小学数学奥数解题技巧(6)整除及数字整除特征

合集下载

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

小学奥数 数的整除性 知识点+例题+练习 (分类全面)

拓展、一位采购员买了72个微波炉,在记账本上记下这笔账。

由于他不小心,火星落在账本上把这笔账的总数烧掉了两个数字。

账本是这样写的:72个微波炉,共用去□679□元(□为被烧掉的数字),请你帮忙把这笔账补上。

应是__________元。

(注:微波炉单价为整数元)。

36792
例4、五位数能被12整除,这个五位数是____________。

42972
拓展、六位数7E36F5 是1375的倍数,求这个六位数。

713625
拓展、一个五位数98
3ab能被11和9整除,这个五位数是。

39798
例5、五位数
能同时被2,3,5整除,则A=______,B=______。

48
A1
B
5/2/8 0
拓展、要使六位数能被36整除,而且所得的商最小,问A,B,C各代表什么数字?0 1 5
拓展、已知7位自然数427
62xy是99的倍数,则x= ,y=
2 4
2、若9位数2008□2008能够被3整除,则□里的数是
3、173□是个四位数。

数学老师说:“我在这个□中先后填入3个数字,所得到的 3个四位数,依次可以被9,11,6整除。

”问:数学老师先后填入的3个数字之和是多少?
4、判断306371能否被7整除?能否被13整除?
5、判断能否被3,7,11,13整除.
6、试说明形式的6位数一定能被11整除.。

小学数学奥数解题技巧(6)整除及数字整除特征

小学数学奥数解题技巧(6)整除及数字整除特征

6、整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

小学奥数—数的整除之四大判断法综合运用

小学奥数—数的整除之四大判断法综合运用

小学奥数—数的整除之四大判断法综合运用小学奥数是培养学生数学思维能力、观察能力和逻辑推理能力的重要方式之一、在小学奥数中,数的整除是一个重要的概念和技巧。

数的整除是指一个数能够整除另一个数,即一个数可以被另一个数整除,这在小学中学习,通常会讲解四大判断法,即整除的特征判断法、整除的除数判断法、整除的因子判断法和整除的位数判断法。

本文将综合运用这四大判断法,解决一些与数的整除相关的问题。

首先,整除的特征判断法是指整数n能够被整数m整除的充要条件是n的特征之积能够被m的特征之积整除。

这个特征指的是数的各位数字之和。

例如,对于一个数234,它的特征就是2+3+4=9、如果一个数的特征之积能够被另一个数的特征之积整除,那么这个数就能被另一个数整除。

例如,对于一个数36,它的特征之积是3×6=18,而另一个数9的特征之积是9,18能够被9整除,所以36能够被9整除。

其次,整除的除数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n能够被m的约数整除。

这个方法利用了约数的概念。

约数是指一个数能够整除另一个数的整数。

例如,对于一个数15,它的约数有1、3、5、15,这些数都能够整除15,所以15能够被1、3、5、15整除。

如果一个数能够被另一个数的约数整除,那么这个数就能被另一个数整除。

再次,整除的因子判断法是指整数n是否能够被一个整数m整除的充要条件是m是n的因子。

这个方法利用了因子的概念。

因子是指一个数能够整除另一个数的整数。

例如,对于一个数21,它的因子有1、3、7、21,这些数都能够整除21,所以21能够被1、3、7、21整除。

如果一个数是另一个数的因子,那么这个数就能被另一个数整除。

最后,整除的位数判断法是指一个整数n是否能够被一个整数m整除的充要条件是n的位数能够被m的位数整除。

这个方法利用了位数的概念。

位数是指一个数的十进制表示中,不含小数点的位数。

例如,对于一个数5678,它的位数是4,而另一个数28的位数是2,4能够被2整除,所以5678能够被28整除。

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

(完整word版)小学数学解题方法解题技巧之整除及数字整除特征(word文档良心出品)

第一章小学数学解题方法解题技巧之整除及数字整除特征【数字整除特征】例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数55......5□99 (9)(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

奥数知识点:数的整除

奥数知识点:数的整除

奥数知识点:数的整除奥数知识点:数的整除如果整除a除以不为零数b,所得的商为整数而余数为0,我们就说a能被b整除,或叫b能整除a。

如果a能被b整除,那么,b叫做a的约数,a叫做b的倍数。

下面小编给大家精心搜集整理的奥数知识点:数的整除,欢迎阅读!奥数知识点:数的整除数的整除的特征:(1)能被2整除的数的特征:如果一个整数的个位数字是2、4、6、8、0,那么这个整数一定能被2整除。

(2)能被3(或9)整除的数的特征:如果一个整数的各个数字之和能被3(或9)整除,那么这个整数一定能被3(或9)整除。

(3)能被4(或25)整除的数的特征:如果一个整数的末两位数能被4(或25)整除,那么这个数就一定能被4(或25)整除。

(4)能被5整除的数的特征:如果一个整数的个位数字是0或5,那么这个整数一定能被5整除。

(5)能被6整除的数的特征:如果一个整数能被2整除,又能被3整除,那么这个数就一定能被6整除。

(6)能被7(或11或13)整除的.数的特征:一个整数分成两个数,末三位为一个数,其余各位为另一个数,如果这两个数之差是0或是7(或11或13)的倍数,这个数就能被7(或11或13)整除。

(7)能被8(或125)整除的数的特征:如果一个整数的末三位数能被8(或125)整除,那么这个数就一定能被8(或125)整除。

(8)能被11整除的数的特征:如果一个整数的奇数位数字之和与偶数位数字之和的差(大减小)能被11整除,那么它必能被11整除。

一、例题与方法指导例1.一个六位数23□56□是88的倍数,这个数除以88所得的商是_____或_____.思路导航:一个数如果是88的倍数,这个数必然既是8的倍数,又是11的倍数.根据8的倍数,它的末三位数肯定也是8的倍数,从而可知这个六位数个位上的数是0或8.而11的倍数奇偶位上数字和的差应是0或11的倍数,从已知的四个数看,这个六位数奇偶位上数字的和是相等的,要使奇偶位上数字和差为0,两个方框内填入的数字是相同的,因此这个六位数有两种可能。

四年级奥数专题之整除与余数(2021年整理)

四年级奥数专题之整除与余数(2021年整理)

四年级奥数专题之整除与余数(word版可编辑修改)编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(四年级奥数专题之整除与余数(word版可编辑修改))的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为四年级奥数专题之整除与余数(word版可编辑修改)的全部内容。

四年级奥数整除与余数【导言】我们学习的除法算式有两种情况,一种是被除数除以除数以后,余数为0,即数的整除性;另一种是被除数除以除数以后,余数不为0,即有余数的除法.一个有余数的除法包括四个数:被除数÷除数=商……余数。

这个关系也可以表示为:被除数=除数×商+余数.下面来总结一下整除和有余数除法的特征:1、整除:(1)能被2整除的特征:如果一个数的个位数字是偶数,那么这个数能被2整除.(2)能被3整除的特征:如果一个数的各位数字之和能被3整除,那么这个数能被3整除.(3)能被4(或25)整除的特征:如果一个数的末两位数能被4(或25)整除,那么这个数能被4(或25)整除。

(4)能被5整除的特征:如果一个数的个位数字是0或5,那么这个数能被5整除。

(5)能被8(或125)整除的特征:如果一个数的末三位数能被8(或125)整除,那么这个数能被8(或125)整除。

(6)能被9整除的特征:如果一个数的各位数字之和能被9整除,那么这个数能被9整除。

(7)能被11整除的特征:如果一个数奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除。

2、有余数的除法:(1)一个数除以4的余数,与它的末两位除以4的余数相同。

(2)一个数除以8的余数,与它的末三位除以8的余数相同.(3)一个数除以9的余数,与它的各位数字之和除以9的余数相同.(4)一个数除以11的余数,与它的奇数位上的数字之和与偶数位上的数字之和的差除以11的余数相同。

小学奥数教程之数的整除

小学奥数教程之数的整除

学习奥数的优点1、激发学生对数学学习的兴趣,更容易让学生体验成功,树立自信。

2、训练学生良好的数学思维习惯和思维品质。

要使经过奥数训练的学生,思维更敏捷,考虑问题比别人更深层次。

3、锻炼学生优良的意志品质。

可以培养持之以恒的耐心和克服困难的信心,以及战胜难题的勇气。

可以养成坚韧不拔的毅力4、获得扎实的数学基本功,发挥创新精神和创造力的最大空间。

数的整除学生姓名授课日期教师姓名授课时长知识定位本讲是数论知识体系中的一个基石,整除知识点的特点介于“定性分析与定量计算之间”即本讲中的题型有定性分析层面的也有定量计算层面的,是很重要的一讲,也是竞赛常考的知识板块。

本讲力求实现的一个核心目标是让孩子熟悉和掌握常见数字的整除判定特性,在这个基础上对没有整除判定特性的数字可以将其转化为几个有整除判定特性的数字乘积形式来分析其整除性质。

另外一个难点是将数字的整除性上升到字母和代数式的整除性上,这个对与学生的代数思维是一个良好的训练也是一个不小的挑战。

知识梳理1.常见数字的整除判定方法(1). 一个数的末位能被2或5整除,这个数就能被2或5整除;一个数的末两位能被4或25整除,这个数就能被4或25整除;一个数的末三位能被8或125整除,这个数就能被8或125整除;(2). 一各位数数字和能被3整除,这个数就能比9整除;一个数各位数数字和能被9整除,这个数就能被9整除;(3). 如果一个整数的奇数位上的数字之和与偶数位上的数字之和的差能被11整除,那么这个数能被11整除.(4). 如果一个整数的末三位与末三位以前的数字组成的数之差能被7、11或13整除,那么这个数能被7、11或13整除.【备注】(以上规律仅在十进制数中成立.)注:在给学生讲解常见数字的判定性质时,要分系列来讲,例如有2系列,5系列,3系列和7,11,13系列,便于记忆。

对于11的单独判定特性需要重点讲解。

2.整除性质性质1 如果数a和数b都能被数c整除,那么它们的和或差也能被c整除.即如果c︱a,c︱b,那么c︱(a±b).注:在理解这个性质时,我们要注意,反过来是不成立的,即两数的和(a+b)或差(a-b)能被c整除,这两个数不一定能被c整除.如5 ︱(26+24),但526,524.可以引入下面的问题2∣12,12∣36.2能否整除36?显然,回答是肯定的.这是因为36是12的倍数,12又是2的倍数,那么36一定是2的倍数.由此我们又可以得出:性质2 如果数a能被数b整除,b又能被数c整除,那么a也能被c整除.即如果b∣a,c∣b,那么c∣a.用同样的方法,我们还可以得出:性质3如果数a能被数b与数c的积整除,那么a也能被b或c整除.即如果bc∣a,那么b∣a,c∣a.性质4如果数a能被数b整除,也能被数c整除,且数b和数c互质,那么a一定能被b与c的乘积整除.即如果b∣a,c∣a,且(b,c)=1,那么bc∣a.例如:如果3∣12,4∣12,且(3,4)=1,那么(3×4) ∣12.性质5 如果数a能被数b整除,那么am也能被bm整除.如果b|a,那么bm|am (m为非0整数);性质6如果数a能被数b整除,且数c能被数d整除,那么bd也能被ac整除.如果b|a ,且d|c ,那么ac|bd;3.重点难点解析(1).常见数字的整除判定性质(2).将不具有整除判定性质的数字进行分解判定其整除性(3).代数式之间整除性的判断,代数思想的应用(4).试除法的理解和应用4.竞赛考点挖掘(1).与数字谜或算式迷结合的整除判断特性题目(2).代数式之间的整除性问题例题精讲【试题来源】【题目】已知道六位数20□279是13的倍数,求□中的数字是几?【解析】本题为基础题型,利用13的整除判定特征即可知道方格中填1。

小学奥数关于数的整除规律

小学奥数关于数的整除规律

数的整除规律1、一个数的个位上是2、4、6、8、0的数都能被2整除。

2、一个数的数字之和能被3或9整除,这个数就能被3或9整除。

3、这一个数的末两位如果能被4或者25整除,这个数就能被4或者25整除。

4、个位上是0或5的数都能被5整除。

5.这个数的末位数与末三位以前的数字所组成的数之差能被7,11或13整除,则原数能被7,11或13整除。

6.这个数的末三位如果能被8或者125整除,这个数就一定能被8或者125整除。

7.若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

能被2、3、4、5、6、7、8、9等数整除的数的特征性质1:如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

性质2:几个数相乘,如果其中有一个因数能被某一个数整除,那么它们的积也能被这个数整除。

能被2整除的数,个位上的数能被2整除(偶数都能被2整除),那么这个数能被2整除能被3整除的数,各个数位上的数字和能被3整除,那么这个数能被3整除能被4整除的数,个位和十位所组成的两位数能被4整除,那么这个数能被4整除能被5整除的数,个位上为0或5的数都能被5整除,那么这个数能被5整除能被6整除的数,各数位上的数字和能被3整除的偶数,如果一个数既能被2整除又能被3整除,那么这个数能被6整除能被7整除的数,若一个整数的个位数字截去,再从余下的数中,减去个位数的2倍,如果差是7的倍数,则原数能被7整除。

如果差太大或心算不易看出是否7的倍数,就需要继续上述「截尾、倍大、相减、验差」的过程,直到能清楚判断为止。

例如,判断133是否7的倍数的过程如下:13-3×2=7,所以133是7的倍数;又例如判断6139是否7的倍数的过程如下:613-9×2=595 , 59-5×2=49,所以6139是7的倍数,余类推。

能被8整除的数,一个整数的末3位若能被8整除,则该数一定能被8整除。

整除规律 小学奥数

整除规律 小学奥数

整除的规律:1:任何数都能被1整除。

2:个位上是2、4、6、8、0的数都能被2整除。

3:每一位上数字之和能被3整除,那么这个数就能被3整除。

4:最后两位能被4整除的数,这个数就能被4整除。

5:个位上是0或5的数都能被5整除。

6:一个数只要能同时被2和3整除,那么这个数就能被6整除。

7:把个位数字截去,再从余下的数中,减去个位数的2倍,差是7的倍数,则原数能被7整除。

8:最后三位能被8整除的数,这个数就能被8整除。

9:每一位上数字之和能被9整除,那么这个数就能被9整除。

10:若一个整数的奇位数字之和与偶位数字之和的差能被11整除,则这个数能被11整除。

11的倍数检验法也可用上述检查7的「割尾法」处理!过程唯一不同的是:倍数不是2而是1!11:若一个整数的个位数字截去,再从余下的数中,加上个位数的4倍,如果和是13的倍数,则原数能被13整除。

如果差太大或心算不易看出是否13的倍数,就需要继续上述「截尾、倍大、相加、验差」的过程,直到能清楚判断为止。

判断互质数的技巧:1、1和其它的自然数。

例:1和99、1和462、两个连续的或相邻的自然数一定是互质数。

例:3和4、9和103、两个连续的奇数或相邻的奇数是互质数。

例:7和9、13和154、两个质数是互质数。

例:5和7、11和17判断最大公因数的技巧:1、如果两个数是互质数关系,那么最大公因数是1。

例:7和112、如果两个数是倍数关系,那么最大公因数是较小数。

例:7和21判断最小公倍数的技巧:1、如果两个数是互质数关系,那么最小公倍数是它们的乘积。

例:5和72、如果两个数是倍数关系,那么最小公倍数是较大数。

例:7和14例1 试说明一个5位数,原序数与反序数的差一定是99的倍数(如:12367为原序数,那么它对应的反序数为76321,它们的差6395499646=⨯是99的倍数)【分析】 设原序数为abcde ,则反序数为edcba ,则abcde -edcba 1000010001001010000100010010a b c d e e d c b a =++++-++++()()99999909909999a b d e =+--991011010101a b d e =+--() 因为等式的右边能被99整除,所以abcde -edcba 能被99整除【例 2】 一位后勤人员买了72本笔记本,可是由于他吸烟不小心,火星落在帐本上,把这笔帐的总数烧去两个数字.帐本是这样的:72本笔记本,共□67.9□元(□为被烧掉的数字),请把□处数字补上,并求笔记本的单价.【分析】 把□67.9□元作为整数□679□分.既然是72本笔记本的总线数,那就一定能被72整除,又因为7289=⨯,(8,9)1=.所以8|□679□,9|□679□.8|□679□,根据能被8整除的数的特征,8|79□,通过计算个位的□2=.又9|□6792,根据能被9整除的数的特征,9|(□6792++++),显然前面的□应是3.所以这笔帐笔记本的单价是:367.9272 5.11÷=(元)【例 3】 一个五位数恰好等于它各位数字和的2007倍,则这个五位数是多少?【分析】 设五位数为abcde ,则由题意得:()2007abcde a b c d e =++++⨯,因为2007是9的倍数,则这个五位数一定是9的倍数,所以各位数字和也一定是9的倍数.()a b c d e ++++的和可以从9、18、27、36、45进行试值.2007918063⨯=(要注意数字和为9)本例不成立;类似地:20071836126⨯=,成立;20072754189⨯=,成立;20073672252⨯=,不成立,20074590315⨯=,不成立.所以只有两解:20071836126⨯=,成立;20072754189⨯=,成立.【例 4】 一些四位数,百位数字都是3,十位数字都是6,并且他们既能被2整除又能被3整除.甲是这样四位数中最大的,乙是最小的,则甲乙两数的千位数字和个位数字(共四个数字)的总和是多少?【分析】 根据条件□36□是6的倍数,即□36□既是2也是3的倍数,甲是最大的,所以甲的千位数字是9,要想是6的倍数且尽量大那么它的个位就得是6;乙是最小的,所以乙的千位数字是1,要想是6的倍数且尽量小那么它的个位就得是2.综上,甲乙两数千位数字和个位数字的总和是:961218+++=.【例 5】 (第六届“走进美妙的数学花园"趣味数学解题技能展示大赛初赛)1872a a 是2008的倍数.a =_________【分析】 因为2008能被8整除,所以1872a a ,既能被4整除,又能被8整除.根据能被4整除的数的特征——后两位能被4整除,1a =,3,5,7,9;再根据能被8整除的数的特征——后三位能被8整除,可得1a =,5,9.分别代入知9a =1. 173□是一个四位数.数学老师说:“我在其中的方框内中先后填入3个数字,所得到的3个四位数:依次可被9,11,6整除.”问:数学老师先后填入的3个数字的和是多少?[答案]:192. 在两位数中,能被其各位数字之和整除,而且除得的商恰好是4的有几个?[答案]12、24、36、483.两个四位数275A和275B相乘,要使它们的乘积能被72整除,求A和B.[答案]A=4;B=21、能被3整除的最小三位数是(),能被5整除的最大三位数是()2、有约数2,又能被3整除,而且还是5的倍数的最小三位数是()3、在自然数中,()既不是质也不是合。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

小学五年级数学奥数数的整除(附练习及详解)

小学五年级数学奥数数的整除(附练习及详解)

一、基本概念和知识1.整除例如:15÷3=5,63÷7=9一般地,如a、b、c为整数,b≠0,且a÷b=c,即整数a除以整除b(b不等于0),除得的商c正好是整数而没有余数(或者说余数是0),我们就说,a能被b整除(或者说b能整除a)7是63的约数。

2.数的整除性质性质1:如果a、b都能被c整除,那么它们的和与差也能被c整除。

例如:如果2|10,2|6,那么2|(10+6),并且2|(10—6)。

性质2:如果b与c的积能整除a,那么b与c都能整除a.即:如果bc|a,那么b|a,c|a。

性质3:如果b、c都能整除a,且b和c互质,那么b与c的积能整除a。

即:如果b|a,c|a,且(b,c)=1,那么bc|a。

例如:如果2|28,7|28,且(2,7)=1,那么(2×7)|28。

性质4:如果c能整除b,b能整除a,那么c能整除a。

即:如果c|b,b|a,那么c|a。

例如:如果3|9,9|27,那么3|27。

3.数的整除特征①能被2整除的数的特征:个位数字是0、2、4、6、8的整数.②能被3(或9)整除的数的特征:各个数位数字之和能被3(或9)整除。

③能被4(或25)整除的数的特征:末两位数能被4(或25)整除。

④能被5整除的数的特征:个位是0或5。

⑤能被8(或125)整除的数的特征:末三位数能被8(或125)整除。

⑥能被11整除的数的特征:这个整数的奇数位上的数字之和与偶数位上的数字之和的差(大减小)是0或11的倍数。

⑦能被7(11或13)整除的数的特征:一个整数的末三位数与末三位以前的数字所组成的数之差(以大减小)能被7(11或13)整除。

练习及详解例题1. 四位数“3AA1”是9的倍数,那么A=_____。

(小五奥数)解析:已知四位数3AA1正好是9的倍数,则其各位数字之和3+A+A+1一定是9的倍数,可能是9的1倍或2倍,可用试验法试之。

练习(1)在“25□79这个数的□内填上一个数字,使这个数能被11整除,方格内应填_____。

小学小升初奥数知识集锦:数的整除

小学小升初奥数知识集锦:数的整除

小学小升初奥数知识:数的整除小学小升初奥数知识集锦:数的整除导语:下面是小编为您收集整理的数的整除相关知识,欢迎阅读!1.整除的概念在小学书中所学的自然数和零,都是整数。

同学们都知道,如果一个整数a除以一个自然数b,商是整数而且没有余数(或者说余数为零),就叫做a能被b整除,或者b整除a,记作a│b。

这时a叫做b 的倍数,b叫做a的约数。

例如,3│15表示15能被3整除,或者3整除15;也可以说15是3的倍数,3是15的约数。

由整数概念可知,整除必须同时满足三个条件:(1)被除数是整数,除数是自然数;(2)商是整数;(3)没有余数。

这三个条件只要有一个不满足,就不能叫整除。

例如,16÷5=3.2,商不是整数,所以不能说5整除16。

又如,10÷2.5=4,除数不是自然数,所以不能说10能被2.5整除。

2.整除的性质(1)如果两个整数都被同一个自然数整除,那么它们的和、差(大减小)也都能被这个自然数整除。

换句话说,同一个自然数的两个倍数之和、差(大减小)仍是这个自然数的倍数。

例如,18与42都能被6整除,那么18与42的和60、差24也都能被6整除;即从6│18及6│42可知6│(18+42)、6│(42-18)。

(2)如果甲数整除乙数,乙数整除丙数,那么甲数整除丙数。

即如果丙数是乙数的倍数,乙又是甲数的倍数,那么丙数是甲数的倍数。

例如,7│28,28│84,那么就有7│84。

(3)如果甲数整除乙数,那么甲数就整除乙数与任一整数的乘积。

也就是说如果乙数是甲数的倍数,那么乙数的任一倍数也是甲数的倍数。

例如,13│39,39×4=156,因此13│156。

(4)如果甲数能被丙数整除,而乙数不能被丙数整除,那么甲数与乙数的和、差都不能被丙数整除。

即如果甲数是丙数的倍数,乙数不是丙数的倍数,那么甲数与乙数的和、差(大减小)都不是丙数的倍数。

例如,6整除48,6不整除35,所以6不整除83(48+35=83),也不整除13(48-35=13)。

奥数——数的整除特征

奥数——数的整除特征

数的整除特征★知识要点1、如果一个数的个位数字能被2或5整除,则这个数能被2或5整除。

2、如果一个数的末两位数字能被4或25整除,则这个数就能被4或25整除。

3、如果一个数的末三位数字能被8或125整除,则这个数就能被8或125整除。

4、如果一个数的各位数字之和能被3或9整除,则这个数就能被3或9整除。

5、如果一个自然数的奇数位上数字和与偶数位上数字和的差(大数减小数)能被11整除,那么这个数就能被11整除。

6、被7、11、13整除数的特征:如果一个自然数的末三位数字所表示的数与末三位前的数字所表示的数之差(大数减小数)能被7、11或13整除,那么这个数就能被7,11或13整除。

★典型例题例1、在□内填上适当的数,使五位数5874□能被2整除,这样的五位数有多少个?例2、在□内填上适当的数,使六位数69547□能被4或25整除。

例3、在□内填上适当的数,使五位数31□26能被3或9整除。

例4、在865后面补上3个数字,组成一个六位数,使它能被3,4,5整除,且使这个数值尽可能地大。

例5、在五位数15□8□的□内填什么数字,才能使它既能被3整除,又含有因数5?例6、根据被11整除的数的特征,判别下列数中哪几个能被11整除:3434 3443 52019 68868例7、判断2146455311能否被7,11或13整除?课堂练习1、在□内填上适当的数,使四位数139□能被5整除,这样的四位数有哪几个?2、在□内填上适当的数,使七位数7132□20能被8整除。

3、判断下列哪些数能被25整除,哪些能被125整除?能被125整除的数一定能被25整除吗?反之能被25整除的数一定能被125整除吗?750 765 2775 6325 1500 10004、根据被3和9整除的数的特征,用“去三法”或“或九法”判别下列数中哪些数能被3整除,哪些能被9整除。

请仔细观察能被9整除的数一定能被3整除吗?反之能被3整除的数一定能被9整除吗?请牢记这个规律!5646 49257 25341 87203 56142365、在358后面补上3个数字,组成一个六位数,使它能分别被3、4、5整除,且使这个数值尽可能地小。

奥数整除知识点总结

奥数整除知识点总结

奥数整除知识点总结整除是关于数学中的一种基本概念,是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。

在奥数学习中,整除是一个非常重要的知识点,对于学生来说,掌握整除的相关知识是非常重要的。

本文将对奥数整除知识点进行详细的总结,希望能帮助学生更好地掌握整除的相关知识。

一、整数的概念在奥数学习中,整数是一个非常基本的概念。

整数包括正整数、负整数和零。

正整数是大于零的整数,负整数是小于零的整数,零是不大于也不小于零的整数。

在奥数整除的相关题目中,通常涉及到正整数的整除,因此在奥数学习中,学生需要了解和掌握正整数的相关概念。

二、整除的概念整除是指一个数能够被另一个数整除,也就是能够被另一个数整数倍的数。

在奥数学习中,整除是一个非常基础的概念,掌握整除的相关知识对学生来说是非常重要的。

当一个数a能够被另一个数b整除时,我们通常用"a能被b整除"表示,也可以用数学符号"a|b"表示。

对于两个整数a和b,如果存在另一个整数c,使得b=ac,那么我们就说a能被b整除。

三、整数的性质在奥数整除的相关题目中,通常会涉及到整数的一些基本性质,学生需要了解和掌握整数的一些基本性质。

下面我们将介绍整数的一些基本性质:1. 整数的加法性质:对于任意两个整数a和b,它们的和a+b也是一个整数。

2. 整数的减法性质:对于任意两个整数a和b,它们的差a-b也是一个整数。

3. 整数的乘法性质:对于任意两个整数a和b,它们的积ab也是一个整数。

4. 整数的除法性质:对于任意两个整数a和b,当a能够被b整除时,它们的商a/b也是一个整数。

四、整除的性质在奥数整除的相关题目中,通常会涉及到整除的一些基本性质,学生需要了解和掌握整除的一些基本性质。

下面我们将介绍整除的一些基本性质:1. 整除的传递性:如果a能被b整除,b能被c整除,那么a能被c整除。

2. 整除的继承性:如果a能被b整除,b能被c整除,那么a能被c整除。

奥数数的整除讲义

奥数数的整除讲义

数的整除性质、特征【知识要点】:整除性质:(1)如果数a、b都能被c整除,那么它们的和(a+b)或差(a-b)也能被c整除。

(2)如果数a能被自然数b整除,自然数b能被自然数c整除,则数a必能被数c整除。

(3)若干个数相乘,如其中有一个因数能被某一个数整除,那么,它们的积也能被这个数整除。

(4)如果一个数能被两个互质数中的每一个数整除,那么,这个数能被这两个互质数的积整除。

反之,若一个数能被两个互质数的积整除,那么这个数能分别被这两个互质数整除。

整除特征:(1)若一个数的末两位数能被4(或25)整除,则这个数能被4(或25)整除。

(2)若一个数的末三位数能被8(或125)整除,则这个数能被8(或125)整除。

(3)若一个数的各位数字之和能被3(或9)整除,则这个数能被3(或9)整除。

(4)若一个数的奇数位数字和与偶数数字和之差(以大减小)能被11整除,则这个数能被11整除。

(5)若一个数的末三位数字所表示的数与末三位以前的数字所表示的数之差(大数减小数)能被7(或13)整除,则这个数能被7(或13)整除。

【典型例题】例1:一个三位数能被3整除,去掉它的末尾数后,所得的两位数是17的倍数,这样的三位数中,最大是几?例2:1~200这200个自然数中,能被6或8整除的数共有多少个?例3、要使84×300×365×( )的积最后五位数字都是0,求括号内最小应填何数?例4、证明:若训练题.8,8abcdef def 则1、判断306371能否被7整除?能否被13整除?2、abcabc能否被7、11和13整除?3、六位数7E36F5 是1375的倍数,求这个六位数。

4、已知10□8971能被13整除,求□中的数。

5、在568后面补上三个数字,组成一个六位数,使它能被2,3,5整除,且使它的数值尽可能小,求这个六位数。

6、有一个四位数3AA1,它能被9整除,那么数A 代表多少?7、已知10□8971能被13整除,求□中的数。

奥数数论:数的整除问题要点及解题技巧(六年级)

奥数数论:数的整除问题要点及解题技巧(六年级)

奥数数论:数的整除问题要点及解题技巧(六年级)
一、基本概念和符号:
1、整除:如果一个整数a,除以一个自然数b,得到一个整数商c,而且没有余数,那么叫做a能被b整除或b能整除a,记作b|a。

2、常用符号:整除符号“|”,不能整除符号“ ”;因为符号“∵”,所以的符号“∴”;
二、整除判断方法:
1. 能被2、5整除:末位上的数字能被2、5整除。

2. 能被4、25整除:末两位的数字所组成的数能被4、25整除。

3. 能被8、125整除:末三位的数字所组成的数能被8、125整除。

4. 能被3、9整除:各个数位上数字的和能被3、9整除。

5. 能被7整除:
①末三位上数字所组成的数与末三位以前的数字所组成数之差能被7整除。

②逐次去掉最后一位数字并减去末位数字的2倍后能被7整除。

6. 能被11整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被11整除。

②奇数位上的数字和与偶数位数的数字和的差能被11整除。

③逐次去掉最后一位数字并减去末位数字后能被11整除。

7. 能被13整除:
①末三位上数字所组成的数与末三位以前的数字所组成的数之差能被13整除。

②逐次去掉最后一位数字并减去末位数字的9倍后能被13整除。

三、整除的性质:
1. 如果a、b能被c整除,那么(a+b)与(a-b)也能被c整除。

2. 如果a能被b整除,c是整数,那么a乘以c也能被b整除。

3. 如果a能被b整除,b又能被c整除,那么a也能被c整除。

4. 如果a能被b、c整除,那么a也能被b和c的最小公倍数整除。

小学五年奥数-数的整除

小学五年奥数-数的整除

数的整除【知能大展台】1.整除的概念对于整数a和不为零的整数b,如果数a除以数b的商是整数且没有余数,我们就说a能被b整除,b能整除a,记作b|a;a叫做b的倍数,b叫做a 的约数。

2.数的整除性质①如果数a能被数c整除,数b也能被数c 整除,那么它们的和(a+b)或差(a-b)也能被c整除c|a,c|b,则c|a±b。

②几个整数相乘,如果其中有一个因数能被某一个数整除,则这几个数的积也能被这个数整除。

③数a能被数b整除,数a也能被数c整除,如果b,c互质,那么数a能被b与c的积整除。

3.数的整除特征①一个整数的末一位数能被2或5整除,那么这个数就能被2或5整除②一个整数的末两位数能被4或25整除,那么这个数就能被4或25整除③一个整数的末三位数能被8或125整除,那么这个是就能被8或125整除④一个整数的各数位上数字的和能被3或9整除,那么这个数就能被3或9整除⑤一个整数的奇数位(指个位,百位,万位……)上的数字之和与偶数位(指十位,千位,十万位……)上的数字之和的差能被11整除,那么这个数就能被11整除⑥一个整数的末三位数与末三位数以前的数字组成的数的差能被7,11或13整除,那么这个数就能被7,11或13整除【试金石】例1.小马虎在一张纸上写了一个无重复数字的五位数;3□6□5,其中十位数字和千位数字看不清楚了,但是已知这个数是75的倍数,那么满足上述条件的五位数中,最大的一个是多少?【分析】因为五位数3□6□5能被75整除,而75=3×25,3与25互质。

所以3□6□5能同时被3和25整除。

3□6□5能被25整除,由于末尾是5,所以十位数字只能是2或7,即末两位数只能是25或75。

当末两位数是25时,3□625呢功能被3整除,起各位数字之和必须能被3整除,则千位数字只能是2,5,8,而这些五位数中最大的一个是38625,且无重复数字。

同理当末两数是75时,能被3整除的最大五位数是39675,且无重复数字。

小学五年级奥数--数的整除特征(1)

小学五年级奥数--数的整除特征(1)

9□.2□元=9□2□分
• 解:∵28=4×7,根据整除的性质③,

可知4︱9□2□ 且7︱9□2□
• ∴ 根据4的整除特征可知□可以填0、4、8 ,

∵ 7 9020, 7 9424;7 ∣9828。

∴ □处应当填 8 。
• 9828÷28= 351(分)= 3.51(元)
• 答:每支钢笔的价格是 3.51 元。
小学五年级奥数--数 的整除特征(1)
(一)整除——约数、倍数
• 像15÷3=5,63÷7=9这样, • 一般的,如果a、b、c为整数,b≠0,且
a÷b=c,即整数a除以整数b所得的商正好 等于c且没有余数,我们就说a能被b整除 (或者说b能整除a),记作:b︱a, • 否则,称a不能被b整除(或b不能整除a), 记作:b a
数的整除性质1
• 性质1:

如果a、b都能被c整除,那么他们的
和或差也能被c整除。
• 即:如果c︱a , c︱b 那么 c︱(a±b )
• 你能再举出一个例子吗?
数的整除性质2
• 2、我们再来看一组例子: • ① 15能整除45,3×5=15,3和5都能整除
45吗? • ② 3×7=21,21能整除84,3和7都能整除
整除,所以33333333468375能被125整除。
• ③1234567891011121314能不能被3和9整除。
• 回忆:能被3(或9)整除的数的特征:
• 各个数位数字的和能被3(或9)整除。
• 解:1+2+3+4+5+6+7+8+9+1+0+1 +1+1+2+1+3+1+4=60

因为 3 60 9 60
• 所以这个数∣ 能被3整除而不能被9整除。

奥数专题数的整除特性

奥数专题数的整除特性
数旳整除特征
奥数专题
下列数字哪些能被2整除,哪些能被5 整除?
① 125,②756, ③1011, ④2450, ⑤7855 ,⑥8104,⑦9152,⑧70975
能被2整除:②、④、⑥、⑦ 能被5整除:①、④、⑤、⑧
(一)数旳整除特征:
假如具有某个条件旳数,都能被 整数b整除,反过来,能被b整除旳 数,都具有这个条件,那么这个条 件就叫做被b整除旳数旳特征.
(二)数旳整除特征
1.能被2或5整除旳数旳特征是: 这个数旳末 一位能被2或5整除. 2.能被4或25整除旳数旳特征是: 这个数旳末两位能被4或25整除. 3. 能被8或125整除旳数旳特征是: 这个数旳末三位能被8或125整除.
练习1
(1)下列整数 ①53728, ②375, ③1011, ④328925,⑤8421862,⑥8150, ⑦73600,⑧309108.
能被4整除旳是: 能被25整除旳是:
练习1
(1)下列整数 ①53728, ②375, ③1011, ④328925,⑤8421862,⑥8150, ⑦73600,⑧309108.
能被4整除旳是:①、④、⑦、⑧ 能被25整除旳是:②、⑥、⑦、
练习1(2)能被4整除来自最大四位数________.(3)能被8整除旳最小四位数是
除数
• 能被整除旳数旳特征
2或5 4或25 8或125
末位数能被2或5整除 末两位数能被4或25整除 末三位数能被8或125整除
7、11、13 • 一种整数旳末三位与末三位此 前旳数字构成旳数旳差能被7, 11或13整除

最大三位数
..
练习1
(2)当m= 7 时,能被25整除.
(3)能被4整除旳最大四位数___9996__.

小学奥数经典专题点拨:数的整除性规律

小学奥数经典专题点拨:数的整除性规律

数的整除性规律【能被2或5整除的数的特征】(见小学数学课本,此处略)【能被3或9整除的数的特征】一个数,当且仅当它的各个数位上的数字之和能被3和9整除时,这个数便能被3或9整除。

例如,1248621各位上的数字之和是1+2+4+8+6+2+1=243|24,则3|1248621。

又如,372681各位上的数字之和是3+7+2+6+8+1=279|27,则9|372681。

【能被4或25整除的数的特征】一个数,当且仅当它的末两位数能被4或25整除时,这个数便能被4或25整除。

例如,173824的末两位数为24,4|24,则4|173824。

43586775的末两位数为75,25|75,则25|43586775。

【能被8或125整除的数的特征】一个数,当且仅当它的末三位数字为0,或者末三位数能被8或125整除时,这个数便能被8或125整除。

例如,32178000的末三位数字为0,则这个数能被8整除,也能够被125整除。

3569824的末三位数为824,8|824,则8|3569824。

214813750的末三位数为750,125|750,则125|214813750。

【能被7、11、13整除的数的特征】一个数,当且仅当它的末三位数字所表示的数,与末三位以前的数字所表示的数的差(大减小的差)能被7、11、13整除时,这个数就能被7、11、13整除。

例如,75523的末三位数为523,末三位以前的数字所表示的数是75,523-75=448,448÷7=64,即7|448,则7|75523。

又如,1095874的末三位数为874,末三位以前的数字所表示的数是1095,1095-874=221,221÷13=17,即13|221,则13|1095874。

再如,868967的末三位数为967,末三位以前的数字所表示的数是868,967-868=99,99÷11=9,即11|99,则11|868967。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

6、整除及数字整除特征
【数字整除特征】
例1 42□28□是99的倍数,这个数除以99所得的商是__。

(上海市第五届小学数学竞赛试题)
讲析:能被99整除的数,一定能被9和11整除。

设千位上和个位上分别填上数字a、b,则:各位上数字之和为[16+(a+b)]。

要使原数能被9整除,必须使[16+(a+b)]是9的倍数,即(a+b)之和只能取2或11。

又原数奇位上的数字和减去偶位上数字和的差是(8+a-b)或(b-a-8),要使原数能被11整除,必须使(8+a-b)或(b-a-8)是11的倍数。

经验证,(b-a-8)是11的倍数不合。

所以a-b=3。

又a+b=2或11,可求得a=7,b=4。

从而很容易求出商为427284÷99=4316。

例2 某个七位数1993□□□能同时被2、3、4、5、6、7、8、9整除,那么它的最后三位数字依次是__。

(1993年全国小学数学奥林匹克初赛试题)
讲析:因为2、3、4、5、6、7、8、9的最小公倍数是2520。

而1993000÷2520=790余2200。

于是再加上(2520-2200)=320时,就可以了。

所以最后三位数字依次是3、2、0。

例3 七位数175□62□的末位数字是__的时候,不管千位上是0到9中的哪一个数字,这个七位数都不是11的倍数。

(上海市第五届小学数学竞赛试题)
讲析:设千位上和个位上的数字分别是a和b。

则原数奇位上各数字和与偶位上各数字之和的差是[3+(b-a)]或[(a-b)-3]。

要使原数是11的倍数,只需[3+(b-a)]或[(a-b)-3]是11的倍数。

则有 b-a=8,或者a-b=3。

①当 b-a=8时,b可取9、8;
②当 a-b=3时,b可取6、5、4、3、2、1、0。

所以,当这个七位数的末位数字取7时,不管千位上数字是几,这个七位数都不是11的倍数。

例4 下面这个四十一位数
55......5□99 (9)
(其中5和9各有20个)能被7整除,那么中间方格内的数字是__。

(1991年全国小学数学奥林匹克决赛试题)
讲析:注意到111111÷7=15873,所以555555与999999也能被7整除。

则18个5或18个9组成的数,也能被7整除。

要使原四十一位数能被7整除,只需55□99这个五位数是7的倍数。

容易得出,中间方格内的数字是6。

【整除】
例1 一个数除以3余2,除以5余3,除以7余2,适合这些条件的最小数是______。

(天津市第一届“我爱数学”邀请赛试题)
讲析:所求这个数分别除以3和7时,余数相同。

3和7的最小公倍数为21。

所以这个数是23。

经检验,23除以5商4余3,23是本题的答案。

例2 一个整数在3600到3700之间,它被3除余2,被5除余1,被7除余3。

这个整数是__。

(《现代小学数学》邀请赛试题)
讲析:所求整数分别除以3、5、7以后,余数各不相同。

但仔细观察可发现,当把这个数加上4以后,它就能同时被3、5、7整除了。

因为3、5和7的最小公倍数是105。

3600÷105=34余30,105-30=75,
所以,当3600加上75时,就能被3、5和7整除了。

即所求这个整数是3675。

例3 在一个两位数中间插入一个数字,就变成了一个三位数。

如52中间插入4后变成542。

有些两位数中间插入某个数字后变成的三位数,是原两位数的9倍。

这样的两位数共有__个。

(中南地区小学数学竞赛试题)
讲析:因为插入一个数字后,所得的三位数是原两位数的9倍,且个位数字相同。

则原两位数的个位数字一定是0或5。

又插入的一个数字,必须小于个位数字,否则新三位数就不是原两位数的9倍了。

因此原二位数的个位不能为0,而一定是5。

结合被9整除的数字特征,不难找到符合要求的两位数有45、35、25和15共4个。

例4 a是一个自然数,已知a与a+1的各位数字之和都能被7整除,那么这样的自然数a最小是__。

(1993年全国小学数学奥林匹克总决赛第一试试题)
讲析:a与a+1的各位数字之和都是7的倍数。

则a的个位数字一定是9。

因为如果个位上不是9时,若a的各位数字之和是7的倍数,则a+1的各位数字之和除以7以后,肯定余1。

只有当a的个位上是9时,a+1之后,个位上满十后向前一位进一,a+1的个位数字和才有可能是7的倍数。

联想到69,69+1=70,经适当调整可得,符合条件的最小数a是69999。

例5 一个自然数被8除余1,所得的商被8除也余1,再把第二次所得的商被8除后余7,最后得到的一个商是a[见图5.43(1)],又知这个自然数被17除余4,所得的商被17除余15,最后得到一个商是2a[见图5.43(2)],求这个自然数。

(北京市第九届“迎春杯”小学数学竞赛试题)
讲析:可从最后的商步步向前推算。

由图5.43(1)可得:第二次商是(8a+7);第一次商是8×(8a+7)+1=64a+57;所求的自然数是8×(64a+57)+1=512a+457 由图5.43(2)得,所求的自然数是578a+259
所以,512a+457=578a+259。

解得a=3。

故,这个自然数是512×3+457=1993。

例6 某住宅区有十二家住户。

他们的门牌号分别是1、2、3、……、12。

他们的电话号码依次是十二个连续的六位自然数,并且每户的电话号码都能被这户的门牌号整除。

已知这些电话号码的首位数字都小于6,并且门牌号是9的这一家的电话号码也能被13整除。

问这一家的电话号码是什么数?
(1993年全国小学数学奥林匹克总决赛第二试试题)
讲析:设这十二家住户的电话号码依次是a+1、a+2、a+3、……,a+12。

因为每户的电话号码都能被自己家的门牌号整除,所以数a能同时被1、2、3、……、12整除。

而1、2、3、……、12的最小公倍数是27720,所以六位数中,能同时被1、2、3、……12整除的最小自然数是27720×4=110880 现在考虑第九户人家的电话号码能被13整除问题。

因为110880÷13,余数是12;27720÷13,余数是4。

也就是在110889的基础上,再加上n个27720之后的和,能被13整除的数,就是所求的数。

即12+4n,是13的倍数。

显然,当n=10时,12+4n是13的倍数。

所以,门牌号码是9的这家电话号码是:
110889+27720×10=388089。

相关文档
最新文档