一阶逻辑推理规则

合集下载

5.3 一阶逻辑的推理理论

5.3 一阶逻辑的推理理论

例5.12 在自然推理系统 F中,构造下面推理的证明: 不存在能表示成分数的无理数。有理数都能表示成分数。 因此,有理数都不是无理数。个体域为实数集合。 解: 设 F(x):x为无理数,G(x):x为有理数, G H(x):x能表示成分数。 前提: ┐∃x(F(x)∧H(x)),∀x(G(x)→H(x)) ∧H( )), →H( 结论: ∀x(G(x)→┐F(x)) →┐F(
7
全称量词引入规则( UG规则,∀+) 全称量词引入规则(简称UG UG , ) xA( A(y)⇒∀xA(x) 公式成立的条件是: 1、在A(y)中y自由出现,且y取任何值时A均为真。 A y A 2、取代y的x不在A(y)中出现。 y x A
8
存在量词消去规则( EI规则,∃-) 存在量词消去规则(简称EI EI ∃ ) xA( ∃xA(x)⇒ A(c) 公式成立的条件是 1、c是使A为真的特定的个体常项 A 2、c不能已在A(x)中出现过 A 3、∃xA(x)中没有自由出现的个体变项 ∃xA(
9
例 设个体域为实数集合,F(x,y)为x>y。 , 指出在推理系统 F中,以① ∀x∃y F(x,y)(真命题)为前 ① ∃ , ( ) 提,推出④ ∀x F(x,c)(假命题)的原因。 ④ , ( ) ① ∀x∃y F(x,y) 前提引入 ∃ ( , ) ② ∃y F(z,y) ( , ) ① UI规则 ③ F(z,c) ( , ) ② EI规则 ④ ∀x F(x,c) ③ UG规则 ( , ) 解: 错误出在第③步, ③ 由于∃yF(z,y)有自由出现的z,不满足EI规则的条件3。 ∃ 所以对② ∃yF(z,y)不能使用EI规则。 ②
4
构造证明方法在自然推理系统F中进行。 F 定义(自然推理系统F) F 自然推理系统F由以下三个部分组成: F 1、字母表 2、公式 3、推理规则(15个) (1)前提引入规则 (2)结论引入规则 (3)置换规则

05 一阶逻辑等值演算与推理

05 一阶逻辑等值演算与推理


4
(3) C = xyL(x, y) (L(2, 2) L(2, 3)) (L(3, 2) L(3, 3)) (10) (01) 1.

4
(4) D = yxL(x, y) y(L(2, y)L(3, y)) (L(2, 2)L(3, 2)) (L(2, 3)L(3, 3)) (10) (01) 0. 一般地:y x L (x, y) x y L (x, y) 在实变函数上的应用举例
提 前 讲
证 只要证明在某个解释下两边的式子不等值.
(1)取解释 I: 个体域为 ; A(x) 为 x 是奇数; B(x) 为 x 是 偶数. 则 x(A(x) A(x)) 为真, 而 xA(x) xB(x) 为假.
(2)取解释 I 同(1), 则 x(A(x) B(x)) 为假, 而 xA(x) xB(x) 为真.
/quantifier elimination
3. 量词辖域收缩与扩张等值式
设 A(x) 含 x 的自由出现, 而 B 不含 x 的自由出现, 则
(1)
x(A(x)B) xA(x) B
x(A(x)B) xA(x) B x(A(x)B) xA(x) B x(BA(x)) B xA(x) (5.3)
/quantifier distribution
例 2
例2 证明 对 无分配律, 而 对 无分配律. (1) x(A(x)B(x)) xA(x) xB(x);
(2) x(A(x)B(x)) xA(x) xB(x),
其中 A(x), B(x) 含自由变元 x.
2、一阶逻辑中的基本等值式
第一组 代换实例 命题逻辑中的重言式的代换实例都是一阶逻辑中的 永真式, 因而命题逻辑中的等值式†给出的代换实例 都是一阶逻辑的等值式.

4一阶逻辑公式及解释

4一阶逻辑公式及解释

4一阶逻辑公式及解释一阶逻辑(First-Order Logic, FOL)是数理逻辑中的一个重要分支,它被广泛应用于数学、计算机科学和人工智能等领域。

在一阶逻辑中,逻辑公式是推理的基础,能够对命题进行符号化的描述和推理。

本文将介绍一阶逻辑的基本概念和常见的一阶逻辑公式,并对其进行解释。

一、一阶逻辑基本概念1. 常量:在一阶逻辑中,常量是指代具体对象的符号,如a、b、c 等。

常量一般用小写字母表示。

2. 变量:变量是用来占位的符号,可以代表任意对象。

在一阶逻辑中,变量一般用大写字母表示,如X、Y、Z等。

3. 函数:函数是一种从一个或多个参数到一个值的映射关系。

在一阶逻辑中,常用的函数包括算术函数、关系函数等。

函数一般用小写字母或希腊字母表示,如f(x)、g(x)等。

4. 谓词:谓词是描述对象性质的符号,可以表示真假的陈述。

在一阶逻辑中,常用的谓词包括等于、大于、小于等。

谓词一般用小写字母或希腊字母表示,如P(x)、Q(x)等。

二、一阶逻辑公式在一阶逻辑中,公式是用符号表示的逻辑陈述,包括原子公式和复合公式两类。

1. 原子公式原子公式是一阶逻辑中最基本的公式,它不再含有其他公式作为子公式。

原子公式由一个谓词和一个或多个常量、变量组成,形式为P(t1,t2,...,tn),其中P为谓词,t1,t2,...,tn为常量、变量。

举例:P(a,b)表示P是一个二元谓词,a和b是其两个参数。

2. 复合公式复合公式由一个或多个公式通过逻辑连接词(如否定、合取、析取、蕴含等)组合而成。

- 否定(¬):如果φ是一个一阶逻辑公式,则¬φ也是一个一阶逻辑公式。

- 合取(∧):如果φ和ψ是两个一阶逻辑公式,则(φ∧ψ)也是一个一阶逻辑公式。

- 析取(∨):如果φ和ψ是两个一阶逻辑公式,则(φ∨ψ)也是一个一阶逻辑公式。

- 蕴含(→):如果φ和ψ是两个一阶逻辑公式,则(φ→ψ)也是一个一阶逻辑公式。

举例:如果P(x)表示“x是人”,Q(x)表示“x是聪明的”,那么复合公式可以表示为:(P(x)∧Q(x)),表示“x是人且x是聪明的”。

第5章一阶逻辑等值演算与推理

第5章一阶逻辑等值演算与推理

二、基本规则 .置换规则 设Φ()是含公式的公式,Φ()是用公式取代
Φ()中所有的之后的公式,若 ,则Φ() Φ(). 一阶逻辑中的置换规则与命题逻辑中的置
换规则形式上完全相同,只是在这里,是一阶 逻辑公式。
.换名规则 设为公式,将中某量词辖域中某约束变项 的所有出现及相应的指导变元改成该量词辖域 中未曾出现过的某个体变项符号,公式的其余 部分不变,设所得公式为',则' .
.存在量词引入规则(简称规则或)
该式成立的条件是: ()是特定的个体常项。 ()取代的不能在()中出现过。
.存在量词消去规则(简记为规则或)
该式成立的条件是: ()是使为真的特定的个体常项。 ()不在()中出现。 ()若()中除自由出现的外,还有其它自由
出现的个体变项,此规则不能使用。
三、一阶逻辑自然推理系统 定义 自然推理系统定义如下:
()→() (换名规则) 原公式中,,都是既约束出现又有自
由出现的个体变项,只有仅自由出现。而在 最后得到的公式中,,,,,中再无既是约 束出现又有自由出现个体变项了。还可以如 下演算,也可以达到要求。
()→() ()→() (代替规则) ()→() (代替规则)
(2)(()→()) (()→()) (代替规则)
本例说明,全称量词“”对“∨”无分配律。 同样的,存在量词“”对“∧”无分配律。但 当()换成没有出现的时,则有
(()∨) ()∨ () (()∧) ()∧ ()
例 设个体域为={},将下面各公式的量词消
去: () (()→()) () (()∨()) () () 解 () (()→())
(()→())∧(()→())∧(()→()) () (()∨())

一阶逻辑推理理论

一阶逻辑推理理论

一阶逻辑推理实例
命题逻辑中的推理规则及在一阶逻辑中
的代换实例,在一阶逻辑推理中仍然使 用 量词消去和引入规则
例1: 证明苏格拉底三段论“凡人都是要死的。 苏格拉底是人.所以苏格拉底是要死的。” 命题符号化:F(x):x是人(特性谓词); G(x):x是要死的; a:苏格拉底 前提:x(F(x)→G(x)),F(a) 结论:G(a) 证明: (1)x(F(x)→G(x)) 前提引入 (2)F(a)→G(a) UI(1) (3)F(a) 前提引入 (4)G(a) (2)(3)假言推理
xA(x) A(y)中, y应为任意的不在A(x)中约束 出现的个体变项。
全称量词引入规则(简称UG规则) A(y) xA(x) ③ 公式成立的条件是 1.y在A(y)中自由出现,且y取任何值时A均为真 2.取代y的x不在A(y)中约束出现。
例:设定义域为实数, 取F(x,y)为x>y,A(y)=xF(x,y)=x(x>y), A对任意给定的y都是真的。 如下推理是否正确 : ①xF(x,y) 前提引入 ②xxF(x,x) ①UG xx(x>x)是假命题,推理出错。 出错的原因是违背了条件2:取代y的x不在A(y) 中约束出现 ②zxF(x,z) ①UG √
例: 在自然数集中,设F(x)为x是奇数,G(x)是x 是偶数,则xF(x)∧xG(x)是真命题. 以下推理 是否正确: (1) xF(x)∧xG(x) 前提引入 (2) xF(x) (1)化简规则 (3) xG(x) (1)化简规则 (4) F(a) (2)EI (5) G(b) (3)EI (6) F(a)∧G(b) (4)(5)合取规则 (7) x(F(x)∧G(x)) (6)EG
前提: x ( F(x) → G(x)) ,x ( F(x) ∧ H(x) ) 结论: x ( G(x) ∧ H(x) )

一阶逻辑的推理理论

一阶逻辑的推理理论

前提引入 ① US 否定结论引入 ③ 置换 ④ US ②⑤合取 ⑥置换 前提引入 ⑧ US ⑦⑨合取
练习:构造下面推理的证明: 前提: x(P(x) → Q(x)), ┐Q(a) 结论: ┐p(a)
一阶逻辑推理理论(简介)
福建师范大学数学与计算机科学学院
一阶逻辑推理规则
(1)前提引入规则
(2)结论引入规则
(3)置换规则
(4)代入规则(代换实例)
一阶逻辑推理规则
(5)全称特定化规则(US) (6)存在特定化规则(ES)
xA( x) A( y)
xA( x) A(c)
(7)全称一般化规则(UG)
(8)存在一般化规则(EG)
A( x) yA( y)
A(c) yA( y)
例 1 证明苏格拉底三段论: 前提:凡人必死 x(M(x)→F(x)),M(x):x是人;F(x):x必死 苏格拉底是人 M(c), c:苏格拉底 结论:苏格拉底必死 F(c) 证明:
① x(M(x)→F(x))
一阶逻辑推理理论简介福建师范大学数学与计算机科学学院福建师范大学数学与计算机科学学院一阶逻辑推理规则一阶逻辑推理规则1前提引入规则2结论引入规则换3置换规则4代入规则代换实例一阶逻辑推理规则一阶逻辑推理规则5全称特定化规则us6存在特定化规则es全称化则ayxax??xaxac??aaxa?7全称一般化规则ug8存在一般化规则egyay??acyay??例1证明苏格拉底三段论
② M(c)→F(c) ③ M(c) ① US
前提引入
前提引入
④ F(c)
②③假言推理
ቤተ መጻሕፍቲ ባይዱ
例2 构造下面推理的证明: 前提: x(P(x)∨Q(x)), x ┐P(x) 结论: x Q(x)

离散数学-第一部分-数理逻辑-第五章 一阶逻辑等值演算与推理

离散数学-第一部分-数理逻辑-第五章 一阶逻辑等值演算与推理
(4) 量词分配等值式 ① x(A(x)B(x)) xA(x)xB(x) ② x(A(x)B(x)) xA(x)xB(x)
注意:对,对无分配律
5
量词分配等值式证明
设A(x),B(x)是任意的含自由出现个体变项x的公式,则
(1)x(A(x)∧B(x)) xA(x)∧xB(x) (2)x(A(x)∨B(x)) xA(x)∨ xB(x)
置换规则、换名规则、代替规则
1. 置换规则
设(A)是含A的公式, 那么, 若AB, 则(A)(B).
2. 换名规则 设A为一公式,将A中某量词辖域中个体变项的所有约束 出现及相应的指导变元换成该量词辖域中未曾出现过的个 体变项符号,其余部分不变,设所得公式为A,则AA.
3. 代替规则 设A为一公式,将A中某个个体变项的所有自由出现用A中 未曾出现过的个体变项符号代替,其余部分不变,设所得 公式为A,则AA.
14
实例
解法二
xy(F(x)G(y)) x(F(x)yG(y))
辖域缩小等值式
x(F(x)G(a)G(b)G(c))
(F(a)G(a)G(b)G(c))
(F(b)G(a)G(b)G(c))
(F(c)G(a)G(b)G(c))
15
实例
(2) xyF(x,y) xyF(x,y)
x(F(x,a)F(x,b)F(x,c)) (F(a,a)F(a,b)F(a,c))

x(F(x)G(x))
x(F(x)y(G(y)H(x,y))) 不是前束范式,
17
前束范式存在定理
定理5.1(前束范式存在定理) 一阶逻辑中的任何公式都存在与之等值的前束范式
例4 求下列公式的前束范式 (1) x(M(x)F(x)) 解 x(M(x)F(x))

第4章_一阶逻辑

第4章_一阶逻辑

Q(1,2) = 0
Q(3,0) = 1
7
一阶逻辑基本概念
EXAMPLE 3
设R(x, y, z) 表示语句“x+y=z.”,
则R(1, 2, 3) 和R(0, 0, 1) 的真值是多少?
R(1, 2, 3)= 1
R(0, 0, 1)= 0
8
一阶逻辑基本概念
当n>1时,通常P给出了xi(i=1,2,…,n)之间的关系。 例如, P(x,y,z) 表示 x 位于 y 与 z 之间,是一个三元 谓词。当x,y,z分别用赤道、南半球、北半球代入时, 得到命题:赤道位于南半球与北半球之间,其真值 为 1 。再如,将杭州、南京、北京代入,则得到: 杭州位于南京和北京之间,真值为0。 当n=0时(即0元谓词),该谓词对应一个命题。
18
一阶逻辑基本概念
EXAMPLE 8
设P(x) 表示语句“x2>10.”,个体域 为不大于4的所有正整数。则xP(x)的 真值是多少?
xP(x) =P(1)∨P(2)∨P(3)∨P(4) =1
19
一阶逻辑基本概念
EXAMPLE 9
在一阶逻辑中将下列命题符号化: (1) 所有的狮子都是凶猛的。
x(C(x)∨y(C(y)∧F(x, y))) 其中,C(x)表示“x有一台计算机”,F(x,y)表示“x和y 是朋友”,x和y的个体域为数计学院的所有学生集合。 解答:对于数计学院的任意一个学生x来说,x有一台 计算机,或者存在一个学生y,y有一台计算机而且x和 y是好朋友。换句话说,数计学院的所有学生要么有一 台计算机,要么有一个拥有一台计算机的朋友。
从苏格拉底三段论到一阶逻辑
苏格拉底苏格拉底三段论:人都是会死的, 苏格拉底是人,所以苏格拉底会死。

第五章 一阶逻辑推理理论

第五章 一阶逻辑推理理论

六、量词分配: 对∧, 对∨ 量词分配 设公式A(x),B(x)含自由出现的个体变项 ,则: 的个体变项x, 设公式 含自由出现的个体变项 x(A(x)∧B(x)) xA(x)∧xB(x) ∧ ∧ x(A(x)∨B(x)) xA(x)∨xB(x) ∨ ∨ 但是: 但是 对∨, 对∧不可分配 x(A(x)∨B(x)) ≠xA(x) ∨xB(x) (*) 1≠0 ∨ ≠ ∧xB(x) (**) 0≠1 x(A(x)∧B(x)) ≠xA(x) ∧ ∧ ≠ 要证谓词公式等值要穷尽所有解释, 要证谓词公式等值要穷尽所有解释 不等,只要 只要1个解释 不等 只要 个解释 个体变元的取值范围即个体域限制为自然数 自然数! 个体变元的取值范围即个体域限制为自然数 A(x)解释为 是奇数 解释为x是奇数 解释为x是偶数 解释为 是奇数,B(x)解释为 是偶数 则 解释为 是偶数,则 是所有自然数是奇数, 而xA(x)是所有自然数是奇数,是不对的!为0 是所有自然数是奇数 是不对的! 是所有自然数是偶数, 是所有自然数是偶数 是不对的! 而xB(x)是所有自然数是偶数,是不对的!为0 x(A(x)∨B(x))是“任何自然数是奇数或偶数”, ∨ 是 任何自然数是奇数或偶数” 为1
将下面公式化成等值的公式,使其不含有既是 等值的公式 例1 将下面公式化成等值的公式 使其不含有既是 约束出现又是自由出现的个体变项。 约束出现又是自由出现的个体变项。 自由出现的个体变项 →yG(x,y,z) xF(x,y,z)→ → 解:x在前件中是约束变元,在后件是自由变元, 在前件中是约束变元,在后件是自由变元 在前件中是约束变元 y在前件中是自由变元,在后件是约束变元, 在前件中是自由变元, 在前件中是自由变元 在后件是约束变元, 约束变元改名 改名: →sG(x,s,z) 约束变元改名: tF(t,y,z)→ → 自由变元改名 改名: →yG(t,y,z) 对自由变元改名: xF(x,s,z)→ → →yG(x,y,z)) x(F(x,y)→ → 在前件是自由, 解:y在前件是自由,在后件是约束,有歧义! 在前件是自由 在后件是约束,有歧义! →sG(x,s,z)) x(F(x,y)→ →

一阶逻辑的推理演算

一阶逻辑的推理演算

1一阶逻辑的推理演算这一讲我们学习一阶逻辑的自然推理系统。

其功能是由若干前提12,,,n A A A 推导出一条结论B 。

这相当于证明下列蕴含式是永真的: 12n A A A B ∧∧∧→1. 一阶逻辑的代入定理 将永真命题公式中的各命题变元代换为任何一阶公式后,所得的一阶公式是永真的。

例如,()p q p q →∧→是永真命题公式。

进行一阶公式代入p=F (x ),q=G (x )后得如下永真一阶公式:(()())()()F x G x F x G x →∧→定理1.1(代入定理)任何永真命题公式在代入一阶公式后是永真一阶公式。

证明 略。

证毕2. 永真蕴含式和推理定律永真蕴含式:若A →B 是永真式,则记为A B ⇒,称为永真蕴含式。

将永真命题蕴含式中的变元视为取值为任何一阶公式的变元,则该永真命题蕴含式就变成一条推理定律。

根据代入定理,推理定律表示一批形式相似的永真蕴含式。

因此,推理定律是描述永真蕴含式的模式。

由任何永真蕴含式可以得到对应的推理定律。

例如,由永真蕴含式()p q p q →∧⇒可得一阶逻辑的假言推理定律()A B A B →∧⇒,其中变元A ,B 表示任何一阶公式。

这条推理定律的含义是,对于任何一阶公式A 和B ,若(A →B )为真并且A 为真,则B 为真。

因此,由前提(A →B )与A 可得结论B 。

这是我们思维中最常用的一条推理规则,称为假言推理规则或者分离规则。

因此,推理定律可以当作推理规则使用。

2再如,(())p q q p →∧⌝→是永真蕴含式,由此可得推理定律(())A B B A →∧⌝⇒,称为拒取式。

命题逻辑的自然推理系统P 中的所有9条推理定律都可以当作一阶逻辑推理定律来使用。

3. 量词消去与引入规则与命题逻辑的自然推理系统相比,这是一阶逻辑自然推理系统所特有的推理规则。

见课本第75页。

这是课程中的一个难点,我们可以借助于语义来理解其正确性。

1) 全称量词消去规则(简记为∀-)(1)第一个竖式得出的结论是一个句型。

离散数学 第二章:一阶逻辑

离散数学 第二章:一阶逻辑
(1) xF(x) yH(x, y);
(2) xF(x) G(x, y);
(3) xyR(x, y) L(y, z) xH(x, y).
2.闭式
定义6. 设A为任一公式,若A中无自由出现的个体变项,则称A是 封闭的合式公式,简记闭式.
例: xF(x) G(x),xyF(x) G(x, y) 闭式, 但 xF(x) G(x, y),zyL(x, y, z) 不是闭式.
(1)所有的人都要死的. (2)有的人活百岁以上.
全称量词:一切,所有,任意. 用 表示.
1.量词
x:表示对个体域中的所有个
xF(x)体:表. 示个体域中的所有个体都具有性质F.
存在量词:存在着,有一个,至少有一个. 用 表示.
x:表示存在个体域里的个体.
xF ( x):表示存在着个体域中的个体具有性质F.
(2)xR(x) G(x), 其中 G(x): x是整数.
3) 同2).
例3. 将下面命题符号化. (1)对所有的x ,均有 x2-1=(x+1)(x-1). (2)存在x,使得 x+5=2.
要求: 1)个体域为自然数集合. 2)个体域为实数集合.
解:1) 不用引入特性谓词.
(1)xF(x), 其中 F(x): x2-1=(x+1)(x-1). 真命题
(3) xF(x) yF(y) L(x, y),
其中 F(x): x是自然数, L(x,y): y是 x的先驱数.
§2.2 一阶逻辑合式公式及解释
一、合式公式
1.字母表 定义1.字母表如下: (1)个体常项: a,b,c,… (2)个体变项: x,y,z,… (3)函数符号: f,g,h,… (4)谓词符号: F,G,H,…

x本科数理逻辑一阶逻辑与集合4-6

x本科数理逻辑一阶逻辑与集合4-6

例4: 前提∀x F(x)∨∀x G(x)) 结论 ∀x (F(x)∨ G(x)) 可用反证法 例5: 前提∀x (F(x)∨G(x)) , ∀x (F(x)→ H(x)) 结论 ∀x ( ┑H(x) → G(x)) 例6: 前提∃x (F(x) ∧ ∀y( G(y) → L(x,y)) ), ∀x(F(x)→ ∀y( H(y) → ┑L(x,y)) ) 结论 ∀x (G(x) → ┑H(x)) 作业:第五章
三、集合的幂集
1、 n个元素集合A的m元子集 集合A的所有子集个数 2.幂集 定义5 设A为集合,把A的全体子集构成的集合叫做A的幂集, 记作P(A)(或2A) 幂集的符号化表示为: P(A) ={ x | x ⊆ A } 注:幂集是以子集合为元素的集合 任何集合A一定有二个平凡子集 :Ø 和 A 例:设 S={a,{a}, Ø } 求P(S) 3、对于隶属关系和包含关系要明确 例:证明 A ⊆ B 的充要条件是P(A)⊆ P(B)
例:判断真假
1) a ∈{ {a}} 2){a}∈{ {a}}
例:设S={2,a,{3},4} R={ {a},3,4,1 }判断真假 1) {a,4,{3}}⊆ S 2) {a} ⊆ S 3) {a} ∈ R 4) {a} ⊆ R 5) Ø ∈ R 6){Ø} ∈ R 7) Ø ⊆ {a} 8) Ø ⊆ {{a}}⊆R ⊆E
A(y)= ∃x P(x,y):x>y 若用x取代y 成为 ∀x∃x P(x,x):x>x错误结论 3) 存在量词引入规则(简称EG规则或EG) A(c ) ⇒ ∃xA(x) 该式成立的条件是: (1) c是特定的个体常项; (2) 取代c的x不能在A(c)中出现过; 4) 存在量词消去规则(简记为EI规则或EI) ∃x A(x) ⇒ A(c) 该式成立的条件是: (1)c是使A为真的特定的个体常项;(有时可能仅有一个) (2) c不在A(x)中出现; (3)若A(x)中除自由出现的x外,还有其他自由出现的个体变 项,此规则不能使用. 如:设F(x):x为奇数 G(x):为偶数 ∃xF(x)∧∃xG(x) 可推出假的结论

一阶逻辑推理

一阶逻辑推理
A(c) xA( x)
使用条件:
(1)c 是特定的个体常元; (2)取代 c 的 x 不能在 A(c) 中出现。 例2.5.2 下列推理过程是错误的: 前提 (1) x P( x, c) (2) xx P( x, x) (1),EG
例2.5.7 证明:
xH ( x) x( H ( x) M ( x)) xM ( x)
二、推理定律
在一阶逻辑中,称永真蕴含式为推理定律。若一 个推理的形式结构正好是某条推理定律,则这个推 理显然是正确的。 有哪些推理定律呢?
第一组 命题逻辑推理定律的代换实例。 例如:xF ( x) yG( y) xF ( x)
化简律
xF ( x) xF ( x) yG( y ) 附加律
(3) C x x N x 1 x 100 (4) Ev x y ( y N x 2 y ) (5) Od x y ( y N x 2 y 1)
3、归纳定义法
归纳定义法通常包括以下三个步骤: (1)基本步:S0 非空且 S0 中的任意元素均是 A 的元素; (2)归纳步:给出一组规则,从 A 的元素出发, 依据这些规则所得到的仍是 A 的元素; (3)极小化:若 S 的任意元素均是 A 的元素,并 且 S 满足 (1) 和 (2),则 S 与A 含有相同的元素。
约定: 用 A(x) 表示 x 是 A 中的自由变元,那么 A(y) 表示用 y 去取代 A(x) 中 x 的所有自由出现所得到 的结果。例如: 对于 A( x) xP( x) Q( x) R( x, y ) 则 A( y ) xP( x) Q( y ) R.5 1. 2.(1) 3.(3) 4.(3)
第二篇 集合论

一阶逻辑基本概念知识点总结

一阶逻辑基本概念知识点总结

一阶逻辑基本概念知识点总结一阶逻辑是一种形式化的逻辑系统,也称为一阶谓词演算。

它由一组基本的概念组成,包括:1. 项(Term):一阶逻辑中的项是指个体或对象,可以是常量、变量或函数应用。

常量是指已知的个体,变量是指代未知个体,函数应用是将一个函数应用于一组参数得到的结果。

2. 公式(Formula):一阶逻辑中的公式是用来描述真假性的陈述。

公式可以是原子公式或复合公式。

原子公式是一个谓词应用,谓词是一个描述性的关系符号,用来描述个体之间的关系。

复合公式是由逻辑连接词(如否定、合取、析取、蕴含等)连接的一个或多个公式。

3. 量词(Quantifier):一阶逻辑中的量词用来描述一个谓词在某个个体集合上的性质。

常见的量词包括全称量词(∀,表示对所有个体都成立)和存在量词(∃,表示存在至少一个个体成立)。

4. 推理规则(Inference Rule):一阶逻辑中的推理规则用来进行逻辑推理,在给定一组前提条件的情况下,得出结论的过程。

常用的推理规则包括引入规则(例如全称引入和存在引入)、消去规则(例如全称消去和存在消去)、逆反法和假设法等。

5. 自由变量和限定变量:一阶逻辑中的变量可以分为自由变量和限定变量。

自由变量是没有被量词约束的变量,限定变量是被量词约束的变量。

6. 全称有效性和存在有效性:一阶逻辑中的一个论断是全称有效的,如果它在所有模型中都为真;一个论断是存在有效的,如果它在某个模型中为真。

这些是一阶逻辑的基本概念,它们提供了一种描述和推理关于个体和关系之间的真假性的形式化方法。

一阶逻辑在数学、人工智能、计算机科学等领域有广泛的应用。

5一阶逻辑等值演算与推理

5一阶逻辑等值演算与推理
(1)置换规则 置换规则 是含公式A的命题公式 是用公式B 设φ(A)是含公式 的命题公式, φ(B)是用公式 是含公式 的命题公式, 是用公式 置换了中所有A后得到的命题公式 后得到的命题公式, 置换了中所有 后得到的命题公式,若AB , 则φ(A) φ(B) . 注意:命题公式中的置换规则是本规则的特例. 注意:命题公式中的置换规则是本规则的特例.
14
5.2一阶逻辑前束范式 一阶逻辑前束范式
《定义》一个公式,如果量词均非否定的放在全式 定义》一个公式, 的开头,它们的辖域延伸到整个公式的末尾, 的开头,它们的辖域延伸到整个公式的末尾,则 称此公式叫前束范式. 称此公式叫前束范式. 前束范式) xyz( Q(x,y)∨ R(z)) (前束范式 ∨ 前束范式 定理5.1 任何一个一阶逻辑公式均存在一个与它等 定理 值的前束范式. 值的前束范式. 利用量词否定等值式把深入到原子公式前 深入到原子公式前. ①利用量词否定等值式把 深入到原子公式前. 利用约束变元的换名规则. ②利用约束变元的换名规则. ③利用量词辖域的扩张收缩律把量词移到全式的最 前面. 前面.
19
5.3 一阶逻辑的推理理论
规则). (1)全称消去规则(UI规则). )全称消去规则( 规则 xA(x) A(y) ,xA(x) A(c) , 成立条件是: 成立条件是: 第一式中,取代x的y应为任意的不在 应为任意的不在A(x)中 第一式中,取代x的y应为任意的不在A(x)中 约束出现的个体变元. 约束出现的个体变元. 在第二式中, 为任意的不在 为任意的不在A(x)中出现过的 在第二式中,c为任意的不在 中出现过的 个体变元. 个体变元. 去取代A(x)中的自由出现的 时,一定 中的自由出现的x时 用y或c去取代 或 去取代 中的自由出现的 要在x自由出现的一切地方进行取代 自由出现的一切地方进行取代. 要在 自由出现的一切地方进行取代.

一阶逻辑的解释

一阶逻辑的解释

一阶逻辑的解释一阶逻辑是数理逻辑中重要的逻辑体系之一,也被称为一阶谓词逻辑或一阶谓词演算。

它的主要功能是描述和推理关于对象和它们之间关系的陈述。

一阶逻辑具有形式化的语言和规则系统,以及对推理的严格要求。

一阶逻辑由符号、语义解释、公式、语法规则和推理规则等多个组成部分构成。

一、符号体系一阶逻辑采用一组符号来表示各种逻辑概念,如命题、谓词、变量、量词等。

其中,命题用P、Q、R等大写字母表示,谓词用P、Q、R等大写字母加小写字母表示,变量用x、y、z等小写字母表示,量词包括全称量词∀和存在量词∃。

二、语义解释一阶逻辑中的符号需要通过语义解释来理解其含义。

语义解释对于谓词逻辑而言是特别重要的,因为它涉及到对命题的真值赋值。

例如,对于某个谓词P(x)来说,当x取某个特定值时,P(x)可能被赋予真值,反之则为假值。

三、公式一阶逻辑的公式是用逻辑符号表示的表达式,可以由基本命题符号、谓词符号、量词符号、逻辑连接词和括号组成。

公式可分为原子公式和复合公式。

原子公式是由谓词和变量组成的简单逻辑表达式,而复合公式由多个公式通过逻辑连接词、量词和括号组合而成。

四、语法规则一阶逻辑具有严格的语法规则,包括公式的构成和推理规则。

公式的构成受到语法规则的限制,必须符合合法的语法结构。

推理规则则用于推导和验证逻辑论证的合法性。

五、推理规则一阶逻辑的推理规则包括等价变形、简化规则、合取规则、析取规则、推理规则等。

这些规则通过逻辑运算的合法性和逻辑关系的等价性,实现对逻辑公式的准确推演和判定。

总之,一阶逻辑是通过符号体系、语义解释、公式、语法规则和推理规则等多个组成部分构成的一种逻辑体系。

它具有形式化的语言和规则系统,可以描述和推理关于对象和它们之间关系的陈述。

一阶逻辑的应用涉及到数学、计算机科学、人工智能等多个领域,并为这些领域提供了严密的推理方法和逻辑基础。

第5章一阶逻辑等值演算与推理

第5章一阶逻辑等值演算与推理

4
一阶逻辑中重要的等值式

第二组
量词消去等值式 设个体域有限集D={a1,a2,…,an},则有 (1) xA(x) A(a1)∧A(a2)∧…∧A(an) (2) xA(x) A(a1)∨A(a2)∨…∨A(an) (5.1) 量词否定等值式 设A(x)是任意的含自由出现个体变项x的公式,则 (1) ┐xA(x) x┐A(x) (2) ┐xA(x) x┐A(x) (5.2)
25
推理定律

在一阶逻辑中称永真式的蕴涵式为推理定律,若一 个推理的形式结构正是某条推理定律,则这个推理 是正确的
推理定律的来源: 命题逻辑推理定律的代换实例 由基本等值式生成的推理定律 已证明的推理定律

26
第一组:命题逻辑推理定律的代换实例

化简律的代换实例 xF(x)∧yG(y) xF(x)

6
一阶逻辑中重要的等值式

量词辖域收缩与扩张等值式
(2) x(A(x)∨B) xA(x)∨B x(A(x)∧B) xA(x)∧B x(A(x)→B) xA(x)→B x(B→A(x)) B→xA(x)
(5.4)

量词分配等值式
设A(x),B(x)是任意的含自由出现个体变项x的公式,则 (1)x(A(x)∧B(x))xA(x)∧xB(x) (2) x(A(x)∨B(x)) xA(x)∨xB(x) (5.5) 思考:将(1)(2)中∧ 、 ∨分别换为∨ 、∧是否可以?
24
5.3 一阶逻辑的推理理论


回顾:命题逻辑自然推理系统 (A1∧A2∧…∧Ak) → B (3.2) 做为推理的形式结构,并且用下述形式写出推理的 形式结构: 前提: A1,A2, …,Ak 结论: B 然后论证推理是否正确,即证(3.2)是否为重言式 在一阶逻辑中仍用上述推理形式,但在一阶逻辑中 判(3.2)为永真式比命题逻辑中判蕴涵重言式要困难 的多

一阶逻辑基本概念讲解

一阶逻辑基本概念讲解
与多主体系统的关系
一阶逻辑在处理多主体系统时可能存在挑战,需要借助其他逻辑系 统如交互逻辑或认知逻辑等来扩展其表达能力。
一阶逻辑的未来发展方向与趋势
扩展表达能力
为了克服一阶逻辑的局限性,未来的研究可以探索扩展其表达能力和推理规则,例如通过引入新的量词或扩展模态、 时态等逻辑系统。
融合其他逻辑系统
为了更好地处理复杂问题,未来的研究可以探索一阶逻辑与其他逻辑系统的融合,例如将一阶逻辑与模态、时态、认 知等逻辑系统相结合。
02
CATALOGUE
一阶逻辑的基本概念
命题与量词
命题
表示一个陈述句,具有真假性,是逻 辑推理的基本单位。
量词
表示数量的符号,如“所有”、“存 在”等,用于限定命题的范围。
逻辑联结词
逻辑联结词
表示命题之间关系的符号,如“并且”、“或者”、“如果...那么...”等。
否定词
表示否定关系的符号,用于改变命题的真假性。
推理过程
通过否定某个命题,根据逻辑规则或推理规则,推导出结论。
归结推理
归结推理
将复杂命题逐步简化为简单命题,然后 通过简单命题的推理得出结论的推理方
法。
结论
根据前提条件推导出的结果或结论。
前提条件
已知的前提或命题。
推理过程
将复杂命题逐步简化为简单命题,然 后通过简单命题的直接推理或间接推 理,得出结论。
一阶逻辑的重要性
逻辑基础
一阶逻辑是形式化逻辑的基础, 为数学、计算机科学和哲学等领 域提供了逻辑推理的框架。
精确表达
一阶逻辑能够精确地表达命题之 间的逻辑关系,有助于避免歧义 和误解。
推理工具
一阶逻辑是进行逻辑推理和数学 证明的重要工具,有助于发现和 证明新的数学定理。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档