介观材料力学.综述
第四章材料力学基本概述
Strength of materials
山东大学 Shandong university
材料力学基本概述
2000年10月25日上午10时南京电视台 演播中心由于脚手架失稳造成屋顶模 板倒塌,死6人,伤34人.
Strength of materials
山东大学 Shandong university
变形固体的基本假设
1、连续性假设(continuity) (数学)
假设组成固体的物质不留空隙地充满了整个体积——固 体在其整个体 积内是密实的、连续的 某些力学量(内力和 位移)表示为固体点的 位置坐标的连续函数。
Strength of materials
山东大学 Shandong university
山东大学 Shandong university
材料力学基本概述
3、各向同性假设(isotropy) (物理)
假设沿任何方向固体的力学性能都相同
Strength of materials
山东大学 Shandong university
材料力学基本概述
各向同性材料:金属材料、混凝土等 各向异性材料:木材、胶合板、竹子以及某些高分 子材料、纤维增强复合材料
n
但对能够产生大变形的物体(如橡皮和塑料等)以及对 压杆的稳定性问题则不适用。
Strength of materials
山东大学 Shandong university
材料力学基本概述
弹性变形:卸除荷载后能完全消失的那一部分变形。
塑性变形:卸除荷载后不能完全消失而残留下来的 那部分变形。
线弹性假设,即在小变形和材料中应力不超过比例极限两个 前提下,可认为物体上的力和位移(或应变)始终成正比。 这个假设使计算大为简化,而且在这一假设的基础上,一 个较复杂的问题可以分解为一些简单的问题。
材料力学知识点归纳总结(完整版)
材料力学知识点归纳总结(完整版)1.材料力学:研究构件(杆件)在外力作用下内力、变形、以及破坏或失效一般规律的科学,为合理设计构件提供有关强度、刚度、稳定性等分析的基本理论和方法。
2.理论力学:研究物体(刚体)受力和机械运动一般规律的科学。
3.构件的承载能力:为保证构件正常工作,构件应具有足够的能力负担所承受的载荷。
构4.件应当满足以下要求:强度要求、刚度要求、稳定性要求5.变形固体的基本假设:材料力学所研究的构件,由各种材料所制成,材料的物质结构和性质虽然各不相同,但都为固体。
任何固体在外力作用下都会发生形状和尺寸的改变——即变形。
因此,这些材料统称为变形固体。
第二章:内力、截面法和应力概念1.内力的概念:材料力学的研究对象是构件,对于所取的研究对象来说,周围的其他物体作用于其上的力均为外力,这些外力包括荷载、约束力、重力等。
按照外力作用方式的不同,外力又可分为分布力和集中力。
2.截面法:截面法是材料力学中求内力的基本方法,是已知构件外力确定内力的普遍方法。
已知杆件在外力作用下处于平衡,求m-m截面上的内力,即求m-m截面左、右两部分的相互作用力。
首先假想地用一截面m-m截面处把杆件裁成两部分,然后取任一部分为研究对象,另一部分对它的作用力,即为m-m截面上的内力N。
因为整个杆件是平衡的,所以每一部分也都平衡,那么,m-m截面上的内力必和相应部分上的外力平衡。
由平衡条件就可以确定内力。
例如在左段杆上由平衡方程N-F=0 可得N=F3.综上所述,截面法可归纳为以下三个步骤:1、假想截开在需求内力的截面处,假想用一截面把构件截成两部分。
2、任意留取任取一部分为究研对象,将弃去部分对留下部分的作用以截面上的内力N来代替。
3、平衡求力对留下部分建立平衡方程,求解内力。
4.应力的概念:用截面法确定的内力,是截面上分布内力系的合成结果,它没有表明该分布力系的分布规律,所以,为了研究相伴的强度,仅仅知道内力是不够的。
材料力学概述与基本概念
材料力学概述与基本概念材料力学是一个研究材料内部结构、性质和行为的学科,它是材料科学与工程学的基础。
本文将对材料力学的概述和基本概念进行探讨。
一、材料力学的概述材料力学是研究固体材料的力学性能的科学。
它主要研究材料的力学性质,包括力学行为、应力应变关系、破坏行为等。
材料力学的研究对象涉及各种材料,包括金属、陶瓷、聚合物等。
材料力学的发展旨在揭示材料的力学行为规律,为材料设计和工程应用提供基础。
二、基本概念1. 应力(Stress)在材料力学中,应力是指力对单位面积的作用。
它可以描述材料内部分子间的相互作用力,常用符号为σ。
应力的单位为帕斯卡(Pa)或兆帕(MPa)。
应力可分为正应力、剪应力等。
2. 应变(Strain)应变是材料在受力作用下产生的变形程度。
它衡量了材料单位长度或单位体积的形变程度,常用符号为ε。
应变的单位为无量纲。
3. 弹性模量(Elastic Modulus)弹性模量是衡量材料恢复力的能力。
它表示材料在受到外力作用后,恢复到原来形状的能力。
常见的弹性模量有杨氏模量、剪切模量等。
4. 屈服强度(Yield Strength)屈服强度是材料在受到外力作用下开始产生塑性变形的应力值。
如果超过屈服强度,材料将会产生可见的塑性变形。
屈服强度可以用来评估材料的韧性和可塑性。
5. 断裂强度(Fracture Strength)断裂强度是材料在受到外力作用下发生断裂的应力值。
它是衡量材料抵抗断裂的能力的重要指标。
6. 破坏韧性(Fracture Toughness)破裂韧性是指材料抵抗裂纹扩展和破坏的能力。
它是衡量材料抗破坏能力的重要参数。
7. 应力-应变曲线(Stress-Strain Curve)应力-应变曲线是描述材料应力和应变关系的图表。
它可以用来分析材料的强度、韧性、刚性等性能。
总结:材料力学是材料科学与工程学中的核心学科之一,它的发展和应用为材料设计和工程应用提供了重要理论基础。
基本概念如应力、应变、弹性模量、屈服强度、断裂强度、破坏韧性等,是分析和评价材料性能的重要依据。
材料力学知识点概括
材料力学知识点概括
材料力学是三大力学之一,其研究的对象主要是杆件;研究杆件在荷载作用下的承载能力;承载能力包括杆件的强度、刚度及杆件的稳定性。
在计算或校核杆件的承载能力之前,先掌握杆件的基本变形;在材料力学中,杆件的基本变形主要包括:轴向拉伸与压缩、扭转、弯曲、剪切;在材料力学教材中,先后对轴向拉伸与压缩、扭转、弯曲、剪切各用一章来讲解,在后面的章节中,把这四种基本变形进行综合分析,也就是组变形
8
4
5
7
1利用截面法求内力,2、3、4、5、8都是运用相应的公式,6是胡克定律
可以这样说,材料力学教程主要是围绕着结构中杆件的强度、刚度、稳定性进行讲解;整个教程的流程:
第一章、轴向拉伸与压缩
在本章节中,先引入应力与应变的定义及概念,随后介绍基本变形中的轴向拉伸与压缩的应力计算,再介绍轴向拉伸与压缩斜截面上的应力如何计算;最后在介绍轴向与拉伸的应变计算。
利用本章节的知识点可以解决工程实际中简单桁架结构的杆件的校核。
材料力学知识点总结免费版
材料力学知识点总结材料力学是研究物质内部力学行为以及材料的变形和破坏的学科。
它是工程领域中非常重要的基础学科,涉及材料的结构、性能和应用等方面。
本文将从基本概念、力学性质、变形与破坏等方面对材料力学的知识点进行总结。
1.弹性力学弹性力学是材料力学的基础,研究材料在外力作用下的变形与恢复过程。
弹性力学主要关注材料的弹性性质,即材料在外力作用下是否能够发生恢复性变形。
弹性力学的基本理论包括胡克定律、泊松比等。
2.塑性力学塑性力学研究材料的塑性行为,即材料在外力作用下会发生永久性变形的能力。
塑性力学主要关注材料的塑性应变、塑性流动规律等。
常见的塑性变形方式包括屈服、硬化、流变等。
3.破裂力学破裂力学研究材料的破裂行为,即材料在外力作用下发生破裂的过程。
破裂力学主要关注材料的断裂韧性、断口形貌等。
常见的破裂失效方式包括断裂、断裂韧性减小、疲劳等。
4.疲劳力学疲劳力学研究材料在交变应力作用下的疲劳失效行为。
疲劳力学主要关注材料的疲劳寿命、疲劳强度等。
材料在交变应力作用下会逐渐积累微小损伤,最终导致疲劳失效。
5.断裂力学断裂力学研究材料在应力集中区域的破裂行为。
断裂力学主要关注材料的应力集中系数、应力集中因子等。
在材料中存在裂纹等缺陷时,应力集中会导致裂纹扩展,最终引发断裂失效。
6.成形加工力学成形加工力学研究材料在加工过程中的变形行为。
成形加工力学主要关注材料的流变性质、加工硬化等。
常见的成形加工方式包括挤压、拉伸、压缩等。
7.热力学力学热力学力学研究材料在高温条件下的力学行为。
热力学力学主要关注材料的热膨胀、热应力等。
材料在高温条件下,由于热膨胀不均匀等因素,会产生热应力,从而影响材料的力学性能。
通过以上对材料力学的知识点的总结,我们可以了解到材料力学对工程领域的重要性。
在工程实践中,需要根据材料的力学性质来设计和制造材料的结构,以保证其性能和安全性。
因此,掌握材料力学的基本概念和原理对于工程师和科研人员来说是至关重要的。
材料力学概论课件
材料失效和可靠性研究
失效机制
研究材料的失效机制和机理,包括疲劳、蠕变、断裂 等,以提高材料的可靠性和使用寿命。
可靠性评估
发展材料的可靠性评估方法和技术,包括概率断裂力学、 寿命预测等,以保障工程安全。
THANKS
感谢观看
材料的应力应变关系
应力
作用在材料单位面积上的力。
应变
材料在受力后发生的变形程度。
03
材料的变形
弹性变形
总结词
材料在弹性极限内发生的变形,在外力撤销 后能够完全恢复。
详细描述
当材料受到外力作用时,会发生形状或尺寸 的改变,这种改变在材料承受的应力未超过 其弹性极限时,称为弹性变形。弹性变形具 有可逆性,当外力撤销后,材料能够恢复原 来的形状和尺寸。
总结词
材料力学在工程设计和制造中具有重要的作用,是保 证结构安全性和稳定性的关键因素之一。
详细描述
在工程领域中,许多设备和结构都需要用到材料力学 知识来进行设计和优化,如桥梁、建筑、航空航天等。 通过材料力学的研究和应用,可以有效地提高结构的 强度、刚度和稳定性,减少因载荷过大或应力集中而 导致的断裂、变形和失效等问题,保证工程的安全性 和可靠性。同时,材料力学的发展也为新材料的研发 和应用提供了重要的理论支持和实践指导。
塑性变形
要点一
总结词
材料超过弹性极限后发生的变形,在外力撤销后不能完全 恢复。
பைடு நூலகம்
要点二
详细描述
当材料受到的应力超过其弹性极限后,发生的变形称为塑 性变形。塑性变形是不可逆的,即使外力撤销后,材料的 形状和尺寸也不会完全恢复。塑性变形的特点是永久性的, 常用于金属加工、塑料成型等领域。
材料的断裂
材料力学1 材料力学概述
7-3
单元体的力学性质能代表整个物体 8 的力学性能。
1.2 材料力学的基本假设
(3)材料的各向同性假设 内容:材料沿各个方向的力学性能是相同的。
(4)小变形条件
内容:构件在荷载作用下产生的变形与其原始尺寸相比, 可以忽略不计,这样的变形为小变形。
“连续、均匀、各向同 性”材料
9
1.2 材料力学的基本假设
3
2. 研究内容
(1) 强度 抵抗破坏的能力。 破坏: 断裂、破碎 明显的塑性变形
4
(2) 刚度
抵抗弹性变形的能力。 明显的弹性变形
(3) 稳定性 保持稳定的平衡状态的能力。
5
3.材料力学与理论力学的关系
理论力学研究刚体的外部效应(构件受到的外力)
A
FA F
B
FB
F
材料力学研究变形固体的内部效应(构件受到的 内力)及变形。
30
对多数工程用材料,这种线弹性关系是近似 的。近似的线性关系使复杂的问题大为简化 ,并能获得满足工程上精度要求的结果。
材料力学限于研究线弹性阶段内构件的力学行为。
31
Me
Me
组合变形:当杆件同时发生两种或两种以上基本变形时称为 组合变形。
M F
P
M F
P
19
1.4 弹性体受力与变形特点
第一个特征:由于整体平衡的要求,对于截开的每一部 分也必须是平衡的。作用在每一部分上的外力必须与截面 上分布的内力相平衡,组成平衡力系。(截面法)
第二个特征:弹性体的变形应使弹性体各相邻部分既不 能断开也不能互相重叠,既弹性体受力发生的变形必须满 足变形协调一致的要求。
切-沿需表示内力的截面,将物体切开分离为两部分; 取-取其中一部分为研究对象; 代-用内力代替另一部分对所取隔离体的作用。
材料力学总结(整理)
材料力学阶段总结一. 材料力学地一些基本概念1.材料力学地任务:解决安全可靠与经济适用地矛盾.研究对象:杆件强度:抵抗破坏地能力刚度:抵抗变形地能力稳定性:细长压杆不失稳.2. 材料力学中地物性假设连续性:物体内部地各物理量可用连续函数表示.均匀性:构件内各处地力学性能相同.各向同性:物体内各方向力学性能相同.3. 材力与理力地关系,内力、应力、位移、变形、应变地概念材力与理力:平衡问题,两者相同;理力:刚体,材力:变形体.内力:附加内力.应指明作用位置、作用截面、作用方向、和符号规定.应力:正应力、剪应力、一点处地应力.应了解作用截面、作用位置(点)、作用方向、和符号规定.正应力应变:反映杆件地变形程度变形基本形式:拉伸或压缩、剪切、扭转、弯曲.4. 物理关系、本构关系虎克定律;剪切虎克定律:适用条件:应力~应变是线性关系:材料比例极限以内.5. 材料地力学性能(拉压):一张σ-ε图,两个塑性指标δ、ψ,三个应力特征点:,四个变化阶段:弹性阶段、屈服阶段、强化阶段、颈缩阶段.拉压弹性模量E,剪切弹性模量G,泊松比v,塑性材料与脆性材料地比较:6. 安全系数、许用应力、工作应力、应力集中系数安全系数:大于1地系数,使用材料时确定安全性与经济性矛盾地关键.过小,使构件安全性下降;过大,浪费材料.许用应力:极限应力除以安全系数.塑性材料脆性材料7. 材料力学地研究方法1)所用材料地力学性能:通过实验获得.2)对构件地力学要求:以实验为基础,运用力学及数学分析方法建立理论,预测理论应用地未来状态.3)截面法:将内力转化成“外力”.运用力学原理分析计算.8.材料力学中地平面假设寻找应力地分布规律,通过对变形实验地观察、分析、推论确定理论根据.1) 拉(压)杆地平面假设实验:横截面各点变形相同,则内力均匀分布,即应力处处相等.2) 圆轴扭转地平面假设实验:圆轴横截面始终保持平面,但刚性地绕轴线转过一个角度.横截面上正应力为零.3) 纯弯曲梁地平面假设实验:梁横截面在变形后仍然保持为平面且垂直于梁地纵向纤维;正应力成线性分布规律.9 小变形和叠加原理小变形:①梁绕曲线地近似微分方程②杆件变形前地平衡③切线位移近似表示曲线④力地独立作用原理叠加原理:①叠加法求内力②叠加法求变形.10 材料力学中引入和使用地地工程名称及其意义(概念)1) 荷载:恒载、活载、分布荷载、体积力,面布力,线布力,集中力,集中力偶,极限荷载.2) 单元体,应力单元体,主应力单元体.3) 名义剪应力,名义挤压力,单剪切,双剪切.4) 自由扭转,约束扭转,抗扭截面模量,剪力流.5) 纯弯曲,平面弯曲,中性层,剪切中心(弯曲中心),主应力迹线,刚架,跨度, 斜弯曲,截面核心,折算弯矩,抗弯截面模量.6) 相当应力,广义虎克定律,应力圆,极限应力圆.7) 欧拉临界力,稳定性,压杆稳定性.8)动荷载,交变应力,疲劳破坏.二. 杆件四种基本变形地公式及应用1. 四种基本变形:2. 四种基本变形地刚度,都可以写成:刚度 = 材料地物理常数×截面地几何性质1)物理常数:某种变形引起地正应力:抗拉(压)弹性模量E;某种变形引起地剪应力:抗剪(扭)弹性模量G.2)截面几何性质:拉压和剪切:变形是截面地平移:取截面面积 A;扭转:各圆截面相对转动一角度或截面绕其形心转动:取极惯性矩;梁弯曲:各截面绕轴转动一角度:取对轴地惯性矩.3. 四种基本变形应力公式都可写成:应力=对扭转地最大应力:截面几何性质取抗扭截面模量对弯曲地最大应力:截面几何性质取抗弯截面模量4. 四种基本变形地变形公式,都可写成:变形=因剪切变形为实用计算方法,不考虑计算变形.弯曲变形地曲率,一段长为l 地纯弯曲梁有:补充与说明:1、关于“拉伸与压缩”指简单拉伸与简单压缩,即拉力或压力与杆地轴线重合;若外荷载作用线不与轴线重合,就成为拉(压)与弯曲地组合变形问题;杆地压缩问题,要注意它地长细比(柔度).这里地简单压缩是指“小柔度压缩问题”.2、关于“剪切”实用性地强度计算法,作了剪应力在受剪截面上均匀分布地假设.要注意有不同地受剪截面:a.单面受剪:受剪面积是铆钉杆地横截面积;b.双面受剪:受剪面积有两个:考虑整体结构,受剪面积为2倍销钉截面积;运用截面法,外力一分为二,受剪面积为销钉截面积.c.圆柱面受剪:受剪面积以冲头直径d为直径,冲板厚度t为高地圆柱面面积.3.关于扭转表中公式只实用于圆形截面地直杆和空心圆轴.等直圆杆扭转地应力和变形计算公式可近似分析螺旋弹簧地应力和变形问题是应用杆件基本变形理论解决实际问题地很好例子.4.关于纯弯曲纯弯曲,在梁某段剪力Q=0时才发生,平面假设成立. 横力弯曲(剪切弯曲)可以视作剪切与纯弯曲地组合,因剪应力平行于截面,弯曲正应力垂直于截面,两者正交无直接联系,所以由纯弯曲推导出地正应力公式可以在剪切弯曲中使用.5.关于横力弯曲时梁截面上剪应力地计算问题为计算剪应力,作为初等理论地材料力学方法作了一些巧妙地假设和处理,在理解矩形截面梁剪应力公式时,要注意以下几点:1) 无论作用于梁上地是集中力还是分布力,在梁地宽度上都是均匀分布地.故剪应力在宽度上不变,方向与荷载(剪力)平行.2) 分析剪应力沿梁截面高度分布变化规律时,若仅在截面内,有,因地函数形式未知,无法积分.但由剪应力互等定理,考虑微梁段左、右内力地平衡,可以得出:剪应力在横截面上沿高度地变化规律就体现在静矩上,总是正地.剪应力公式及其假设:a.矩形截面假设1:横截面上剪应力τ与矩形截面边界平行,与剪应力Q 地方向一致;假设2:横截面上同一层高上地剪应力相等.剪应力公式:,b. 非矩形截面积假设1:同一层上地剪应力作用线通过这层两端边界地切线交点,剪应力地方向与剪力地方向.假设2:同一层上地剪应力在剪力Q方向上地分量相等.剪应力公式:c.薄壁截面假设1:剪应力与边界平行,与剪应力谐调.假设2:沿薄壁t,均匀分布. 剪应力公式:学会运用“剪应力流”概念确定截面上剪应力地方向. 三.梁地内力方程,内力图,挠度,转角遵守材料力学中对剪力Q和弯矩M地符号规定.在梁地横截面上,总是假定内力方向与规定方向一致,从统一地坐标原点出发划分梁地区间,且把梁地坐标原点放在梁地左端(或右端),使后一段地弯矩方程中总包括前面各段.均布荷载q、剪力Q、弯矩M、转角θ、挠度y间地关系:由:,有设坐标原点在左端,则有::,q为常值:其中A、B、C、D四个积分常数由边界条件确定.例如,如图示悬臂梁:则边界条件为:截面法求内力方程:内力是梁截面位置地函数,内力方程是分段函数,它们以集中力偶地作用点,分布地起始、终止点为分段点;1)在集中力作用处,剪力发生突变,变化值即集中力值,而弯矩不变;2)在集中力偶作用处,剪力不变,弯矩发生突变,变化值即集中力偶值;剪力等于脱离梁段上外力地代数和.脱离体截面以外另一端,外力地符号同剪力符号规定,其他外力与其同向则同号,反向则异号;弯矩等于脱离体上地外力、外力偶对截面形心截面形心地力矩地代数和.外力矩及外力偶地符号依弯矩符号规则确定.梁内力及内力图地解题步骤:1)建立坐标,求约束反力;2)划分内力方程区段;3)依内力方程规律写出内力方程;4)运用分布荷载q、剪力Q、弯矩M地关系作内力图;关系:规定:①荷载地符号规定:分布荷载集度q向上为正;②坐标轴指向规定:梁左端为原点,x轴向右为正. 剪力图和弯矩图地规定:剪力图地Q轴向上为正,弯矩图地M轴向下为正.5)作剪力图和弯矩图:①无分布荷载地梁段,剪力为常数,弯矩为斜直线;Q>0,M图有正斜率(﹨);Q<0,有负斜率(/);②有分布荷载地梁段(设为常数),剪力图为一斜直线,弯矩图为抛物线;q<0,Q图有负斜率(﹨),M 图下凹(︶);q>0,Q图有正斜率(/),M图上凸(︵);③Q=0地截面,弯矩可为极值;④集中力作用处,剪力图有突变,突变值为集中力之值,此处弯矩图地斜率也突变,弯矩图有尖角;⑤集中力偶作用处,剪力图无变化,弯矩图有突变,突变值为力偶之矩;⑥在剪力为零,剪力改变符号,和集中力偶作用地截面(包括梁固定端截面),确定最大弯矩();⑦指定截面上地剪力等于前一截面地剪力与该两截面间分布荷载图面积值地和;指定截面积上地弯矩等于前一截面地弯矩与该两截面间剪力图面积值地和.共轭梁法求梁地转角和挠度:要领和注意事项:1)首先根据实梁地支承情况,确定虚梁地支承情况绘出实梁地弯矩图,作为虚梁地分布荷载图.特别注意:实梁地弯矩为正时,虚分布荷载方向向上;反之,则向下. 3)虚分布荷载地单位与实梁弯矩单位相同,虚剪力地单位则为,虚弯矩地单位是4)由于实梁弯矩图多为三角形、矩形、二次抛物线和三次抛物线等.计算时需要这些图形地面积和形心位置.叠加法求梁地转角和挠度:各荷载对梁地变形地影响是独立地.当梁同时受n种荷载作用时,任一截面地转角和挠度可根据线性关系地叠加原理,等于荷载单独作用时该截面地转角或挠度地代数和.四. 应力状态分析1.单向拉伸和压缩应力状态划分为单向、二向和三向应力状态.是根据一点地三个主应力地情况而确定地.如:,单向拉伸有:,主应力只有,但就应变,三个方向都存在.若沿和取出单元体,则在四个截面上地应力为:看起来似乎为二向应力状态,其实是单向应力状态.2.二向应力状态.有三种具体情况需注意1)已知两个主应力地大小和方向,求指定截面上地应力由任意互相垂直截面上地应力,求另一任意斜截面上地应力由任意互相垂直截面上地应力,求这一点地主应力和主方向(角度和均以逆时针转动为正)2) 二向应力状态地应力圆应力圆在分析中地应用:a)应力圆上地点与单元体地截面及其上应力一一对应;b)应力圆直径两端所在地点对应单元体地两个相互垂直地面;c)应力圆上地两点所夹圆心角(锐角)是应力单元对应截面外法线间夹角地两倍2;d)应力圆与正应力轴地两交点对应单元体两主应力;e)应力圆中过圆心且平行剪应力轴而交于应力圆地两点为最大、最小剪应力及其作用面.极点法:确定主应力及最大(小)剪应力地方向和作用面方向.3) 三方向应力状态,三向应力圆,一点地最大应力(最大正应力、最大剪应力)广义虎克定律:弹性体地一个特点是,当它在某一方向受拉时,与它垂直地另外方向就会收缩.反之,沿一个方向缩短,另外两个方向就拉长.主轴方向:或非主轴方向:体积应变:五. 强度理论1.计算公式.强度理论可以写成如下统一形式:其中::相当应力,由三个主应力根据各强度理论按一定形式组合而成.:许用应力,,:单向拉伸时地极限应力,n:安全系数.1)最大拉应力理论(第一强度理论),一般:2) 最大伸长线应变理论(第二强度理论),一般:3) 最大剪应力理论(第三强度理论),一般:4) 形状改变比能理论(第四强度理论),一般:5) 莫尔强度理论,,:材料抗拉极限应力强度理论地选用:1)一般,脆性材料应采用第一和第二强度理论;塑性材料应采用第三和第四强度理论.2)对于抗拉和抗压强度不同地材料,可采用最大拉应力理论3)三向拉应力接近相等时,宜采用最大拉应力理论;4)三向压应力接近相等时,宜应用第三或第四强度理论.六.分析组合形变地要领材料服从虎克定律且杆件形变很小,则各基本形变在杆件内引起地应力和形变可以进行叠加,即叠加原理或力作用地独立性原理.分析计算组合变形问题地要领是分与合:分:即将同时作用地几组荷载或几种形变分解成若干种基本荷载与基本形变,分别计算应力和位移.合:即将各基本变形引起地应力和位移叠加,一般是几何和. 分与合过程中发现地概念性或规律性地东西要概念清楚、牢记.斜弯曲:平面弯曲时,梁地挠曲线是荷载平面内地一条曲线,故称平面弯曲;斜弯曲时,梁地挠曲线不在荷载平面内,所以称斜弯曲.斜弯曲时几个角度间地关系要清楚:力作用角(力作用平面):斜弯曲中性轴地倾角:斜弯曲挠曲线平面地倾角:即:挠度方向垂直于中性轴一般,即:挠曲线平面与荷载平面不重合.强度刚度计算公式:拉(压)与弯曲地组合:拉(压)与弯曲组合,中性轴一般不再通过形心,截面上有拉应力和压应力之区别偏心拉压问题,有时要求截面上下只有一种应力,这时载荷地作用中心与截面形心不能差得太远,而只能作用在一个较小地范围内这个范围称为截面地核心.强度计算公式及截面核心地求解:扭转与弯曲地组合形变:机械工程中常见地一种杆件组合形变,故常为圆轴. 分析步骤:根据杆件地受力情况分析出扭矩和弯矩和剪力.找出危险截面:即扭矩和弯矩均较大地截面.由扭转和弯曲形变地特点,危险点在轴地表面.剪力产生地剪应力一般相对较小而且在中性轴上(弯曲正应力为零).一般可不考虑剪力地作用.弯扭组合一般为复杂应力状态,应采用合适地强度理论作强度分析,强度计算公式:扭转与拉压地组合:杆件内最大正应力与最大剪应力一般不在横截面或纵截面上,应选用适当强度理论作强度分析.强度计算公式七.超静定问题:求解简单超静定梁主要有三个步骤:1)解得超静定梁地多余约束而以其反力代替;2)求解原多余约束处由已知荷载及“多余”约束反力产生地变形;3)由原多余支座处找出变形协调条件,重立补充方程.能量法求超静定问题:卡氏第一定理:应变能对某作用力作用点上该力作用方向上地位移地偏导数等于该作用力,即:注1:卡氏第一定理也适用于非线性弹性体;注2:应变能必须用诸荷载作用点地位移来表示.卡氏第二定理:线弹性系统地应变能对某集中荷载地偏导数等于该荷载作用点上沿该荷载方向上地位移,即若系统为线性体,则:注1:卡氏第二定理仅适用于线弹性系统;卡氏第二定理地应变能须用独立荷载表示.注2:用卡氏定理计算,若得正号,表示位移与荷载同向;若得负号,表示位移与荷载反向.计算地正负与坐标系无关.八.压杆稳定性地主要概念压杆失稳破坏时横截面上地正应力小于屈服极限(或强度极限),甚至小于比例极限.即失稳破坏与强度不足地破坏是两种性质完全不同地破坏.临界力是压杆固有特性,与材料地物性有关(主要是E),主要与压杆截面地形状和尺寸,杆地长度,杆地支承情况密切相关.计算临界力要注意两个主惯性平面内惯矩I和长度系数μ地对应.压杆地长细比或柔度表达了欧拉公式地运用范围.细长杆(大柔度杆)运用欧拉公式判定杆地稳定性,短压杆(小柔度杆)只发生强度破坏而一般不会发生失稳破坏;中长杆(中柔度杆)既有强度破坏又有较明显失稳现象,通常根据实验数据处理这类问题,直线经验公式是最简单实用地一种.折剪系数ψ是柔度λ地函数,这是因为柔度不同,临界应力也不同.且柔度不同,安全系数也不同.压杆稳定性地计算公式:欧拉公式及ψ系数法(略)九.动荷载、交变应力及疲劳强度1.动荷载分析地基本原理和基本方法:1)动静法,其依据是达朗贝尔原理.这个方法把动荷地问题转化为静荷地问题.2)能量分析法,其依据是能量守恒原理.这个方法为分析复杂地冲击问题提供了简略地计算手段.在运用此法分析计算实际工程问题时应注意回到其基本假设逐项进行考察与分析,否则有时将得出不合理地结果.☐构件作等加速运动或等角速转动时地动载荷系为:这个式子是动荷系数地定义式,它给出了地内涵和外延. 地计算式,则要根据构件地具体运动方式,经分析推导而定.☐构件受冲击时地冲击动荷系数为:这个式子是冲击动荷系数地定义式,其计算式要根据具体地冲击形式经分析推导而定.两个中包含丰富地内容.它们不仅能给出动地量与静地量之间地相互关系,而且包含了影响动载荷和动应力地主要因素,从而为寻求降低动载荷对构件地不利影响地方法提供了思路和依据.2.交变应力与疲劳失效基本概念:应力循环,循环周期,最大、最小循环应力,循环特征(应力比),持久极限,条件持久极限,应力集中系数,构件地尺寸系数,表面质量系数,持久极限曲线等.应力寿命曲线:表示一定循环特征下标准试件地疲劳强度与疲劳寿命之间关系地曲线,称应力寿命曲线,也称S—N曲线:持久极限曲线:构件地工作安全系数:构件地疲劳强度条件为:十.平面图形地几何性质:1.静矩:平面图形面积对某坐标轴地一次矩.定义式:,量纲为长度地三次方.2.惯性矩:平面图形对某坐标轴地二次矩.,量纲为长度地四次方,恒为正.相应定义:惯性半径,为图形对轴和对轴地惯性半径.3. 极惯性矩:因为所以极惯性矩与(轴)惯性矩有关系:4. 惯性积:定义为图形对一对正交轴、轴地惯性积.量纲是长度地四次方.可能为正,为负或为零.5.平行移轴公式6.转轴公式:7. 主惯性矩地计算公式:截面图形地几何性质都是对确定地坐标系而言地,通过任意一点都有主轴.在强度、刚度和稳定性研究中均要进行形心主惯性矩地计算.。
材料力学(全套通用课件)单辉祖
动力分析方法通常采用有限元 法、有限差分法等数值计算方 法进行求解。
动力分析方法广泛应用于各种 工程领域,如地震工程、机械 振动等。
稳定性分析方法
稳定性分析方法是指对结 构在各种载荷作用下的稳 定性进行评估和分析的方 法。
稳定性分析方法通常采用 有限元法、有限差分法等 数值计算方法进行求解。
总结词
飞行器的热防护与声学降噪设计
详细描述
在飞行器的热防护与声学降噪设计中,材料力学可用于分 析材料的热性能和声学性能,例如对高温环境下材料的强 度和变形行为进行分析,以及对飞行器噪声的产生和传播 进行控制。
THANKS
感谢观看
总结词
建筑结构的稳定性与安全性
详细描述
在建筑结构设计中,材料力学主要应用于分析结构的稳定 性与安全性,确保建筑在承受风、地震等载荷时能够保持 稳定,防止发生倒塌等事故。
总结词
建筑结构的优化设计
详细描述
通过材料力学,可以优化建筑结构设计,例如优化梁、柱 、墙等结构件的设计,以提高建筑的经济性、美观性和节 能性。
详细描述
弯曲准则指出,当材料受到弯曲应力作用时,会产生弯曲变形。根据弯曲准则,弯曲应力和弯曲变形之间的关系 可以用以下公式表示:M=EIρmathbf{M} = EIρM=EIρ,其中Mmathbf{M}M是弯矩,EIEIEI是弯曲刚度, ρrhoρ是曲率。
扭转准则
总结词
扭转准则是描述材料在扭转应力作用下的行为准则。
许用应力
在一定条件下,材料所能承受的最 大应力。
03
02
刚度
材料抵抗变形的能力,通常指材料 在受力时发生的变形量。
安全系数
根据材料的许用应力确定的用于工 程设计的安全系数。
材料力学概念总结.doc
材料⼒学概念总结.doc
材料⼒学概念总结
材料⼒学⼀、基本概念1材料⼒学的任务是:研究构件的强度、刚度、稳定性的问题,解决安全与经济的⽭盾。
2强度:构件抵抗破坏的能⼒。
3刚度:构件抵抗变形的能⼒。
4稳定性:构件保持初始直线平衡形式的能⼒。
5连续均匀假设:构件内均匀地充满物质。
6各项同性假设:各个⽅向⼒学性质相同。
7内⼒:以某个截⾯为分界,构件⼀部分与另⼀部分的相互作⽤⼒。
8截⾯法:计算内⼒的⽅法,共四个步骤:截、留、代、平。
9应⼒:在某⾯积上,内⼒分布的集度(或单位⾯积的内⼒值)、单位Pa。
10正应⼒:垂直于截⾯的应⼒(σ)11剪应⼒:平⾏于截⾯的应⼒(t)12弹性变形:去掉外⼒后,能够恢复的那部分变形。
13塑性变形:去掉外⼒后,不能够恢复的那部分变形。
14四种基本变形:拉伸或压缩、剪切、扭转、弯曲。
⼆、拉压变形15当外⼒的作⽤线与构件轴线重合时产⽣拉压变形。
16轴⼒:拉压变形时产⽣的内⼒。
17计算某个截⾯上轴⼒的⽅法是:某个截⾯上轴⼒的⼤⼩等于该截⾯的⼀侧各个轴向外⼒的代数和,其中离开该截⾯的外⼒。
公共基础知识材料力学基础知识概述
《材料力学基础知识综合性概述》一、引言材料力学作为工程力学的一个重要分支,主要研究材料在各种外力作用下产生的应变、应力、强度、刚度和稳定性等问题。
它在工程设计、机械制造、土木工程、航空航天等众多领域都有着广泛的应用。
了解材料力学的基础知识,对于从事相关工程领域的专业人员以及对力学感兴趣的人士都具有重要意义。
本文将从基本概念、核心理论、发展历程、重要实践以及未来趋势等方面对材料力学进行全面的阐述与分析。
二、基本概念1. 应力与应变- 应力:物体由于受到外力作用而产生的内部抵抗力。
应力分为正应力和切应力。
正应力是垂直于作用面的应力,切应力是平行于作用面的应力。
应力的单位为帕斯卡(Pa)。
- 应变:物体在应力作用下产生的相对变形。
应变分为正应变和切应变。
正应变是长度的相对变化,切应变是角度的变化。
应变是无量纲的量。
2. 弹性与塑性- 弹性:材料在去除外力后能够完全恢复其原来形状和尺寸的性质。
弹性变形是可逆的,符合胡克定律。
- 塑性:材料在去除外力后不能完全恢复其原来形状和尺寸的性质。
塑性变形是不可逆的,材料会产生永久变形。
3. 强度与刚度- 强度:材料抵抗破坏的能力。
强度分为抗拉强度、抗压强度、抗弯强度等。
强度的单位为帕斯卡(Pa)或兆帕(MPa)。
- 刚度:材料抵抗变形的能力。
刚度与材料的弹性模量和截面形状有关。
刚度的单位为牛顿/米(N/m)或千牛/米(kN/m)。
4. 稳定性- 稳定性是指材料或结构在受到外力作用时,保持其原有平衡状态的能力。
对于细长杆件或薄壁结构,稳定性问题尤为重要。
三、核心理论1. 胡克定律- 胡克定律是材料力学中的基本定律之一,它表明在弹性范围内,应力与应变成正比。
即σ=Eε,其中σ为应力,ε为应变,E 为弹性模量。
- 胡克定律适用于各种材料,如金属、塑料、橡胶等。
它是材料力学中进行应力分析和变形计算的重要依据。
2. 梁的弯曲理论- 梁是工程中常见的结构元件,其主要承受横向载荷。
材料力学讲解
材料力学讲解材料力学是研究材料在受力作用下的力学性质和变形行为的学科。
它是材料科学与工程的基础学科之一,也是工程设计和材料选用的重要依据。
本文将从材料的力学性质、应力应变关系、材料的弹性和塑性行为等方面,对材料力学进行详细讲解。
材料的力学性质是指材料在受力作用下的力学响应。
材料力学研究的主要内容包括材料的强度、刚度、韧性、疲劳寿命等。
其中,强度是指材料抵抗破坏的能力,刚度是指材料抵抗变形的能力,韧性是指材料吸收能量的能力,疲劳寿命是指材料在循环加载下能够承受的次数。
这些性质直接影响材料在工程中的可靠性和安全性。
材料的应力应变关系是材料力学的基础。
应力是单位面积上的力,应变是单位长度上的变形量。
应力应变关系可以用来描述材料的变形行为。
对于弹性材料来说,应力与应变之间存在线性关系,即胡克定律。
而对于塑性材料来说,应力与应变之间存在非线性关系,即材料具有一定的塑性变形能力。
通过研究应力应变关系,可以确定材料的强度和刚度等力学性质。
接下来,弹性是材料力学中的重要概念。
弹性是指材料在受力后能够恢复原状的能力。
弹性变形是可逆的,即在去除外力后,材料能够完全恢复到未受力前的形状和尺寸。
弹性模量是衡量材料刚度的指标,它越大,表示材料越难变形,刚度越高。
弹性模量的大小与材料的化学成分、晶体结构和温度等因素有关。
塑性是材料力学中另一个重要概念。
塑性是指材料在受力作用下会发生永久性变形的能力。
与弹性不同,塑性变形是不可逆的,即去除外力后,材料无法完全恢复到原状。
材料的塑性行为与其晶体结构、断裂韧性等因素密切相关。
通过研究材料的塑性行为,可以预测材料在实际工程中的变形和破坏行为,从而进行合理的设计和选材。
材料力学是研究材料在受力作用下的力学性质和变形行为的学科。
通过研究材料的力学性质、应力应变关系、弹性和塑性行为等方面,可以为工程设计和材料选用提供科学依据。
材料力学的研究对于提高材料的性能和开发新材料具有重要意义。
材料力学总结
材料力学总结绪论一、材料力学的发展材料力学源于人们的生产经验,是生产经验的提炼和浓缩,同时形成理论后又应用于指导生产实践和工程设计。
公元前2250年,古巴比伦王汉谟拉比法典公元1103年,宋代李诫《营造法式》1638年,伽利略,梁的强度试验和计算理论1678年,英国科学家R.Hooke的胡克定律二、材料力学的任务在构件能安全工作的条件下,以最经济的代价,为构件确定合理的形状和尺寸,选择适当的材料,为构件的设计提供必要的理论基础和计算方法。
构件安全工作的条件有以下三条:(1)具有必要的强度,指构件抵抗破坏的能力。
构件在外力作用下不会发生破坏或意外的断裂。
(2)具有必要的刚度,指构件抵抗弹性变形的能力。
构件在规定的使用条件下不会产生过份的变形。
(3)具有必要的稳定性,指构件保持原始平衡构形的能力。
构件在规定的使用条件下,不会发生失稳现象。
三、材料力学的研究对象材料力学主要研究对象是构件中的杆以及由若干杆组成的简单杆系等。
杆件的形状与尺寸由其轴线和横截面确定。
轴线通过横截面的形心,横截面与轴线正交。
根据轴线与横截面的特征,杆件可分为直杆与曲杆,等截面杆与变截面杆。
四、材料力学基本假设材料力学中,构成构件的材料皆视为可变形固体。
(1)均匀、连续假设:构件内任意一点的材料力学性能与该点位置无关,且毫无空隙地充满构件所占据的空间。
(2)各向同性假设:构件材料的力学性能没有方向性。
(3)小变形假设:本课主要研究弹性范围内的小变形。
小变形假设可使问题得到如下的简化:a). 忽略构件变形对结构整体形状及荷载的影响;b). 构件的复杂变形可处理为若干基本变形的叠加。
(4)大多数场合局限于线性弹性当以上条件部分不能满足时,须采用其他力学理论如结构力学(杆系)、弹性力学(研究对象的差异)、塑性力学、断裂力学、损伤力学、连续介质力学以及随着计算机技术的发展而越来越受到重视的计算力学等等。
本课程材料力学是基础。
五、杆件的基本受力形式杆件受外力作用后发生的变形是多种多样的,但最基本的变形是以下四种:拉伸(或压缩) (第1章)剪切(第2章)扭转(第3章)弯曲(第4、5、6章)以上四种基本受力形式组合(第8章)图1 杆件的基本受力形式六、小结、课程特点及要求材料力学研究的问题是构件的强度、刚度和稳定性;构成构件的材料是可变形固体;对材料所作的基本假设为均匀连续、各向同性、小变形且大多数情况为线弹性;材料力学研究的对象是杆件;杆件的基本受力形式是拉伸(或压缩)、剪切、扭转、弯曲。
介观尺度下的材料力学行为研究
介观尺度下的材料力学行为研究(没有小节,整篇文章呈现出一种绵长而深度探究的感觉)材料力学是一个重要的学科分支,研究材料的机械性能特征、变形和破坏行为等。
材料力学的核心在于探究微观和宏观层面的关系,并提高材料的应用价值。
近年来,材料力学学科的发展变得更加复杂,特别是在介观尺度下的研究领域,这是众多学者研究的关注点。
先来谈谈介观尺度下的具体含义。
介观尺度是指在微观和宏观之间的尺度范围,一般涉及的结构单位为几个到几十个晶须之间的长度。
不同于宏观和微观,介观尺度下材料力学行为的特点是:存在很多微观粒子参数对其机械行为影响较大,如晶粒大小、晶粒形状、单晶缺陷状态等等。
而且这些参数都与材料性能有关。
介观尺度下的材料力学行为涉及很多学科,交叉考虑很多因素,比如工程、材料科学、计算机科学,甚至数学、机械工程和化学等等。
这其中最重要的是材料科学与工程的交叉学科研究,因为介观尺度是两个领域的交界处,二者有着密切的联系。
在介观尺度下的研究中,几何形状是一个不可忽视的参数。
在形状方面,初步的研究中,大家所研究的晶粒、纤维、碳管、板片等许多结构都是规则的几何形状。
由于这些形状往往与材料内部的微观结构、晶粒取向、应力等多种因素有关,因此对于这些材料几何形状的研究是一个至关重要的问题。
在晶粒尺寸方面,给材料力学带来了很多挑战。
通过先进的计算机和仿真技术,在晶粒内部的微观结构和应变状态的研究中,可以非常便捷地得到有用而详细的信息,而且不断地推动了领域的发展。
虽然这些理论分析的技术得到了不少的进步,但仍然存在一些局限性,如计算时间、能力、物理理论限制等等。
因此,我们也需要不断探索材料力学行为的多个角度,并采用不同领域的知识和方法来解决这些问题。
材料的断裂韧性是另一个材料力学中关注的重要问题。
在介观尺度下,材料内部的各个微观结构之间的相互作用起着关键性的作用。
这些相互作用所使得材料的韧性受到很大的制约。
因此,人们在研究时需要探究不同长度尺度下材料的断裂特性,比如微裂纹、梯度位错、平面应变、断裂应力(或应变)等方面。
第三章材料力学概述
变形的四种基本形式 剪切(shearing) 大自然的剪切效应—大峡谷
变形的四种基本形式 剪切(shearing) 大自然的剪切效应—大峡谷
变形的四种基本形式
扭转(torsion)
当作用在杆件上的力组成作用在垂直于杆轴平面内的力
偶M时,杆件将产生扭转变形,即杆件的横截面绕其轴相互
转动 。
变形的四种基本形式
F
F
A
A
小变形下A点的 反力矩在变形前 后相差不大
大变形下A点的 反力矩如何?
4.4 内力 截面法
1. 内力:物体因受外力作用而变形,其内部各部分 之间相对位置改变而引起的相互作用。
注意:当物体不受外力作用时,内部各质点之间依 然存在着相互作用力。但材料力学里所指的内力, 是由于外力的作用下材料抵抗变形而引起的内力的 改变量,因此也叫“附加内力”,简称内力。
第四章 材料力学概述
4.1 外力及其分类
外力: 外部物体对构件的作用力。包括外载荷和约 束力。
外力分类
按作用 方式分
体积力:连续分布于物体内各部分的力
表面力:作用于物体表面上的力。包括 分布力和集中力
按外力 性质分
静载荷:载荷缓慢地由零增加到某一定 值后,不再随时间变动或变动很小。
动载荷:载荷随时间显著变化。
当外加力偶M或外力作用于与杆件垂直的纵向平面内时,
杆件将发生弯曲变形,其轴线将变成曲线。
变形的四种基本形式
弯曲(bending)
当外加力偶M或外力作用于与杆件垂直的纵向平面内时,
杆件将发生弯曲变形,其轴线将变成曲线。
杆件变形的基本形式
内容 种类
轴向拉伸 及 压缩
Axial Tension
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Stress (MPa)
30 20 10 0 0
pure polymer Film/polymer system
1500
1000
t = 60 nm 100 nm 275 nm 470 nm 700 nm
500
1 2 Strain (%)
3
0 0.0
0.5
1.0
1.5
2.0
Strain (%)
19
20
c
t = 60 nm 100 nm 275 nm 340 nm 705 nm
15
10
5
Electrical resistivity method Microcrack analyzing method
0 0
20
40
0 0
200
400
600
800
Strain (%)
t (nm)
不同薄膜厚度
两种方法结果对比
35 Monig, et al., Rev. Sci. Ins. 75 (2004) 4997
2. 金属导线的力学性能评价——试样制备
微米级线宽
掩膜 光刻胶 基体 1)光刻 2)显影
Cu膜
3)溅射
4)二次显影
36
2. 金属导线的力学性能评价——试样形貌
“工”字型试样
10mm
5mm
3mm
100um
Damage morphology
Volkert et al., Thin Solid Films 515 (2007) 3253
In all the previous reports, the Cu films have a thickness > 200 nm and an average grain size > 500 nm, within this region dislocation is operative So, how about the thermal fatigue of more thinner and more finer Cu films 38 ?
Fatigue lifetime
Yield strength & ductility
The thinner is the film, the longer is the Nf
33
2. 金属薄膜的疲劳性能——柔性基板
Comparing with others’ results
2
Cu films
200 nm 100 nm Wang et al. (2008)
3 4
10
2
10 10 Nf (Cycles)
3
4
10
5
10
5
Cu films (100nm-3.75 μm)
Al films (80nm-800nm)
32
Following the well-known Coffin-Manson relationship
2. 金属薄膜的疲劳性能——柔性基板
Thin Cu films: thickness dependent Nf
(2) W. D. Nix, Metall. Trans. A 20 (1989) 2217.
什么是介观?
> 10-3 10-3 ~ 10-6 10-6 ~ 10-8 < 10-8
Size
连续介质理论
介观
分子动力学
2
材料介观力学性能评价的意义
微米尺寸材料的广泛应用
Cu
TaN SiN
Intel 90 nm interconnect
0
Nf
Relative change in ER
3
10
1
10 10 N (Cycles)
2
10
4
In-situ measurement Fatigue lifetime for microcrack nucleation (Verified by SEM)
31
2. 金属薄膜的疲劳性能——柔性基板 Thin Cu and Al films: △ε– Nf Curves
OSG
集成电路
互连导线
MEMS
3
材料介观力学性能评价的意义
块体材料强度随晶粒尺寸的变化
材料介观力学性能??
微米尺寸下材料安全选择与性能预测的需要
4
材料力学性能指标
强度 承载能力 延性 可发生变形的能力 韧性 抵抗断裂的能力
韧性
疲劳!!
强度
延性
5
提纲
1. 金属薄膜的准静态力学性能
2. 金属薄膜的疲劳性能
洛氏:压痕小/不稳定
块材压入测试简介 维氏:兼有布氏和洛氏的优点
8
1. 金属薄膜的静态力学性能——纳米压入仪测量
加载
卸载
薄膜 基体
9
1. 金属薄膜的静态力学性能——纳米压入仪测量
H —— 硬度 A —— 压头接触面积
Ef —— 薄膜弹性模量
压头接触面积函数
10
1. 金属薄膜的静态力学性能——纳米压入仪测量 不足:
Cu films
1
Kraft et al. (2002) 3.1 m 1.5 m 1.1 m
(%)
1 0.9 0.8 0.7 0.6 0.5
Present results 175 nm 100 nm
(%)
Present results 1.35 m 3.75 m
4 5
Wang et al. (2008) 3 m
29
2. 金属薄膜的疲劳性能——柔性基板 Previous methods on fatigue lifetime (Nf) measurement
Saturated
Load-controlled
Nf
Ex-situ measurement Strain range change Extrusion density counting (Kraft et al. 2001) (Volkert et al. 2008)
边缘损伤、卷曲
装样困难
17
1. 金属薄膜的静态力学性能——单轴拉伸
膜基系统拉伸曲线 柔性基板 Cu
3
聚酰亚胺
10
18
1. 金属薄膜的静态力学性能——单轴拉伸
薄膜 夹头
微小力实验机:P = + 250 N + 1 N; l = + 50 mm + 5 m
40
Tensile load F (N)
28
2. 金属薄膜的疲劳性能——柔性基板
Polymer substrate
(Stretchable)
Tension-tension fatigue
(Microforce tester)
polyimide
3 % elastic deformation
P = 250 N + 1 mN
Key point: Subtracting or avoiding the influence of deformed substrate
t = 700 nm
d (nm)
0 200
60
10
30
0 400 600
10
15
d (nm)
20
25
30
d (nm)
0
0
200
t (nm)
400
600
21
800
1. 金属薄膜的静态力学性能——单轴拉伸
钝钝钝
钝钝 钝钝
s s s s
s
钝钝 钝钝
s s s
表面、界面处位错受约束
22
1. 金属薄膜的静态力学性能—— 延性
临界应变-屈服强度关系
Cu薄膜延性尺寸效应
25
微裂纹统计法测定临界应变
应变
20% 30% 40%
薄 膜 厚 度 薄膜越薄, 应变越大, 贯穿型大 裂纹越多
60 nm
275 nm
700 nm
10um
26
微裂纹统计法测定临界应变
Cracks density (% m )
-2
40
Critical strain (%)
1mm
10mm
37
2. 金属薄膜的疲劳性能——刚性基板 Previous work on the Thermal fatigue of Cu thin films
300 nm-thick Cu
200 nm-thick Cu
1.5 μm GS
0.5 μm GS
Nf vs ᇫT and ᇫε
Park et al., Thin Solid Films 504 (2006) 321
Shortcomings: complicated and structurally instable at definition point
30
2. 金属薄膜的疲劳性能——柔性基板
Suggestion of a much more simple method
60
Cu
(R-R0)/R0 (%)
45 30 15 0 10
C
(R-R0) / R0 (%)
150 100 50 C 0 0 5 10 15 20 25 30 35 Strain (%)
2
20 30 Strain (%)
40
50
实时电阻法测试
薄膜表面微裂纹百分数统计
24
实时电阻法测定临界应变
50 40
60nm 100nm 275nm 470nm 705nm
材料的介观力学性能评价及尺度效应