2015届高三文科数学基础训练题(一)(可编辑修改word版)
2015届高三考试数学(文)试题word版含答案
高三数学试卷(文科)第Ⅰ卷一、选择题(本大题共10个小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的)1、设全集{1,2,3,4,5}U =,集合{2,3,4},{2,5}A B ==,则()U B C A 等于( )A .{}5B .{}1,2,5C .{}1,2,3,4,5D .φ2、复数(12)z i i =+,则复数z 的共轭复数z 在复平面内对应的点的坐标为( )A .()2,1-B .()2,1-C .()2,1D .()2,1--3、双曲线22221(0,0)x y a b a b-=>>的焦距为6,则其渐近线的方程为( ) A.2y x =± B.4y x =± C.5y x =± D.5y x =± 4、已知向量(1,),(1,)a n b n ==-,若2a b -与b 垂直,则2n 等于( )A .1B .2C .3D .45、在等差数列{}n a 中,2632a a π+=,则4sin(2)3a π-等于( ) A.2 B .12 C.2-.12- 6、为了了解某学校1500名高中男生的身体发育情况,抽查了该校100名高中男生的体重情况,根据所得数据画出样本的频率分布直方图,据此估计该校高中男生体重在70~78kg 的人数为( )A .240B .210C .180D .607、设不等式组22042x y x y -+≥⎧⎪≤⎨⎪≥-⎩表示的平面区域为D ,则区域D 的面积为( )A .10B .15C .20D .258、执行如图所示的程序框图所表述的算法,若输出的x 的值为48,则输入x 的值为( )A .3B .6C .8D .129、函数ln x xy x =的图象大致是( )10、某四面体的三视图如图所示,则该四面体的六条棱的长度中,最大值的是( )A ..C ..11、已知函数()211sin 2sin cos cos sin()(0)222f x x x πϕϕϕϕπ=+--<<,将函数()f x 的图象向右平移12π个单位后得到函数()g x 的图象,且1()42g π=,则ϕ等于( ) A .6π B .4π C .3π D .23π 12、抛物线22(0)y px p =>的交点为F ,已知点,A B 为抛物线上的两个动点,且满足120AFB ∠=过弦AB 的中点M 作抛物线准线的垂线MN ,垂足为N ,则ABMN 的最小值为( )A .3B .3C .1D .第Ⅱ卷二、填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卷的横线上。
湖南省株洲市2015届高三教学质量统一检测(一)数学文试题 Word版含答案
绝密★启用前株洲市2015届高三年级教学质量统一检测(一)数学试题(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分,考试时间120分钟.第Ⅰ卷(选择题)一、选择题。
本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求的.答案要写在答题卷上. 1.已知集合{0,1,3}A =,{|ln(1)}B x y x ==-,则A B =( )A .{0,1,3}B .{1,3}C .{3}D .Φ 2. 命题“x R ∀∈,22x x +≥”的否定是( ) A .0x R ∃∈,22x x +≤B .0x R ∃∈,22x x +<C .x R ∀∈,22x x +≤D .x R ∀∈,22x x +<3. 设数列{a n }是等比数列,函数y =x 2-x -2的两个零点是23,a a ,则14a a =( )A .2B .1C .-1D .-24. 程序框图如图所示,若输入a 的值是虚数单位i ,则输出的结果是( ) A .1-B .1i -C .0D .i -5. 已知条件p :k =3;条件q :直线y = kx +2与圆x 2+y 2=1相切, 则p 是q 的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.下列函数中,与函数y =-3|x |的奇偶性相同,且在(-∞,0)上 单调性也相同的是( )A .y =-1x B .y =log 2|x | C .y =1-x 2 D .y =x 3-17. 在长方体ABCD - A 1B 1C 1D 1中,AB =BC =2,AA 1=1,则BC 1与平面BB 1D 1D 所成角的正弦值为( )A .63B .2 65C .155D .1058. 已知三棱锥的正视图与俯视图如图所示,俯视图是边长为2的 正三角形,则该三棱锥的侧视图可能为()9. 已知双曲线22221x y a b -=,双曲线上过一个焦点且) A.10. 在ABC ∆中,若角A B C ,,所对的三边a b c ,,成等差数列,给出下列结论:①2b ac ≥;②2222a cb +≥;③112ac b +<;④03B π<≤.其中正确的结论是( )A .①②B .②③C .③④D .①④第Ⅱ卷(非选择题)二、填空题:本大题共5小题,每小题5分,共25分.请将答案填在答题卷上. 11.直角坐标系xOy 中,点A ,B 分别在曲线13cos :4sin x C y θθ=+⎧⎨=+⎩(θ为参数)上,则|AB|的最大值为 .12.向量1(,tan )3a α=,(cos ,1)b α=,且a ∥b ,则cos()2πα+= .13.记集合22{(,)4}A x y x y =+≤和集合{(,)|20,0,0}B x y x y x y =+-≤≥≥表示的平面区域分别为Ω1,Ω2,若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为 .14.如右图,在第一象限内,矩形ABCD 的三个顶点A ,B ,C 分别 在函数y=12,,2xx y x y ⎛== ⎝⎭的图像上,且矩形的边分别平行两坐标轴,若A 点的纵坐标是2,则D 点的坐标是15.在边长为2的菱形ABCD 中,3ABC π∠=,对角线AC 与BD 相较于O ,点P 是线段BD的一个三等分点,则AP AC ∙等于 .三.解答题:本大题共6小题,共75分。
2015年高考文科数学真题及答案16套
福建卷---------------------------------------------------2-18页新课标1-------------------------------------------------18-33 新课标2-------------------------------------------------33-47 重庆卷-------------------------------------------------47-62湖北卷-------------------------------------------------62-75天津卷-------------------------------------------------75-85安徽卷------------------------------------------------86-98北京卷-------------------------------------------------98-111 广东卷-------------------------------------------------111-121 湖南卷-------------------------------------------------121-136 江苏卷-------------------------------------------------136-152 山东卷-------------------------------------------------152-168 陕西卷-------------------------------------------------168-184 四川卷-------------------------------------------------184-195 上海卷-------------------------------------------------195-204 浙江卷-------------------------------------------------205-216第I 卷(选择题共60分)一、选择题:本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.若(1)(23)i i a bi ++-=+(,,a b R i ∈是虚数单位),则,a b 的值分别等于( ) A .3,2- B .3,2 C .3,3- D .1,4- 【答案】A 【解析】试题分析:由已知得32i a bi -=+,所以3,2a b ==-,选A . 考点:复数的概念.2.若集合{}22M x x =-≤<,{}0,1,2N =,则MN 等于( )A .{}0B .{}1C .{}0,1,2D {}0,1 【答案】D考点:集合的运算.3.下列函数为奇函数的是( ) A .y x = B .x y e = C .cos y x = D .x x y e e -=-【答案】D 【解析】试题分析:函数y x =和x y e =是非奇非偶函数; cos y x =是偶函数;x x y e e -=-是奇函数,故选D .考点:函数的奇偶性.4.阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( ) A .2 B .7 C .8 D .128【答案】C 【解析】试题分析:由题意得,该程序表示分段函数2,2,9,2x x y x x ⎧≥=⎨-<⎩,则(1)918f =-=,故选C .考点:程序框图. 5.若直线1(0,0)x ya b a b+=>>过点(1,1),则a b +的最小值等于( ) A .2 B .3 C .4 D .5 【答案】C考点:基本不等式. 6.若5sin 13α=-,且α为第四象限角,则tan α的值等于( ) A .125 B .125- C .512 D .512-【答案】D 【解析】试题分析:由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin tan cos ααα= 512=-,故选D .考点:同角三角函数基本关系式.7.设(1,2)a =,(1,1)b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) A .32-B .53-C .53D .32【答案】A考点:平面向量数量积.8.如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为(1,0).且点C 与点D 在函数1,0()11,02x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( ) A .16 B .14 C .38 D .12xyOBCDAF【答案】B考点:古典概型.9.某几何体的三视图如图所示,则该几何体的表面积等于( ) A .822+ B .1122+ C .1422+ D .151112【答案】B 【解析】试题分析:由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为12,,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为 2+2+4+22=8+22,所以该几何体的表面积为1122+,故选B .考点:三视图和表面积.10.变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y =-的最大值为2,则实数m 等于( )A .2-B .1-C .1D .2 【答案】C 【解析】x–1–2–3–41234–1–2–3–4123BOC试题分析:将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤时,不满足题意;当0m >时,画出可行域,如图所示, 其中22(,)2121mB m m --.显然(0,0)O 不是最优解,故只能22(,)2121m B m m --是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . 考点:线性规划.11.已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( ) A . 3(0,]2 B .3(0,]4C .3[,1)2 D .3[,1)4【答案】A考点:1、椭圆的定义和简单几何性质;2、点到直线距离公式. 12.“对任意(0,)2x π∈,sin cos k x x x <”是“1k <”的( )A .充分而不必要条件B .必要而不充分条件C . 充分必要条件D .既不充分也不必要条件 【答案】B考点:导数的应用.第II 卷(非选择题共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.13.某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为_______. 【答案】25 【解析】试题分析:由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=. 考点:分层抽样.14.若ABC ∆中,3AC =,045A =,075C =,则BC =_______.【答案】2 【解析】试题分析:由题意得018060B A C =--=.由正弦定理得sin sin AC BC B A =,则sin sin AC ABC B=, 所以232232BC ⨯==.考点:正弦定理.15.若函数()2()x af x a R -=∈满足(1)(1)f x f x +=-,且()f x 在[,)m +∞单调递增,则实数m 的最小值等于_______. 【答案】1 【解析】试题分析:由(1)(1)f x f x +=-得函数()f x 关于1x =对称,故1a =,则1()2x f x -=,由复合函数单调性得()f x 在[1,)+∞递增,故1m ≥,所以实数m 的最小值等于1. 考点:函数的图象与性质.16.若,a b 是函数()()20,0f x x px q p q =-+>> 的两个不同的零点,且,,2a b - 这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q + 的值等于________. 【答案】9考点:等差中项和等比中项.三、解答题:本大题共6小题,共74分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分12分)等差数列{}n a 中,24a =,4715a a +=. (Ⅰ)求数列{}n a 的通项公式; (Ⅱ)设22n a n b n -=+,求12310b b b b +++⋅⋅⋅+的值.【答案】(Ⅰ)2n a n =+;(Ⅱ)2101. 【解析】试题分析:(Ⅰ)利用基本量法可求得1,a d ,进而求{}n a 的通项公式;(Ⅱ)求数列前n 项和,首先考虑其通项公式,根据通项公式的不同特点,选择相应的求和方法,本题2nn b n =+,故可采取分组求和法求其前10项和.试题解析:(I )设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.考点:1、等差数列通项公式;2、分组求和法. 18.(本题满分12分)全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号分组 频数 1 [4,5) 2 2 [5,6) 8 3 [6,7) 7 4[7,8]3(Ⅰ)现从融合指数在[4,5)和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(Ⅱ)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 【答案】(Ⅰ)910;(Ⅱ)6.05.解法一:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (II )这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(I )融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个. 所以所求的概率1911010P =-=.(II )同解法一.考点:1、古典概型;2、平均值. 19.(本小题满分12分)已知点F 为抛物线2:2(0)E y px p =>的焦点,点(2,)A m 在抛物线E 上,且3AF =. (Ⅰ)求抛物线E 的方程;(Ⅱ)已知点(1,0)G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.【答案】(Ⅰ)24y x =;(Ⅱ)详见解析. 【解析】试题分析:(Ⅰ)利用抛物线定义,将抛物线上的点到焦点距离和到准线距离相互转化.本题由3AF =可得232p+=,可求p 的值,进而确定抛物线方程;(Ⅱ)欲证明以点F 为圆心且与直线GA 相切的圆,必与直线GB 相切.可证明点F 到直线GA 和直线GB 的距离相等(此时需确定两条直线方程);也可以证明GF GF ∠A =∠B ,可转化为证明两条直线的斜率互为相反数.试题解析:解法一:(I )由抛物线的定义得F 22pA =+. 因为F 3A =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =. (II )因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,所以()G 22022213k A -==--,()G 20221312k B --==---, 所以G G 0k k A B +=,从而GF GF ∠A =∠B ,这表明点F 到直线G A ,G B 的距离相等, 故以F 为圆心且与直线G A 相切的圆必与直线G B 相切. 解法二:(I )同解法一.(II )设以点F 为圆心且与直线G A 相切的圆的半径为r . 因为点()2,m A 在抛物线:E 24y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()F 1,0可得直线F A 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22⎛⎫B - ⎪⎝⎭. 又()G 1,0-,故直线G A 的方程为223220x y -+=,从而2222428917r +==+.又直线G B 的方程为223220x y ++=,所以点F 到直线G B 的距离2222428917d r +===+. 这表明以点F 为圆心且与直线G A 相切的圆必与直线G B 相切. 考点:1、抛物线标准方程;2、直线和圆的位置关系. 20.(本题满分12分)如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO =OB =.(Ⅰ)若D 为线段AC 的中点,求证C A ⊥平面D P O ; (Ⅱ)求三棱锥P ABC -体积的最大值; (Ⅲ)若2BC =,点E 在线段PB 上,求CE OE +的最小值.【答案】(Ⅰ)详见解析;(Ⅱ)13;(Ⅲ)262+.【解析】试题分析:(Ⅰ)要证明C A ⊥平面D P O ,只需证明AC 垂直于面D P O 内的两条相交直线.首先由PO 垂直于圆O 所在的平面,可证明C PO ⊥A ;又C OA =O ,D 为C A 的中点,可证明C D A ⊥O ,进而证明结论;(Ⅱ)三棱锥P ABC -中,高1PO =,要使得P ABC -体积最大,则底面ABC 面积最大,又2AB =是定值,故当AB 边上的高最大,此时高为半径,进而求三棱锥P ABC -体积;(Ⅲ)将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,此时线段'OC 的长度即为CE OE +的最小值. 试题解析:解法一:(I )在C ∆AO 中,因为C OA =O ,D 为C A 的中点, 所以C D A ⊥O .又PO 垂直于圆O 所在的平面, 所以C PO ⊥A . 因为D OPO =O ,所以C A ⊥平面D P O .(II )因为点C 在圆O 上,所以当C O ⊥AB 时,C 到AB 的距离最大,且最大值为1. 又2AB =,所以C ∆AB 面积的最大值为12112⨯⨯=. 又因为三棱锥C P -AB 的高1PO =, 故三棱锥C P -AB 体积的最大值为111133⨯⨯=. (III )在∆POB 中,1PO =OB =,90∠POB =,所以22112PB =+=.同理C 2P =,所以C C PB =P =B .在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,C E +OE 取得最小值. 又因为OP =OB ,C C ''P =B , 所以C 'O 垂直平分PB , 即E 为PB 中点. 从而2626C C 222+''O =OE +E =+=, 亦即C E +OE 的最小值为262+. 解法二:(I )、(II )同解法一.(III )在∆POB 中,1PO =OB =,90∠POB =,所以45∠OPB =,22112PB =+=.同理C 2P =.所以C C PB =P =B ,所以C 60∠PB =.在三棱锥C P -AB 中,将侧面C B P 绕PB 旋转至平面C 'B P ,使之与平面ABP 共面,如图所示. 当O ,E ,C '共线时,C E +OE 取得最小值.所以在C '∆O P 中,由余弦定理得:()2C 12212cos 4560'O =+-⨯⨯⨯+212312222222⎛⎫=+-⨯-⨯ ⎪ ⎪⎝⎭23=+. 从而26C 232+'O =+=. 所以C E +OE 的最小值为262+. 考点:1、直线和平面垂直的判定;2、三棱锥体积. 21.(本题满分12分) 已知函数()2103sincos 10cos 222x x xf x =+. (Ⅰ)求函数()f x 的最小正周期; (Ⅱ)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (ⅰ)求函数()g x 的解析式;(ⅱ)证明:存在无穷多个互不相同的正整数0x ,使得()00g x >. 【答案】(Ⅰ)2π;(Ⅱ)(ⅰ)()10sin 8g x x =-;(ⅱ)详见解析. 【解析】试题分析:(Ⅰ)首先利用证明二倍角公式和余弦降幂公式将()f x 化为()10sin 56f x x π⎛⎫=++ ⎪⎝⎭,然后利用2T πω=求周期;(Ⅱ)由函数()f x 的解析式中给x 减6π,再将所得解析式整体减去a 得()g x 的解析式为()10sin 5g x x a =+-,当sin x 取1的时,()g x 取最大值105a +-,列方程求得13a =,从而()g x 的解析式可求;欲证明存在无穷多个互不相同的正整数0x ,使得()00g x >,可解不等式()00g x >,只需解集的长度大于1,此时解集中一定含有整数,由周期性可得,必存在无穷多个互不相同的正整数0x .试题解析:(I )因为()2103sincos 10cos 222x x xf x =+ 53sin 5cos 5x x =++10sin 56x π⎛⎫=++ ⎪⎝⎭.所以函数()f x 的最小正周期2πT =. (II )(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =. 所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >. 由4352<知,存在003πα<<,使得04sin 5α=. 由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >. 因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-(k ∈Z )时,均有4sin 5x >. 因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >. 亦即存在无穷多个互不相同的正整数0x ,使得()00g x >. 考点:1、三角函数的图像与性质;2、三角不等式. 22.(本小题满分14分)已知函数2(1)()ln 2x f x x -=-.(Ⅰ)求函数()f x 的单调递增区间;(Ⅱ)证明:当1x >时,()1f x x <-;(Ⅲ)确定实数k 的所有可能取值,使得存在01x >,当0(1,)x x ∈时,恒有()()1f x k x >-.【答案】(Ⅰ) 150,2⎛⎫+ ⎪ ⎪⎝⎭;(Ⅱ)详见解析;(Ⅲ)(),1-∞. 【解析】试题分析:(Ⅰ)求导函数()21x x f x x-++'=,解不等式'()0f x >并与定义域求交集,得函数()f x 的单调递增区间;(Ⅱ)构造函数()()()F 1x f x x =--,()1,x ∈+∞.欲证明()1f x x <-,只需证明()F x 的最大值小于0即可;(Ⅲ)由(II )知,当1k =时,不存在01x >满足题意;当1k >时,对于1x >, 有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意;当1k <时,构造函数()()()G 1x f x k x =--,()0,x ∈+∞,利用导数研究函数()G x 的形状,只要存在01x >,当0(1,)x x ∈时()0G x >即可.试题解析:(I )()2111x x f x x x x-++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得1502x +<<.故()f x 的单调递增区间是150,2⎛⎫+ ⎪ ⎪⎝⎭. (II )令()()()F 1x f x x =--,()0,x ∈+∞.则有()21F x x x-'=.当()1,x ∈+∞时,()F 0x '<, 所以()F x 在[)1,+∞上单调递减,故当1x >时,()()F F 10x <=,即当1x >时,()1f x x <-. (III )由(II )知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意. 当1k <时,令()()()G 1x f x k x =--,()0,x ∈+∞,则有()()2111G 1x k x x x k x x-+-+'=-+-=.由()G 0x '=得,()2110x k x -+-+=.解得()2111402k k x ---+=<,()2211412k k x -+-+=>.当()21,x x ∈时,()G 0x '>,故()G x 在[)21,x 内单调递增. 从而当()21,x x ∈时,()()G G 10x >=,即()()1f x k x >-, 综上,k 的取值范围是(),1-∞. 考点:导数的综合应用.2015年普通高等学校招生全国统一考试(新课标1卷)文数一、选择题:每小题5分,共60分1、已知集合{32,},{6,8,10,12,14}A x x n n N B ==+∈=,则集合A B 中的元素个数为(A ) 5 (B )4 (C )3 (D )2 【答案】D 【解析】试题分析:由条件知,当n=2时,3n+2=8,当n=4时,3n+2=14,故A ∩B={8,14},故选D. 考点:集合运算2、已知点(0,1),(3,2)A B ,向量(4,3)AC =--,则向量BC =(A ) (7,4)-- (B )(7,4) (C )(1,4)- (D )(1,4)【答案】A考点:向量运算3、已知复数z 满足(1)1z i i -=+,则z =( )(A ) 2i -- (B )2i -+ (C )2i - (D )2i +【答案】C 【解析】试题分析:∴(1)1z i i -=+,∴z=212(12)()2i i i i i i ++-==--,故选C. 考点:复数运算4、如果3个正整数可作为一个直角三角形三条边的边长,则称这3个数为一组勾股数,从1,2,3,4,5中任取3个不同的数,则这3个数构成一组勾股数的概率为( )(A )310 (B )15 (C )110 (D )120【答案】C 【解析】试题分析:从1,2,3,4,51,2,3,4,5中任取3个不同的数共有10种不同的取法,其中的勾股数只有3,4,5,故3个数构成一组勾股数的取法只有1种,故所求概率为110,故选C. 考点:古典概型5、已知椭圆E 的中心为坐标原点,离心率为12,E 的右焦点与抛物线2:8C y x =的焦点重合,,A B 是C 的准线与E 的两个交点,则AB =(A ) 3 (B )6 (C )9 (D )12【答案】B考点:抛物线性质;椭圆标准方程与性质6、《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问”积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米有( )(A )14斛 (B )22斛 (C )36斛 (D )66斛【答案】B 【解析】试题分析:设圆锥底面半径为r ,则12384r ⨯⨯==163r =,所以米堆的体积为211163()5433⨯⨯⨯⨯=3209,故堆放的米约为3209÷1.62≈22,故选B.考点:本题主要考查圆锥的性质与圆锥的体积公式7、已知{}n a 是公差为1的等差数列,n S 为{}n a 的前n 项和,若844S S =,则10a =( ) (A )172 (B )192(C )10 (D )12 【答案】B 【解析】试题分析:∵公差1d =,844S S =,∴11118874(443)22a a +⨯⨯=+⨯⨯,解得1a =12,∴1011199922a a d =+=+=,故选B. 考点:等差数列通项公式及前n 项和公式8、函数()cos()f x x ωϕ=+的部分图像如图所示,则()f x 的单调递减区间为( )(A )13(,),44k k k Z ππ-+∈(B )13(2,2),44k k k Z ππ-+∈ (C )13(,),44k k k Z -+∈ (D )13(2,2),44k k k Z -+∈ 【答案】D【解析】 试题分析:由五点作图知,1+4253+42πωϕπωϕ⎧=⎪⎪⎨⎪=⎪⎩,解得=ωπ,=4πϕ,所以()cos()4f x x ππ=+,令22,4k x k k Z πππππ<+<+∈,解得124k -<x <324k +,k Z ∈,故单调减区间为(124k -,324k +),k Z ∈,故选D. 考点:三角函数图像与性质9、执行右面的程序框图,如果输入的0.01t =,则输出的n =( )(A ) 5 (B )6 (C )10 (D )12【答案】C考点:程序框图10、已知函数1222,1()log (1),1x x f x x x -⎧-≤=⎨-+>⎩ ,且()3f a =-,则(6)f a -= (A )74-(B )54- (C )34- (D )14- 【答案】A【解析】试题分析:∵()3f a =-,∴当1a ≤时,1()223a f a -=-=-,则121a -=-,此等式显然不成立, 当1a >时,2log (1)3a -+=-,解得7a =,∴(6)f a -=(1)f -=117224---=-,故选A. 考点:分段函数求值;指数函数与对数函数图像与性质11、圆柱被一个平面截去一部分后与半球(半径为r )组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为1620π+,则r =( )(A )1 (B )2(C )4 (D )8【答案】B【解析】试题分析:由正视图和俯视图知,该几何体是半球与半个圆柱的组合体,圆柱的半径与球的半径都为r ,圆柱的高为2r ,其表面积为22142222r r r r r r πππ⨯+⨯++⨯=2254r r π+=16 + 20π,解得r=2,故选B.考点:简单几何体的三视图;球的表面积公式;圆柱的测面积公式12、设函数()y f x =的图像与2x a y +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( )(A ) 1- (B )1 (C )2 (D )4【答案】C【解析】试题分析:设(,)x y 是函数()y f x =的图像上任意一点,它关于直线y x =-对称为(,y x --),由已知知(,y x --)在函数2x a y +=的图像上,∴2y a x -+-=,解得2log ()y x a =--+,即2()log ()f x x a =--+,∴22(2)(4)log 2log 41f f a a -+-=-+-+=,解得2a =,故选C. 考点:函数对称;对数的定义与运算二、填空题:本大题共4小题,每小题5分13、数列{}n a 中112,2,n n n a a a S +==为{}n a 的前n 项和,若126n S =,则n = .【答案】6【解析】试题分析:∵112,2n n a a a +==,∴数列{}n a 是首项为2,公比为2的等比数列, ∴2(12)12612n n S -==-,∴264n =,∴n=6. 考点:等比数列定义与前n 项和公式14. 已知函数()31f x ax x =++的图像在点()()1,1f 的处的切线过点()2,7,则 a = . 【答案】1【解析】试题分析:∵2()31f x ax '=+,∴(1)31f a '=+,即切线斜率31k a =+,又∵(1)2f a =+,∴切点为(1,2a +),∵切线过(2,7),∴273112a a +-=+-,解得a =1.考点:利用导数的几何意义求函数的切线;常见函数的导数;15. 若x ,y 满足约束条件20210220x y x y x y +-≤⎧⎪-+≤⎨⎪-+≥⎩,则z =3x +y 的最大值为 .【答案】4【解析】试题分析:作出可行域如图中阴影部分所示,作出直线0l :30x y +=,平移直线0l ,当直线l :z =3x +y 过点A 时,z 取最大值,由2=021=0x y x y +-⎧⎨-+⎩解得A (1,1),∴z =3x +y 的最大值为4.考点:简单线性规划解法 16. 已知F 是双曲线22:18y C x -=的右焦点,P 是C 左支上一点,()0,66A ,当APF ∆周长最小时,该三角形的面积为 . 【答案】126考点:双曲线的定义;直线与双曲线的位置关系;最值问题 三、解答题17. (本小题满分12分)已知,,a b c 分别是ABC ∆内角,,A B C 的对边,2sin 2sin sin B A C =. (I )若a b =,求cos ;B(II )若90B =,且2,a =求ABC ∆的面积. 【答案】(I )14(II )1 【解析】试题分析:(I )先由正弦定理将2sin 2sin sin B A C =化为变得关系,结合条件a b =,用其中一边把另外两边表示出来,再用余弦定理即可求出角B 的余弦值;(II )由(I )知22b ac =,根据勾股定理和即可求出c ,从而求出ABC ∆的面积.试题解析:(I )由题设及正弦定理可得22b ac =.又a b =,可得2b c =,2a c =, 由余弦定理可得2221cos 24a cb B ac +-==. (II )由(1)知22b ac =.因为B =90°,由勾股定理得222a c b +=.故222a c ac +=,得2c a ==.所以D ABC 的面积为1. 考点:正弦定理;余弦定理;运算求解能力18. (本小题满分12分)如图四边形ABCD 为菱形,G 为AC 与BD 交点,BE ABCD ⊥平面,(I )证明:平面AEC ⊥平面BED ;(II )若120ABC ∠=,,AE EC ⊥ 三棱锥E ACD -的体积为63,求该三棱锥的侧面积. 【答案】(I )见解析(II )3+25试题解析:(I )因为四边形ABCD 为菱形,所以AC ^BD ,因为BE ^平面ABCD ,所以AC ^BE ,故AC ^平面BED.又AC Ì平面AEC ,所以平面AEC ^平面BED(II )设AB=x ,在菱形ABCD 中,由ÐABC=120°,可得AG=GC=32x ,GB=GD=2x . 因为AE ^EC ,所以在Rt D AEC 中,可得EG=32x . 由BE ^平面ABCD ,知D EBG 为直角三角形,可得BE=22x . 由已知得,三棱锥E-ACD 的体积3116632243E ACD V AC GD BEx -=醋?=.故x =2 从而可得AE=EC=ED=6.所以D EAC 的面积为3,D EAD 的面积与D ECD 的面积均为5.故三棱锥E-ACD 的侧面积为3+25.考点:线面垂直的判定与性质;面面垂直的判定;三棱锥的体积与表面积的计算;逻辑推理能力;运算求解能力19. (本小题满分12分)某公司为确定下一年度投入某种产品的宣传费,需了解年宣传费x (单位:千元)对年销售量y (单位:t )和年利润z (单位:千元)的影响,对近8年的宣传费i x 和年销售量()1,2,,8i y i =数据作了初步处理,得到下面的散点图及一些统计量的值. x y w 21()n i i x x =-∑ 21()n i i w w =-∑ 1()()n i i i x x y y =--∑ 1()()n i i i w w y y =--∑ 46.6 56.3 6.8 289.8 1.6 1469 108.8表中w 1 =x 1, ,w =181n i i w =∑(I )根据散点图判断,y a bx =+与y c d x =+,哪一个适宜作为年销售量y 关于年宣传费x 的回归方程类型(给出判断即可,不必说明理由);(II )根据(I )的判断结果及表中数据,建立y 关于x 的回归方程;(III )已知这种产品的年利润z 与x ,y 的关系为0.2z y x =- ,根据(II )的结果回答下列问题: (i )当年宣传费90x =时,年销售量及年利润的预报值时多少?(ii )当年宣传费x 为何值时,年利润的预报值最大?附:对于一组数据11(,)u v ,22(,)u v ,……,(,)n n u v ,其回归线v u αβ=+的斜率和截距的最小二乘估计分别为:121()()=()ni ii n ii u u v v u u β==---∑∑,=v u αβ-【答案】(Ⅰ)y c d x =+适合作为年销售y 关于年宣传费用x 的回归方程类型(Ⅱ)100.668y x =+(Ⅲ)46.24【解析】试题分析:(Ⅰ)由散点图及所给函数图像即可选出适合作为拟合的函数;(Ⅱ)令w x =,先求出建立y 关于w 的线性回归方程,即可y 关于x 的回归方程;(Ⅲ)(ⅰ)利用y 关于x 的回归方程先求出年销售量y 的预报值,再根据年利率z 与x 、y 的关系为z=0.2y-x 即可年利润z 的预报值;(ⅱ)根据(Ⅱ)的结果知,年利润z 的预报值,列出关于x 的方程,利用二次函数求最值的方法即可求出年利润取最大值时的年宣传费用.考点:非线性拟合;线性回归方程求法;利用回归方程进行预报预测;应用意识20. (本小题满分12分)已知过点()1,0A 且斜率为k 的直线l 与圆C :()()22231x y -+-=交于M ,N 两点.(I )求k 的取值范围;(II )12OM ON ⋅=,其中O 为坐标原点,求MN .【答案】(I )4747,33骣-+琪琪桫(II )2 【解析】试题分析:(I )设出直线l 的方程,利用圆心到直线的距离小于半径列出关于k 的不等式,即可求出k 的取值范围;(II )设1122M(,y ),N(,y )x x ,将直线l 方程代入圆的方程化为关于x 的一元二次方程,利用韦达定理将1212,x x y y 用k 表示出来,利用平面向量数量积的坐标公式及12OM ON ⋅=列出关于k 方程,解出k ,即可求出|MN|.试题解析:(I )由题设,可知直线l 的方程为1y kx =+.因为l 与C 交于两点,所以2|231|11k k -+<+. 解得474733k -+<<. 所以k 的取值范围是4747,33骣-+琪琪桫. (II )设1122M(,y ),N(,y )x x .将1y kx =+代入方程()()22231x y -+-=,整理得22(1)-4(1)70k x k x +++=, 所以1212224(1)7,.11k x x x x k k ++==++ ()()21212121224(1)OM ONy 1181k k x x y k x x k x x k +?+=++++=++, 由题设可得24(1)8=121k k k+++,解得=1k ,所以l 的方程为1y x =+. 故圆心在直线l 上,所以|MN |2=.考点:直线与圆的位置关系;设而不求思想;运算求解能力21. (本小题满分12分)设函数()2ln x f x e a x =-.(I )讨论()f x 的导函数()f x '的零点的个数;(II )证明:当0a >时()22ln f x a a a≥+. 【答案】(I )当0a £时,()f x ¢没有零点;当0a >时,()f x ¢存在唯一零点.(II )见解析【解析】试题分析:(I )先求出导函数,分0a £与0a >考虑()f x '的单调性及性质,即可判断出零点个数;(II )由(I )可设()f x ¢在()0+¥,的唯一零点为0x ,根据()f x '的正负,即可判定函数的图像与性质,求出函数的最小值,即可证明其最小值不小于22lna a a+,即证明了所证不等式. 试题解析:(I )()f x 的定义域为()0+¥,,()2()=20x a f x e x x ¢->. 当0a £时,()0f x ¢>,()f x ¢没有零点;当0a >时,因为2x e 单调递增,a x -单调递增,所以()f x ¢在()0+¥,单调递增.又()0f a ¢>,当b 满足04a b <<且14b <时,(b)0f ¢<,故当0a >时,()f x ¢存在唯一零点. (II )由(I ),可设()f x ¢在()0+¥,的唯一零点为0x ,当()00x x Î,时,()0f x ¢<; 当()0+x x 违,时,()0f x ¢>.故()f x 在()00x ,单调递减,在()0+x ¥,单调递增,所以当0x x =时,()f x 取得最小值,最小值为0()f x . 由于0202=0x a e x -,所以00022()=2ln 2ln 2a f x ax a a a x a a++?. 故当0a >时,2()2lnf x a a a ?. 考点:常见函数导数及导数运算法则;函数的零点;利用导数研究函数图像与性质;利用导数证明不等式;运算求解能力.请考生在22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,作答时请写清题号22. (本小题满分10分)选修4-1:几何证明选讲如图AB 是O 直径,AC 是O 切线,BC 交O 与点E.(I )若D 为AC 中点,求证:DE 是O 切线;(II )若3OA CE = ,求ACB ∠的大小.【答案】(Ⅰ)见解析(Ⅱ)60° 【解析】 试题分析:(Ⅰ)由圆的切线性质及圆周角定理知,AE ⊥BC ,AC ⊥AB ,由直角三角形中线性质知DE=DC ,OE=OB ,利用等量代换可证∠DEC+∠OEB=90°,即∠OED=90°,所以DE 是圆O 的切线;(Ⅱ)设CE=1,由3OA CE =得,AB=23,设AE=x ,由勾股定理得212BE x =-,由直角三角形射影定理可得2AE CE BE =,列出关于x 的方程,解出x ,即可求出∠ACB 的大小. 试题解析:(Ⅰ)连结AE ,由已知得,AE ⊥BC ,AC ⊥AB , 在Rt △AEC 中,由已知得DE=DC ,∴∠DEC=∠DCE , 连结OE ,∠OBE=∠OEB ,∵∠ACB+∠ABC=90°,∴∠DEC+∠OEB=90°, ∴∠OED=90°,∴DE 是圆O 的切线. ……5分(Ⅱ)设CE=1,AE=x ,由已知得AB=23,212BE x =-, 由射影定理可得,2AE CE BE =,∴2212x x =-,解得x =3,∴∠ACB =60°. ……10分考点:圆的切线判定与性质;圆周角定理;直角三角形射影定理 23. (本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线1:2C x =-,圆()()222:121C x y -+-=,以坐标原点为极点,x 轴正半轴为极轴建立极坐标系. (I )求12,C C 的极坐标方程.(II )若直线3C 的极坐标方程为()πR 4θρ=∈,设23,C C 的交点为,M N ,求2C MN ∆ 的面积. 【答案】(Ⅰ)cos 2ρθ=-,22cos 4sin 40ρρθρθ--+=(Ⅱ)12【解析】试题分析:(Ⅰ)用直角坐标方程与极坐标互化公式即可求得1C ,2C 的极坐标方程;(Ⅱ)将将=4πθ代入22cos 4sin 40ρρθρθ--+=即可求出|MN|,利用三角形面积公式即可求出2C MN 的面积. 试题解析:(Ⅰ)因为cos ,sin x y ρθρθ==,∴1C 的极坐标方程为cos 2ρθ=-,2C 的极坐标方程为22cos 4sin 40ρρθρθ--+=.……5分 (Ⅱ)将=4πθ代入22cos 4sin 40ρρθρθ--+=,得23240ρρ-+=,解得1ρ=22,2ρ=2,|MN|=1ρ-2ρ=2,因为2C 的半径为1,则2C MN 的面积o 121sin 452⨯⨯⨯=12. 考点:直角坐标方程与极坐标互化;直线与圆的位置关系 24. (本小题满分10分)选修4-5:不等式选讲 已知函数()12,0f x x x a a =+--> . (I )当1a = 时求不等式()1f x > 的解集;(II )若()f x 图像与x 轴围成的三角形面积大于6,求a 的取值范围. 【答案】(Ⅰ)2{|2}3x x <<(Ⅱ)(2,+∞)(Ⅱ)由题设可得,12,1()312,112,x a x f x x a x a x a x a --<-⎧⎪=+--≤≤⎨⎪-++>⎩,所以函数()f x 的图像与x 轴围成的三角形的三个顶点分别为21(,0)3a A -,(21,0)B a +,(,+1)C a a ,所以△ABC 的面积为22(1)3a +. 由题设得22(1)3a +>6,解得2a >.所以a 的取值范围为(2,+∞). ……10分考点:含绝对值不等式解法;分段函数;一元二次不等式解法一、选择题:本大题共12道小题,每小题5分,共60分. 1.已知集合{}|12A x x =-<<,{}|03B x x =<<,则A B =( )A .()1,3-B .()1,0-C .()0,2D .()2,3 【答案】A考点:集合运算. 2. 若为a 实数,且2i3i 1ia +=++,则a =( ) A .4- B .3- C .3 D .4 【答案】D 【解析】试题分析:由题意可得()()2i 1i 3i 24i 4a a +=++=+⇒= ,故选D. 考点:复数运算.3. 根据下面给出的2004年至2013年我国二氧化碳年排放量(单位:万吨)柱形图,以下结论中不正确的是( )A .逐年比较,2008年减少二氧化碳排放量的效果最显著B .2007年我国治理二氧化碳排放显现成效C .2006年以来我国二氧化碳年排放量呈减少趋势D .2006年以来我国二氧化碳年排放量与年份正相关 【答案】 D考点:柱形图4. 已知()1,1=-a ,()1,2=-b ,则(2)+⋅=a b a ( ) A .1- B .0 C .1 D .2 【答案】C 【解析】试题分析:由题意可得22=a ,3,⋅=-a b 所以()222431+⋅=+⋅=-=a b a a a b .故选C.考点:向量数量积.5. 设n S 是等差数列{}n a 的前n 项和,若1353a a a ++=,则5S =( ) A .5 B .7 C .9 D .11 【答案】A 【解析】试题解析:13533331a a a a a ++==⇒=,()15535552a a S a +===.故选A. 考点:等差数列6. 一个正方体被一个平面截去一部分后,剩余部分的三视图如下图,则截去部分体积与剩余部分体积的比值为( )1A.8 1B.7 1C.6 1D.5【答案】D 【解析】试题分析:截去部分是正方体的一个角,其体积是正方体体积的16,所以截去部分体积与剩余部分体积的比值为15,故选D.考点:三视图7. 已知三点(1,0),(0,3),(2,3)A B C,则△ABC外接圆的圆心到原点的距离为()5 A. 321B.325C.34D.3【答案】B考点:直线与圆的方程.8. 右边程序框图的算法思路于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,a b分别为14,18,则输出的a为()A.0B.2C.4D.14【答案】B 【解析】试题分析:由题意输出的a 是18,14的最大公约数2,故选B. 考点:1. 更相减损术;2.程序框图. 9.已知等比数列{}n a 满足114a =,()35441a a a =-,则2a =( )A.2B.1 1C.2 1D.8【答案】C 【解析】试题分析:由题意可得()235444412a a a a a ==-⇒=,所以34182a q q a ==⇒= ,故2112a a q == ,选C.考点:等比数列.10. 已知B A ,是球O 的球面上两点,︒=∠90AOB ,C 为该球面上的动点.若三棱锥ABC O -体积的最大值为36,则球O 的表面积为( )A.π36B. π64C.π144D. π256 【答案】C考点:球与几何体的切接.11. 如图,长方形的边AB =2,BC =1,O 是AB 的中点,点P 沿着边BC ,CD 与DA 运动,记BOP x ∠= ,将动点P 到A ,B 两点距离之和表示为x 的函数()f x ,则的图像大致为( )A .B .C .D .【答案】B考点:函数图像12. 设函数21()ln(1||)1f x x x=+-+,则使得()(21)f x f x >-成立的x 的取值范围是( ) A .1,13⎛⎫ ⎪⎝⎭ B .()1,1,3⎛⎫-∞+∞ ⎪⎝⎭C .11,33⎛⎫-⎪⎝⎭ D .11,,33⎛⎫⎛⎫-∞-+∞ ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】试题分析:由21()ln(1||)1f x x x =+-+可知()f x 是偶函数,且在[)0,+∞是增函数,所以 ()()()()121212113f x f x f x f x x x x >-⇔>-⇔>-⇔<< .故选A.考点:函数性质二、填空题:本大题共4小题,每小题5分,共20分。
2015年高考福建文科数学试题及答案(word解析版)
2015年普通高等学校招生全国统一考试(福建卷)数学(文科)第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项符合题目要求. (1)【2015年福建,文1,5分】若()()1i 23i i a b ++-=+(,a b R ∈,i 是虚数单位),则,a b 的值分别等于( )(A )3,-2 (B )3,2 (C )3,-3 (D )-1,4 【答案】A【解析】由已知得32i i a b -=+,故3a =,2b =-,故选A . (2)【2015年福建,文2,5分】若集合{}22M x x =-≤<,{}0,1,2N =,则M N 等于( )(A ){}0 (B ){}1 (C ){}0,1,2 (D ){}0,1 【答案】D【解析】由交集定义得{}0,1MN =,故选D .(3)【2015年福建,文3,5分】下列函数为奇函数的是( )(A )y x = (B )x y e = (C )cos y x = (D )x x y e e -=-【答案】D【解析】函数y x =和x y e =是非奇非偶函数;cos y x =是偶函数;x x y e e -=-是奇函数,故选D .(4)【2015年福建,文4,5分】阅读如图所示的程序框图,阅读相应的程序.若输入x 的值为1,则输出y 的值为( )(A )2 (B )7 (C )8 (D )128 【答案】C【解析】该程序表示分段函数2292x x y x x ⎧≥=⎨-<⎩,则()1918f =-=,故选C .(5)【2015年福建,文5,5分】若直线()10,0x ya b a b+=>>过点()1,1,则a b +的最小值等于( )(A )2 (B )3 (C )4 (D )5 【答案】C【解析】由已知得111a b +=,则()112b a a b a b a b a b ⎛⎫+=++=++ ⎪⎝⎭,因此0,0a b >>,所以2b a b a a b a b +≥⋅=,故4a b +≥,当b aa b=,即2a b ==时取等号,故选C .(6)【2015年福建,文6,5分】若5sin 13α=-,且α为第四象限角,则tan α的值等于( )(A )125 (B )125- (C )512 (D )512-【答案】D【解析】由5sin 13α=-,且α为第四象限角,则212cos 1sin 13αα=-=,则sin 5tan cos 12ααα==-,故选D . (7)【2015年福建,文7,5分】设()1,2a =,()1,1b =,c a kb =+.若b c ⊥,则实数k 的值等于( ) (A )32- (B )53- (C )53(D )32【答案】A【解析】由已知得()()()1,21,11,2c k k k =+=++,因为b c ⊥,则0b c ⋅=,因此120k k +++=,解得32k =-,(8)【2015年福建,文8,5分】如图,矩形ABCD 中,点A 在x 轴上,点B 的坐标为()1,0.且点C与点D 在函数()101102x x f x x x +≥⎧⎪=⎨-+<⎪⎩的图像上.若在矩形ABCD 内随机取一点,则该点取自阴影部分的概率等于( )(A )16(B )14 (C )38(D )12【答案】B【解析】由已知得()1,0B ,()1,2C ,()2,2D -,()0,1F ,则矩形ABCD 面积为326⨯=,阴影部分面积为133122⨯⨯=, 故该点取自阴影部分的概率等于31264=故选B .(9)【2015年福建,文9,5分】某几何体的三视图如图所示,则该几何体的表面积等于( )(A )822+ (B )1122+ (C )1422+ (D )15 【答案】C【解析】由三视图还原几何体,该几何体是底面为直角梯形,高为2的直四棱柱,且底面直角梯形的两底分别为1,2,直角腰长为1,斜腰为2.底面积为12332⨯⨯=,侧面积为则其表面积为22422822+++=+,所以该几何体的表面积为1122+,故选C .(10)【2015年福建,文10,5分】变量,x y 满足约束条件02200x y x y mx y +≥⎧⎪-+≥⎨⎪-≤⎩,若2z x y=-的 最大值为2,则实数m 等于( ) (A )-2 (B )-1 (C )1 (D )2 【答案】C 【解析】将目标函数变形为2y x z =-,当z 取最大值,则直线纵截距最小,故当0m ≤当0m >时,画出可行域,如图所示, 其中22,2121m B m m ⎛⎫ ⎪--⎝⎭.显然()0,0O 不是最优解,故只能22,2121m B m m ⎛⎫ ⎪--⎝⎭是最优解,代入目标函数得4222121m m m -=--,解得1m =,故选C . (11)【2015年福建,文11,5分】已知椭圆()2222:10x y E a b a b+=>>的右焦点为F .短轴的一个端点为M ,直线:340l x y -=交椭圆E 于,A B 两点.若4AF BF +=,点M 到直线l 的距离不小于45,则椭圆E 的离心率的取值范围是( )(A )30,2⎛⎤ ⎥ ⎝⎦ (B )30,4⎛⎤ ⎥⎝⎦ (C )3,12⎡⎫⎪⎢⎪⎣⎭(D )3,14⎡⎫⎪⎢⎣⎭ 【答案】A【解析】设左焦点为F ,连接1AF ,1BF ,则四边形1BF AF 是平行四边形,故1AF BF =,所以142AF AF a +==,所以2a =,设()0,M b ,则4455b ≥,故1b ≥,从而221ac -≥,203c <≤,03c <≤,所以椭x–1–2–3–41234–1–2–3–4123BOC心率的取值范围是⎛ ⎝⎦,故选A . (12)【2015年福建,文12,5分】“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的( )(A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件 (D )既不充分也不必要条件【答案】B【解析】当1k <,sin cos sin 22k k x x x =,构造函数()sin 22kf x x x =-,则()cos 210f x k x '=-<.故()f x 在0,2x π⎛⎫∈ ⎪⎝⎭单调递增,故()022f x f ππ⎛⎫<=-< ⎪⎝⎭,则sin cos k x x x =;当1k =时,不等式sin cos k x x x <等价于1sin 22x x <,构造函数()1sin 22g x x x =-,则()cos 210g x x =-<,故()g x 在0,2x π⎛⎫∈ ⎪⎝⎭递增,故()022g x g ππ⎛⎫<=-< ⎪⎝⎭,则sin cos x x x <.综上所述,“对任意0,2x π⎛⎫∈ ⎪⎝⎭,sin cos k x x x <”是“1k <”的必要不充分条件,故选B .第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.把答案填在答题卡的相应位置.(13)【2015年福建,文13,5分】某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为 . 【答案】25【解析】由题意得抽样比例为45190020=,故应抽取的男生人数为15002520⨯=.(14)【2015年福建,文14,5分】若ABC ∆中,AB 45A ∠=︒,75C ∠=︒,则BC 等于 .【解析】由题意得18060B A C ∠=︒-∠-∠=︒.由正弦定理得sin sin AC BC B A =∠∠,则sin sin AC ABC B∠=∠,所以BC ==(15)【2015年福建,文15,5分】若函数()()2x af x a R -=∈满足()()11f x f x +=-,且()f x 在[),m +∞单调递增,则实数m 的最小值等于 . 【答案】1【解析】由()()11f x f x +=-得函数()f x 关于1x =对称,故1a =,则()12x f x -=,由复合函数单调性得()f x 在[)1,+∞递增,故1m ≥,所以实数m 的最小值等于1.(16)【2015年福建,文16,5分】若,a b 是函数()()20,0f x x px q p q =-+>>的两个不同的零点,且,,2a b -这三个数可适当排序后成等差数列,也可适当排序后成等比数列,则p q +的值等于 . 【答案】9【解析】由韦达定理得a b p +=,a b q ⋅=,则0,0a b >>,当,,2a b -适当排序后成等比数列时,2-必为等比中项,故4a b q ⋅==,4b a=,当适当排序后成等差数列时,2-必不是等差中项,当a 是等差中项时,422a a =-,解得1a =,4b =;当4a 是等差中项时,82a a=-,解得4a =,1b =,综上所述,5a b p +==,所以9p q +=.三、解答题:本大题共6题,共74分.解答应写出文字说明,演算步骤或证明过程.(17)【2015年福建,文17,12分】等差数列{}n a 中,24a =,4715a a +=.(1)求数列{}n a 的通项公式; (2)设22n a n b n -=+,求12310b b b b +++的值.解:(1)设等差数列{}n a 的公差为d .由已知得()()11143615a d a d a d +=⎧⎪⎨+++=⎪⎩,解得131a d =⎧⎨=⎩.所以()112n a a n d n =+-=+.(2)由(1)可得2n n b n =+.所以()()()()()()2310231012310212223210222212310b b b b +++=++++++++=+++++++++()()()1011112121101022552532101122-+⨯=+=-+=+=-.(18)【2015年福建,文18,12分】全网传播的融合指数是衡量电视媒体在中国网民中影响了的综合指标.根据相关报道提供的全网传播2015年某全国性大型活动的“省级卫视新闻台”融合指数的数据,对名列前20名的“省级卫视新闻台”的融合指数进行分组统计,结果如表所示.组号 分组 频数1 [)4,5 22 [)5,6 83 [)6,7 7 4[]7,83(1)现从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家进行调研,求至少有1家的融合指数在[]7,8的概率;(2)根据分组统计表求这20家“省级卫视新闻台”的融合指数的平均数. 解:解法一:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,至少有1家融合指数在[]7,8内的基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,共9个.所以所求的概率910P =. (2)这20家“省级卫视新闻台”的融合指数平均数等于28734.55.56.57.5 6.0520202020⨯+⨯+⨯+⨯=.解法二:(1)融合指数在[]7,8内的“省级卫视新闻台”记为1A ,2A ,3A ;融合指数在[)4,5内的“省级卫视新闻台”记为 1B ,2B .从融合指数在[)4,5和[]7,8内的“省级卫视新闻台”中随机抽取2家的所有基本事件是:{}12,A A ,{}13,A A ,{}23,A A ,{}11,A B ,{}12,A B ,{}21,A B ,{}22,A B ,{}31,A B ,{}32,A B ,{}12,B B ,共10个.其中,没有1家融合指数在[]7,8内的基本事件是:{}12,B B ,共1个.所以所求的概率1911010P =-=. (2)同解法一. (19)【2015年福建,文19,12分】已知点F 为抛物线()2:20E y px p =>的焦点,点()2,A m在抛物线E 上,且3AF =.(1)求抛物线E 的方程;(2)已知点()1,0G -,延长AF 交抛物线E 于点B ,证明:以点F 为圆心且与直线GA 相 切的圆,必与直线GB 相切.解:解法一:(1)由抛物线的定义得22p AF =+.因为3AF =,即232p+=,解得2p =,所以抛物线E 的方程为24y x =.(2)因为点()2,A m 在抛物线2:2E y px =上,所以22m =±,由抛物线的对称性,不妨设()2,22A . 由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -,所以()22022213GA k -==--,()20221312GB k --==---, 所以0GA GB k k +=,从而AGF BGF ∠=∠,这表明点F 到直线GA ,GB 的距离相等, 故以F 为圆心且与直线GA 相切的圆必与直线GB 相切. 解法二:(1)同解法一.(2)设以点F 为圆心且与直线GA 相切的圆的半径为r .因为点()2,A m 在抛物线2:4E y x =上,所以22m =±,由抛物线的对称性,不妨设()2,22A .由()2,22A ,()1,0F 可得直线AF 的方程为()221y x =-.由()22214y x y x⎧=-⎪⎨=⎪⎩,得22520x x -+=,解得2x =或12x =,从而1,22B ⎛⎫- ⎪⎝⎭.又()1,0G -,故直线GA 的方程为223220x y -+=,从而2222428917r +==+.又直线GB 的方程为223220x y ++=,所以点F 到直线GB 的距离2222428917r r +===+.这表明以点F 为圆心且与直线GA 相切的圆必与直线GB 相切.(20)【2015年福建,文20,12分】如图,AB 是圆O 的直径,点C 是圆O 上异于,A B 的点,PO 垂直于圆O 所在的平面,且1PO OB ==. (1)若D 为线段AC 的中点,求证AC ⊥平面PDO ; (2)求三棱锥P ABC -体积的最大值; (3)若2BC =,点E 在线段PB 上,求CE OE +的最小值. 解:解法一:(1)在AOC ∆中,因为OA OC =,D 为AC 的中点,所以AC OD ⊥.又PO 垂直于圆O 所在的平面,所以PO AC ⊥.因为DO PO O =,所以AC ⊥平面PDO .(2)因为点C 在圆O 上,所以当CO AB ⊥时,C 到AB 的距离最大,且最大值为1.又2AB =,所以ABC ∆面积的最大值为12112⨯⨯=.又因为三棱锥P ABC -的高1PO =,故三棱锥P ABC -体积的最大值为111133⨯⨯=.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以22112PB =+=.同理2PC =, 所以PB PC BC ==.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ', 使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值. 又因为OP OB =,C P C B ''=,所以OC '垂直平分PB ,即E 为PB 中点.从而2626222OC OE EC +''=+=+=,亦即CE OE +的最小值为262+. 解法二: (1)(2)同解法一.(3)在POB ∆中,1PO OB ==,90POB ∠=︒,所以45OPB ∠=︒,22112PB =+=.同理2PC =. 所以PB PC BC ==,所以60CPB ∠=︒.在三棱锥P ABC -中,将侧面BCP 绕PB 旋转至平面BC P ',使之与平面ABP 共面,如图所示.当O ,E ,C '共线时,CE OE +取得最小值.所以在OC P'∆中,由余弦定理得:()2212312212cos 45601222232222OC ⎛⎫'=+-⨯⨯⨯︒+︒=+-⨯-⨯=+ ⎪ ⎪⎝⎭. 从而26232OC +'=+=.所以CE OE +的最小值为262+. (21)【2015年福建,文21,12分】已知函数()2103sin cos 10cos 222x x xf x =+.(1)求函数()f x 的最小正周期;(2)将函数()f x 的图象向右平移6π个单位长度,再向下平移a (0a >)个单位长度后得到函数()g x 的图象,且函数()g x 的最大值为2. (i )求函数()g x 的解析式;(ii )证明:存在无穷多个互不相同的正整数0x ,使得()00g x >.解:(1)()2103sin cos 10cos 53sin 5cos 510sin 52226x x x f x x x x π⎛⎫=+=++=++ ⎪⎝⎭所以函数()f x 的最小正周期2T π=. (2)(i )将()f x 的图象向右平移6π个单位长度后得到10sin 5y x =+的图象,再向下平移a (0a >)个单位长度后得到()10sin 5g x x a =+-的图象.又已知函数()g x 的最大值为2,所以1052a +-=,解得13a =.所以()10sin 8g x x =-.(ii )要证明存在无穷多个互不相同的正整数0x ,使得()00g x >,就是要证明存在无穷多个互不相同的正整数0x ,使得010sin 80x ->,即04sin 5x >.由4352<知,存在003πα<<,使得04sin 5α=.由正弦函数的性质可知,当()00,x απα∈-时,均有4sin 5x >.因为sin y x =的周期为2π,所以当()002,2x k k παππα∈++-()k Z ∈时,均有4sin 5x >.因为对任意的整数k ,()()00022213k k πππαπαπα+--+=->>,所以对任意的正整数k ,都存在正整数()002,2k x k k παππα∈++-,使得4sin 5k x >.亦即存在无穷多个互不相同的正整数0x ,使得()00g x >.(22)【2015年福建,文22,14分】已知函数()()21ln 2x f x x -=-.(1)求函数()f x 的单调递增区间; (2)证明:当1x >时,()1f x x <-;(3)确定实数k 的所有可能取值,使得存在01x >,当()01,x x ∈时,恒有()()1f x k x >-.解:(1)()2111x x f x x x x -++'=-+=,()0,x ∈+∞.由()0f x '>得2010x x x >⎧⎨-++>⎩解得0x <<.故()f x 的单调递增区间是⎛ ⎝⎭.(2)令()()()1F x f x x =--,()0,x ∈+∞.则有()21x F x x -'=.当()1,x ∈+∞时,()0F x '<,所以()F x 在[)1,+∞上单调递减,故当1x >时,()()10F x F <=,即当1x >时,()1f x x <-.(3)由(2)知,当1k =时,不存在01x >满足题意.当1k >时,对于1x >,有()()11f x x k x <-<-,则()()1f x k x <-,从而不存在01x >满足题意.当1k <时,令()()()1G x f x k x =--,()0,x ∈+∞,则有()()21111x k x G x x k x x-+-+'=-+-=.由()0G x '=得,()2110x k x -+-+=.解得10x =<,21x =>.当()21,x x ∈时,()0G x '>,故()G x 在[)21,x 内单调递增.从而当()21,x x ∈时,()()10G x G >=,即()()1f x k x >-,综上,k 的取值范围是(),1-∞.。
2015届高三数学(文)试卷Word版含答案
2014—2015学年度第二学期3月月考高 三 数 学(文)试 卷(考试时间120分钟 满分150分)第I 卷 (选择题 共40分)一、选择题(本大题共8小题,每小题5分,共40分. 在每小题列出的的四个选项中,选出符合题目要求的一项)1.设全集,R =U 集合{}21≤≤-=x x A ,{}10≤≤=x x B ,则=B C A U ( ) A .{}10><x x x 或 B .{}2101≤<<≤-x x x 或 C .{}2101≤≤≤≤-x x x 或 D .{}21>-<x x x 或2.命题:p ∀R ∈x ,012>+x ,命题:q R ∈∃θ,5.1cos sin 22=+θθ,则下列命题中真命题是( )A .q p ∧B .q p ∧⌝C .q p ∨⌝D .)(q p ⌝∧ 3.某一棱锥的三视图如右图,则其侧面积为( ) A.8+ B .20 C. D.8+4.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是 ( )A .1y x=- B .||e x y = C .23y x =-+ D .cos y x =5.若x ,y 满足约束条件⎪⎩⎪⎨⎧≤≤≥+-≥+30030x y x y x ,则y x z -=2的最小值为( )A .6-B .29- C .3- D .96.阅读下边程序框图,为使输出的数据为31,则判断框中 应填入的条件为 ( ) A .≤i 4 B .≤i 5 C .≤i 6 D .≤i 7 7.已知双曲线122=-myx 与抛物线x y 82=的一个交点为P ,F 为抛物线的焦点,若5=PF ,则双曲线的渐近线方程为 ( ) A .02=±y x B .02=±y x C .03=±y x D .03=±y x 8.已知0,0,228x y x y xy >>++=,则2x y +的最小值为 ( ) A .3 B .4 C .29 D .2119.函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且]1,1[-∈x 时,21)(x x f -=,函数⎪⎩⎪⎨⎧<->=)0(1)0(1)(x xx gx x g ,则函数)()()(x g x f x h -=在区间]5,5[-内的零点的个数为( ) A .8B .9C .7D .610.设集合W 由满足下列两个条件的数列{}n a 构成: ①21;2n n n a a a +++< ②存在实数M ,使n a M ≤.(n 为正整数).在以下数列 ⑴{}21n +;(2)29211n n +⎧⎫⎨⎬+⎩⎭; (3)42n ⎧⎫+⎨⎬⎩⎭;(4)1{1}2n -中属于集合W 的数列编号为 ( )A .(1)(2)B .(3)(4)C .(2)(3)D .(2)(4) 二、填空题11.i 是虚数单位,则=+i12___. 12.过原点且倾斜角为60︒的直线被圆2240x y y +-=所截得的弦长为 . 13.已知函数()ϕω+=x x f sin )((ω>0, 20πϕ<<)的图象如图所示,则ω=____,ϕ=___.14.某工厂需要建造一个仓库,根据市场调研分析,运费与工厂和仓库之间的距离成正比,仓储费与工厂和仓库之间的距离成反比,当工厂和仓库之间的距离为4千米时,运费为20万元,仓储费用为5万元,当工厂和仓库之间的距离为___千米时,运费与仓储费之和最小,最小值为__万元.15.设函数20()1f x x =-,101()|()|2f x f x =-,11()|()|2n n n f x f x -=-,(1,n n N ≥∈),则方程31)(1=x f 有___个实数根,方程1()3nn f x ⎛⎫= ⎪⎝⎭有___个实数根.三、解答题 (本大题共6小题,共80分. 解答应写出文字说明、演算步骤或证明过程) 16.(本小题13分)已知函数2()sin(2)2cos 16f x x x π=-+-,x R ∈(1)求)(x f 的最小正周期和单调递增区间;(2)在ABC ∆中,三内角C B A ,,的对边分别为c b a ,,,已知()12f A =, c a b ,,成等差数列,且9AB AC ⋅=,求ABC S ∆ 及 a 的值.17.(本小题13 分)已知数列{}n a 是等差数列,12a =,且2a ,4a ,8a 成等比数列. (1)求等差数列{}n a 的通项公式;(2)如果数列{}n b 是等比数列,且1b =2a ,2b =4a ,求{}n b 的前n 项和n S .18.(本小题13 分)下图是某市3月1日至14日的空气质量指数趋势图,空气质量指数小于100表示空气质量优良,空气质量指数大于200表示空气重度污染,某人随机选择3月1日至3月15日中的某一天到达该市,并停留2天。
【恒心】2015届陕西省咸阳市高三高考模拟试题(一) 数学(文科)试题及参考答案【word版】
2015年咸阳市高考模拟考试试题(一)文科数学考生须知:1、本试题卷分第Ⅰ卷(客观题)和第Ⅱ卷(主观题)两部分,试卷共4页24题;满分为150分;考试时间为120分钟。
2、第Ⅰ卷,第Ⅱ卷都做在答题卷上,做在试题卷上不得分。
参考公式:如果事件A 、B 互斥,那么 球的表面积公式)()()(B P A P B A P +=+ 24R S π=如果事件A 、B 相互独立,那么 其中R 表示球的半径 )()()(B P A P B A P ⋅=⋅ 球的体积公式 如果事件A 在一次试验中发生的概率是P ,那么334R V π=n 次独立重复试验中恰好发生k 次的概率 其中R 表示球的半径k n kk n n P P C k P --=)1()(第Ⅰ卷注意事项:1.答第Ⅰ卷前,考生务必将自己的姓名、准考证号、考试科目涂写在答题卡上2.每小题选出答案后,用铅笔把答题卡上对应题目的答案标号涂黑如需改动,用橡皮擦干净后,再选涂其它答案标号不能答在试题卷上一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1. 若复数z 满足()i z i -=+21,则=z ( )A.21B.210C. 2D.22 2.已知函数()sin 2()f x x x R =∈,为了得到函数()sin(2)4g x x π=+的图象,只要将()y f x =的图象( )A .向左平移8π个单位长度 B .向右平移8π个单位长度 C . 向左平移4π个单位长度D .向右平移4π个单位长度3.平面向量a 与b 的夹角为60°)A. 2B. 3C.23D. 324.若某几何体的三视图如图所示,则此几何体的直观图是( )5. 已知命题p : 0322≤-+x x ;命题q :a x ≤,且q 的一个充分不必要条件是p ,则a 的取值范围是( ) A .(-∞,1] B .[1,+∞) C .[-1,+∞) D .(-∞,-3]6.设n S 为公差不为零的等差数列{}n a 的前n 项和,若893a S =,则85=a a ( )A.3B.5C.7D.217. 一只蜜蜂在一个棱长为5的正方体内自由飞行,若蜜蜂在飞行过程中始终保持与正方体6个表面的距离均大于2,称其为“安全飞行”,则蜜蜂“安全飞行”的概率为( ) A .251B .1258C . 1251D .125278. 过双曲线12222=-b y a x C :的右顶点作x 轴的垂线与C 的一条渐近线相交于A .若以C 的右焦点为圆心、半径为2的圆经过为坐标原点),两点(、O O A 则双曲线C 的方程为( )A. 1322=-y x B. 1422=-y x C. 112422=-y x D. 141222=-y x 9. 函数()⎪⎭⎫⎝⎛-=x x x f 1ln 的图象是( ) (第4题图)A BC D10.阅读右面的程序框图,则输出的S = ( ) A.14 B.30 C.20 D.5511.已知H 是球O 的直径AB 上一点,21=HB AH ,⊥AB 平面α,H 为垂足,α截球O 所得截面的面积为π,则球O 的表面积为( )A .53π B .4π C .92π D .3π 12. 设A 是整数集的一个非空子集,对于k A ∈,如果1k A -∉且1k A +∉,那么k 是A 的一个“孤立元”,给定}5,4,3,2,1{=A ,则A 的所有子集中,只有一个“孤立元”的集合共有( )A .10个B .11个C .12个D .13个第II 卷本卷包括必考题和选考题两个部分. 第(13)题-第(21)题为必考题,每个考生都必须作答. 第(22)题-第(24)题为选考题,考生根据要求作答.二、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上) 13. 若实数y x ,满足条件{121-≥+≤x y x y ,则13++=y x z 的最大值为 .14. 已知圆C :()()21122=-+-y x 经过椭圆Γ∶()012222>>=+b a by a x 的右焦点F 和上顶点B ,则椭圆Γ的离心率为 .15.在我市2014年“创建文明城市”知识竞赛中 ,考评组从中抽取200份试卷进行分析,其分数的频率分布直方图如图所示,则分数在区间[60,70)上的人数大约有 份.16. 在数阵111213212223313233a a a a a a a a a ⎛⎫⎪ ⎪ ⎪⎝⎭里,每行、每列的数依次均成等比数列,且222a =,则所有数的乘积为_______.分数(分)01002 003 004 40 50 60 70 80O P ABC三、解答题 ( 解答应写出文字说明、证明过程或演算步骤.) 17. (本小题满分12分)已知,,a b c 分别为ABC ∆三个内角,,A B C的对边,cos sin 0a C C b c --=. (1)求A 的大小;(2)若a =7,求ABC ∆的周长的取值范围. 18.(本小题满分12分)某班级有数学、自然科学、人文科学三个兴趣小组,各有三名成员,现从三个小组中各选出一人参加一个座谈会.(1)求数学小组的甲同学没有被选中、自然小组的乙同学被选中的概率; (2)求数学组的甲同学、自然小组的乙同学至少有一人不被选中的概率. 19(本小题满分12分)如图,正方形ACDE 所在的平面与平面ABC 垂直, M 是 CE 和AD 的交点,AC BC ⊥,且AC BC =.(1)求证:E AM BC ⊥平面;(2)当2=AC 时,求三棱锥V ABM E - 的值.20.(本小题满分12分)已知抛物线C 的顶点在原点,焦点F 在x 轴上,抛物线上的点A 到F 的距离为2,且A 的横坐标为1. (1)求抛物线C 的方程;(2) 若点()0,a M ,P 是抛物线C 上一动点,求MP的最小值.21. (本小题满分12分) 函数32()()f x x ax a R =-+∈.(1)当a >0时,求函数()y f x =的极值;(2)若[]1,0∈x 时,函数()y f x =图像上任意一点处的切线倾斜角为θ,求当0≤θ≤4π时,实数a 的取值范围. 请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号. 22.(本小题满分10分)选修4—1:几何证明选讲如图,直线PQ 与⊙O 相切于点A ,AB 是⊙O 的弦,PAB ∠的平分线AC 交⊙O 于点C ,连结CB ,并延长与直线PQ 相交于Q 点,若6=AQ ,5=AC ,(1)求证:22-QC QA BC QC =∙(2)求弦AB 的长.23.(本小题满分10分)选修4—4:坐标系与参数方程在平面直角坐标系xoy 中,直线l的参数方程为3x y =⎧⎪⎨⎪⎩(t 为参数).在以原点o 为极点,x 轴正半轴为极轴的极坐标中,圆C的方程为ρθ=.(1)写出直线l 的普通方程和圆C 的直角坐标方程;(2)若点P坐标为(,圆C 与直线l 交于B A ,两点,求PB PA +的值.24.(本小题满分10分)选修4—5:不等式选讲已知()|1||2|f x x x =++-,()|1|||()g x x x a a a R =+--+∈. (1)解不等式()5f x ≤;(2)若不等式()()f x g x ≥恒成立,求a 的取值范围.2015年咸阳市高考模拟考试试题(一)文科数学参考答案一、选择题(12×5=60)二、填空题 (4×5=20)13. 12 14. 2 15. 80 16. 512.三、解答题17. 解:(1)由正弦定理得:cos sin 0sin cos sin sin sin a C C b c A C A C B C --=⇔=+ sin cos sin sin()sin 1cos 1sin(30)2303060A C A C A C CA A A A A ︒︒︒︒⇔=++⇔-=⇔-=⇔-=⇔=……………………………6分 (2)由已知:0,0b c >>, b+c >a=7由余弦定理bc c b bc c b 3)(3cos249222-+=-+=π22231()()()44b c b c b c ≥+-+=+(当且仅当b c =时等号成立) ∴(b+c)2≤4×49,又b+c >7, ∴7<b+c≤14,从而ABC ∆的周长的取值范围是]21,14( ..................12分 18.解:我们把数学小组的三位成员记作123,,S S S ,自然小组的三位成员记作123,,Z Z Z ,人文小组的三位成员记作123,,R R R ,则基本事件是111112113121122123(,,),(,,),(,,),(,,),(,,),(,,)S Z R S Z R S Z R S Z R S Z R S Z R ,131132133(,,),(,,),(,,)S Z R S Z R S Z R ,然后把这9个基本事件中1S 换成23,S S 又各得9个基本事件,故基本事件的总数是27个.以1S 表示数学组中的甲同学、2Z 表示自然小组的乙同学-2分(1)甲同学没有选中、自然小组的乙同学被选中所含有的基本事件是上述基本事件中不含1S 、含有2Z 的基本事件, 即221222223321322323(,,),(,,),(,,),(,,),(,,),(,,)S Z R S Z R S Z R S Z R S Z R S Z R 共6个基本事件,故所求的概率为62279=. ----------6分(2)“数学组的甲同学、自然小组的乙同学至少有一人不被选中”的对立事件是“数学组的甲同学、自然小组的乙同学都被选中”,这个事件所包含的基本事件是121122123(,,),(,,),(,,)S Z R S Z R S Z R ,共3个基本事件,这个事件的概率是31279=. ----------10分根据对立事件的概率计算方法,所求的概率是18199-=.----------12分19 (1) 证明:∵四边形ACDE 是正方形, EC AM ⊥∴; 又∵平面⊥ACDE 平面ABC ,AC BC ⊥ ,⊥∴BC 平面EAC ; …………2分⊂AM 平面EAC ,⊥∴BC AM ;又C BC EC =⋂,⊥∴AM 平面EBC ; ………6分(2)解:∵AC=2,由棱锥体积公式Sh 31V =锥得V ABM E -=322122131=⨯⨯⨯⨯=-VAEMB ………………12分20.解:(1)设抛物线方程为C :22(0)y px p =>, 由其定义知12pAF =+,又2AF =,所以2p =,24y x = ………………6分(2) 设()y x P ,,MP ==x 0≥因为,(ⅰ)当02≤-a 即2≤a 时,MP 的值最小为a ;(ⅱ)44MP 2,202--=>>-a a x a a 的值最小为时,,即当 .……12分 21. 解:(1)由/2()32f x x ax =-+,令/()f x =0,得x =0,或x =32a .∵a >0, ∴当x 变化时,/()f x 、 ()f x 的变化情况如下表:∴y 极小值=(0)f 0.=y 极大值=2()3f a = -2783a + 943a =3427a ...............6分 (2)当x ∈[0,1]时,tanθ=/2()32f x x ax =-+.由θ∈[0,4π],得0≤/()f x ≤1,即x ∈[0,1]时,0≤232x ax -+≤1恒成立.当x =0时,a ∈R .当x ∈(0,1]时,由232x ax -+≥0恒成立,可知a ≥23. 由232x ax -+≤1恒成立,得a ≤21(3x +x 1),∴a ≤3(等号在x =33时取得). 综上,23≤a ≤3.12分请考生在第22、23、24题中任选一题作答,如果多做,则按所做的第一题计分,做答时请写清题号.22. (1)证明:∵PQ 与⊙O 相切于点A ,由切割线定理得: ()QC BC QC QC QB QA -=⋅=2∴ 22-QC QA BC QC =∙ ............5分 (2)解:由(1) 可知()QC BC QC QC QB QA -=⋅=2∵PQ 与⊙O 相切于点A ,∴CBA PAC ∠=∠∵BAC PAC ∠=∠∴CBA BAC ∠=∠ ∴AC=BC=5 又知AQ=6 ∴ QC=9由ACQ QAB ∠=∠ 知QAB ∆∽QCA ∆∴QCQAAC AB = ∴ 310=AB . ..........10分 O P AQBC23. 解:(1)由3x y =⎧⎪⎨⎪⎩得直线l的普通方程为30x y +-=又由ρθ=得圆C的直角坐标方程为220x y +-=即(225x y +=. ...............5分(2) 把直线l 的参数方程代入圆C 的直角坐标方程,得223522⎛⎫⎛⎫-+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭,即240t -+=由于(24420∆=-⨯=>,故可设12,t t 是上述方程的两实数根,所以{12124t t t t +==又直线l 过点P(,A 、B 两点对应的参数分别为12,t t所以1212PA PB t t t t +=+=+= ...................10分24. 解:(1)不等式()5f x ≤的解集为[-2,3].………………5分 (2)若不等式()()f x g x ≥恒成立,即|2|||x x a a -+-≥恒成立. 而|2|||x x a -+-的最小值为|2||2|a a -=-,∴|2|a a -≥,解得1≤a ,故a 的范围(-∞,1].………………10分。
2015届高三文科数学综合测试(一)参考答案.doc
2015届高三文科数学综合测试(一)参考答案一、选择题1-5,CBBDB 6-10,CBCBC 二、填空题11、150 12、-9 13、3 14、213- 15、 12三、解答题16、解:(1)(0)2sin()16f π=-=- 4分(2)110(3)2sin[(3)]2sin 232613f πππααα+=+-==,即5sin 13α= 6分16(32)2sin[(32)]2sin()3625f ππβπβπβ+=+-=+=,即3c o s 5β= 8分 ∵,0,2παβ⎡⎤∈⎢⎥⎣⎦,∴212cos 1sin 13αα=-=,24sin 1cos 5ββ=-= 10分∴5312463sin()sin cos cos sin 13513565αβαβαβ+=+=⨯+⨯= 12分 17、解: ⑴优秀 非优秀 合计 甲班 10 50 60 乙班 20 30 50 合计3080110………………………3分(2)假设成绩与班级无关,则()22211010302050()7.5()()()()30805060n ad bc K a b c d a c b d ⨯-⨯-==≈++++⨯⨯⨯则查表得相关的概率为99%,故没达到可靠性要求。
………………………8分(3)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为),(y x .所有的基本事件有:)1,1(、)2,1(、)3,1(、 、)6,6(共36个. ………………………10分事件A 包含的基本事件有:)6,3(、)5,4(、)4,5(、)3,6(、)5,5(、)6,4(、)4,6(共7个………………… …12分所以367)(=A P ,即抽到9号或10号的概率为367. ………………………13分18、(1)证明:∵⊥PB 底面ABC ,且⊂AC 底面ABC , ∴AC PB ⊥ …………………1分由90BCA ∠=,可得CB AC ⊥ ………………………2分又 PB CB B = ,∴AC ⊥平面PBC …………………………3分 注意到⊂BE 平面PBC , ∴AC BE ⊥ ……………4分BC PB = ,E 为PC 中点,∴BE PC ⊥…………………………5分 PCAC C =, ∴BE ⊥平面PAC ……………………6分(2)取AF 的中点G ,AB 的中点M ,连接,,CG CM GM ,∵E 为PC 中点,2FA FP =,∴//EF CG . ……………7分 ∵CG ⊄平面,BEF EF ⊂平面BEF , ∴//CG 平面BEF .…………8分 同理可证://GM 平面BEF .又CG GM G =, ∴平面//CMG 平面BEF . …………9分 ∵CD ⊂平面CDG ,∴//CD 平面BEF . …………10分 (3)由(1)可知BE ⊥平面PAC ,又由已知可得22=BE .238213131=⋅⨯==∆∆PC AC S S PAC AEF …………11分∴93231=⋅==∆--BE S V V AEF AEF B ABE F …………12分所以三棱锥ABE F -的体积为932. …………13分19、解:(1)由已知和得,当2≥n 时,23))1(21)1(23()2123(221-=-----=-=-n n n n n S S b n n n ……2分又21311-⨯==b ,符合上式。
2015届高三数学文科模拟试卷word版含答案
高三数学(文)试卷一、选择题1.复数1iz i+=(i 是虚数单位)在复平面内对应的点在( )A. 第一象限 B .第二象限 C .第三象限 D .第四象限2.设2()lg()1f x a x =+-是奇函数,则使()0f x <的x 的取值范围是( ). A .(1,0)- B .(0,1)C .(,0)-∞D .(,0)(1,)-∞+∞ 3.一个几何体的三视图及其尺寸(单位:cm)如图所示,则 该几何体的侧面积为( )cm 2. A .50 B .60 C .70D .804.三个数20.310.3120.31,log ,2a b c ===之间的大小关系是( ) A .a c b <<B .b a c <<C .a b c <<D .b c a <<5.设m ,n 为空间两条不同的直线,,αβ为空间两个不同的平面,给出下列命题:①若//,//m m αβ,则//αβ; ②若//,//m m n α则//n α; ③若,//m m αβ⊥,则αβ⊥; ④若,//m ααβ⊥,则m β⊥.其中的正确命题序号是( )A .③④B .②④C .①②D . ①③6.等差数列{a n }的前n 项和为S n ,且S 2=10,S 6=36,则过点P (n ,a n )和Q (n +2,a n +2)(n ∈N *)的直线的斜率是( ) A .14 B .12C .2D .47.函数()sin(2))f x x x θθ=++(2πθ<)的图像关于点(,0)6π对称,则()f x 的增区间( )A .5,,36k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦B .,,63k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦C .7,,1212k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦D .5,,1212k k k Z ππππ⎡⎤-++∈⎢⎥⎣⎦8.若变量x ,y 满足约束条件1400x x y x y ≥⎧⎪+-≤⎨⎪-≤⎩,则y x 的最大值为 ( )A .2B .3C .43D .59.过抛物线C :22x y =的焦点F 的直线l 交抛物线C 于A 、B 两点,若抛物线C 在点B 处的切线斜率为1,则线段||AF =( )A .1B .2C .3D .410. 已知定义在实数集R 上的函数()f x 满足(1)f =3,且()f x 的导数()f x '在R 上恒有()2f x '<()x R ∈,则不等式()21f x x <+的解集为( )A .(1,)+∞B .(,1)-∞-C .(1,1)-D .(,1)-∞-∪(1,)+∞二、填空题11.执行如右图所示的程序框图,若输入的x 的值为10,则输出的=x . 12.已知抛物线的准线方程为1x =-,则抛物线的标准方程为 . 13已知函数2log (1)y ax =-在)4,2(上单调递增,则a 的取值范围 .14已知球与棱长均为3的三棱锥各条棱都相切,则该球的表面积为 . 15在三角形ABC 中,已知AB=4,AC=3 ,BC=6 , P 为BC 中点,则三角形ABP 的周长为_______.三、解答题16.(本题满分12分)已知函数)sin()(ϕω+=x A x f (∈x R ,0>A ,0>ω,20πϕ<<)图象如图,P 是图象的最高点,Q 为图象与x 轴的交点,O 为原点.且2||=,25||=,213||=. (1)求函数)(x f y =的解析式;数(2)将函数)(x f y =图象向右平移1个单位后得到函)(x g y =的图象,当]2,0[∈x 时,求函数)()()(x g x f x h ⋅=的最大值.俯视图侧(左)视图(第3题图)第11题图17.(本小题满分12分)如图,四棱锥P ABCD -的底面ABCD 为正方形,P A ⊥底面ABCD ,E ,F 分别是AC ,PB 的中点. (1)求证:EF ∥平面PCD ;(2)求证:平面PBD ⊥平面P AC ;18.(本小题满分12分)为预防一种强行流感病毒爆发,某生物技术公司研制出一种病毒疫苗,为测试该疫苗的有效性(若疫苗有效的概率小于90%,则认为测试没有通过),公司选定2000个样本分成三组,测试结果如下表:已知在全体样本中随机抽取1个,抽到B 组疫苗有效的概率是0.33.(1)现用分层抽样的方法在全体样本中抽取360个测试结果,应在C 组抽取样本多少个? (2)已知465,30,b c ≥≥求通过测试的概率.19.(本小题满分12分)已知等比数列{a n }的前n 项和2,*n n S a n N =-∈.设公差不为零的等差数列{b n }满足:2114282,(5)(5)(5)b a b b b =++=++.(1)求a 及b n ;(2)设数列}n a 的前n 项和为T n .求使T n >b n 的最小正整数n 的值.20.已知函数()().ln 122x a x a x x f ++-=(1)当2=a 时,求曲线()x f y =在点()()1,1f 处的切线方程; (2)求函数()x f 的单调区间;(3)若对任意()2,3--∈a 及[]3,1∈x 时,恒有()x f ma -<1成立,求实数m 的取值范围.21.(本小题满分14分)如图,F 1,F 2是椭圆C :2212x y +=的左、右焦点,A ,B 是椭圆C 上的两个动点,且线段AB 的中点M 在直线l :x =-12(1)若B 点坐标为(0,1),求点M 的坐标; (2)求22F A F B ⋅的取值范围.(第21题图)高三数学文试题(B )参考答案DADBA BCBAA 11.4 12.x y 42= 13.⎢⎣⎡+∞),21 14.π29 15. 7+214 16.解(Ⅰ)由余弦定理得51cos 222==∠POQ ,∴52sin =∠POQ ,得P 点坐标为)1,21(. ………………………………2分∴ 1=A ,6)212(42=-=ωπ,3πω=. 由1)6sin()21(=+=ϕπf ,20πϕ<<得3πϕ=.∴)(x f y =的解析式为)33sin()(ππ+=x x f . …………………………….6分(Ⅱ)x x g 3sin)(π=,x x x x x x g x f x h 3cos 3sin 233sin 213sin )33sin()()()(2ππππππ+=+=⋅=41)632sin(2132sin 43432cos 1+-=+-=ππππx x x……………………………9分.当]2,0[∈x 时,]67,6[632ππππ-∈-x , ∴ 当2632πππ=-x ,即1=x 时43)(max =x h . ……………………………..12分17.(1)证明:(2)证明:18、【解】(I )∵33.02000=a,∴ 660=a …………………………………………………1分 ∵50090660776732000=----=+c b ,………………………………………………2分∴ 应在C 组抽取样个数是902000500360=⨯(个);………………………………………4分 (II )∵500=+c b ,465≥b ,30≥c , ∴(b ,c )的可能性是(465,35),(466,34),(467,33),(468,32),(469,31),(470,30),共6种. ……………………………………………………7分 若测试通过,则1800%902000673=⨯≥++b a ,解得467≥b , (b ,c )的可能性是(467,33),(468,32),(469,31),(470,30),共4种……10分 通过测试的概率是3264=. …………………………………………………………………12分 19、解:(Ⅰ) 当n =1时,a 1=S 1=2-a .……………………1分当n≥2时,a n =S n -S n -1=2n-1.所以1=2-a ,得a =1,所以a n =2n-1.………….3分设数列{b n }的公差为d ,由b 1=3,(b 4+5)2=(b 2+5)(b 8+5),得 (8+3d)2=(8+d)(8+7d),故d =0 (舍去) 或 d =8. 所以a =1,b n =8n -5,n ∈N*.………………………….6分 (Ⅱ) 由a n =2n-1,知na =2(n -1).所以T n =n(n -1).……………8分由b n =8n -5,T n >b n ,得n 2-9n +5>0,……………………………………………10分 因为n ∈N*,所以n≥9.所以,所求的n 的最小值为9. ………………………12分20.分平面平面平面平面为正方形四边形又底面12................................................................PAC PBD PBDBD PAC BD BDAC ABCD BD PA ABCDPA ⊥⊂⊥∴⊥∴⊥∴⊥ 分平面平面平面又的中位线为的中点为又的中点也是的中点为为正方形,且四边形6.......................................................////PCD EF PCD PD PCDEF PDEF PBD EF PB F BD E AC E ABCD ∴∈∉∴∆∴∴21.(Ⅰ) 因为点M 是AB 的中点,所以可设点A ),1(m -.代入椭圆方程2212x y +=,得22-=m 或22=m , 则A 点坐标为)22,1(--或)22,1(-,所以M 点坐标为)422,21(--或)422,21(+-.………………4分 (Ⅱ) 当直线AB 垂直于x 轴时,直线AB 方程为x =-12,此时22F A F B ⋅=118.,,,,5分 当直线AB 不垂直于x 轴时,设直线AB 的斜率为k ,M(-12,m) (m≠0),A(x 1,y 1),B(x 2,y 2).由 221122221,21,2x y x y ⎧+=⎪⎪⎨⎪+=⎪⎩ 得(x 1+x 2)+2(y 1+y 2)1212y y x x -⋅-=0,则-1+4mk =0,故k =14m. 此时,直线AB 的方程为y -m =14m (x +12),即 y =14mx +2818m m +.联立 2221,2181,48x y m y x m m ⎧+=⎪⎪⎨+⎪=+⎪⎩ 消去y ,整理得x 2+x + 2222(81)644(18)m m m +-+=0,……8分 故Δ=1-2222(81)6418m m m +-+>0,即0<m 2<78,……………9分 所以x 1+x 2=-1, x 1x 2=2222(81)644(18)m m m +-+. 于是22F A F B ⋅=(x 1-1)(x 2-1)+y 1y 2=x 1x 2+y 1y 2-(x 1+x 2)+1=x 1x 2+y 1y 2+2=x 1x 2+(14m x 1+2818m m +)(14mx 2+2818m m +)+2= 2223(81)88(18)m m +++.…………………12分令t =1+8m 2,则1<t <8,于是22F A F B ⋅=2388t t + =18(3t +8t).所以,22F A F B ⋅的取值范围为6258)………………………14分OBA xyx =- 21(第18题图)M F 1F 2。
2015顺义一模 北京市顺义区2015届高三第一次统一练习数学文试题 Word版含答案
顺义区2015届高三第一次统一练习数学试卷(文科)一、选择题.(共8小题,每小题5分,共40分.在每小题所列出的四个选项中,只有一项是符合题目要求的.)1.已知集合{}{}2320,2,1,1,2A x x x B =-+==--,则=⋂B AA.{}2,1--B.{}1,2-C.{}1,2D.{}2,1,1,2--2.下列函数中,既是奇函数又在区间()0,+∞上单调递减的是 A.22y x =-+B.1y x=C.2x y -=D.ln y x =3.在复平面内,复数()212i +对应的点位于A.第一象限B.第二象限C.第三象限D.第四象限 4.当5n =时,执行如图所示的程序框图,输出的S 的值等于 A.2 B.4 C.7 D.115.若441x y+=,则x y +的取值范围是A.[]0,1B.[]1,0-C.[)1,-+∞D.(],1-∞-6.函数()sin y x ϕ=+的图像关于y 轴对称的 充分必要条件是 A.2πϕ=B.ϕπ=C.,2k k πϕπ=+∈Z D.2,2k k πϕπ=+∈Z7.已知无穷数列{}n a 是等差数列,公差为d ,前n 项和为n S ,则 A.当首项10,0a d ><时,数列{}n a 是递减数列且n S 有最大值 B.当首项10,0a d <<时,数列{}n a 是递减数列且n S 有最小值 C.当首项10,0a d >>时,数列{}n a 是递增数列且n S 有最大值 D.当首项10,0a d <>时,数列{}n a 是递减数列且n S 有最大值8.某桶装水运营部每天的房租、人员工资等固定成本为200元,每桶水的进价是5元,销售单价与日均销售量的关系如下表所示:设在进价基础上增加x 元后,日均销售利润为y 元,且()20y ax bx c a =++≠.该经营部要想获得最大利润,每桶水在进价的基础上应增加 A.3元 B.4元 C.5元 D.6元二、填空题(本大题共6小题,每小题5分,共30分)9.双曲线2214x y m -=则m = ,其渐近线方程为 . 10.不等式组0,20,30x x y x y ≤⎧⎪+≥⎨⎪-+≥⎩所表示平面区域的面积为 .11.设向量()()3,1,2,2a b ==-,若()()a b a b λλ+⊥-,则实数λ= .12.已知函数()3269f x x x x =-+,则()f x 在闭区间[]1,5-上的最小值为 ,最大值为 .13.已知直线:l y =,点(),P x y 是圆()2221x y -+=上的动点,则点P 到直线l 的距离的最小值为 .14.已知函数()()2sin 0,6f x x x πωω⎛⎫=+>∈ ⎪⎝⎭R .又()()122,0f x f x =-=且12x x -的最小值等于π,则ω的值为 .三、解答题(本大题共6小题,满分80分.解答应写出文字说明、证明过程或演算步骤)设数列{}n a 满足:111,3,*n n a a a n +==+∈N . (I)求{}n a 的通项公式及前n 项和n S ;(II)已知{}n b 是等比数列,且12468,b a b a S ==+.求数列{}n b 的前n 项和.16.(本小题满分13分)在ABC ∆中,角,,A B C 所对的边分别为,,a b c ,已知cos b B A ===B 为钝角..(I)求a 的值;(II)求cos C 的值.如图(1),在Rt ABC ∆中,90,3,6,,C BC AC D E ∠===分别是,AC AB 上的点,且//,2DE BC DE =.将ADE ∆沿DE 折起到A DE '∆的位置,使A C CD '⊥,如图(2).(I)求证://DE 平面A BC '; (II)求证:A C BE '⊥;(III)线段A D '上是否存在点F ,使平面CFE A DE '⊥平面.若存在,求出DF 的长;若不存在,请说明理由.18.(本小题满分13分)某市调研机构对该市工薪阶层对“楼市限购令”态度进行调查,抽调了50名市民,他们月收入频数分布表和对“楼市限购令”赞成人数如下表:(I)若所抽调的50名市民中,收入在[)35,45的有15名,求,,a b c 的值,并完成频率分布直方图;(II)若从收入(单位:百元)在[)55,65的被调查者中随机选取两人进行追踪调查,求选中的2人至少有1人不赞成“楼市限购令”的概率.(2)(1)C D (百元)19.(本小题满分14分) 已知椭圆22:416C x y +=. (I)求椭圆C 的离心率;(II)设椭圆C 与y 轴下半轴的交点为B ,如果直线()10y kx k =+≠交椭圆C 于不同的两点,E F ,且,,B E F 构成以EF 为底边,B 为顶点的等腰三角形,判断直线EF 与圆2212x y +=的位置关系.20.(本小题满分13分)已知函数()22ln f x a x ax x =+-.(I)当0a >时,求函数()f x 的单调区间;(II)设()()22g x a x f x =-,且函数()g x 在点1x =处的切线为l ,直线//l l ',且l '在y 轴上的截距为1,求证:无论a 取任何实数,函数()g x 的图像恒在直线l '的下方;(III)已知点()()()()001,1,,A g Q x g x ,且当01x >时,直线QA 的斜率恒小于2,求实数a 的取值范围.顺义区2015届高三第一次统一练习数学试卷答案(文科)一、CBBD DCAD 二、9.11,2y x =±10.3211.12.16,20- 1 14.12三、15.解:(I)因为13,*n n a a n +=+∈N ,所以13,*n n a a n +-=∈N ,所以数列{}n a 是以11a =为首项,公差3d =的等差数列, 所以()()1111332n a a n d n n =+-=+-⨯=-,............... ...........................................4分()()12132312222n n n a a n n S n n ++-===-. ............... ...........................................6分(II)由(I)可知32n a n =-,所以()()128881224,9222n a a a S ++====, 所以4681692108b a S =+=+= ................ ...........................................9分设等比数列{}n b 的公比为q ,则341108274b q b ===, 所以3q =, ............... ...........................................11分所以数列{}n b 的前n 项和()41323213n n n B -==⨯--................ ...........................................12分 16.解:(I)在ABC ∆中,因为cosA =所以sin A ===. ...........................................3分 由正弦定理,sin sin a b A B=得sin 3sin b A a B ===................ ...........................................6分(II)因为B 为钝角,所以,cos 3B==-. ...........................................8分 由(I)可知,sin A =, 又sin cos B A ==所以()()cos cos cos C A B A B π=-+=-+⎡⎤⎣⎦ ...........................................10分cos cos sin sin A B A B =-+⎛=+ ⎝⎭= ............... ...........................................13分17.(I)证明:因为,D E 分别为,AC AB 上的点,且//DE BC ,又因为DE A BC '⊄平面,所以//DE 平面A BC '. ............... ...........................................3分 (II)证明:因为90,//C DE BC ∠=,所以,DE CD DE AD ⊥⊥,由题意可知,DE A D '⊥, ............... ...........................................4分 又A D CD D '⋂=,所以DE A CD '⊥平面, ............... ...........................................5分 所以BC A CD '⊥平面, ............... ...........................................6分 所以BC A C '⊥, ............... ...........................................7分 又A C CD '⊥,且CD BC C ⋂=,所以A C BCDE '⊥平面, ............... ...........................................8分 又BE BCDE ⊂平面,所以A C BE '⊥. ............... ...........................................9分 (III)解:线段A D '上存在点F ,使平面平面CFE A DE '⊥.理由如下:因为A C CD '⊥,所以,在Rt A CD '∆中,过点C 作CF A D '⊥于F , 由(II)可知,平面DE A CD '⊥,又平面CF A CD '⊂ 所以DE CF ⊥, 又A D DE D '⋂=,所以平面CF A DE '⊥,... ...........................................12分因为CF CEF ⊂平面,所以平面平面CFE A DE '⊥,故线段A D '上存在点F ,使平面平面CFE A DE '⊥. ................................13分 如图(1),因为DE BC P ,所以,DE AD BC AC = ,即236AD= , 所以,4,2AD CD == .所以,如图(2),在'Rt ACD ∆ 中,'4,2A D CD ==所以,'060A DC ∠= ,在Rt CFD ∆ 中,1DF = ............... ...........................................14分18.解:(I)由频率分布表得0.10.20.10.11a b +++++=,C即0.5a b +=.因为所抽调的50名市民中,收入(单位:百元)在[)35,45的有15名,所以150.350b ==, 所以0.2,0.25010a c ==⨯=, 所以0.2,0.3,10a b c ===,且频率分布直方图如下:............... ...........................................4分(II)设收入(单位:百元)在[)55,65的被调查者中赞成的分别是123,,A A A ,不赞成的分别是12,B B ,事件M :选中的2人中至少有1人不赞成“楼市限购令”,则从收入(单位:百元)在[)55,65的被调查者中,任选2名的基本事件共有10个:()()()()12131112,,,,,,,A A A A A B A B ,()()()232122,,,,,A A A B A B ,()()3132,,,A B A B ,()12,B B , ............... ...........................................10分事件M 包含的结果是()()1112,,,A B A B ,()()2122,,,A B A B ,()()3132,,,A B A B , ()12,B B 共7个, ............... ...........................................11分所以()710P M =, ............... ...........................................12分 故所求概率为710. ............... ...........................................13分19.解:(I)由题意,椭圆C 的标准方程为221164x y +=,(百元)所以2222216,4,12从而a b c a b ===-=,因此4,a c ==故椭圆C的离心率c e a ==. ............... ...........................................4分 (II)由221,416y kx x y =+⎧⎨+=⎩得()22148120k x kx ++-=,由题意可知0∆>. ............... ...........................................5分 设点,E F 的坐标分别为()()1122,,,x y x y ,EF 的中点M 的坐标为(),M M x y ,则1224214M x x k x k +==-+,1221214My y y k +==+................ .....................................7分 因为BEF ∆是以EF 为底边,B 为顶点的等腰三角形, 所以BM EF ⊥,因此BM 的斜率1BM k k=-. ............... ...........................................8分又点B 的坐标为()0,2-,所以222122381440414M BM M y k k k k x k k++++===---+,............... ....................................10分 即()238104k k k k +-=-≠, 亦即218k =,所以k = ............... ...........................................12分故EF的方程为440y -+=. ............... ...........................................13分又圆2212x y +=的圆心()0,0O 到直线EF的距离为d ==>, 所以直线EF 与圆相离................ ...........................................14分20.(I)解:()22ln f x a x ax x =+-,()()()()22212112120ax ax a x ax f x a x a x x x x+-+-'=+-==>, ............... ...........................................2 分 所以,0a >时,()f x 与()f x '的变化情况如下:因此,函数()f x 的单调递增区间为1,2a ⎛⎫+∞⎪⎝⎭,单调递减区间为10,2a ⎛⎫⎪⎝⎭. ............... ...........................................4分 (II)证明:()()22ln g x a x f x x ax =-=-,()1g x a x'=-, 所以()11g a '=-, 所以l 的斜率1l k a =-.因为//l l ',且l '在y 轴上的截距为1, 所以直线l '的方程为()11y a x =-+................ ...........................................6分令()()()()11ln 10h x g x a x x x x =--+=-->⎡⎤⎣⎦,则无论a 取任何实数,函数()g x 的图像恒在直线l '的下方,等价于()()0,0h x a x <∀∈∀>R , ............... ...........................................7分 而()111xh x x x-'=-=.当()0,1x ∈时,()0h x '>,当()1,x ∈+∞时,()0h x '<,所以函数()h x 的()0,1上单调递增,在()1,+∞上单调递减, 从而当1x =时,()h x 取得极大值()12h =-,即在()0,+∞上,()h x 取得最大值()12h =-,.....................................................8分 所以()()20,0h x a x ≤-<∀∈∀>R ,因此,无论a 取任何实数,函数()g x 的图像恒在直线l '的下方................ ...........................................9分(III)因为()()0001,,,ln A a Q x x ax --,所以00000ln ln 11QA x ax a x k a x x -+==---,所以当01x >时,00ln 21x a x -<-,即()()00ln 210x a x -+-<恒成立. ............... ...........................................10分 令()()()()ln 211r x x a x x =-+->,则()()12r x a x'=-+, 因为1x >,所以101x<<. (i)当2a ≤-时,20a +≤,此时()0r x '>, 所以()r x 在()1,+∞上单调递增,有()()10r x r >=不满足题意; (ii)当21a -<<-时,021a <+<, 所以当11,2x a ⎛⎫∈ ⎪+⎝⎭时,()0r x '>,当1,2x a ⎛⎫∈+∞ ⎪+⎝⎭时,()0r x '<, 所以至少存在11,2t a ⎛⎫∈ ⎪+⎝⎭,使得()()10r t r >=不满足题意; (iii)当1a ≥-时,21a +≥,此时()0r x '<, 所以()r x 在()1,+∞上单调递减,()()10r x r <=,满足题意.综上可得1a ≥-,故所求实数a 的取值范围是[)1,-+∞................ ...........................................13分。
2015高考数学(文)基础训练1(含答案)
2015高考数学基础训练1(珠海摸底)一、选择题:1.已知集合2{|9},{|33}M x x N x z x ===∈-≤<,则MN =( ) A .∅ B .{3}- C .{3,3}-D .{3,2,0,1,2}--2.函数lg 1y x x =+-的定义域是( )A .{|0}x x >B .{|01}x x <≤C .{|1}x x >D .{|1}x x ≥3.()f x 是奇函数,则①|()|f x 一定是偶函数;②()()f x f x ⋅-一定是偶函数;③()()0f x f x ⋅-≥;④()|()|0f x f x -+=,其中错误的个数有( )A .1个B .2个C .4个D .0个4.如图,是一个几何体的正视图(主视图)、侧视图(左视图)、俯视图,正视图(主视图)、侧视图(左视图)都是矩形,则该几何体的体积是 ( )A .24B .12C .8D .45.命题“若一个数是负数,则它的平方是正数”的否命题是 ( )A .“若一个数是负数,则它的平方不是正数”B .“若一个数的平方是正数,则它是负数”C .“若一个数不是负数,则它的平方不是正数”D .“若一个数的平方不是正数,则它不是负数”6.某种动物繁殖量y (只)与时间x (年)的关系为3log (1)y a x =+,设这种动物第2年有100只,到第8年它们发展到( )A .200只B .300只C .400只D .500只7.对于平面α、β、γ和直线a 、b 、m 、n ,下列命题中真命题是( )A .若,,,,a m a n m n αα⊥⊥⊂⊂,则a α⊥B .若//,a b b α⊂,则//a αC .若,,/,/a b a b ββαα⊂⊂,则//βαD .若/,,,a b αβαγβγ==则//a b8.已知直线1l 与圆2220x y y ++=相切,且与直线2:l 3460x y +-=平行,则直线1l 的方程是( )A .3410x y +-=B .3410x y ++=或3490x y +-=C .3490x y ++=D .3410x y +-=或3490x y ++=9.已知函数x x x f 3)(3-=,若过点A (0,16)的直线方程为16y ax =+,与曲线)(x f y =相切,则实数a 的值是( )A .3-B .3C .6D .910.对于任意两个正整数,m n ,定义某种运算“※”如下:当,m n 都为正偶数或正奇数时,m ※n =m n +;当,m n 中一个为正偶数,另一个为正奇数时,m ※n =mn .则在此定义下,集合{(,)M a b a=※12,,}b a b **=∈∈N N 中的元素个数是( ) A .10个 B .15个 C .16个 D .18个二、填空题:本大题共5小题,每小题5分,满分20分.其中14~15题是选做题,考生只能选做一题,两题全答的,只计算前一题得分.请将答案填在答题卡相应位置.11.设数列{}n a 的前n 项和2n S n n =+,则7a 的值为__ __.12.已知双曲线的中心在原点,离心率为3,若它的一条准线与抛物线24y x =的准线重合,则该双曲线的方程是 .13.图1是某学生的数学考试成绩茎叶图,第1次到14次的考试成绩依次记为1214A A A ,,…,.图2是统计茎叶图中成绩在一定范围内考试次数的一个算法流程图.那么算法流程图输出的结果是 .15题14.(坐标系与参数方程选做题)在极坐标系中,点()M ρθ,关于极点的对称点的极坐标是 .15.(几何证明选讲选做题)ABC ∆中,045A ∠=,030B ∠=,CD AB ⊥于D ,DE AC ⊥于E ,DF BC ⊥于F ,则CEF ∠= .16、已知函数32()3f x kx kx b =-+,在[22]-,上最大值为3,最小值为17-,求k b 、的值.参考答案基础训练11—5 BDBBC 6—10 ADDDB11.14 12. 22136x y -=13.10 14.(()ρπθ+, 15.030 16、由题设知0k ≠且'()3(2)f x kx x =-…………………………………………1分02x <<时,(2)0x x -<;0x <或2x >时,(2)0x x ->;0x =和2x =时,'()0f x =由题设知22x -≤≤,(2)20f k b -=-+,(0)f b =,(2)4f k b =-+…………3分 ①0k <时,20x -<<时, '()0f x <;02x <<时,'()0f x >,∴()f x 在(20)-,上单减,在(0,2)上单增,…………………………………4分 0x =为()f x 的极小值点,也是最小值点;(2)(2)f f -> ∴()f x 的最大值是(2)f -………………………………………………5分解20317k b b -+=⎧⎨=-⎩解得1k =-,17b =-………………………………7分②0k >时,20x -<<时, '()0f x >;02x <<时,'()0f x <,()f x 在(20)-,上单增,在(0,2)上单减,………………………………9分 0x =为()f x 的极大值点,也是最大值点;…………………………………10分 (2)(2)f f -<∴()f x 的最小值是(2)f - ……………………………11分解20173k b b -+=-⎧⎨=⎩解得1k =,3b =……………………………………………13分 综上,1k =-,17b =-或1k =,3b =.………………………………………14分。
2015年全国高考文科数学试题和答案word精校版(新课标1卷)
2015年全国高考文科数学试题和答案word精校版(新课标1卷)2015年普通高等学校招生全国统一考试(新课标1卷)文科一、选择题:每小题5分,共60分1.已知集合 $A=\{x|x=3n+2,n\in N\}$,$B=\{6,8,10,12,14\}$,则集合 $A$ 中的元素个数为()A)5 (B)4 (C)3 (D)22.已知点 $A(0,1)$,$B(3,2)$,向量$\overrightarrow{AC}=(-4,-3)$,则向量$\overrightarrow{BC}$ 为()A)$(-7,-4)$ (B)$(7,4)$ (C)$(-1,4)$ (D)$(1,4)$3.已知复数 $z$ 满足 $(z-1)i=1+i$,则 $z$ 等于()A)$-2-i$ (B)$-2+i$ (C)$2-i$ (D)$2+i$5.已知椭圆 $E$ 的中心为坐标原点,离心率为$\frac{1}{2}$,$E$ 的右焦点与抛物线$C:y=8x$ 的焦点重合,$A,B$ 是 $C$ 的准线与 $E$ 的两个交点,则 $AB$ 的长度为()A)3 (B)6 (C)9 (D)126.《九章算术》是我国古代内容极为丰富的数学名著,书中有如下问题:“今有委米依垣内角,下周八尺,高五尺,问积及为米几何?”其意思为:“在屋内墙角处堆放米(如图,米堆为一个圆锥的四分之一),米堆底部的弧长为8尺,米堆的高为5尺,问米堆的体积和堆放的米各为多少?”已知1斛米的体积约为1.62立方尺,圆周率约为3,估算出堆放的米约有()A)14斛(B)22斛(C)36斛(D)66斛7.已知 $\{a_n\}$ 是公差为1的等差数列,$S_n$ 为$\{a_n\}$ 的前 $n$ 项和,若 $S_8=4S_4$,则 $a_{10}$ 等于()A)17 (B)22 (C)10 (D)128.函数 $f(x)=\cos(\omega x+\varphi)$ 的部分图像如图所示,则 $f(x)$ 的单调递减区间为()A)$(k\pi-\frac{13}{4},k\pi+\frac{4}{4}),k\in Z$B)$(2k\pi-\frac{1}{4},2k\pi+\frac{3}{4}),k\in Z$C)$(k-\frac{1}{4},k+\frac{3}{4}),k\in Z$D)$(2k-\frac{1}{4},2k+\frac{3}{4}),k\in Z$9.执行右面的程序框图,如果输入的 $t=0.01$,则输出的$n$ 等于()A)5 (B)6 (C)7 (D)810.已知函数 $f(x)=\begin{cases} 2x-1-2,&x\le 1\\ -\log_2(x+1),&x>1 \end{cases}$,且 $f(a)=-3$,则 $f(6-a)$ 等于()A)$-\frac{7}{4}$ (B)$-\frac{5}{4}$11、圆柱被一个平面截去一部分后与半球(半径为r)组成一个几何体,该几何体的三视图中的正视图和俯视图如图所示,若该几何体的表面积为16+20π,则r=()C)412、设函数y=f(x)的图像与y=2x+a的图像关于直线y=-x对称,且f(-2)+f(-4)=1,则a=()A)-113、数列{an}中a1=2,an+1=2an,Sn为{an}的前n项和,若Sn=126,则n=6.14.已知函数f(x)=ax+x+1的图像在点(1,f(1))的处的切线过点(2,7),则a=3.15.若x,y满足约束条件{x+y-2≤0.x-2y+1≤0.2x-y+2≥0},则z=3x+y的最大值为5.16.已知F是双曲线C:x-8^2-y^2=1的右焦点,P是C左支上一点,A(0,6),当△APF周长最小时,该三角形的面积为24.17.(本小题满分12分)已知a,b,c分别是△ABC内角A,B,C的对边,sinB=2sinAsinC.I)若a=b,求cosB;II)若B=90,且a=2,求△ABC的面积.18.(本小题满分12分)如图四边形ABCD为菱形,G为AC与BD交点,BE⊥平面ABCD。
2015年陕西高考数学文科试题及答案word版
2015年普通高等学校招生全国统一考试(陕西卷)文科数学一、选择题(本大题共 12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符 合题目要求的.)1、设集合 M = {xlx 2 = x} , N = {x|lgx < 0},贝V M U N =(A)[0, 1] 【答案】A试题分析* 由 Af - {x x 5 = x} J/ = {0,1} t A" = |lg x£ 0}A r = {x 10 <x $1}所故答黑选显考点:集合间的运算•【分析及点评】 本题主要考察了集合的表示及其相关运算,属于基础题型,难度不大。
【答案】C故答案选C考点:概率与统计.【分析及点评】 本题主要考察了统计以及统计图表的相关知识,难度系数很小,属于基础题型。
(B)(0, 1](C)[0 , 1)2、某中学初中部共有 110名教师,高中部共有 150名教师,其性别比例如图所示,则该校女教师的人 数是(初中部)(D)167试题分析:由图可知该校女教师的人数为110 70% 150 (1 60%) 77 60 137(A)( — 1 , 0) (B)(1 , 0) 【答案】B试题分析:由抛物线 y22px(p 0)得准线x1),则该抛物线的焦点坐标为(C )(0,— 1)(D )(0 , 1)卫,因为准线经过点(1,1),所以p 2 , 23、已知抛物线y 2 = 2px (p > 0)的准线经过点(一1,所以抛物线焦点坐标为 (1,0),故答案选B考点:抛物线方程•【分析及点评】本题主要考察了抛物线的基本性质,从标准方程和定义出发,方法和思路都较为传统。
题目设置较为简单。
1 Jx, x 0 小4、设f(x)= ,贝V f(f( —2))=2x,x 0113(A) - 1(B)-4(逅(D)-【答案】C分析;因为/(-2) = 2""=扌,=『(£) = 1-£= 1-£= * ,故答案选匸考点;1 ■分段的数多2庖数求值亠【分析及点评】本题主要考察了函数求值的相关知识,以分段函数为载体,考察学生对函数定义以及性质的理解。
2015年高考文科数学(新课标1)试题及答案(word版)
2015 年高考文科数学 ( 新课标 1)试题及答案 (word 版)高考数学提分特训2015 真题2015 年一般高等学校招生全国一致考试文科数学第Ⅰ卷一、选择题:本大题共 12 小题,每题 5 分,在每题给出的四个选项中,只有一项为哪一项切合题目要求的。
(1)已知会合A { x | x 3n 2, n N } , B {6,8,12,14} ,则会合A B中元素的个数为(A)5 (B)4(C)3(D)2uuur(2)已知点A(0,1 ),B(3,2 ),向量AC =(-4 ,-3 ),uuur则向量 BC =(A)(-7 ,-4 )(B)(7,4)(C)(-1,4)(D)(1,4)(3)已知复数z知足(z 1)i i 1,则z =(A)2 i (B)2 i(C)i(D)22 i(4)假如 3 个整数可作为一个直角三角形三条边的边长,则称这 3 个数为一组勾股数,从 1,2,3,4, 5 中易达数学- 1 -的概率为(A)10(B)1(C)1(D)3510120(5)已知椭圆 E 的中心在座标原点,离心率为1,E的2右焦点与抛物线 C:y28x 的焦点重合,A,B是C的准线与 E 的两个焦点,则 |AB|=(A)3(B)6(C)9(D)12(6)《九章算术》是我国古代内容极为丰富的数学名著,书中有以下问题: “今有委米依垣内角,下周八尺,高五尺。
问: 积及为米几何 ?”其意思为 : “在屋内墙角处堆放米 ( 如图,米堆为一个圆锥的四分之一 ) ,米堆为一个圆锥的四分之一 ) ,米堆底部的弧度为 8 尺,米堆的高为 5 尺,问米堆的体积和堆放的米各为多少 ?”已知 1 斛米的体积约为 1.62 立方尺,圆周率约为 3,估量出堆放斛的米约有A.14斛B.22斛C.36斛D.66 斛(7)已知是公差为 1 的等差数列,=4,则 =(A)(B)(C)10(D)12(8)函数f (x) cos(x ) 的部分图像以下图,则 f ( x) 的单调递减区间为(A)(k1 , k3 )(k Z )44(B)(2k1 ,2k3)( k Z )44(C)(D)(k13Z ), k)(k44(2k1, 2k3)(k Z )44(9)履行右边的程序框图,假如输入的t 0.01,则输出的n(A)5(B)6(C)7(D)82x 12, x 1,且f (a) 3 ,(10)已知函数f ( x)则 f (6 a)(A)- 7(B)- 5(C)- 3(D)444-14(11)圆柱被一个平面截去一部分后与半球(半径为 r )构成一个几何体,该几何体三视图中的正视图和俯视图以下图,若该几何体的表面积为16 20,则 r(A)1(B) 2(C) 4(D) 8( 12 )设函数y f (x) 的图像对于直线y x 对称,且f ( 2) f ( 4) 1,则 a(A)-1(B)1(C)2(D)4第Ⅱ卷二. 填空题:本大题共 4 小题,每题 5 分(13)在数列{ a n}中,a1 2 ,a n 12a n,S n为{ a n}的前n项和。
2015届高三模拟考试数学(文)试题 Word版含答案
2015年高考模拟考试数学(文科)一、选择题1.设集合{}{}2230,1,1,3,M x x x N M N =+-==-⋃=则( )A .{}1,3-B .{}1,1,3-C .{}1,1,3,3--D .{}1,1,3-- 2.已知复数z 满足()1i z i -=(i 是虚数单位),则z 在复平面内对应的点所在象限为( ) A .第一象限B .第二象限C .第三象限D .第四象限3.函数y =的定义域为( ) A .[)1,+∞ B .()1,+∞C .1,2⎛⎫+∞⎪⎝⎭D .1,12⎛⎫⎪⎝⎭4.“1cos 2α=”是“3πα=”的( ) A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件5.已知,,a b c R ∈,那么下列命题中正确的是( ) A .若a b <,则22ac bc < B .若0,0a b c >><,则c c a b< C .若a b >,则()()22a cbc +>+ D .若0ab >,则2a bb a+≥ 6.执行如图所示的程序框图,输出的S 值为( ) A .9 B .16 C .25 D .367.已知,x y 满足约束条件13223x x y z x y x y ≥⎧⎪+≤=+⎨⎪-≤⎩,若的最大值和最小值分别为,a b ,则a b +=( )A .7B .6C .5D .48.已知函数()y f x =是R 上的偶函数,当()12,0,x x ∈+∞时,都有()()()12120x x f x f x -⋅-<⎡⎤⎣⎦.设()21ln,ln ,a b c ππ===( )A .()()()f a f b f c >>B .()()()f b f a f c >>C .()()()f c f a f b >>D .()()()f c f b f a >>9.已知12,F F 是双曲线()222210,0x y a b a b-=>>的两个焦点,以12F F 为直径的圆与双曲线一个交点是P ,且12F PF ∆的三条边长成等差数列,则此双曲线的离心率是() AB C .2D .510.设函数()f x 的定义域为R ,若存在常数()0f x x ωω>≤,使对一切实数x 均成立,则称()f x 为“条件约束函数”.现给出下列函数:①()4f x x =;②()22f x x =+;③()2225xf x x x =-+;④()f x 是定义在实数集R 上的奇函数,且对一切12,x x 均有()()12124f x f x x x -≤-.其中是“条件约束函数”的有( ) A .1个 B .2个 C .3个 D .4个二、填空题:本大题共5个小题,每小题5分,共25分.11.100名学生某次数学测试成绩(单位:分)的频率分布直方图如图所示,则模块测试成绩落在[)50,70中的学生人数是_________.12.已知ABC ∆中,角C B A ,,所对的边分别为,,a bc ,若s i n :s i n :s i 1:2:3A B C =C =__________. 13.某圆柱切割获得的几何体的三视图如图所示,其中俯视图是中心角为3π的扇形,则该几何体的体积为__________.14.设,,a b c r r r是单位向量,且()()0a b a c b c ⋅=-⋅-r r r r r r ,则的最大值为________.15.已知P 是直线34100x y +-=上的动点,PB PA ,是圆222440x y x y +-++=的两条切线,B A ,是切点,C 是圆心,那么四边形PACB 面积的最小值为________. 三、解答题:本大题共6小题,共75分.16.设函数()22sin f x x x ωω=+(其中0ω>),且()f x 的最小正周期为2π. (1)求ω的值;(2)将函数()y f x =图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()y g x =的图象,求函数()g x 的单调增区间.17.某在元宵节活动上,组织了“摸灯笼猜灯谜”的趣味游戏.已知在一个不透明的箱子内放有大小和形状相同的标号分别为1,2,3的小灯笼若干个,每个灯笼上都有一个谜语,其中标号为1的小灯笼1个,标号为2的小灯笼2个,标号为3的小灯笼n 个.若参赛者从箱子中随机摸取1个小灯笼进行谜语破解,取到标号为3的小灯笼的概率为14.(1)求n 的值; (2)从箱子中不放回地摸取2个小灯笼,记第一次摸取的小灯笼的标号为a ,第二次摸取的小灯笼的标号为b .记“4a b +≥”为事件A ,求事件A 的概率.18.如图,平面PBA ⊥平面ABCD ,90,,DAB PB AB BF PA ∠==⊥o ,点E 在线段AD 上移动.(1)当点E 为AD 的中点时,求证:EF //平面PBD ; (2)求证:无论点E 在线段AD 的何处,总有PE BF ⊥.19.数列{}n a 满足()111,2n n a a a n N *+==∈,n S 为其前n 项和.数列{}n b 为等差数列,且满足1143,b a b S ==.(1)求数列{}{},n n a b 的通项公式; (2)设2221log n n n c b a +=⋅,数列{}n c 的前n 项和为n T ,证明:1132n T ≤<.20.已知函数()()0x f x e ax a a R a =+-∈≠且.(1)若函数()0f x x =在处取得极值,求实数a 的值;并求此时()[]21f x -在,上的最大值; (2)若函数()f x 不存在零点,求实数a 的取值范围.21.在平面直角坐标系xoy 中,椭圆()2222:10x y C a b a b+=>>的焦距为2,一个顶点与两个焦点组成一个等边三角形.(1)求椭圆C 的标准方程;(2)椭圆C 的右焦点为F ,过F 点的两条互相垂直的直线12,l l ,直线1l 与椭圆C 交于Q P ,两点,直线2l 与直线4x =交于T 点.(i )求证:线段PQ 的中点在直线OT 上;(ii )求TFPQ的取值范围.2015年高三模拟考试文科数学参考答案CBABD BACDC11.25 12.3π13. 2π14. 1 15.16. 解:(Ⅰ)()sin 2f x x x ωω+=2sin(2)3x πω+……………………4分∴ 2=22ππω,即12ω= ……………………………………6分 (Ⅱ)由(Ⅰ)知()f x =2s i n ()3x π+,将函数)(x f y =的图象各点的横坐标缩短为原来的12,纵坐标不变,得到函数)(x g y =的图象,即()g x =2sin(2)3x π+ ……………………8分由22+2232k x k πππππ-≤+≤,k Z ∈得:51212k x k ππππ-+≤≤+,k Z ∈,……10分 ∴()g x 的单调递增区间是:5[,]1212k k ππππ-++,k Z ∈ …………12分17. 解:(Ⅰ)由题意,1124n n =++,1n ∴=……………………4分(2)记标号为2的小灯笼为1a ,2a ;连续..摸取2个小灯笼的所有基本事件为: (1, 1a ),(1, 2a ),(1,3),(1a ,1),(2a ,1),(3,1),(1a ,2a ), (1a ,3),(2a ,1a ), (3, 1a ),(2a ,3), (3, 2a )共12个基本事件. …………8分A 包含的基本事件为: (1,3), (3,1),(1a ,2a ),(2a ,1a ),(1a ,3),(3, 1a ), (2a ,3),(3, 2a )10分 8()12P A ∴=23= ……………………12分 18. (Ⅰ)证明: 在三角形PBA 中,,PB AB BF PA =⊥,所以F 是PA 的中点,连接EF ,………2分 在PDA ∆中,点,E F 分别是边,AD PA 的中点,所以//EF PD ……4分又EF PBD ⊄平面,PD PBD ⊂平面 所以EF //平面PBD ………6分 (Ⅱ)因为平面PBA ⊥平面ABCD ,平面PBA平面ABCD AB =, 90DAB ∠=,DA AB ⊥ ,DA ABCD ⊂平面所以DA ⊥平面PBA … 8分又BF PBA ⊂平面 ,所以DA BF ⊥,又BF PA ⊥,PA DA A =,,PA DA PDA ⊂平面,所以BF PDA ⊥面 ……………………………………10分 又PE PDA ⊂平面 所以BF PE ⊥所以无论点E 在线段AD 的何处,总有PE ⊥BF . …………………………12分 19. 解:(Ⅰ)由题意,{}n a 是首项为1,公比为2的等比数列,11121--⋅=⋅=∴n n n q a a . ∴12n n a -=,21n n S =-, …………………3分设等差数列{}n b 的公差为d ,111b a ==,4137b d =+=,∴2d = ∴1(1)221n b n n =+-⨯=-. …………………6分 (II )∵212222log =log 221n n a n ++=+, ∴22211111()log (21)(21)22121n n n c b a n n n n +===-⋅-+-+,…………………7分∴11111111(1...)(1)2335212122121n nT n n n n =-+-++-=-=-+++ . …………………9分 ∵*N n ∈,∴11112212n T n ⎛⎫=-< ⎪+⎝⎭ …………………10分 当2n ≥时,()()111021212121n n n n T T n n n n ---=-=>+-+- ∴数列{}n T 是一个递增数列, ∴113n T T ≥=. 综上所述,1132n T ≤<. …………………12分 20. 解:(Ⅰ)函数)(x f 的定义域为R ,a e x f x+=)(',…………………1分0)0(0'=+=a e f ,1-=∴a .…………………2分∴'()1xf x e =-∵在)0,(-∞上)(,0)('x f x f <单调递减,在),0(+∞上)(,0)('x f x f >单调递增, ∴0=x 时)(x f 取极小值.1-=∴a . …………………3分易知)(x f 在)0,2[-上单调递减,在]1,0(上)(x f 单调递增;且;31)2(2+=-e f ;)1(e f =)1()2(f f >-.…………………4分 当2-=x 时,)(x f 在]1,2[-的最大值为.312+e…………………5分(Ⅱ)a e x f x +=)(',由于0>xe .①当0>a 时,)(,0)('x f x f >是增函数,…………………7分 且当1>x 时,0)1()(>-+=x a e x f x .…………………8分 当0<x 时,取a x 1-=,则0)11(1)1(<-=--+<-a aa a f , 所以函数)(x f 存在零点,不满足题意.…………9分 ②当0<a 时,)ln(,0)('a x a e x f x -==+=.在))ln(,(a --∞上)(,0)('x f x f <单调递减,在)),(ln(+∞-a 上)(,0)('x f x f >单调递增, 所以)ln(a x -=时)(x f 取最小值.………………11分函数)(x f 不存在零点,等价于0)ln(2)ln())(ln()ln(>-+-=--+=--a a a a a a e a f a , 解得02<<-a e .综上所述:所求的实数a 的取值范围是02<<-a e .………………13分21. 解:(Ⅰ)由题意1222c a c ⎧=⎪⎨⎪=⎩,………………1分解得3,1,2===b c a ,………3分所求椭圆C 的标准方程为13422=+y x ;………………4分 (Ⅱ)解法一:(i )设:1PQ l x my =+, 221431x y x my ⎧+=⎪⎨⎪=+⎩,消去x ,化简得096)43(22=-++my y m . 09)43(43622>⋅++=∆m m设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则436221+-=+m m y y ,439221+-=m y y ,……………6分 43322210+-=+=m m y y y ,4341200+=+=m my x , 即2243(,)3434m G m m -++,……………7分4344343322m m m m k OG -=+⋅+-=, 设)1(:--=x m y l FT ,得T 点坐标(m 3,4-),43mk OT -=,所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0=m 时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .………10分当0m ≠时,13)3()14(||222+=-+-=m m TF ,||11||122y y k PQ PQ-+==-+⋅+=2122124)(1y y y y m 4394)436(12222+-⋅-+-⋅+m m m m 4311222++⋅=m m .……………11分 )1113(411243113||||22222+++⋅=+⋅++=m m m m m PQ TF令12+=m t .则)1)(13(41||||>+⋅=t tt PQ TF .令)1)(13(41)(>+⋅=t t t t g则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是[1,)+∞.……………14分 解法二:(i )设T 点的坐标为),4(m ,当0=m 时,PQ 的中点为F ,符合题意. ……………5分 当0m ≠时,m k m k PQ FT 3,3-==.3:(1)PQ l y x m-=- ⎪⎪⎩⎪⎪⎨⎧--==+)1(313422x m y y x ,消去x 化简得22(12)6270m y my +--=.027)12(43622>⋅++=∆m m 设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则126221+=+m m y y .1227221+-=m y y ,……………6分12322210+=+=m m y y y ,121231200+=-=m my x ,即)123,1212(22++m m m G ,……………7分 4121212322m m m m k OG=+⋅+=,又4m k OT = .所以OT OG k k =,线段PQ 的中点在直线OT 上.……………9分 (ii) 当0m = 时,632PQ == , 413TF =-=,1TF PQ= ……………10分 当0m ≠时,9)14(||222+=+-=m m TF ,||11||12y y k PQ PQ-+=.=-+⋅+=2122124)(91y y y y m 12274)126(912222+-⋅-+⋅+m m m m 129422++⋅=m m .……11分 )939(4141299||||22222+++⋅=+⋅++=m m m m m PQ TF令92+=m t .则)3)(3(41||||>+⋅=t tt PQ TF .令)3)(3(41)(>+⋅=t t t t g则函数()g t 在()3,+∞上为增函数,……………13分 所以1)3()(=>g t g .所以当||||PQ TF 的取值范围是[1,)+∞.……14分 解法三:(i )当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T ,符合题意. ……………5分 当直线PQ l 斜率存在时,若斜率为0,则2l 垂直于 x 轴,与 x=4不能相交,故斜率不为0 设)1(:-=x k y l PQ ,(0k ≠)⎪⎩⎪⎨⎧-==+)1(13422x k y y x ,消去y ,化简得. 2222(34)84120k x k x k +-+-= 4222644(34)(412)144(1)0k k k k ∆=-+-=+>设),,(),,(2211y x Q y x P PQ 的中点00(,)G x y ,则2221438k k x x +=+,222143124k k x x +-=,……………6分222104342kk x x x +=+=,200433)1(k k x k y +-=-=, 即)433,434(222k k k k G +-+,……………7分kk k k k k OG43443433222-=+⋅+-=, 设)1(1:--=x k y l FT ,得T 点坐标(k 3,4-),kk OT 43-=,所以OT OG k k =, 线段PQ 的中点在直线OT 上.……………9分(ii) 当直线PQ l 斜率不存在时,PQ 的中点为F ,)0,4(T .1||||,32||,3||2====PQ TF a b PQ TF .………10分当直线PQ l 斜率存在时, 222213)3()14(||kk k TF +=-+-=,||1||122x x k PQ -+=. =-+⋅+=2122124)(1x x x x k 222222431244)438(1kk k k k +-⋅-+⋅+ 2243112k k ++⋅=.……………11分2222||34)||12(1)114TF k k PQ k k +==+++=⋅令211kt +=.则)1)(13(41||||>+⋅=t t t PQ TF .令)1)(13(41)(>+⋅=t t t t g 则函数()g t 在()1,+∞上为增函数,……………13分 所以1)1()(=>g t g .所以||||PQ TF 的取值范围是),1[+∞.……………14分。
洛阳市2015届高三一练word答案数学文
洛阳市2014———2015学年高中三年级统一考试数学试卷参考答案(文)一、选择题DBAACDABBACD二、填空题13.250014.槡315.1216.{λ|λ>-3}三、解答题17.(1)由题意知,F1(-1,0),F2(1,0).线段F1F2的中点为坐标原点O,设点O关于直线x+y-2=0对称的点C的坐标为(x0,y0),则y0x0=1,x02+y02-2=0烅烄烆.C(2,2).……3分半径为|F1F2|2=1,……4分所以圆C的方程为(x-2)2+(y-2)2=1.……5分(2)切线长=|PC|2-槡1,……6分当|PC|最小时,切线长取得最小值,当PC垂直于x轴,即点P位于(2,0)处时,取|PC|min=2,……9分此时切线长取最小值22-槡1=槡3.……10分18.(1)当n=1时,a1=12³32-32=3,……2分当n≥2时,an=Sn-Sn-1=(12³3n+1-32)-(12³3n-32)=3n,……5分且a1=3=31,所以{an}的通项公式为an=3n.……6分(2)bn=log3an81=n-4,……8分令bn≥0,即n-4≥0,得n≥4,即{bn}从第四项开始各项均非负,所以当n≥5时,Tn=-b1-b2-b3-b4+b5+b6+…+bn=3+2+1+0+(n-4)[1+(n-4)]2=12n2-72n+12.……12分书书书洛阳市2014———2015学年高中三年级统一考试数学试卷参考答案(文)一、选择题DBAACDABBACD二、填空题13.250014.槡315.1216.{λ|λ>-3}三、解答题17.(1)由题意知,F1(-1,0),F2(1,0).线段F1F2的中点为坐标原点O,设点O关于直线x+y-2=0对称的点C的坐标为(x0,y0),则y0x0=1,x02+y02-2=0烅烄烆.{.即C(2,2).……3分半径为|F1F2|2=1,……4分所以圆C的方程为(x-2)2+(y-2)2=1.……5分(2)切线长=|PC|2-槡1,……6分当|PC|最小时,切线长取得最小值,当PC垂直于x轴,即点P位于(2,0)处时,取|PC|min=2,……9分此时切线长取最小值22-槡1=槡3.……10分18.(1)当n=1时,a1=12³32-32=3,……2分当n≥2时,an=Sn-Sn-1=(12³3n+1-32)-(12³3n-32)=3n,……5分且a1=3=31,所以{an}的通项公式为an=3n.……6分(2)bn=log3an81=n-4,……8分令bn≥0,即n-4≥0,得n≥4,即{bn}从第四项开始各项均非负,所以当n≥5时,Tn=-b1-b2-b3-b4+b5+b6+…+bn=3+2+1+0+(n-4)[1+(n-4)]2=12n2-72n+12.……12分1(2)设CD=a,在△ACE中,CEsin∠CAE=AEsin∠ACECE=2asin15°sin30°=(槡6-槡2)a.……8分在△CED中,CDsin∠CED=CEsin∠CDEsin∠CDE=CEsin∠CEDCD=槡3-1.……10分cos∠DAB=cos(∠CDE-90°)=sin∠CDE=槡3-1.……12分20.(1)证明:∵A1D⊥ 平面ABC,A1D平面ACC1A1,∴平面ACC1A1⊥ 平面ABC,且交线为AC.∵BC平面ABC,且BC⊥AC,∴BC⊥ 平面ACC1A1.∵AC1平面ACC1A1,∴BC⊥AC1,……3分又AA1=AC,∴ACC1A1为菱形.∴AC1⊥A1C.∵A1C,BC平面A1BC,且A1C∩BC=C,∴AC1⊥ 平面A1BC,……5分,∵BA1平面A1BC,∴BA1⊥AC1……6分(2)VB1-A1DB=VD-A1B1B=12VC-A1B1B=12VC1-A1B1B=12VB-A1B1C1=16VABC-A1B1C1=16³2³2³12³槡3=槡33.……12分21.(1)设A(x1,y1),B(x2,y2),直线l的方程为x=my+p2,由x=my+p2,y2=2px烅烄烆.消去x得y2-2pmy-p2=0.所以y1+y2=2pm,y1y2=-p2.……2分∵→=-3,∴x1x2+y1y2=-3.x1x2=y122p²y222p=p24,所以p24-p2=-3,p2=4.∵p>0,∴p=2.……4分(2)由(1)y1+y2=4m,y1y2=-4,则(y1-y2)2=(y1+y2)2-4y1y2=16(m2+1).|AB|2=(y1-y2)2+(x1-x2)2=(y1-y2)2+(y12-y224)2=(y1-y2)2[1+(y1+y24)2]=16(m2+1)2.……6分∴|AB|=4(m2+1).∵|AC|,|CD|,|BD|成等差数列,∴2|CD|=|AC|+|BD|=|AC|+|BC|-|CD|=|AB|-|CD|.∴|AB|=3|CD|.……9分又CD为圆x2+y2-2x=0的直径,∴|CD|=2.∴4(m2+1)=6,m=±槡22.……11分即l的方程为槡2x±y-槡2=0.……12分22.(1)f′(x)=k+4kx-4x2-1=-x2-(k+4k)x+4x2=-(x-k)(x-4k)x2,(x>0,k>0)……1分①当0<k<2时,4k>k>0,且4k>2,∴x∈ (0,k),f′(x)<0,x∈ (k,2),f′(x)>0.∴函数f(x)在(0,k)上单调递减,在(k,2)上单调递增;……3分② 当k=2时,4k=k=2,f′(x)=-(x-2)2x2<0恒成立,∴函数f(x)在(0,2)上单调递减;……4分③ 当k>2时,0<4k<2,k>4k>0.∴x∈ (0,4k),f′(x)<0,x∈ (4k,2),f′(x)>0.∴函数在(0,4k)上单调递减,在(4k,2)上单调递增.……6分(2)由题意,f′(x1)=f′(x2)(x1,x2>0,且x1≠x2),即k+4kx1-4x12-1=k+4kx2-4x22-1,化简得4(x1+x2)=(k+4k)x1x2,而x1x2<(x1+x22)2,∴4(x1+x2)<(k+4k)(x1+x22)2,即x1+x2>16k+4k对k∈[4,+∞)恒成立.……8分令g(k)=k+4k,g′(k)=1-4k2=(k+2)(k-2)k>0对k∈[4,+∞)恒成立,∴g(k)≥g(4)=5.∴16k+4k≤165.∴x1+x2>165.即x1+x2的取值范围是(165,+∞).……12分。
2015届高三模拟考试 数学(文) Word版含答案
2015届高三模拟考试数学试题(文科)一、选择题:本大题10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的。
1.设集合{}23,logP a=,{}Q,a b=,若{}Q=0P,则Q=P()A.{}3,0B.{}3,0,1C.{}3,0,2D.{}3,0,1,22.复数iiz+-=121所对应的点在()A.第一象限B.第二象限C.第三象限D.第四象限3.若,326sin=⎪⎭⎫⎝⎛-απ则=⎪⎭⎫⎝⎛+απ232cos()A.95- B.95C.97- D.974.设.Ra∈则”“0112<+--aaa是“1<a”成立的()A.充分必要条件B.充分不必要条件C.必要不充分条件D.既非充分也非必要条件5.若向量b,满足2,1==ba且322=+ba,则向量b,的夹角为()A.6πB.3πC.2πD.32π6.下列关于函数()2tan()4f x x xπ=+-的图象的叙述正确的是()A.关于原点对称B.关于y轴对称C.关于直线4xπ=对称 D.关于点(,0)4π对称7.某几何体的三视图如图1所示,该几何体的体积为()A.263B.83π+ C.143πD.73π8.已知点(1,0),(1,0)A B-及抛物线22y x=,若抛物线上点P满足PA m PB=,则m的最大值为()A.3 B. 2 C. D.9.已知各项不为0的等差数列{}n a满足0327263=+-aaa,数列{}n b是等比数列,且66ab=,则1071bbb等于( )A. 1B. 2C. 4D. 810.鹰潭市某学校计划招聘男教师x名,女教师y名, x和y须满足约束条件⎪⎩⎪⎨⎧<≤-≥-6252xyxyx,则该校招聘的教师最多()名A B C D12.已知函数21()ln,(),22xxf xg x e-=+=对于(),0,a R b∀∈∃∈+∞使得()()g a f b=成立,则b a-的最小值为()A. 2ln B. 2ln- C. 32-e D. 32-e第Ⅱ卷二.填空题:本大题共5小题,每小题5分,共25分,把答案填在答题卡的相应位置。
山东青岛市2015届高三下学期第一次高考模拟考试(文科数学)(WORD版含答案)
山东青岛市2015届高三下学期自主练习数学(文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效.4.参考公式:球的表面积24S R π=.第Ⅰ卷(选择题 共50分)一、选择题:本大题共10小题.每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集=R U ,集合{|0}A x x =>,{|01}B x x =<<,则()U C A B =A .{01}x x <<B .{0}x x ≤C .{1}x x <D .R2.复数31iz i+=-(i 为虚数单位)在复平面内对应的点位于 A .第一象限 B .第二象限 C .第三象限 D .第四象限 3.下列命题的否定为假命题的是 A .2R,220x x x ∃∈++≤B .任意一个四边形的四个顶点共圆C .所有能被3整除的整数都是奇数D .22R,sin cos 1x x x ∀∈+=4.函数4x y e x =+-的零点所在区间为 A .(1,0)-B .(0,1)C .(1,2)D .(2,3)5.点(,)M a b 在圆221x y +=上,则直线1ax by +=与圆221x y +=的位置关系是 A. 相交B. 相切C. 相离D. 不确定6.执行右面的程序框图,若输出结果为3,则可输入的 实数x 值的个数为 A .1B .2C .3D .4开始 输出y输入x否是>2?x21y x =-2log y x=7.若变量,x y 满足约束条件280403x y x y +≤⎧⎪≤≤⎨⎪≤≤⎩,则2z x y =+的最大值等于 A .7B .8C .10D .118.已知函数()3sin cos (0)f x x x ωωω=+>的图象与 直线2y =-的两个相邻公共点之间的距离等于π,则()f x 的单调递减区间是 A .2[,],Z 63k k k ππππ++∈ B .[,],Z 36k k k ππππ-+∈ C .4[2,2],Z 33k k k ππππ++∈D .5[2,2],Z 1212k k k ππππ-+∈9.一个几何体的三视图如图所示,其中俯视图与左视图均为半径是2的圆,则这个几何体的表面积是A .24πB .16πC .12πD .8π 10.已知函数()f x 满足(1)(1)f x f x +=-,且当211x x >≥时,总有2121()()0f x f x x x ->-恒成立,则(2)x f 与(3)x f 的大小关系为A. (3)(2)x x f f ≥B. (3)(2)x x f f ≤C. (3)(2)x x f f < D .不确定第Ⅱ卷(非选择题 共100分)二、填空题:本大题共5小题,每小题5分,共25分. 11.已知抛物线2y ax =的准线方程为12y =-,则实数a = . 12.在样本频率分布直方图中,样本容量为160,共有11个小长方形,若中间一个小长方形的面积等于其他10个小长方形面积和的14,且则中间一组的频数为 .第9题图正视图俯视图左视图13.已知实数,x y 均大于零,且24x y +=,则22log log x y +的最大值为 . 14.已知向量,a b 满足3,2,5a b a b ==+=,则向量a 与b 夹角的余弦值为 . 15.如图:正六边形的两个顶点为某双曲线的两个焦点,其余 四个顶点都在该双曲线上,则该双曲线的离心率为 .三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤. 16. (本小题满分12分)某车间要加工某种零件,现将10名技工平均分为甲、乙两组,分别标记为1,2,3,4,5号,在单位时间内每个技工加工零件若干,其中合格零件的个数如下表:1号技工 2号技工 3号技工 4号技工 5号技工甲组 45 7 9 10 乙组5 6789(Ⅰ)分别求出甲、乙两组技工在单位时间内完成合格零件的平均数及方差,并由此比较两组技工的技术水平;(Ⅱ)质检部门从该车间甲、乙两组中各随机抽取1名技工,对其加工的零件进行检测,若两人完成合格零件个数之和超过12件,则称该车间“质量合格”,求该车间“质量合格”的概率.17.(本小题满分12分)在ABC ∆中,内角,,A B C 的对边分别为,,a b c 且a b >,已知4cos 5C =,32c =,2221sin cos sin cos sin 222B A A BC ++=. (Ⅰ)求a 和b 的值; (Ⅱ)求cos()B C -的值.18.(本小题满分12分)如图,平面ABCD ⊥平面ADEF ,其中ABCD 为矩形,ADEF 为梯形,//AF DE ,GADB C第15题图AF FE ⊥,2AF AD DE ==,G 为BF 中点.(Ⅰ)求证://EG 平面ABCD ; (Ⅱ)求证:AF DG ⊥.19.(本小题满分12分)已知数列{}n a 的前n 项和为n S ,10a =,1231n n a a a a n a ++++++=,*n ∈N .(Ⅰ) 求证:数列{1}n a +是等比数列;(Ⅱ) 设数列{}n b 的前n 项和为n T ,11b =,点1(,)n n T T +在直线112x y n n -=+上,若不等式1212911122n n nb b bm a a a a +++≥-++++对于*n ∈N 恒成立,求实数m 的最大值.20.(本小题满分13分)已知函数1()x x f x e+=. (Ⅰ)求函数()f x 的极大值;(Ⅱ)设定义在[0,1]上的函数()()()(R)x g x xf x tf x e t -'=++∈的最大值为M ,最小值为N ,且2M N >,求实数t 的取值范围.21.(本小题满分14分)已知椭圆:C 22221(0)x y a b a b +=>>的右焦点为(1,0)F ,且点3(1,)2P 在椭圆C 上,O 为坐标原点.(Ⅰ)求椭圆C 的标准方程;(Ⅱ)设过定点(0,2)T 的直线l 与椭圆C 交于不同的两点A 、B ,且AOB ∠为锐角,求直线l 的斜率k 的取值范围;(Ⅲ)过椭圆1:C 2222153x y a b +=-上异于其顶点的任一点P ,作圆:O 3422=+y x 的两条切线,切点分别为,M N (,M N 不在坐标轴上),若直线MN 在x 轴、y 轴上的截距分别为m 、n ,证明:22113m n +为定值.高三自主练习数学(文科)参考答案及评分标准一、选择题:本大题共10小题.每小题5分,共50分. C A D C B C C A B A二、填空题:本大题共5小题,每小题5分,共25分. 11.1212. 32 13. 1 14.36- 15.13+三、解答题:本大题共6小题,共75分,,写出必要的文字说明、证明过程或演算步骤. 16.(本小题满分12分)解:(Ⅰ)依题意,1=(457910)75x ++++=甲,1=(56789)75x ++++=乙……2分222222126=[(47)(57)(77)(97)(107)] 5.255S -+-+-+-+-==甲2222221=[(57)(67)(77)(87)(97)]25S -+-+-+-+-=乙……………………4分因为=x x 甲乙,22S S >乙甲,所以两组技工的总体水平相同,甲组技工的技术水平差异比乙组大,乙组更稳定.………………………………6分(Ⅱ)记该车间“质量合格”为事件A ,则从甲、乙两组中各抽取1名技工完成合格零件个数的基本事件为:(4,5),(4,6),(4,7),(4,8),(4,9),(5,5),(5,6),(5,7),(5,8),(5,9),(7,5),(7,6),(7,7),(7,8),(7,9),(9,5), (9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8), (10,9)共25种 ……………………………9分事件A 包含的基本事件为:(4,9),(5,8),(5,9), (7,6),(7,7),(7,8),(7,9),(9,5),(9,6),(9,7),(9,8),(9,9),(10,5),(10,6),(10,7),(10,8),(10,9)共17种所以 “质量合格”的概率为17()25P A =…………………………12分17. (本小题满分12分) 解:(Ⅰ)因为4cos 5C =,32c =,由余弦定理得:2222cos c a b ab C =+- 所以228185a b ab +-=①………………2分 由2221sin cossin cos sin 222B A A BC ++=可得 1cos 1cos 21sin sin sin 222B A A BC +++⋅+⋅=, …………………………3分 化简得sin sin cos sin sin cos (21)sin A A B B B A C +++=+.因为sin cos cos sin (si sin )n A B A B A B C =+=+, ………………………4分 所以sin sin 2sin A B C +=. 由正弦定理可知26a b c +==.② ……………………………………………6分由①②结合a b >,解得5,1a b ==.……………………………………………7分(Ⅱ)因为04cos 5C => 所以02C π<< 所以23sin 1cos 5C C =-=………………8分由正弦定理知sin sin b c B C =,所以sin sin b C B c =210=, …………………………9分 因为a b >,所以02B π<<所以272cos 1sin 10B B =-=,……………………………10分 所以cos()B C -cos cos sin sin B C B C =+ …………………………………………11分72423105105=⨯+⨯31250=. ………………………………………………………12分 18.(本小题满分12分)证明:(Ⅰ)取AB 的中点O ,连接ODG ADB CO因为,O G 分别是AB ,BF 的中点, 所以OG=12AF ,………………………2分 又因为//AF DE ,2AF DE = 所以OG=DE ,四边形ODEG 为平行四边形所以//EG OD ………………………………4分 因为OD ⊂平面ABCD ,EG ⊄平面ABCD所以//EG 平面ABCD ………………………………………………………5分(Ⅱ)取AF 的中点H ,连接DH 、GH 因为,G H 分别是BF ,AF 的中点,所以//GH AB ,………………………………………………………………7分 因为平面ABCD ⊥平面ADEF ,AB AD ⊥ 所以AB ⊥平面ADEF ,AB AF ⊥所以AF GH ⊥…………………………………………………………………9分因为//AF DE ,2AF DE = 所以四边形EFHD 为平行四边形,//EF DH又AF FE ⊥,所以AF DH ⊥………………………………………………11分 因为GH DH H = 所以AF ⊥平面DGH所以AF DG ⊥ …………………………………………………………12分19.(本小题满分12分) 解:(Ⅰ)由1231n n a a a a n a ++++++=,得12311(2)n n a a a a n a n -+++++-=≥ ,两式相减得121n n a a +=+,………………………… 2分 所以112(1)n n a a ++=+ (2n ≥),因为10a =,所以111a +=,2111a a =+=,2112(1)a a +=+所以1{1}a +是以1为首项,公比为2的等比数列. ………………4分 (Ⅱ)由(Ⅰ)得121n n a -=-,因为点1(,)n n T T +在直线112x y n n -=+上,所以1112n n T T n n +-=+, 故{}n T n是以111T =为首项,12为公差的等差数列, …………………………6分则11(1)2n T n n =+-,所以(1)2n n n T +=, 当2n ≥时,1(1)(1)22n n n n n n n b T T n -+-=-=-=, 因为11b =满足该式,所以n b n = …………………………8分所以不等式1212911122n n nb b bm a a a a +++≥-++++, 即为2123912222n n n m -+++≥-, 令21231222n n n R -=+++,则23112322222n nnR =+++, 两式相减得231111112(1)122222222n n n n n n R -+-=++++-=-,所以1242n n n R -+=-…………………………10分由92n n R m ≥-恒成立,即2542nn m --≥恒成立, 又11232527(4)(4)222n n n n n n ++------=, 故当3n ≤时,25{4}2n n --单调递减;当3n =时,323531428⨯--=; 当4n ≥时,25{4}2n n --单调递增;当4n =时,4245614216⨯--=; 则2542n n --的最小值为6116,所以实数m的最大值是6116…………………………12分20.(本小题满分13分)解:(Ⅰ)()x xf x e-'=当0x ≥时,()0f x '≤,所以()f x 在区间[0,)+∞上为减函数, 当0x <时,()0f x '>,所以()f x 在区间(,0]-∞上为增函数, 所以()(0)1f x f ==极大值 ……………………………………………4分(Ⅱ)因为2(1)1()xx t x g x e +-+=所以()(1)()xx t x g x e ---'= ……………………………………………6分① 当1t ≥时,()0g x '≤,()g x 在[0,1]上单调递减, 由2N M <, 所以2(1)(0)g g <,即321te-⋅<,得32e t >- ………………………………………………8分② 当0t ≤时,()0g x '≥,()g x 在[0,1]上单调递增, 所以2(0)(1)g g <即32t e-<,得32t e <- ………………………………10分③ 当01t <<时,在[0,)x t ∈,()0g x '<,()g x 在[0,]t 上单调递减,在(,1]x t ∈,()0g x '>,()g x 在[,1]t 上单调递增所以2()max{(0),g(1)}g t g < 即132max{1,}t t te e+-⋅< (*) 由(Ⅰ)知1()tt f t e +=在(0,1)t ∈上单调递减 故1421t t e e +⨯>>,而334t e e e-<< 所以不等式(*)无解 ……………………………………12分综上所述,(,32)(3,)2et e ∈-∞--+∞. ………………………………13分21.(本小题满分14分)解:(Ⅰ)由题意得:1c = 所以221a b =+ ……………………2分又因为点3(1,)2P 在椭圆C 上,所以221914ab+=,可解得224,3a b ==所以椭圆标准方程为22143x y +=.………………………………4分 (Ⅱ)设直线l 方程为2y kx =+,设11(,)A x y 、22(,)B x y由221432x y y kx =+=+⎧⎪⎨⎪⎩得:22(43)1640k x kx +++=,因为21230k ∆=->,所以214k >, ……………………………6分 又1221643k x x k -+=+,122443x x k =+ 因为AOB ∠为锐角,所以0OA OB ⋅>, 即12120x x y y +>, 所以1212(2)(2)0x x kx kx +++>,所以21212(1)2()40k x x k x x ++++>.………………………………8分 所以222416(1)2404343kk k k k -+⋅+⋅+>++即221216043k k -+>+,所以243k <. 所以21443k <<,解得23132k -<<-或12323k <<………………………………9分 (Ⅲ)由题意:1:C 223144x y +=设点11(,)P x y ,22(,)M x y ,33(,)N x y , 因为,M N 不在坐标轴上,所以221PM OMx k k y =-=-直线PM 的方程为2222()x y y x x y -=-- 化简得:2243x x y y +=--------------④ ………………………………11分 同理可得直线PN 的方程为3343x x y y +=---------------⑤把P 点的坐标代入④、⑤得212131314343x x y y x x y y ⎧+=⎪⎪⎨⎪+=⎪⎩所以直线MN 的方程为1143x x y y +=,………………………………12分 令0y =,得143m x =,令0x =得143n y =, 所以143x m =,143y n =又点P 在椭圆1C 上, 所以2244()3()433m n +=, 即2211334m n +=为定值. (14)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2 + = > > 2015 届高三文科数学基础训练题(一)
一、选择题:本大题共 10 小题,每小题 5 分,满分 50 分.在每小题给出的四
个选项中,只有一项是符合题目要求的.
1. 复平面内,复数( + i )2 对应的点位于(
)
A .第一象限 B.第二象限
C.第三象限
D.第四象限
2.已知 p :| x |< 2; q : x 2 - x - 2 < 0,则⌝p 是⌝q 的(
)
A. 充分不必要条件
B .必要不充分条件
C .充要条件
D .既不充分也不必要条件
3. 已知函数 f (x ) 是定义在 R 上的奇函数,当 x > 0 时, f (x ) = 2x ,则 f (-2) = (
)
A. 1 4
B.
4
C.
- 1 4
D.
- 4
4. 已知向量 a = (1,n ),b = (-1,n ) , 若 2a - b 与 b 垂直, 则 a = (
)
A .1 B.
C . 2
D .4
5. 某程序框图如图所示,该程序运行后输出的k 的值是( )
A . 4
B . 5
C . 6
D . 7 6. 过点 P (0,1)与圆 x 2 + y 2 - 2x - 3 = 0 相交的所有直线中,被圆截得的弦最长时的直线方程是( )
A .x =0
B .y =1
C .x +y -1=0
D .x -y +1=0
7.若等差数列{a n }满足a 2 + S 3 = 4, a 3 + S 5 = 12 ,则a 4 + S 7 的值是( )
A .20
B .24
C .36
D .72
8. 有如下一些说法,其中正确的是 ( )
①若直线a ∥ b , b 在面内,则a ∥; ②若直线a ∥, b 在面内,则a ∥ b ; ③若直线a ∥ b , a ∥,则b ∥; ④若直线a ∥, b ∥,则a ∥ b . A .①④ B .①③ C .②
D .均不正确
9. 设椭圆 x m 2
1
y 2
2 n 2
1(m 0,n 0) 的右焦点与抛物线 y = 8x 的焦点相同,离心
率为 ,则此椭圆的方程为( )
2
3 2
5 ⎨ ⎩ y =2+3t . + = + = + = + = x 2 y 2
A . x 2 y 2
B . x 2 y 2
C . x 2 y 2
D . 16 12 12 16 48 64 64 48
10. 对于任意 x 、y ,定义运算 x * y = ax + by + cxy ,其中 a 、b 、c 是常数,等式
右边的运算是通常的加法和乘法运算。
现已知1* 2 = 3, 2 * 3 = 4 ,并且有一个非零实数 m ,使得对于任意实数 x ,都有 x * m = x ,则 m 的值是( ) A .1 B .2 C .3 D .4
二、填空题:本大题共 5 小题,考生作答 4 小题,每小题 5 分,满分 20 分. (一)必做题(11--13 题) 11.(1)教育局督学组到学校检查工作,需在学号为 0001-1000 的高三年级的学生中抽调 20 人参加学校管理的综合座谈会;(2)该校高三年级这 1000 名学生参加 2009 年新年晚会,要产生 20 名“幸运之星”;(3)该校高三年级 1000 名学生一摸考试的数学成绩有 240 人在 120 分以上(包括 120 分),600 人在 120分以下 90 分以上(包括 90 分),其余在 90 分以下,现欲从中抽取 20 人研讨进一步改进数学教与学的座谈会. 用如下三种抽样方法:①简单随机抽样 ②系统抽样 ③分层抽样 选取样本,则以上三件事,最合理的抽样方法序号依次为
⎧x - y ≥
0, 12.设变量 x ,y 满足约束条件⎪
x + y ≤1,则目标函数 z = 5x + y 的最大值为
⎪x + 2 y ≥1. 13.函数 y = f (x ) 的图像在点 M (1, f (1)) 处的切线方程是 y = 3x - 2 , f (1) + f / (1) = (二)选做题(14、15 题,考生只能从中选作一题)
14.(坐标系与参数方程选做题)若直线{x =1-2t ,
( t 为参数)与直线4x + ky = 1
平行,则常数k = .
15.(几何证明选讲选做题)如图 4, P 是圆O 外一点,过 P 引圆O 的两条割线 PAB 、 PCD , PA = AB = , CD = 3 ,则 PC =
.
图 4
1
1
1
1。