物理化学第十二章
物理化学12章化学动力学基础
f f'
1
f ' kBT
1 exp( h )
h
kBT
k
K
c
k BT h
f ' exp(E0 )
f A fBC
RT
Kc
f ' f A fBC
exp(E0 ) RT
k
kBT h
K
c
g
Kc
K
c
(C g
)n1
n 为所有反应物的计量系数之和
rG
g
m
(C
g
)
RT
ln[K
c
(C
g
)n1
]
g
K
c
令∠ABC=180°,即A与BC发生共线碰撞,活化 络合物为线型分子,则EP=EP(rAB,rBC),就可用 三维图表示。
三原子分子反应的势能面
反应坐标: 在势能面上,反应沿着RT→TP 的虚线进行,是一条最低能量 的反应途径
三、由过渡态理论计算反应速率常数 1、公式推导和公式
A B Kc [ AL BL C] A B C
缺点:模型过于简单,所以要引入概率因子,且概 率因子的值很难具体计算。阈能还必须从实验活化 能求得,碰撞理论还是半经验的。
12.2 过渡态理论(transition state theory)
一、理论模型 1、 由反应物分子变成生成物分子,中间要经过一个过
渡态,而形成这个过渡态需要一定的活化能,这个过 渡态就称为活化络合物,所以过渡态里理论又称为活 化络合物理论。
k
d
2 L(8RT
AB
)1/
2
dcA dt
d
2 AB
L(8RT
物理化学第12章
分子分散系统
d < 1 nm
1.分散法:利用机械设备,将粗分散的物料分散成为高 分散的胶体
(1)胶体磨 (2)气流粉碎机(又称喷射磨) (3)电弧法——用于制备贵金属的水溶胶
6
2. 凝聚法:由分子或原子、离子的分散状态凝聚成胶体分散 状态的一种方法。
(1)物理凝聚法 ①蒸气凝聚法 ②过饱和法
将蒸气状态的物质或溶解状态的物质凝聚为胶体状态。
2 0
2n
2 0
(1 + cos2 a )I 0
由 Rayleigh 公式可知: (1) I µ V 2
可用来鉴别小分子真溶液与溶胶系统; 如已知 n 、n0 ,可测 I 求粒子大小V 。 (2) I µ 1 l 4 波长越短的光,散射越强。 例如,用白光照射溶胶,散射光呈淡蓝色,
透射光呈橙红色。
13
电渗可用于纸浆脱水、陶坯脱水等。
31
(3)流动电势
在外力作用下,迫使液体通 过多孔隔膜(或毛细管)定向流 动,在多孔隔膜两端所产生的电 势差,称为流动电势。 ——电渗的逆过程
(4)沉降电势
分散相粒子在重力场或离心 力场的作用下迅速移动时,在移 动方向的两端所产生的电势差, 称为沉降电势。 ——电泳的逆过程
第十二章 胶体化学
1
胶体化学是物理化学的一个重要分支。研究领 域是化学、物理、材料、生物等诸多学科的交叉与 重叠,已成为这些学科的重要基础理论。
胶体化学的理论和技术现在已广泛应用于化工、 石油开采、催化、涂料、造纸、农药、纺织、食品、 化妆品、染料、医药和环境保护等工业部门和技术 领域。
2
胶体化学主要研究的对象是多相分散系统。
对于球形粒子,D 可由爱因斯坦–斯托克斯方程计 算:
第12章热力学第二和第三定律
8/9/2022
复旦大学化学系
第九页,编辑于星期五:十五点 二分。
9
物理化学 II
第十二章 热力学第二和第三定律
反证法: 如果 可( -W可/ Q可H) 任( -W任/ Q任H),如何?
证明: 因卡诺机为可逆机,因而反转后
仅过程相反而数值不变,即
复旦大学化学系
S环= (Q/T)任
第十九页,编辑于星期五:十五点 二分。 19
物理化学 II
第十二章 热力学第二和第三定律
(三)熵和第二定律的统计力学解释
热力学
孤立体系,熵增加方向, 至熵最大达平衡态
统计力学
概率增大的状态,至最概然分布达平衡态
设两个独立体系
S f ()
S总S1S2
总12
S f( ) f( 1 2 ) f( 1 ) f( 2 )
卡诺定理->熵
任一可逆循环 =若干极为接近的(绝热可逆线+等温可逆线) =若干个卡诺循环
根据卡诺循环:(QH/TH) + (QL/TH) = 0
则对每个循环 (Q1/T1) + (Q2/T2) =0
(Q2/T2) + (Q3/T3) = 0
(Qi/Ti) + (Qi+1/Ti+1) = 0
求和:
i (Qi/Ti)可=0
不可逆过程的共同特征?
不可逆过程的定义
不可能有途径使环境和体系同时复原而不 留下任何痕迹!
必有抹不掉的痕迹!
问题:抹不掉的痕迹是什么?
8/9/2022
复旦大学化学系
第三页,编辑于星期五:十五点 二分。
3
大学《物理化学》12.溶胶
若按分散相的大小来分类, 若按分散相的大小来分类,可将分散体系分成三大类 类型
粗分散体系 (悬浮液) 悬浮液) 胶体分散系 (溶胶、高分 溶胶、 子溶液) 子溶液)
颗粒 大小 > 10-7 m
例子
泥浆 牛奶 Fe(OH)3溶
特
性
粒子不能透过滤纸,不扩散, 粒子不能透过滤纸,不扩散, 在一般显微镜下可见, 在一般显微镜下可见,多相 态。 粒子能透过滤纸, 粒子能透过滤纸,不能透过
可见光的波长范围为 : 450 nm ~ 700 nm ,
4 .5 × 10 −7 ~ 即
胶粒的大小范围大致为: 胶粒的大小范围大致为
7 ×10
~
−7
m m
10
−7
10
−9
由于胶粒的大小小于入射光的波长, 因此, 由于胶粒的大小小于入射光的波长 因此 观察 光的散射作用引起的。 到的光锥是由光的散射作用引起的 到的光锥是由光的散射作用引起的。
2) 对粗分散体系,由于粒子较大,来自四面八方的撞 ) 对粗分散体系,由于粒子较大, 击力大致相互抵消,因此,布朗运动不明显; 击力大致相互抵消,因此,布朗运动不明显; 3) 对分子分散系,由于分子剧烈的热运动,无法观察 ) 对分子分散系,由于分子剧烈的热运动, 到分子的运动轨迹,因此,也没有布朗运动。 到分子的运动轨迹,因此,也没有布朗运动。 在超显微镜下能够清楚看出粒子走过的路径, 在超显微镜下能够清楚看出粒子走过的路径,因此 能够测出在一定时间内粒子的平均位移。粒子越小, 能够测出在一定时间内粒子的平均位移。粒子越小,布 朗运动越激烈,其激烈程度不随时间而改变, 朗运动越激烈,其激烈程度不随时间而改变,但随温度 的升高而加剧。 的升高而加剧。
光源 光源
物理化学12章_化学动力学基础(二)
Eb。Eb。是活化络合物与反应物最 低势能之差,E0是两者零点能
之间的差值。
这个势能垒的存在说明了实验活化能的实质。
上一内容 下一内容 回主目录
返回
2021/1/16
势能面剖面图
上一内容 下一内容 回主目录
返回
2021/1/16
三原子系统振动方式
式中r0是分子中双原子分子间的平衡核间 距,De是势能曲线的井深,a为与分子结构有 关的常数.
上一内容 下一内容 回主目录
返回
2021/1/16
双原子分子的莫尔斯势能曲线
AB双原子分子根据该公式 画出的势能曲线如图所示。
当r>r0时,有引力,即化学键力。 当r<r0时,有斥力。 0时的能级为振动基态能级,E0为零点能。
物理化学12章_化学动力学基础(二 )
上一内容 下一内容 回主目录
返回
物理化学电子教案—第十二章
上一内容 下一内容 回主目录
返回
2021/1/16
第十二章 化学动力学基础(二)
§12.1 碰撞理论 *§12.2 过渡态理论
§12.3 单分子反应理论 * §12.4 分子反应动态学简介
§12.5 在溶液中进行的反应 * §12.6 快速反应的几种测试手段
Ea≈ E
上一内容 下一内容 回主目录
返回
2021/1/16
概率因子(probability factor)
由于简单碰撞理论所采用的模型过于简单, 没有考虑分子的结构与性质,所以用概率因子 来校正理论计算值与实验值的偏差。
P=k(实验)/k(理论)
概率因子又称为空间因子或方位因子。
上一内容 下一内容 回主目录
物理化学第五版课后习题答案
第十二章胶体化学12-1 如何定义胶体系统?总结胶体系统的主要特征。
答:(1) 胶体定义:胶体系统的主要研究对象是粒子直径d至少在某个方向上在1-100nm之间的分散系统。
(2) 胶体系统的主要特征:溶胶系统中的胶粒有布朗运动,胶粒多数带电,具有高度分散性,溶胶具有明显的丁达尔效应。
胶体粒子不能透过半透膜。
[注] 溶胶系统中的胶粒的布朗运动不是粒子的热运动,且只有溶胶才具有明显的丁达尔效应。
12-2 丁铎尔效应的实质及产生的条件是什么?答:丁铎尔现象的实质是光的散射作用。
丁铎尔效应产生的条件是分散相粒子的直径小于入射光波长、分散相与分散介质的直射率相差较大。
12-3 简述斯特恩双电层模型的要点,指出热力学电势、斯特恩(Stern)电势和ζ电势的区别。
答:斯特恩认为离子是有一定大小的,而且离子与质点表面除了静电作用外还有范德华力。
(1) 在靠近质点表面1~2个分子厚的区域内,反离子受到强烈地吸引而牢固地结合在质点表面,形成一个紧密地吸附层-斯特恩层,(2) 在斯特恩层,非离子的电性中心将形成一假想面-斯特恩面。
在斯特恩面内电势呈直线下降的变化趋势,即由质点表面的ϕ0直线下降至处的ϕs,ϕs称为斯特恩电势;(3) 其余的反离子扩散地分布在溶液中,构成双电层的扩散层部分。
在扩散层中,电势由ϕs降至零。
因此斯特恩双电层由斯特恩层和扩散层构成;(4) 当固、液两相发生相对运动时,紧密层中吸附在质点表面的反离子、溶剂分子与质点作为一个整体一起运动,滑动面与溶液本体之间的电势差,称为ζ电势。
热力学电势ϕ0是质点表面与液体内部的总的电位差,即固液两相之间双电层的总电势。
它与电极∕溶液界面的双电层总电势相似,为系统的热力学性质,在定温定压下,至于质点吸附的(或电离产生的)离子在溶液中活度有关,而与其它离子的存在与否无关。
斯特恩电势ϕs是斯特恩面与容液本体的电势差,其值与集中在斯特恩层里的正负离子的电荷总数有关,即与双电层的结构状态有关。
物理化学讲稿第十二章化学动力学基础二
物理化学讲稿第十二章化学动力学基础(二)(10学时)物理化学教研室第十二章化学动力学基础(二)(教学方案)第十二章 化学动力学基础(二)人们在测量了大量反应的速率常数,并对反应速率常数于温度的依赖关系有了相当了解以后,对于为什么会有这些宏观规律存在必须从理论给予回答。
在反应速率理论的发展过程中,先后形成了碰撞理论、过渡态理论和单分子反应理论等。
动力学理论与,发展较迟。
先后形成的碰撞理论、过渡态理论都是20世纪后建立起来的。
而且与热力学的经典理论相比尚有明显不足之处。
速度理论是研究化学反应的速率系数与温度的关系,描述反应过程的动力学性质。
速率理论的共同点:首先选定一个微观模型,用气体分子运动论(碰撞理论)或量子力学(过渡态理论)的方法,并经过统计平均,导出宏观动力学中速率系数的计算公式。
由于所采用模型的局限性,使计算值与实验值不能完全吻合,还必须引入一些校正因子,使理论的应用受到一定的限制。
§12.1 碰撞理论(Simple Collision theory )(SCT )碰撞理论是接受了阿伦尼乌斯关于“活化状态”和“活化能”概念的基础上,利用已经建立起来的气体分子运动论的基础上,在20世纪初由路易斯建立起来的。
路易斯把气相中的双分子反应看作是两个分子激烈碰撞的结果。
在这里只学习简单的硬球碰撞理论(SCT )。
气相双分子简单反应如A + B → 产物,2A → 产物。
一、碰撞理论1、微观模型(1) 反应物分子可看作简单的刚球,无内部结构; (2) 分子间除碰撞间外无其它相互作用;(3) 在反应过程中,反应分子的速率分布遵守麦克斯韦-玻耳兹曼分布。
2、碰撞理论的基本要点(1) 分子必须通过碰撞才能发生反应,反应物分子间的接触碰撞是发生反应的前提。
即要反应,先碰撞;(2) 不是任何两个反应物分子碰撞都能发生反应,只有当两个反应物碰撞分子的能量超过一定的数值ε0时,并满足一定的空间配布几何条件的碰撞反应才能发生反应;(3)活化分子的能量较普通能量高,它们碰撞时,松动并部分破坏了反应物分子中的旧键,并可能形成新键,从而发生反应,这样的碰撞称为有效碰撞或非弹性碰撞,活化分子愈多,发生化学反应的可能性就愈大。
物理化学电子教案—第十二章
返回
2011-5-28
§12.1
碰撞理论
9.反应截面 10.碰撞理论计算速率 系数的公式 11.反应阈能与实验活 化能的关系 12.概率因子 13.碰撞理论的优缺点
回主目录
1.速率理论的共同点 2.两个分子的一次碰撞过程 3.有效碰撞直径和碰撞截面 4.A与B分子互碰频率 5.两个A分子的互碰频率 6.硬球碰撞模型 7.碰撞参数 8.有效碰撞分数
3.三原子分子的核间距
上一内容
下一内容
回主目录
返回
2011-5-28
4.势能面 对于反应: 令∠ABC=180o, EP=EP(rAB,rBC)。 随着核间距rAB和rBC的变化,势能也随之改变。 这些不同点在空间构 成高低不平的曲面,称 为势能面,如图所示。
上一内容
下一内容
回主目录
返回
2011-5-28
物理化学电子教案—第十二章
上一内容
下一内容
回主目录
返回
2011-5-28
第十二章 化学动力学基础(二) §12.1 §12.2 §12.3 §12.4 §12.5 §12.6 §12.7 §12.8
上一内容
碰撞理论 过渡态理论
§12.9 催化反应动力学
单分子反应理论 分子反应动态学简介* 在溶液中进行的反应 快速反应的测试* 光化学反应 化学激光简介*
上一内容 下一内容 回主目录
返回
2011-5-28
2.两个分子的一次碰撞过程 两个分子在相互的作用力下,先是互相接 近,接近到一定距离,分子间的斥力随着距离 的减小而很快增大,分子就改变原来的方向而 相互远离,完成了一次碰撞过程。 粒子在质心 体系中的碰撞轨 线可用示意图表 示为:
物理化学:第十二章 胶体化学(2)
总作用势能:E = ER + EA
粒子的平动能=(3/2) RT <Emax时,溶胶稳定; >Emax时,溶胶不稳定
ER 势 能
E
Emax
0
x
第二最小值
EA 第一最小值
EA曲线的形状由粒子本性决定,不受电解质影响; ER曲线的形状、位置强烈地受电解质浓度的影响。 电解质浓度对胶体粒子势能的影响:
2. 扩散双电层理论
常用名词: 双电层: 质点表面电荷与周围介质中的反离子
构成的电层;
表面电势0:带电质点表面与液体的电势差: 电势: 固、液两相发生相对运动的边界处与液
体内部的电势差。
1) 亥姆霍兹平板电容器模型
0
1879年,亥姆霍兹 首先提出在固液两相之 间的界面上形成双电层 的概念。
0
x
电泳或电渗实验证明:溶胶的分散质和分散 介质都带电,且所带的电性是不同的。
在电泳实验中,当溶胶粒子向负极迁移时,说 明胶粒带正电,此溶胶称为正溶胶;当溶胶粒子向 正极迁移时,说明胶粒带负电,此溶胶称为负溶胶
在电渗实验中,则正好相反。当介质向负极迁移 时,说明胶粒带负电,此溶胶称为负溶胶;当介质向 正极迁移时,说明胶粒带正电,此溶胶称为正溶胶。
本体之间的电势差
Stern 模型:固定 层+扩散层
固体表面 Stern面 滑动面
电势
0
0
--- 热力学电势,固体 表面与溶液本体的电
势差与溶液中电位离
子的浓度有关。
---- Stern电势。 Stern面与溶液本体的
电势差
距离
---- 电动电势(Zata电 势)滑动面与溶液本 体的电势差其值取决 于可动层的厚度
天津大学物理化学第五版-第十二章-胶体化学
van der Waals 吸引力:EA -1/x2 双电层引起的静电斥力:ER ae-x
总作用势能:E = ER + EA
EA曲线的形状由粒子本
性决定,不受电解质影响;
ER曲线的形状、位置强
烈地受电解质浓度的影响。
ER 势 能
E
n : 分散相的折射率; n0:分散介质的折射率;
:散射角;
l : 观测距离
I= 9 2V 2C 2 4 l 2
n 2 n02 n2 2n02
2
1 cos 2
I0
由 Rayleigh 公式可知:
1) I V 2
可用来鉴别小分子真溶液与胶体溶液;
如已知 n 、n0 ,可测 I 求粒子大小V 。
2. 憎液溶胶的聚沉 溶胶粒子合并、长大,进而发生沉淀的现
象,称为聚沉。
(1) 电解质的聚沉作用 聚沉值使溶胶发生明显的聚沉所需电解质的最小浓度 聚沉能力聚沉值的倒数
EA 曲线的形状由粒子本性决定,不受电解质影响; ER 曲线的形状、位置强烈地受电解质浓度的影响。
电解质浓度与价数增加,使胶体粒子间势垒的高度 与位置发生变化。
分散系统:一种或几种物质分散在另一种物质之中
分散相:被分散的物质 (dispersed phase) 分散介质:另一种连续分布的物质
medium)
(dispersing
分子分散系统
胶体分散系统
粗分散系统
例如:云,牛奶,珍珠
按分散相粒子的大小分类
类型
粒子大小
特性
举例
低分子溶 液(分子分
散系统)
<1nm
物理化学第十二章-电化学平衡
阴极: Zn 2 2e Zn(s) 阳极
2A ( ) 2Cl 2Ag(s) 2AgCl(s) 2A Cl( ) 2 2e
Zn(s) 2AgCl(s) 净反应: 2Ag(s) ZnCl 2
不可逆电池
原电池 电解池
Zn(s) ( ) 2H Zn H 2 (g)
电化学与热力学的联系
( r G )T , p , R Wff,max max nEF 重要公式: 重要公式: nEF ( r Gm )T , p , R zEF
等温、等压条件下,体系吉布斯自由能的变化等 等温 等压条件 体系吉布斯自由能的变化等 于体系在可逆过程中所做的最大非膨胀功
2 96500 298.15 (8.53 10 4 ) J mol 1
4.91 10 4 J mol 1
rHm Qp
§12.2
电极电势和可逆电极
电极与溶液界面电势差 电极电势 电极电势的能斯特公式 可逆电极
电极与电解质溶液界面间电势差的形成
在金属与溶液的界面上,由于正、负离子静电吸引 和热运动两种效应的结果 溶液中的反离子只有 和热运动两种效应的结果,溶液中的反离子只有一 部分紧密地排在固体表面附近,相距约一、二个离 子厚度称为紧密层; 另一部分离子按一定的浓度梯度扩散到本体溶液中, 称为扩散层 称为扩散层。 紧密层和扩散层构成了双电层。 金属表面与溶液本体之间的电势差即为界面电势差 金属表面与溶液本体之间的电势差即为界面电势差。
负极,氧化 H (p ) 2H (a ) 2e 2 1 H 正极,还原
Cl 2 (p2 ) 2e 2Cl (aCl )
+
物理化学电子教案第十二章
上一内容 下一内容 回主目录
返回
2019/12/6
界面现象的本质
最简单的例子是液体及其蒸气组成的表面。
液体内部分子所受的力可以
彼此抵销,但表面分子受到体相 分子的拉力大,受到气相分子的 拉力小(因为气相密度低),所 以表面分子受到被拉入体相的作 用力。
比表面通常用来表示物质分散的程度,有两 种常用的表示方法:一种是单位质量的固体所具 有的表面积;另一种是单位体积固体所具有的表 面积。即:
Am A / m 或 AV A /V
式中,m和V分别为固体的质量和体积,A为其表 面积。目前常用的测定表面积的方法有BET法和 色谱法。
上一内容 下一内容 回主目录
这种作用力使表面有自动收缩到最小的趋势,并
使表面层显示出一些独特性质,如表面张力、表面吸 附、毛细现象、过饱和状态等。
上一内容 下一内容 回主目录
返回
2019/12/6
界面现象的本质
上一内容 下一内容 回主目录
返回
2019/12/6
比表面(specific surface area)
用于单位边界上的表面张力。
上一内容 下一内容 回主目录
返回
2019/12/6
表面张力(surface tension)
上一内容 下一内容 回主目录
返回
2019/12/6
表面张力(surface tension)
如果在金属线框中间系一线圈,
一起浸入肥皂液中,然后取出,上
面形成一液膜。
表面和界面(surface and interface)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第十二章胶体化学
1、把一种或几种物质分散在另一种物质中就构成分散体系。
其中,被分散的物质称为分散相(dispersed phase),另一种物质称为分散介质(dispersing medium)。
2、按分散相粒子的大小分类:分子分散体系;胶体分散体系,粗分散体系。
3、分子分散体系:分散相与分散介质以分子或离子形式彼此混溶,没有界面,是均匀的单相,分子半径大小在1nm以下。
通常把这种体系称为真溶液,如CuSO4溶液。
4、胶体分散体系:分散相粒子的半径在1 nm~100 0nm之间的高分散体系。
目测是均匀的,但实际是多相不均匀体系。
5、粗分散体系:当分散相粒子大于1000 nm,目测是混浊不均匀体系,放置后会沉淀或分层,如黄河水。
6、按分散相和介质的聚集状态分类:液溶胶;固溶胶;气溶胶。
7、液溶胶:a液-固溶胶(金溶胶,油墨,泥浆);b液-液溶胶(牛奶,含水原油);c液-气溶胶(肥皂泡沫)
8、固溶胶:a固-固溶胶(有色玻璃,部分合金);b固-液溶胶(珍珠,蛋白石);c固-气溶胶(泡沫塑料)
9、气溶胶:a气-固溶胶(烟,粉尘);b气-液溶胶(雾,云)
10、按胶体溶液的稳定性分类:憎液溶胶;亲液溶胶。
11、憎液溶胶
(1)特有的分散程度:粒子的大小在10-9~10-7 m之间,因而扩散较慢,不能透过半透膜,渗透压低但有较强的动力稳定性和乳光现象。
(2)多相不均匀性:
(3)热力学不稳定性
12、按胶体溶液的稳定性分类,可把胶体分为溶胶、高分子溶液和缔合胶体。
13、溶胶:半径在1 nm~100 nm之间的难溶物固体粒子分散在液体介质中,有很大的相界面,易聚沉,分散相与分散介质不同相,是热力学上的不稳定体系。
一旦将介质蒸发掉,再加入介质就无法再形成溶胶是一个不可逆体系。
14、高分子溶液:在胶体粒子范围内的高分子溶解在合适的溶剂中,亲液溶胶是热力学上稳定、可逆的体系。
15、缔合胶体(有时也称为胶体电解质):分散相是由表面活性剂缔合而成的胶束。
是一类均相的热力学稳定系统。
16、★证明关系:附加压力与表面积张力与表面自由能的关系。
颗粒大小与溶解度的关系的关系。
表面自由能越高,胶体越不稳定。
§12.1 胶体系统的制备
1、制备方法:(1)分散法:用机械、化学等方法使固体的粒子变小。
(2)凝聚法:使分子或离子聚结成胶粒
2、分散法:研磨法;胶溶法;超声分散法;电弧法
3、胶溶法又称解胶法,仅仅是将新鲜的凝聚胶粒重新分散在介质中形成溶胶,并加入适当的稳定剂。
4、凝聚法:化学凝聚法;物理凝聚法
5、化学凝聚法:通过各种化学反应使生成物呈过饱和状态,使初生成的难溶物微粒结合成胶粒,在少量稳定剂存在下形成溶胶,这种稳定剂一般是某一过量的反应物。
6、物理凝聚法:a过饱和法,利用物质在不同溶剂中溶解度的显著差别来制备溶胶,而且两种溶剂要能完全互溶。
b蒸气骤冷法。
7、溶胶的净化:在制备溶胶的过程中,常生成一些多余的电解质。
过多的电解质存在会使
溶胶不稳定,容易聚沉,所以必须除去。
8、净化的方法主要有渗析法(简单渗析与电渗析)和超过滤法。
§12.2 胶体系统的光学性质
1、光散射现象
(1)当光束通过粗分散体系,由于粒子大于入射光的波长,主要发生反射,使体系呈现混浊。
(2)当光束通过胶体溶液,由于胶粒直径小于可见光波长,主要发生散射,可以看见乳白色的光柱。
(3)当光束通过分子溶液,由于溶液十分均匀,散射光因相互干涉而完全抵消,看不见散射光。
2、Tyndall效应:令一束会聚光通过溶胶,从侧面(即与光束垂直的方向)可以看到一个发光的圆锥体,这就是Tyndall效应。
3、超显微镜与粒子大小的近似测定:超显微镜分辨率高,可以研究半径为5~150 nm
的粒子。
分为:狭缝式,有心形聚光器
§12.3 胶体系统的动力性质
1、布朗运动:永不停息,无规则的运动称为布朗运动。
2、粒子越小,布朗运动越激烈。
其运动激烈的程度不随时间而改变,但随温度的升高而增加。
3、Brown运动是分散介质分子以不同大小和不同方向的力对胶体粒子不断撞击而产生的,由于受到的力不平衡,所以连续以不同方向、不同速度作不规则运动。
随着粒子增大,撞击的次数增多,而作用力抵消的可能性亦大。
当半径大于5μm,Brown运动消失。
4、沉降与沉降平衡:溶胶是高度分散体系,胶粒一方面受到重力吸引而下降,另一方面由于布朗运动促使浓度趋于均一。
当这两种效应相反的力相等时,粒子的分布达到平衡。
这种平衡称为沉降平衡。
§12.4 溶胶系统的电学性质
1、胶粒在形成过程中,胶核优先吸附某种离子,使胶粒带电。
2、离子型固体电解质形成溶胶时,由于正、负离子溶解量不同,使胶粒带电。
3、可电离的大分子溶胶,由于大分子本身发生电离,而使胶粒带电。
4、胶粒中心:胶核;在紧密层外形成反号离子的包围圈形成胶粒;胶粒与扩散层中的反号离子,形成一个电中性的胶团。