a a T n++++++=> 时综上,⎪⎩⎪⎨⎧>+-≤-=.6,7212,6,1222n n n n n n T n点评:此题考察了数列的前n 项与数列的通项公式之间的关系,特别要注意n =1时情况,在解题时经常会忘记。

数列的通项与求和教案

数列的通项与求和教案

数列的通项与求和教案数列是数学中一个重要的概念,它由一系列按照一定规律排列的数构成。

在数列中,通项和求和是两个基本的概念和问题。

本教案将介绍数列的通项和求和的概念及求解方法,以帮助学生更好地理解和应用相关知识。

一、数列的通项数列的通项是指根据数列中的位置n,通过一个公式或规律来表示数列中的第n项。

通项是数列的核心概念,它不仅能描述数列中的每一项,还可以帮助我们求解其他与数列相关的问题。

在数列的通项的求解中,最常见的情况是等差数列和等比数列。

1. 等差数列等差数列是指数列中的每一项与前一项之间的差值都相等的数列。

设数列的首项为a₁,公差为d,则等差数列的通项公式为:an = a₁ + (n-1)d其中,an表示数列中的第n项。

2. 等比数列等比数列是指数列中的每一项与前一项之间的比值都相等的数列。

设数列的首项为a₁,公比为r,则等比数列的通项公式为:an = a₁ * r^(n-1)其中,an表示数列中的第n项。

二、数列的求和数列的求和是指将数列中的所有项相加得到的结果。

数列的求和可以帮助我们更好地理解数列的性质,进一步推导出一些重要的结论。

同样地,在数列的求和中,最常见的情况是等差数列和等比数列。

1. 等差数列的求和对于等差数列,我们可以通过以下公式求解其前n项和Sn:Sn = (n/2) * (a₁ + an)其中,Sn表示等差数列的前n项和。

2. 等比数列的求和对于公比不为1的等比数列,我们可以通过以下公式求解其前n项和Sn:Sn = (a₁ * (1 - r^n)) / (1 - r)其中,Sn表示等比数列的前n项和。

三、练习与应用在学习了数列的通项和求和的概念及求解方法后,学生可以通过多做题目来加深对相关知识的理解和掌握。

可以安排一些练习题,帮助学生在熟练掌握数列的通项和求和求解方法后,能够灵活应用于实际问题中。

例如,给定一个等差数列的首项a₁为2,公差d为3,求该数列的第10项和前10项的和。

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法 讲义 (解析版)

2023届高三数学一轮复习专题 数列累加法构造等比等递推公式求通项及常用求和方法  讲义 (解析版)

数列求解通项的方法总结方法一、公式法当已知数列的类型(如已知数列为等差或等比数列)时,可以设出首项和公差(公比),列式计算。

1、等差数列通项公式: dn a a n )1(1-+=2、等比数列通项公式:例1、设等差数列{a n }的公差为d ,前n 项和为S n ,等比数列{b n }的公比为q ,已知b 1=a 1,b 2=2,q=d ,S 10=100.(1)求数列{a n },{b n }的通项公式 (2)当d >1时,记c n =,求数列{c n }的前n 项和T n .变式1、已知{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 1=b 1=1,b 2+b 3=2a 3,a 5﹣3b 2=7.(Ⅰ)求{a n }和{b n }的通项公式;(Ⅱ)设c n =a n b n ,n ∈N *,求数列{c n }的前n 项和.11-=n n q a a方法二、利用前n 项和与通项的关系已知数列{ a n }前n 项和S n ,求通项公式,利用 a n ={)1()2(11=≥--n S n S S n n 特别地,当n=1的值与S 1的值相同时,合并为一个通项公式,否则写成分段的形式。

例2、(1)设数列{a n }的前n 项和为S n ,已知2S n =3n+3.求{a n }的通项公式;(2)S n 为数列{a n }的前n 项和,己知a n >0,a n 2+2a n =4S n +3 (I )求{a n }的通项公式.(Ⅱ)设b n =,求数列{b n }的前n 项和.变式2、(2015·四川)数列{a n }(n=1,2,3…)的前n 项和S n ,满足S n =2a n ﹣a 1,且a 1,a 2+1,a 3成等差数列.(Ⅰ)求数列{a n }的通项公式; (Ⅱ)设数列的前n 项和为T n ,求T n .方法三、利用递推关系式与通项的关系类型1、累加法 形如)(1n f a a n n +=+例3、(2014·全国卷)数列{a n }满足a 1=1,a 2=2,a n+2=2a n+1-a n +2.(1)设b n =a n+1-a n ,证明{b n }是等差数列; (2)求数列{a n }的通项公式.变式3、已知数列{}n a 满足11211n n a a n a +=++=,,求数列{}n a 的通项公式。

2025届高考数学一轮复习教案:数列-数列的概念

2025届高考数学一轮复习教案:数列-数列的概念

第七章数列第一节数列的概念【课程标准】1.了解数列的概念和几种简单的表示方法(列表、图象、通项公式).2.了解数列是自变量为正整数的一类特殊函数.3.能够利用a n与S n的关系求数列的通项公式.4.能根据数列递推关系求数列的项或通项公式.【考情分析】考点考法:高考题常以数列的概念为载体,考查数列项、前n项和及其与通项公式的关系.S n和a n的关系是高考热点,在各种题型中都会有所体现.核心素养:数学抽象、数学运算、逻辑推理.【必备知识·逐点夯实】【知识梳理·归纳】1.数列的有关概念概念含义数列按照确定的顺序排列的一列数数列的项数列中的每一个数数列的通项数列{a n}的第n项a n通项公式数列{a n}的第n项与序号n之间的关系式前n项和数列{a n}中,S n=a1+a2+…+a n2.数列的表示法列表法列表格表示n与a n的对应关系图象法把点(n,a n)画在平面直角坐标系中公式法通项公式把数列的通项使用公式表示的方法递推公式使用初始值a1和a n与a n+1的关系式或a1,a2和a n-1,a n,a n+1的关系式等表示数列的方法函数法a n=f(n),n∈N*【微点拨】(1)并不是所有的数列都有通项公式;(2)数列的通项公式不唯一;(3)归纳与猜想是研究数列的重要方法.3.数列的分类单调性递增数列∀n∈N*,a n+1>a n递减数列∀n∈N*,a n+1<a n常数列∀n∈N*,a n+1=a n摆动数列从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列周期性∀n∈N*,存在正整数k,a n+k=a n【微点拨】(1)数列的单调性可以类比数列的通项公式对应的函数解析式在区间(0,+∞)上的单调性;(2)可以把数列函数化,利用函数方法研究数列的单调性.4.数列的前n项和数列{a n}的前n项和S n=a1+a2+a3+…+-1+a n,则a n=1,=1,--1,≥2.【基础小题·自测】类型辨析改编题号12,3,4 1.(多维辨析)(多选题)下列结论不正确的是()A.数列5,2,0与2,0,5是同一个数列B.根据数列的前几项归纳出数列的通项公式可能不止一个C.任何一个数列不是递增数列,就是递减数列D.如果数列{a n}的前n项和为S n,则对∀n∈N*,都有a n=S n-S n-1【解析】选ACD.A中两个数列项的顺序不同,不是同一个数列;B正确;C中数列可能是常数数列或摆动数列;D中当n=1时,a1=S1-S0无意义.2.(选择性必修第二册P5例2·变形式)数列0,23,45,67,…的一个通项公式为()A.a n=-1r1B.a n=-12r1C.a n=2(-1)2-1D.a n=22r1【解析】选C.将0写成01,观察数列中每一项的分子、分母可知,分子为偶数列,可表示为2(n-1),n∈N*;分母为奇数列,可表示为2n-1,n∈N*.3.(选择性必修第二册P6例5·变形式)数列1,3,6,10,15,…的递推公式可以是()A.a n+1=a n+n,n∈N*B.a n=a n-1+n,n≥2,n∈N*C.a n+1=a n+(n+1),n≥2,n∈N*D.a n=a n-1+(n-1),n∈N*,n≥2【解析】选B.设数列1,3,6,10,15,…为,则a2-a1=2,a3-a2=3,a4-a3=4,a5-a4=5,…,n=2时,A,D不合题意;而C中不包含a2-a1=2,由此可得数列满足a n-a n-1=n,n≥2,n∈N*.4.(选择性必修第二册P4例1·变形式)已知数列{a n}满足a n=(r1)2,则S3=________.【解析】数列{a n}满足a n=(r1)2,可得a1=1,a2=3,a3=6,所以S3=1+3+6=10.答案:10【巧记结论·速算】在数列{a n}中,若a n最大,则≥-1,≥r1(n≥2).若a n最小,则≤-1,≤r1(n≥2).【即时练】已知数列中,a n=n2-5n+4,则数列的最小项是()A.第1项B.第3项、第4项C.第4项D.第2项、第3项【解析】选D.根据题意,数列中,a n=n2-5n+4,则a n+1-a n=(n+1)2-5(n+1)+4-n2+5n-4=2n-4,当n<2时,有a n+1-a n<0,则有a1>a2,当n=2时,有a n+1-a n=0,则有a2=a3,当n>2时,有a n+1-a n>0,则有a3<a4<……故数列的最小项是第2项、第3项.【核心考点·分类突破】考点一通项公式的探索及应用[例1](1)(多选题)已知数列{a n}的通项公式为a n=9+12n,则在下列各数中,是{a n}的项的是()A.21B.33C.152D.153【解析】选ABD.由数列的通项公式得,a1=21,a2=33,a12=153.(2)写出数列的一个通项公式,使它的前4项分别是下列各数.①23,45,87,169;②-12,23,-34,45;③3,4,3,4;④6,66,666,6666.【解析】①4个项都是分数,它们的分子依次为2,22,23,24,分母是正奇数,依次为2×1+1,2×2+1,2×3+1,2×4+1,所以给定4项都满足的一个通项公式为a n=22r1.②4个项按先负数,后正数,正负相间排列,其绝对值的分子依次为1,2,3,4,分母比对应分子多1,所以给定4项都满足的一个通项公式为a n=(-1)nr1.③4个项是第1,3项均为3,第2,4项均为4,所以给定4项都满足的一个通项公式为a n=3,=2-14,=2(k∈N*).④4个项,所有项都是由数字6组成的正整数,其中6的个数与对应项数一致,依次可写为6=23(10-1),66=23(102-1),666=23(103-1),6666=234-1),所以给定4项都满足的一个通项公式为a n=23(10n-1).【解题技法】由数列的前几项求通项公式的方法(1)根据所给数列的前几项求其通项公式时,需仔细观察分析,抓住其几方面的特征:分式中分子、分母的各自特征;相邻项的联系特征;拆项后的各部分特征;符号特征.应多进行对比、分析,从整体到局部多角度观察、归纳、联想.(2)对于正负符号变化,可用(-1)n或(-1)n+1来调整.【对点训练】1.若一数列为1,37,314,321,…,则398是这个数列的()A.不在此数列中B.第13项C.第14项D.第15项【解析】选D.因为1=37×0,37=37×1,314=37×2,321=37×3,因此符合题意的一个通项公式为a n=37(n-1),由37(n-1)=398解得n=15,所以398是这个数列的第15项.2.根据下面各数列前几项的值,写出数列的一个通项公式:(1)-1,7,-13,19,…;(2)-11×2,12×3,-13×4,14×5,…;(3)23,415,635,863,1099,…;(4)9,99,999,9999,….【解析】(1)偶数项为正,奇数项为负,故通项公式必含有因式(-1)n;观察各项的绝对值,后一项的绝对值总比它前一项的绝对值大6,故数列的一个通项公式为a n=(-1)n(6n-5).(2)这个数列的前4项的绝对值都等于序号与序号加1的乘积的倒数,且奇数项为负,偶数项为正,故它的一个通项公式为a n=(-1)n·1(r1).(3)这是一个分数数列,其分子构成偶数数列,而分母可分解为1×3,3×5,5×7,7×9,9×11,…,即分母的每一项都是两个相邻奇数的乘积,故所求数列的一个通项公式为a n=2.(2-1)(2r1)(4)这个数列的前4项可以写成10-1,100-1,1000-1,10000-1,故所求数列的一个通项公式为a n=10n-1.考点二已知S n或S n与a n的关系求a n[例2]金榜原创·易错对对碰①若数列{a n}的前n项和S n=2n+1,则数列的通项公式为a n=________.②若数列{a n}的前n项和S n=2n-1,则数列的通项公式为a n=________.【解析】①当n=1时,a1=S1=21+1=3;当n≥2时,a n=S n-S n-1=(2n+1)-(2n-1+1)=2n-2n-1=2n-1.综上有a n=3,=1,2-1,≥2.答案:3,=1,2-1,≥2.②当n=1时,a1=S1=21-1=1;当n≥2时,a n=S n-S n-1=(2n-1)-(2n-1-1)=2n-2n-1=2n-1.综上有a n=2n-1.答案:2n-1【解题技法】1.已知S n求a n的三个步骤(1)利用a1=S1求出a1.(2)用n-1替换S n中的n得到一个新的关系式,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的解析式.(3)对n=1时的结果进行检验,看是否符合n≥2时a n的解析式,如果符合,则可以把数列的通项公式合写;如果不符合,则应该分n=1与n≥2两段来写.2.已知S n与a n的关系求a n的两个方法(1)利用S n-S n-1=a n(n≥2)消去S n,转化为a n与a n-1的关系求a n;(2)利用a n=S n-S n-1(n≥2)消去a n,转化为S n与S n-1的关系,求出S n后再求a n.提醒:当n≥2时推出的关系不包含n=1的情况,因此需要验证n=1时是否成立,如果成立,则合并表示,如果不成立,则分段表示.【对点训练】1.已知正项数列{a n}中,1+2+…+=(r1)2,则数列{a n}的通项公式为()A.a n=nB.a n=n2C.a n=2D.a n=2 2【解析】选B.因为1+2+…+=(r1)2,所以1+2+…+-1=(-1)2(n≥2),两式相减得=(r1)2-(-1)2=n(n≥2),所以a n=n2(n≥2),①又当n=1时,1=1×22=1,a1=1,适合①式,所以a n=n2,n∈N*.2.记S n为数列{a n}的前n项和,若S n=2a n+1,则S n=________.【解析】因为S n=2a n+1,所以S n+1=2a n+1+1,所以a n+1=2a n+1-2a n,所以a n+1=2a n,当n=1时,S1=a1=2a1+1,所以a1=-1,所以数列{a n}是以-1为首项,2为公比的等比数列,所以S n=-(1-2)1-2=1-2n.答案:1-2n【加练备选】1.已知数列{a n}满足a1+2a2+3a3+…+na n=2n,则a n=________.【解析】当n=1时,a1=21=2,因为a1+2a2+3a3+…+na n=2n,①故a1+2a2+3a3+…+(n-1)a n-1=2n-1(n≥2),②由①-②得na n=2n-2n-1=2n-1,所以a n=2-1.显然当n=1时不满足上式,所以a n=1,,≥2.答案=1,≥22.已知数列的前n项和S n=3n+b,求的通项公式.【解析】当n=1时,a1=S1=3+b.当n≥2时,a n=S n-S n-1=2·3n-1,因此,当b=-1时,a1=2适合a n=2·3n-1,所以a n=2·3n-1.当b≠-1时,a1=3+b不适合a n=2·3n-1,所以a n=3+,=1,2·3-1,≥2.综上可知,当b=-1时,a n=2·3n-1;当b≠-1时,a n=3+,=1,2·3-1,≥2.考点三数列的性质及其应用【考情提示】数列作为一种特殊的函数,除考查求通项公式、求和等之外,还考查数列的单调性,项的最值,周期性等,解题时要类比函数的研究方法,结合数列的特性.角度1数列的单调性及项的最值[例3]已知数列{a n}的通项公式为a n=3-23r1(n∈N*).则下列说法正确的是()A.这个数列的第10项为2731B.98101是该数列中的项C.数列中的各项都在区间[14,1)内D.数列{a n}是单调递减数列【解析】选C.令n=10,得a10=2831.故选项A不正确,令3-23r1=98101,得9n=300,此方程无正整数解,故98101不是该数列中的项.因为a n=3-23r1=3r1-33r1=1-33r1,又n∈N*,所以数列{a n}是单调递增数列,所以14≤a n<1,所以数列中的各项都在区间[14,1)内,故选项C正确,选项D不正确.【解题技法】关于数列的单调性及项的最值(1)求数列项的最值需要先研究数列的单调性,一是通过列举项找规律;二是利用数列递增(减)的等价条件,求出递增、递减项的分界点处的n值.(2)利用函数方法,令n∈(0,+∞),研究对应函数的单调性、图象确定最值,再回归到数列问题.【对点训练】已知数列{a n}的通项公式为a n=3r2,若数列{a n}为递减数列,则实数k的取值范围为()A.(3,+∞)B.(2,+∞)C.(1,+∞)D.(0,+∞)【解析】选D.因为a n+1-a n=3r3+2r1-3r2=3-3-2r1,由数列{a n}为递减数列知,对任意n ∈N*,a n+1-a n=3-3-2r1<0,所以k>3-3n对任意n∈N*恒成立,所以k∈(0,+∞).角度2数列的周期性[例4]已知数列{a n}满足a n+1=a n-a n-1(n≥2),a1=m,a2=n,S n为数列{a n}的前n项和,则S2029的值为()A.2029n-mB.n-2029mC.mD.n【解析】选C.根据题意计算可得a3=n-m,a4=-m,a5=-n,a6=m-n,a7=m,a8=n,…,因此数列{a n}是以6为周期的周期数列,且a1+a2+…+a6=0,所以S2029=S338×6+1=a1=m.【解题技法】关于数列的周期性在求数列的某一项的值,且该项的序号较大时,应该考虑该数列是否具有周期性,一般地,求出数列的前几项,确定周期,然后利用数列的周期性即可求出所求项.【对点训练】已知数列{a n}中,a1=12,a n+1=1+1-,则a2025=()A.-2B.12C.-13D.3【解析】选B.因为a1=12,所以a2=1+11-1=3,a3=1+21-2=-2,a4=1+31-3=-13,a5=1+41-4=12,…,所以数列{a n}是周期数列且周期T=4,所以a2025=a1=12.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的通项与求和(一)
教学目标
1掌握求通项与求和的基本方法.
2能利用基础知识和方法进行合理转化,熟练求通项与求和。

考点一 求数列通项公式
(必会)例1、(1)设数列{a n }满足a 1+a 22+a 33+…+a n n =1-1
2n ,则a n =( )
A .1-12n
B .12
n -3 C.12n D .n
2n
(2)已知首项为1的数列{a n }满足点((2n +1)a n +1,(2n -1)a n )在函数y =10x
,y =lg x 图象的对称轴上.则a n =________.
给出S n 与a n 的递推关系求a n 的常用思路:
一是利用S n -S n -1=a n (n ≥2)转化为a n 的递推关系,再求其通项公式; 二是转化为S n 的递推关系,先求出S n 与n 之间的关系,再求a n .
(2)将已知递推关系式整理、变形得到等差或等比数列的通项公式,或用累加法(适用于a n +1=a n +f (n )型)、累乘法(适用于a n +1=a n ·f (n )型)、待定系数法(适用于a n +1=pa n +q 型)求通项公式. 考点二 数列求和 命题角度1 裂项相消法求和
(必会)例2、已知等差数列{a n }满足a n +1+n =2a n +1. (1)求{a n }的通项公式; (2)(2)记S n 为{a n }的前n 项和,求数列⎩⎨⎧⎭
⎬⎫
1S n 的前
n 项和T n .
例3、已知等差数列{a n }中,a 3=3,a 2+2,a 4,a 6-2成等比数列.
(1)求数列{a n }的通项公式;
(2)记b n =(-1)n a 2n +1
a n a n +1,数列{
b n }的前n 项和为S n ,求S 2n .
裂项相消法求和需过的“三关”:
一是定通项关,即会利用求通项的常用方法,求出数列的通项公式; 二是巧裂项关,即能将数列的通项公式准确裂项;
三是消项求和关,即把握消项的规律,求和时正负项相消,准确判断剩余的项是哪几项,从而准确求和.
命题角度3 错位相减法求和

4、(必会)数列{a n }满足:⎩⎨⎧⎭
⎬⎫
a n n 是公比为2
的等比数列,⎩⎨⎧⎭
⎬⎫
a n 2n 是公差为1的等差数列.
(1)(一题多解)求a 1,a 2的值; (2)试求数列{a n }的前n 项和S n .
运用错位相减法求和的关键:
一是判断模型,即判断数列{a n},{b n}是不是一个为等差数列,一个为等比数列;
二是错开位置,为两式相减不会看错列做准备;
三是相减,相减时一定要注意最后一项的符号,在解题时常在此步出错,一定要小心.
命题角度1分组转化法求和
例5、数列{a n}中,a n≠0,S n是它的前n项和,a1=3且S2n=3n2a n+S2n-1,n≥2.
(1)证明:数列{a n+a n+1}为等差数列;(2)求{a n}的前n项和S n.
分组转化法求和的关键:
即观察数列的通项公式的特征,若其是由若干个简单数列(如等差数列、等比数列)的通项组成,则求和时可用分组求和法。

当堂检测
1、设等比数列{a n}的前n项和为S n,且S n=k·2n-3,则a k=()
A.4B.8 C.12 D.16
2、在数列{a n}中,a1=
1
3,a n=(-1)
n·2a n
-1
(n≥2),则a3=()
A.-
16
3B.
16
3C.-
4
3D.
8
3
3、已知数列{a n}满足a1=1,a n+1=a n+log3





1-
2
2n+1,则a41=() A.-1 B.-2 C.-3 D.1-log340
4、已知S n是数列{a n}的前n项和,且log5(S n+1)=n+1,则数列{a n}的通项公式为________.
5、已知数列{a n}满足a n+1=
2a2n+3a n+1
a n+1
(n∈N*),且a1=1,则数列{a n}的通项公式为
6、在①数列{S n-n2}是公差为-3的等差数列,∈S n=n2+a n-5n+4,
∈数列{a n}是公差不为0的等差数列,且a3a6=a24这三个条件中任意选择一个,添加到下面的题目中,然后解答补充完整的题目.
已知数列{a n}中,a1=-2,{a n}的前n项和为S n,且________.
(1)求a n;
(2)若b n=
1
(n+1)(a n+4)
,数列{b n}的前n项和为T n,求证:
1
4≤T n<
1
2.。

相关文档
最新文档