《全等三角形的判定》(角边角)ppt课件
合集下载
12.2.3三角形全等的判定——角边角、角角边(课件)八年级数学上册(人教版)
∠A =∠A(公共角), AC = AB(已知), ∠C =∠B (已知),
∴ △ACD≌△ABE(ASA). ∴ AD = AE.
A
D
E
B
C
6.如图,AB⊥BC,AD⊥DC,垂足分别为点B,点D,∠1=∠2.
求证:AB=AD.
证明:∵AB⊥BC,AD⊥DC, ∴∠ABC=∠ADC=90°.
A
∵在△ABC和△ADC中,∠1=∠2,∠ABC=∠ADC,
在△ABC 和△ DEF 中,
∠A= ∠D, AB = DE, ∠B = ∠E,
∴△ABC≌△DEF (ASA).
C
A
B
F
D
E
在△ABC 和△ DEF 中,
∠A = ∠D, AB = DE, ∠B = ∠E,
∴△ABC ≌△DEF (ASA).
C
A
B
F
D
E
如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB, 试说明:△ADE≌△CFE.
外作直线 l,AM⊥l 于点 M,BN⊥l 于点 N.
(1)试说明:MN=AM+BN; 解:∵∠ACB=90°,∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,
∴∠BCN+∠CBN=90°,∴∠ACM=∠CBN. ∠AMC=∠CNB,
在△ACM 和△CBN 中, ∠ACM=∠CBN, AC=CB,
(4)两角一边.
两角一边分为哪几种情况?
一种情况是边夹在
两角的中间 ,形成
两角夹一边
01
角-边-角
角-角-边
另一种情况是边不 夹在两角的中间 ,
0 2 形成两角一对边
∴ △ACD≌△ABE(ASA). ∴ AD = AE.
A
D
E
B
C
6.如图,AB⊥BC,AD⊥DC,垂足分别为点B,点D,∠1=∠2.
求证:AB=AD.
证明:∵AB⊥BC,AD⊥DC, ∴∠ABC=∠ADC=90°.
A
∵在△ABC和△ADC中,∠1=∠2,∠ABC=∠ADC,
在△ABC 和△ DEF 中,
∠A= ∠D, AB = DE, ∠B = ∠E,
∴△ABC≌△DEF (ASA).
C
A
B
F
D
E
在△ABC 和△ DEF 中,
∠A = ∠D, AB = DE, ∠B = ∠E,
∴△ABC ≌△DEF (ASA).
C
A
B
F
D
E
如图,D 是 AB 上一点,DF 交 AC 于点 E,DE=FE,FC∥AB, 试说明:△ADE≌△CFE.
外作直线 l,AM⊥l 于点 M,BN⊥l 于点 N.
(1)试说明:MN=AM+BN; 解:∵∠ACB=90°,∴∠ACM+∠BCN=90°.
又∵AM⊥MN,BN⊥MN,∴∠AMC=∠CNB=90°,
∴∠BCN+∠CBN=90°,∴∠ACM=∠CBN. ∠AMC=∠CNB,
在△ACM 和△CBN 中, ∠ACM=∠CBN, AC=CB,
(4)两角一边.
两角一边分为哪几种情况?
一种情况是边夹在
两角的中间 ,形成
两角夹一边
01
角-边-角
角-角-边
另一种情况是边不 夹在两角的中间 ,
0 2 形成两角一对边
新人教版八年级上册《三角形全等的判定》(边角边)ppt
小明做了一个如图所示的风筝,其中 ∠EDH=∠FDH, ED=FD ,将上述条件标注在图 中,小明不用测量就能知道EH=FH吗?与同桌进 行交流。
D E F
△EDH≌△FDH 根据“SAS”, 所以EH=FH
H
探究3
以2.5cm,3.5cm为三角形的两边,长度为 2.5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
△ADC≌△CBA 根据“SAS”
△ABC≌△EFD 根据“SAS”
例一 已知:如图, AB=CB ,∠ ABD= ∠ CBD
△ ABD 和△ CBD 全等吗? 分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
B A
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改变成:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角形 3、会判定三角形全等
作业布置
1.已知:如图,AB=AC,F、E分别是AB、AC的中点. 求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE, BE∥DF,BE=DF. 求证:△ABE≌△CDF.
C F
A
40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的 两个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C
A
பைடு நூலகம்
D
D E F
△EDH≌△FDH 根据“SAS”, 所以EH=FH
H
探究3
以2.5cm,3.5cm为三角形的两边,长度为 2.5cm的边所对的角为40° ,情况又怎样? 动手画一画,你发现了什么?
△ADC≌△CBA 根据“SAS”
△ABC≌△EFD 根据“SAS”
例一 已知:如图, AB=CB ,∠ ABD= ∠ CBD
△ ABD 和△ CBD 全等吗? 分析: △ ABD ≌△ CBD (SAS) 边: AB=CB(已知)
B A
D
角: ∠ABD= ∠CBD(已知) 边:
C
?
现在例1的已知条件不改变,而问题改变成:
1. 三角形全等的条件,两边和它们的夹角对应相等的两 个三角形全等 (边角边或SAS) 2. 用尺规作图:已知两边及其夹角的三角形画三角形 3、会判定三角形全等
作业布置
1.已知:如图,AB=AC,F、E分别是AB、AC的中点. 求证:△ABE≌△ACF. 2.已知:点A、F、E、C在同一条直线上, AF=CE, BE∥DF,BE=DF. 求证:△ABE≌△CDF.
C F
A
40°
B
D
40°
E
结论:两边及其一边所对的角相等,两
个三角形不一定全等
猜一猜: 是不是二条边和一个角对应相等,这样的 两个三角形一定全等吗?你能举例说明吗? 如图△ABC与△ABD中, AB=AB,AC=BD, ∠B=∠B 他们全等吗?
B C
A
பைடு நூலகம்
D
全等三角形的判定(一)边角边_课件
△ ABC与△ AB’C 就是 所求做的三角形。
显然: △ ABC与△ AB’C不全等
结论:两边及其一边所对的角相等,两个三 角形不一定全等。
说一说
今天你学到了什么
1、今天我们学习了哪种方法判定两三 角形全等? 答:边角边(S.A.S.) 通过证明两个 三角形的两条边及其夹角对应相等, 这两个三角形全等。
A D
E
F
B
C
证明:
准备条 件
(两直线平行,内错角相等) D A 又 ∵AE=CF E ∴AE+EF=CF+EF F 即 AF=CE 指范围 C B 在△AFD和△CEB中, AD=CB
(已知) 摆齐根据
∵AD//BC ∴ ∠A=∠C
写出结论
∠A=∠C (已证) AF=CE (已证) △AFD≌△CEB(SAS)
实践 检验
F
45°
4cm
B
D
4cm
实践与探索
同桌两个同学自行约定:各画一个三角形, 使它们具有相同的两条线段和一个夹角,比 较一下,可以得出什么结论?
结论: 在两个三角形中,如果有两 条边及它们的夹角对应相等, 那么这两个三角形全等。 (简记为S.A.S)。
温馨提示:
S.A.S的证明:
如图在△ ABC 和△ A′B′C′ 中,已知 AB = A′B′ , ∠B=∠B′, BC=B′C′.
∴ ∠BAD=∠CAD. 在△ABD与△ACD中, ∴△ OAD ≌△ AB=AC ,( 已知 ) OBC ∵ ∠BAD=∠CAD,(已证) AD=AD,(公共边)
图 19.2.4
∴△ABD≌△ACD(S.A.S.)。
2.已知:如图 AD//BC AE=CF , 求证: △AFD≌△CEB(SAS)
三角形全等的判定——边角边ppt课件
对《三角形全等的判定——边角边》的说明
精选版课件ppt
1
教材分析
精选版课件ppt
2
教材内容
本节课是人教版教材八年级上册第十一章第 二节第二课时----《三角形全等的判定----边角 边》
精选版课件ppt
3
内容解析
核心知识:
两个三角形全等的条件----边角边
课标要求:
探索并掌握两个三角形全等的条件。
精选版课件ppt
6
学情分析
精选版课件ppt
7
●知识经验:
学生在前一课时经历了探索两个三角形 全等的条件----边边边的过程,具备了利用 画图的方法构造全等三角形的活动经验,并 且对研究几何命题的过程有了初浅的认识。 但是可能有个别学生会完全照搬“边边边”, 而忽略两种方法的区别。
精选版课件ppt
充分问题思考,大胆交流观点,让学生明确 了本节课的核心内容,同时调动学生的思考积极
性,激起求知欲望。
精选版课件ppt
20
环节三
A
已知△ABC, 画△DEF,使ED=BA , EF= BC,∠E=∠B
B M
D
(怎样画△DEF?)
要求:1、利用手中工具
E
2、剪下所画的△DEF,放到△ABC上,观察是否
2、用数学语言表述
精选版课件ppt
23
设计意图:
学生的语言表述不够准确,但充分暴露了对边角 边命题的认识和理解,又能够对学生的抽象概括能力 和语言表达能力进行培养,同时类比思想方法得到渗 透。
在符号翻译的过程中,可以让学生对命题的具体 条件和结论有更进一步的深化丰富。至此,学生能够 根据边角边定理判定两个三角形全等。
环节六
1 本节课你有什么收获和感悟? 2 请构建本节课的知识框架?
精选版课件ppt
1
教材分析
精选版课件ppt
2
教材内容
本节课是人教版教材八年级上册第十一章第 二节第二课时----《三角形全等的判定----边角 边》
精选版课件ppt
3
内容解析
核心知识:
两个三角形全等的条件----边角边
课标要求:
探索并掌握两个三角形全等的条件。
精选版课件ppt
6
学情分析
精选版课件ppt
7
●知识经验:
学生在前一课时经历了探索两个三角形 全等的条件----边边边的过程,具备了利用 画图的方法构造全等三角形的活动经验,并 且对研究几何命题的过程有了初浅的认识。 但是可能有个别学生会完全照搬“边边边”, 而忽略两种方法的区别。
精选版课件ppt
充分问题思考,大胆交流观点,让学生明确 了本节课的核心内容,同时调动学生的思考积极
性,激起求知欲望。
精选版课件ppt
20
环节三
A
已知△ABC, 画△DEF,使ED=BA , EF= BC,∠E=∠B
B M
D
(怎样画△DEF?)
要求:1、利用手中工具
E
2、剪下所画的△DEF,放到△ABC上,观察是否
2、用数学语言表述
精选版课件ppt
23
设计意图:
学生的语言表述不够准确,但充分暴露了对边角 边命题的认识和理解,又能够对学生的抽象概括能力 和语言表达能力进行培养,同时类比思想方法得到渗 透。
在符号翻译的过程中,可以让学生对命题的具体 条件和结论有更进一步的深化丰富。至此,学生能够 根据边角边定理判定两个三角形全等。
环节六
1 本节课你有什么收获和感悟? 2 请构建本节课的知识框架?
13..3三角形全等判定角角边(AAS)PPT课件(华师大版)
AB=AD (已知)
12
在△ABC和△ADC中:
∠1=∠2 (已知)
∠1=∠2 (已知)
AC=AC (公共边)
AB=AD (已知)
∠ B=∠D(已证) ∴ △ABC≌△ADC(ASA)
∴ △ABC≌△ADC(SAS)
B
D
∴BC=DC
C
∴BC=DC
思考:如图:如果两个三角形有两个角及其中一个角的对边 分别对应相等,那么这两个三角形是否一定全等?
B
D C B′
于此类似,你能说明全 等三角形对应边上的中 线、对应角的平分线又 有什么关系呢?
A ′
D′ C′
【名人名言】
不积跬步 无以至千里
意思是:行程千里,都是从一步一步开始;如果做事不 从一点一滴中做起, 那就不可能有所成绩。
已知:∠A=∠A′,∠B=∠B′,AC=A′C′
求证: △ABC≌△A′B′C′
证明:∵∠A=∠A′,∠B=∠B′ 且∠A+∠B+∠C=180° ∠A′+∠B′+∠C′=180° ∴ ∠C=∠C′
在△ABC和△A′B′C′中 ∠A=∠A′ AC=A′C′ ∠C=∠C′
∴△ABC≌△A′B′C′(ASA)
练习:如图,AD=AE,∠B=∠C,那么BE 和CD相等么?为什么?
解:BE = CD 理由如下:
A
D
E
在△ABE与△ACD中: ∠B=∠C (已知) ∠A= ∠A(公共角)
AE=AD (已知)
∴ △ABE ≌△ACD (AAS)
B
C ∴ BE=CD
(全等三角形对应边相等)
思考:按要求加条件,使各对三角形全等。
∠A=∠D, AB=DE, _________; (ASA)
《三角形全等的判定》全等三角形PPT课件
好的△ ′′′剪下来,放到△ 上,它们全等吗?
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
画一个△ ′′′,使′′ = ,′’ =
,∠′ = ∠:
(1)画∠′ = ∠;
(2)在射线′上截取′′ = ,在
射线′上截取′′ = ;
(3)连接′′.
【结论】两边和它们的夹角分别相等的三角形全等。也就是说,三角形的两
⫽ .
∠4. 求证:∠5 = ∠6.
∵ ∠1 = ∠2,∠3 = ∠4, = ,
根据易证△ ≌△ ,
∴有 = ,
又∵ ∠3 = ∠4, = ,
则可根据判定△ ≌△ ,
故∠5 = ∠6.
知识梳理
例4:如图,、交于点,、为上两点, = , =
就全等了.如果满足斜边和一条直角边分别相等,这两个直
角三角形全等吗?
教学新知
探索5:任意画出一个△,使∠=90°.再画一个 △ ′’’,使
∠′=90°,′′=,′′=.把画好的△′′′剪下来,放
到△上,它们全等吗?
画 一 个 △ ′′′ , 使 ∠′ = 90° , ′′ =
求证 = .
∵⊥,⊥
∴∠与∠都是直角
在R △ 和Rt △ 中,
=
=
∴ △ ≌ △ ()
∴ = .
知识梳理
知识点1:“边边边”(或“SSS”)
1.三边分别相等的两个三角形全等(可以简写成“边边边”
两个三角形全等吗?上述六个条件中,有些条件是相关的.
能否在上述六个条件中选择部分条件,简捷地判定两个三角
形全等呢?
探索1:先任意画出一个△ ABC.再画一个△ A′B′C′,使△ ABC与
△ A′B′C′满足上述六个条件中的一个(一边或一角分别
相等)或两个(两边、一边一角或两角分别相等).你
全等三角形的判定PPT课件共34张
24
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
2024/1/30
06
判定全等三角形的注意事项
25
准确理解全等三角形的定义和性质
2024/1/30
全等三角形的定义
两个三角形如果三边及三角分别对应 相等,则称这两个三角形全等。
全等三角形的性质
全等三角形的对应边相等,对应角相 等;全等三角形的周长、面积相等; 全等三角形的对应边上的中线、高线 、角平分线分别相等。
结论
三边分别相等的两个三角 形全等,简称“SSS”。
16
SAS判定法的证明
已知条件
两边和它们的夹角分别相 等的两个三角形。
2024/1/30
证明过程
将其中一个三角形旋转至 与另一个三角形两边重合 ,由于夹角相等,因此两 个三角形全等。
结论
两边和它们的夹角分别相 等的两个三角形全等,简 称“SAS”。
示例
若三角形ABC和三角形DEF中,∠A=∠D,∠B=∠E ,BC=EF,则三角形ABC全等于三角形DEF。
2024/1/30
14
2024/1/30
04
判定方法的证明与推导
15
SSS判定法的证明
01
02
03
已知条件
三边分别相等的两个三角 形。
2024/1/30
证明过程
通过平移或旋转其中一个 三角形,使得两个三角形 的三边分别重合,从而证 明两个三角形全等。
2024/1/30
在计算三角形面积时,如果知道两个三角形全等,那么可以直接得出它们的面积相 等。
9
2024/1/30
03
全等三角形的判定方法
10
边边边判定法(SSS)
定义
三边分别相等的两个三角形全等 。
全等三角形的判定角边角课件
培养逻辑思维
掌握全等三角形判定定理 对于培养学生的逻辑思维 和推理能力具有重要意义。
角边角判定定理在几何证明中的应用
解决实际问题
角边角判定定理在解决实际问题中发 挥着重要作用,如测量、计算等领域。
提高解题效率
掌握角边角判定定理有助于提高解题 效率,帮助学生更快地解决几何问题。
简化证明过程
使用角边角判定定理可以简化几何证 明的步骤,使证明过程更加简洁明了。
总结词
直角三角形全等判定定理的应用
详细描述
在直角三角形中,如果两个直角边和夹角相等,则两个三角形全等。 这个判定定理可以用于证明两个直角三角形是否全等。
实例分析
假设我们有两个直角三角形ABC和DEF,其中∠C=∠F=90°,AC=DF, AB=DE,并且∠A=∠D。根据角边角判定定理,我们可以得出 △ABC≌△DEF 。
在复杂的几何图形中,识别并证明满足角边 角定理的全等三角形。
练习3
解决涉及角边角定理的实际问题,如测量、 构造等。
05
总结与回顾
全等三角形判定定理的重要性
01
02
03
几何证明的基础
全等三角形判定定理是几 何证明中的基础工具,是 解决各种几何问题的关键。
实际应用
在实际生活中,全等三角 形判定定理的应用也非常 广泛,如建筑设计、机械 制造等领域。
04
角边角判定定理的练习题
基础练习题
01
02
03
04
总结词
理解角边角判定定理的基本应 用
练习1
给出两个三角形,其中一个角 和两条边相等,判断这两个三
角形是否全等。
练习2
根据给定的条件,构造一个全 等三角形。
《三角形全等判定-角边角角角边》说课稿pptPPT课件
评估学生是否能将所学知识应用到 实际问题中,提高解决实际问题的 能力。
教学经验总结
教学内容优化
根据教学效果和学生反馈,对教 学内容进行优化,提高教学质量。
教学方法改进
总结教学方法的优缺点,探索更 有效的教学方法,提高学生的学
习效果。
教学资源整合
整合各类教学资源,如课件、习 题、案例等,为学生提供更丰富
03
符号表示
若$triangle ABC cong triangle DEF$,且$angle A = angle D$,
$angle B = angle E$,$AB = DE$,则可判定$triangle ABC cong
triangle DEF$。
判定定理的证明
证明思路
首先,根据已知条件,我们可以利用角的性质和边的性质来 证明两个三角形全等。具体来说,我们可以先证明两个三角 形满足SAS全等条件,然后利用SAS全等定理来证明两个三角 形全等。
情感态度与价值观
培养学生对数学的兴趣和 热爱,让学生感受到数学 在生活中的实际应用价值。
教学内容
三角形全等的概念
介绍三角形的全等概念,说明全等三角形的性质和判定定 理的意义。
三角形全等的判定定理
讲解并演示三角形全等的五种判定定理,包括边边边、边 角边、角边角、角角边和角角角。通过实例和练习题,让 学生掌握并能够灵活运用这些定理。
《三角形全等判定-角边角角角边》说课稿PPT
目录 Contents
• 课程导入 • 三角形全等判定-角边角角角边 • 教学方法与手段 • 教学重点与难点 • 课后作业与要求 • 教学反思与总结
01
课程导入
教学目标
01
02
03
教学经验总结
教学内容优化
根据教学效果和学生反馈,对教 学内容进行优化,提高教学质量。
教学方法改进
总结教学方法的优缺点,探索更 有效的教学方法,提高学生的学
习效果。
教学资源整合
整合各类教学资源,如课件、习 题、案例等,为学生提供更丰富
03
符号表示
若$triangle ABC cong triangle DEF$,且$angle A = angle D$,
$angle B = angle E$,$AB = DE$,则可判定$triangle ABC cong
triangle DEF$。
判定定理的证明
证明思路
首先,根据已知条件,我们可以利用角的性质和边的性质来 证明两个三角形全等。具体来说,我们可以先证明两个三角 形满足SAS全等条件,然后利用SAS全等定理来证明两个三角 形全等。
情感态度与价值观
培养学生对数学的兴趣和 热爱,让学生感受到数学 在生活中的实际应用价值。
教学内容
三角形全等的概念
介绍三角形的全等概念,说明全等三角形的性质和判定定 理的意义。
三角形全等的判定定理
讲解并演示三角形全等的五种判定定理,包括边边边、边 角边、角边角、角角边和角角角。通过实例和练习题,让 学生掌握并能够灵活运用这些定理。
《三角形全等判定-角边角角角边》说课稿PPT
目录 Contents
• 课程导入 • 三角形全等判定-角边角角角边 • 教学方法与手段 • 教学重点与难点 • 课后作业与要求 • 教学反思与总结
01
课程导入
教学目标
01
02
03
13.角边角PPT课件(华师大版)
总结
(1)在证两三角形全等所需要的角相等时,通常 采用的目前所学过的方法有:(1)公共角、对顶角分 别相等;(2)等角加(减)等角,其和(差)仍相等,即 等式的性质;(3)同角或等角的余(补)角相等;(4)角 平分线得到相等角;(5)平行线的同位角、内错角相 等;(6)直角都相等;(7)全等三角形对应角相等; (8)第三角代换,即等量代换等.
等,简记为A.S.A.(或角边角) 2. 证明书写格式:在△ABC和△A′B′C′中,
∠A=∠A′, ∵ AB=A′B′,
∠B=∠B′, ∴△ABC≌△A′B′C′. 要点精析:(1)全等的元素:两角及两角夹边;(2)在书 写两个三角形全等的条件角边角时,一定要把夹边相等写 在中间,以突出角边角的位置以及对应关系.
总结
判定两三角形全等,先根据已知条件或求证的结论 确定三角形,然后再根据三角形全等的判定方法看缺什 么条件,再去证什么条件,简言之:即综合利用分析法 和综合法寻找证明途径.
思
考
全等三角形对应边上的中线、对应角的平分线 又有 什么关系呢?你能说明其中的道理吗?
全等三角形除了对应边相等、对应角相等外, 还有以下几条性质:
1.定理:两角分别相等且其中一角的对边相等的两个 三角形全等,简记为A.A.S.(或角角边)
证明书写格式:在△ABC和△A′B′C′中, ∠A=∠A′,
∵ ∠B=∠B′, BC=B′C′,
∴△ABC≌△A′B′C′. 要点精析:(1)全等的元素:两角及其中一角的对边; (2)用S.A.S. ,A.S.A. ,A.A.S. 证明全等时,要注意图 形中隐含的相等的角.例如:对顶角、公共角、同角的余
图 13.2.9 把你画的三角形与其他同学画 的三角形 进行比较,或将你画的三
《三角形全等的判定--角边角-角角边》说课稿-ppt市公开课获奖课件省名师示范课获奖课件
(4)符号语言: 在△ABC和△DEF 中 ∠A =∠D ∠B =∠E BC=EF ∴ △ABC≌△DEF (AAS)
3、思索举证(探究7),全等小结
满足全等 三角形旳 六组条件 中旳三组
(1)三边(SSS)
(2)两边一角
两边、一夹角(SAS) 两边、一对角(不一定)
(3)两角一边 两角一夹边(ASA) 两角一对边(AAS)
∠A=∠A(公共角), AC=AB , ∠C=∠B, ∴ △ACD≌△ABE (ASA), ∴ AD=AE. (2)如图,AB⊥BC,AD⊥DC,∠1=∠2.求证AB=AD。 证明: ∵ AB⊥BC ,AD⊥DC, ∴ ∠B=∠D=90° 在△ABC和△ADC中, ∠B=∠D ∠1=∠2 AC=AC (公共边) ∴ △ABC≌△ADC (AAS),
二、教学目的
【知识技能】 1.让学生在自主探究旳过程中得出A.S.A推 导出A.A.S定,掌握
【过程与措施】 经历探索三角形全等条件旳过程,体会怎 样探索、研究问题,培养学生合作精神,让学 生初步体会数学中旳分类思想。
【情感态度与价值观】 经过画图、比较、验证,培养学生注重观 察、善于思索、不断总结旳良好思维习惯。
2、学术情境分类,明确探究任务
(1)三边(SSS)
满足全等三角 形旳六组条件 中旳三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
(二)合作交流、解读探究
1、试验验证(探究5),探索新知(角边角)
(1)分组试验,前后桌4位同学为一组,共同完 毕试验。
试验环节:①任意画一种三角形△ABC; ②前桌两位同学均各自再画△A′B′C′,使
本节课在知识构造上,它是同学们在学习了三 角形有关要素、全等图形旳概念后来进行旳,它即 是前面所学知识旳延伸与拓展,又是后继学习探索 相同形旳条件和基础,而且是用以阐明线段相等、 两角相等旳主要根据。所以,本节课旳知识具有承 上启下旳作用。在能力培养上,不论是动手操作能 力、逻辑思维能力,还是分析问题、处理问题旳能 力,都可在全等三角形旳教学中得以培养和提升。 所以,全等三角形在整个初中数学旳学习中有至关 主要旳作用。
3、思索举证(探究7),全等小结
满足全等 三角形旳 六组条件 中旳三组
(1)三边(SSS)
(2)两边一角
两边、一夹角(SAS) 两边、一对角(不一定)
(3)两角一边 两角一夹边(ASA) 两角一对边(AAS)
∠A=∠A(公共角), AC=AB , ∠C=∠B, ∴ △ACD≌△ABE (ASA), ∴ AD=AE. (2)如图,AB⊥BC,AD⊥DC,∠1=∠2.求证AB=AD。 证明: ∵ AB⊥BC ,AD⊥DC, ∴ ∠B=∠D=90° 在△ABC和△ADC中, ∠B=∠D ∠1=∠2 AC=AC (公共边) ∴ △ABC≌△ADC (AAS),
二、教学目的
【知识技能】 1.让学生在自主探究旳过程中得出A.S.A推 导出A.A.S定,掌握
【过程与措施】 经历探索三角形全等条件旳过程,体会怎 样探索、研究问题,培养学生合作精神,让学 生初步体会数学中旳分类思想。
【情感态度与价值观】 经过画图、比较、验证,培养学生注重观 察、善于思索、不断总结旳良好思维习惯。
2、学术情境分类,明确探究任务
(1)三边(SSS)
满足全等三角 形旳六组条件 中旳三组
(2)两边一角 两边、一夹角(SAS)
两边、一对角(不一定) (3)两角一边
(4)三角
(二)合作交流、解读探究
1、试验验证(探究5),探索新知(角边角)
(1)分组试验,前后桌4位同学为一组,共同完 毕试验。
试验环节:①任意画一种三角形△ABC; ②前桌两位同学均各自再画△A′B′C′,使
本节课在知识构造上,它是同学们在学习了三 角形有关要素、全等图形旳概念后来进行旳,它即 是前面所学知识旳延伸与拓展,又是后继学习探索 相同形旳条件和基础,而且是用以阐明线段相等、 两角相等旳主要根据。所以,本节课旳知识具有承 上启下旳作用。在能力培养上,不论是动手操作能 力、逻辑思维能力,还是分析问题、处理问题旳能 力,都可在全等三角形旳教学中得以培养和提升。 所以,全等三角形在整个初中数学旳学习中有至关 主要旳作用。
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
不全等。因为虽然有两组 内角相等,且BC=BC, 但不都是两个三角形两组 内角的夹边,所以不全等。
(第 1 题)
P74练习2、如图,△ABC是等腰三角形,AD、 BE分别是 ∠BAC、∠ABC的角平分线,△ABD和△BAE全等吗? 试说明理由.
全等。∵ △ABC是等腰三角形 ∴ ∠ABD=∠BAE ∵ AD、 BE分别是 ∠BAC、∠ABC的角平分线 ∴ ∠BAD=∠ABE=等腰△ABC 底角的一半 ∵AB=BA ∴ △ABD≌△BAE(ASA)
7.已知如图,∠1 = ∠2,∠C = ∠D 求证:AC = AD
证明:在△ABC和△ABD中 ∠1 = ∠2 ∠C = ∠D AB = AB D
A
2 1
B
∴△ABC≌△ABD(AAS) ∴AC = AD(全等三角形对应边相等)
C
8.
已知:点D在AB上,点E在AC上,BE和CD相 交于点O,AB=AC,∠B=∠C。
情景导入:
问题1:一张教学用的三角形 硬纸板不小心被撕坏了,如 右图,你能制作一张与原来 同样大小的新教具?能恢复原 来三角形的原貌吗?
怎么办?可以 帮帮我吗?
全等三角形的判定
【教学目标】:
1、掌握全等三角形的判定----角边角、角角边, 能运用角边角、角角边判定三角形全等,进而说 明线段或角相等;
用符号语言表达为: 在△ABC和△DEF中, A D
B E BC EF C F
∴ △ABC≌△DEF
B
\
C E
\
F
练习
如图:如果两个三角形有两个角及其中一个角的对 边分别对应相等,那么这两个三角形是否一定全等? 已知:∠A=∠A′, ∠B=∠B′, AC=A′C′ 求证: △ABC≌△A′B′C′ 证明∵ ∠A=∠A′, ∠B=∠B′ 又∠A+∠B+∠C=180° (三角形的内角和等于180°) 同理∠A′+∠B′+∠C′=180° ∴ ∠C=∠C′. 在△ABC和△A′B′C′中 ∵ ∠A=∠A′ AC=A′C′ ∠C=∠C′ ∴ △ABC≌△A′B′C′(A.S.A.)
在△ABC和△DCB中, ∵
∴ △ABC≌△DCB(A.S.A.)
图 19.2.9
4、 在△ABC 与△A'B'C'中,若 AB=A‘B', ∠A=∠A', ∠B=∠B', 那么△ABC 与△A'B'C'全等吗?
C C'
B
A
B'
A'
全等
如果两个三角形有两个角及其夹边分别对应相等, 那么这两个三角形全等.简记为A.S.A. (或角边角).
(第 2 题)
3.练一练
已知: △ABC和△ A′B′C′中,AB=A′B′, ∠A=∠A′,∠B=∠B′, 则△ABC≌△ A′B′C′的根据是(B A; SAS B: ASA C: AAS D :都不对 )
已知: △ABC和△A′B′C ′中,AB=A′B′, ∠A=∠A′, 若△ABC≌△ A′B′C′, 还需要什么条件( D ) A:∠B=∠B′ B: ∠C=∠C′ C: AC=A′C′ D: A、B、C均可
B A
D
E
C
BOD 全等吗? AOC 与 A 6. 如图,O是AB的中点, =B , 为什么?
C
两角和夹边 对应相等
A
O
B
在
AOC 和BOD
中
D
A B
AO BO
(已知) (中点的定义)
AOC BOD
(对顶角相等)
AOC BOD
( ASA ) ( )
通过画图、实践、发现、应用的教学过程, 树立学生知识源于实践用于实践的观念,使学生 体会探索发现问题的过程。 【重点、难点】:
利用三角形全等的判定方法----角边角、角角边, 间接说明角相等或线段相等
如果两个三角形有两个角、一条边分别 对应相等,那么这两个三角形能全等吗?两个角和一条线段,以这 两个角为内角,以这条线段为这两个角的夹边, 画一个三角形.
求证: △ABE≌△ACD
A D O E
B
C
请说出目前判定三角形全等的3种方法:
SAS,ASA,AAS.
A 4.口答:
A′
B
C
B′
C′
1.两个直角三角形中,斜边和一锐角对应相等,这两个直角 三角形全等吗?为什么?
答:全等,根据AAS
2.两个直角三角形中,有一条直角边和一锐角对应相等,这 两个直角三角形全等吗?为什么?
答:全等,根据AAS
5.如图,已知AB=AC,∠ADB= ∠AEC,求证: △ABD≌△ACE 证明:∵ AB=AC, ∴ ∠B= ∠C(等边对等角) ∵ ∠ADB= ∠AEC, AB=AC, ∴ △ABD≌△ACE(AAS)
图 19。2。7
把你画的三角形与其他同学画的 三角形进行比较,所有的三角形都全等吗? 换两个角和一条线段,试试看,是否有同 样的结论. 都全等 步骤:见课本P77.
例2 如图19.2.9,已知∠ABC=∠DCB,
求证:
证明
∠ACB= ∠DBC, △ABC≌△DCB.
∠ABC=∠DCB, BC=CB, ∠ACB=∠DBC,
定理: 如果两个三角形有两个角和其中 一个角的对边分别对应相等,那么这两个 三角形全等.简记为A.A.S.(或角角边).
A D
B
C E
F
课 堂 如图,要证明△ACE≌ △BDF,根据给定的条件 练 和指明的依据,将应当添设的条件填在横线上。 习 (1)AC∥BD,CE=DF, AC=BD (SAS)
( 2) AC=BD, AC∥BD
∠A=∠B (ASA) (ASA)
∠AEC=∠BFD ∠C=∠D ( 3) CE=DF, ( 4)∠ C= ∠D,AC=BD ∠A=∠B A
C
(ASA)
F
E B
D
P74练习 1、如图,已知∠ABC=∠D,∠ACB=∠CBD 判断图中的两个三角形是否全等,并说明理由.