(完整版)材料力学笔记(第四章)

合集下载

材料力学 第四章 本构关系

材料力学 第四章 本构关系

W t
ijij
(9)
其中 ij 为应变张量对时间的变化率,称为应变率张量。
§4-1 热力学定律与应变能
令初始状态的应变能W=0,则
W Wdt d t
ij (t )
t0
ij (t0 ) ij ij
(10)
W
ij
ij
(11)
此式给出了弹性物质的应力-应变关系,称之为格林公式。
§4-2 各向异性材料的本构关系
y C12 x C22 y C23 z
具有这种应力-应变关系的 材料称为正交各向异性弹
z C13 x C23 y C33 z
性材料,这时独立的弹性 常数只有9个。
yz C44 yz zx C55 zx
xy C66 xy
(17)
§4-3 具有弹性对称面的弹性材料的本构关系
x ' y, y ' x, z ' z
由应力分量和应变分量之间的坐标变换得 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy 'x y , 'y x, 'z z 'yz zx , 'zx yz , 'xy xy
§4-3 具有弹性对称面的弹性材料的本构关系
(四)完全弹性对称与各向同性材料
其中kk xx yy zz , 和 称为拉梅系数。
(20)称为各向同性线性弹性介质的广义胡克定律。 各向同性线性弹性材料只有2个独立的弹性常数; 伴随正应变只有正应力,同时伴随切应变也只有切 应力。 由(20)可得
第四章 本构关系
静力学问题和运动学问题是通过物体的材 料性质联系起来的。力学量(应力,应力 速率等)和运动学量(应变,应变速率等) 之间的关系式称之为本构关系或本构方程。 本章仅讨论不考虑热效应的线弹性本构关 系——广义胡克定律。

(完整版)材料力学各章重点内容总结

(完整版)材料力学各章重点内容总结

材料力学各章重点内容总结第一章 绪论一、材料力学中工程构件应满足的3方面要求是:强度要求、刚度要求和稳定性要求。

二、强度要求是指构件应有足够的抵抗破坏的能力;刚度要求是指构件应有足够的抵抗变形的能力;稳定性要求是指构件应有足够的保持原有平衡形态的能力。

三、材料力学中对可变形固体进行的3个的基本假设是:连续性假设、均匀性假设和各向同性假设。

第二章 轴向拉压一、轴力图:注意要标明轴力的大小、单位和正负号。

二、轴力正负号的规定:拉伸时的轴力为正,压缩时的轴力为负。

注意此规定只适用于轴力,轴力是内力,不适用于外力。

三、轴向拉压时横截面上正应力的计算公式:N F Aσ= 注意正应力有正负号,拉伸时的正应力为正,压缩时的正应力为负。

四、斜截面上的正应力及切应力的计算公式:2cos ασσα=,sin 22αστα=注意角度α是指斜截面与横截面的夹角。

五、轴向拉压时横截面上正应力的强度条件[],maxmax N F A σσ=≤六、利用正应力强度条件可解决的三种问题:1.强度校核[],maxmax N F A σσ=≤一定要有结论 2.设计截面[],maxN F A σ≥ 3.确定许可荷载[],max N F A σ≤七、线应变l l ε∆=没有量纲、泊松比'εμε=没有量纲且只与材料有关、 胡克定律的两种表达形式:E σε=,N F l l EA∆= 注意当杆件伸长时l ∆为正,缩短时l ∆为负。

八、低碳钢的轴向拉伸实验:会画过程的应力-应变曲线,知道四个阶段及相应的四个极限应力:弹性阶段(比例极限p σ,弹性极限e σ)、屈服阶段(屈服极限s σ)、强化阶段(强度极限b σ)和局部变形阶段。

会画低碳钢轴向压缩、铸铁轴向拉伸和压缩时的应力-应变曲线。

九、衡量材料塑性的两个指标:伸长率1100l l lδ-︒=⨯︒及断面收缩率1100A A Aϕ-︒=⨯︒,工程上把5δ︒≥︒的材料称为塑性材料。

十、卸载定律及冷作硬化:课本第23页。

材料力学-整理笔记

材料力学-整理笔记

材料力学第1章绪论1.1材料力学的任务构件应满足以下基本要求:强度,刚度,稳定性要求1.2材料力学的基本假设连续性,均匀性,各向同性假设1.3杆件的基本变形形式拉伸或压缩,剪切,扭转,弯曲1.4内力一截面法1.5应力平均应力-p:应力p:应力,切应力,正应力:1.6应变1.棱边长度的改变(原长为△x,变形后成为△x+△u)该点处沿x方向的线应变:2.棱边间夹角的改变切应变:y。

切应变的单位为rad第2章拉伸压缩与剪切2.1拉压杆的内力及应力2.1.1轴力、轴力图Fn=FFn即为横截面n—n上的内力。

由于F的作用线与杆轴线重合,故称为轴力。

规定拉伸的轴力为正,压缩为负。

2.1.2轴力图2.1.3拉压杆横截面上的应力轴向载荷作用下杆件是否破坏,不仅与轴力的大小有关,还与横截面面积有关。

正应力:。

拉应力为正,压应力为负。

2.1.4斜截面上的应力斜面上的全应力Pa:将全应力Pa分解为沿斜面法向的正应力和沿切向的切应力思考:a=0/45/90°时,正应力,切应力大小2.2拉压杆的变形2.2.1 轴向与横向变形轴向线应变为:。

以伸长为正,缩短为负。

横向线应变为:。

正负号与轴向线应变相反。

材料的泊松比u(量纲一):2.2.2 拉压胡克定律当应力o未超过某一极限值时,拉压杆的轴向变形与外力F及杆的原长l 成正比,与横截面面积A成反比。

引进比例常数E,则有胡克定律公式:E为材料的弹性模量,其量纲为ML^-1T^-2。

EA反映了杆件抵抗拉压变形的能力,称为杆件的抗拉(压)刚度。

由Fn/A=正应力,△l/l=线应力,故。

(在弹性范围内,正应力与线应变成正比。

)2.3金属拉压时的力学性能2.3.1低碳钢拉伸时的力学性质1.在拉伸过程中,标距l的伸长量与试件所受载荷F之间的关系曲线F—△l 称为拉伸曲线。

工程应力:将纵坐标值F除以原始的横截面面积A,即为正应力=F/A工程应变:将横坐标值除以原始的标距长度l,即为线应变=△l /l将拉伸曲线F—△l变为应力应变曲线(消除试件尺寸的影响)(1)弹性阶段Ob:弹性阶段的应力最高限称为材料的弹性极限(用符号6e表示)。

材料力学笔记

材料力学笔记

作者简介:郭志明,现在就读天津大学固体力学专业绪论基本概念材料力学的任务:载荷,弹性变形,塑性变形设计构件需要满足以下三个方面的要求:强度,刚度,稳定性强度:构件抵抗破坏的能力刚度:构件抵抗变形的能力稳定性:构件维持其原有平衡形式的能力基本假设:连续均匀性,各项同性,小变形研究对象及变形形式:杆:构件的某一方向的尺寸远大于其他两个方面的尺寸平板,壳,块体变形形式:拉伸(压缩),剪切,扭转,弯曲基本概念内力:构件内部相邻两部分之间由此产生的相互作用截面法:假象切开,建立平衡方程,求截面内力第一章:轴向拉伸,压缩和剪切基本概念轴力:截面内力FN及FN’的作用线与轴线重合,称为内力轴力图:表示轴力随横截面位置的变化应力:轴力FN均匀分布在杆的横截面上FA圣维南原理斜截面上的应力:P cos拉压杆的变形:F NE l(弹性范围内)A lEA称为杆件的抗拉(压)刚度泊松比:弹性范围内。

横向应变和纵向应变之比的绝对值工程材料的力学性能:材料在外力作用下在强度和变形方面表现出的性能。

Eg:应力极限值,弹性模量,泊松比等。

力学性能决定于材料的成分和结构组织,与应力状态,温度和加载方式相关,力学性能,需要通过实验方法获得。

弹性变形:塑性变形:低碳钢拉伸实验四个阶段:弹性,屈服,强化,颈缩屈服:应力在应力-应变曲线上第一次出现下降,而后几乎不变,此时的应变却显著增加,这种现象叫做屈服冷作硬化:常温下经过塑性变形后材料强度提高,塑性降低的现象ln(1),l/l0(工程应变)真应力应变:t其他材料的拉伸实验温度,时间及加载速率对材料力学性能的影响蠕滑现象:松弛现象:冲击韧性:材料抵抗冲击载荷的能力(可以通过冲击实验测定)许用应力:对于某种材料,应力的增长是有限的,超过这一限度,材料就要破坏,应力可能达到的这个限度称为材料的极限应力。

通常把材料的极限应力/n作为许用应力[σ],[]u强度条件:杆内的最大工作应力max(FN)[]n uA n节点位移计算集中应力:由于试件截面尺寸急剧改变而引起的应力局部增大的现象应力集中系数:K max/n,σn是指同一截面上认为应力均匀分布时的应力值超静定问题:未知力的数目超过独立的平衡方程的数目,因此只由平衡方程不能求出全部未知力,这类问题成为超静定问题。

材料力学笔记

材料力学笔记

材料力学笔记第一章绪论材料应满足的基本要求:强度要求(抵抗破坏的能量),刚度要求(抵抗变形的能力),稳定性要求(保持原有平衡形态的能力)。

基本假设:连续性假设,均匀性假设、各向同性假设内力:物体内部各部分之间因相对位置改变而引起的相互作用。

垂直于截面的应用分量称为正应力sigma(σ),切于截面的应力称为切应力tau(τ);应变epsilon ε:研究对象某点沿某个方向的伸长或缩短值;切应变γ:研究对象在某个平面内角度的变化;材料变形的基本形式:拉伸或压缩;剪切;扭转第二章拉伸、压缩与剪切截面应力:σ=F NA ;斜截面正应力:σα=σcos2α;斜截面切应力:τα=12σsin2α低碳钢材料力学性能:弹性阶段,屈服阶段,强化阶段,局部变形阶段。

相关概念有比例极限σp,弹性极限σe,屈服极限σs,强度极限σb断裂和塑性变形统称为失效。

许用应力,对塑性材料[σ]=σsn s ; 对于脆性材料:[σ]=σbn b应力应变关系胡克定律:σ=Eε,Δl=FlEA,EA为杆件的抗拉或抗压刚度抽象拉伸或压缩的应变能,应变能密度:vε=σ22E(J/m3)剪切面切应力:τ=F sA ≤[τ];挤压应力:σbs=F NA bs≤[σbs ]第三章扭矩计算外力偶矩{M e}=9549Pn,P为功率,n为转速。

切应力互等定理:在相互垂直的两个平面上,切应力必然成对存在,且数值相等。

切应变: γ=rφlφ表示圆柱两端截面的相对转角,称为扭转角剪切胡克定律:切应变γ与切应力τ成正比τ=Gγ、剪切应变能密度:vε=τ22G(J/m3)圆柱扭转时最大切应力:τmax=TW ,T内力系对圆心的力矩T=∫ρτρdAA, W=I pRI p=∫ρ2dAA为极惯性矩(截面二次矩);W为抗扭截面系数扭转角φ=TlGI p,其中GI p为圆轴的抗扭刚度第四章弯曲内力受弯杆件的简化:简支梁,外伸梁,悬臂梁统称为静定梁 剪力和弯矩相关推论:(1) 在梁的某段内,若无载荷作用,q (x )=0,dFs(x)dx=q (x )=0,剪切图平行于x 轴的直线,M(x)是x 的一次函数,弯矩图是斜直线。

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-弯曲内力(圣才出品)

刘鸿文《材料力学》(第5版)笔记和课后习题(含考研真题)详解-弯曲内力(圣才出品)
1 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台

图 4-3
2.载荷的简化 (1)集中载荷:载荷的作用范围远小于杆件轴向尺寸。 (2)分布载荷:沿轴向连续分布在杆件上的载荷,常用 q 表示单位长度上的载荷,称 为载荷集度,如风力、水力、重力。常用的有均布载荷,线性分布载荷。 (3)集中力偶
3.静定梁的基本形式 为方便梁的求解,通常将梁简化,以便得到计算简图。当梁上支反力数目与静力平衡方 程式的数目相同时,即支反力通过静力平衡方程即可完全确定时,称之为静定梁,以下三种 形式的梁均为静定梁。 (1)简支梁:一端为固定铰支座,一端为可动铰支座,如图 4-4 所示。
图 4-4 (2)外伸梁:一端或两端向外伸出的简支梁,如图 4-5 所示。
4.2 课后习题详解
5 / 49
圣才电子书 十万种考研考证电子书、题库视频学习平台

4.1 试求图 4-8 所示各梁中截面 1-1,2-2,3-3 上的剪力和弯矩,这些截面无限接近 于截面 C 或截面 D。设 F,q,a 均为已知。
图 4-8 解:(a)①1-1 截面:沿该截面断开,对右部分进行受力分析,根据平衡条件:
④若
FS
(x)
=
0 ,则
dM (x) dx
=
FS
(x)
=
0
。此时该截面上弯矩有极值(极大值或极小
值)。此外,弯矩的极值还可能出现在集中力和集中力偶作用处截面。
3.外力与内力图的内在联系
(1)斜率规律
剪力图在任一截面处的斜率值等于该截面外力分布载荷的集度值,同理弯矩图图在任一
截面处的斜率值等于该截面剪力值:
圣才电子书

十万种考研考证电子书、题库视频学习平台

猴博士材料力学笔记pdf

猴博士材料力学笔记pdf

猴博士材料力学笔记pdf
猴博士材料力学笔记
导言:
材料力学是研究材料在外力作用下的力学行为的学科。

它涉及力、应力、应变和物体的强度、刚度以及变形行为等方面的研究。

本笔记将从基本力学原理入手,逐步介绍材料力学的相关概念和理论。

第一章基本力学原理
1.1 物体的外力和内力
1.2 牛顿第一定律:惯性定律
1.3 牛顿第二定律:运动定律
1.4 牛顿第三定律:作用力与反作用力
第二章应力和应变
2.1 应力的定义与分类
2.2 应变的定义与分类
2.3 应力-应变关系
2.4 阿基米德原理在应力应变计算中的应用
第三章弹性力学
3.1 弹性力学的基本假设
3.2 胡克定律及其应用
3.3 弹性变形的表征及计算
3.4 弹性体的能量和能量方法
第四章塑性力学
4.1 塑性力学的基本概念
4.2 塑性变形的表征及计算
4.3 塑性力学中的流变学关系
4.4 塑性体的能量和能量方法
第五章断裂力学
5.1 断裂力学的基本概念
5.2 应力集中和应力分布
5.3 断裂韧性的计算方法
5.4 断裂失效的预测和分析
结语:
材料力学是现代工程学的基础学科之一,对于工程材料的设计、生产和应用都具有重要意义。

通过学习本笔记,我们可以对材料在力学作用下的力学行为有更深入的了解,为实际工程问题的解决提供理论指导。

注意:本笔记中不包含任何网址、超链接和电话信息。

若需要进一步了解相关内容,请参考相关教材或参与相关课程学习。

完整版材料力学性能课后习题答案整理

完整版材料力学性能课后习题答案整理

完整版材料⼒学性能课后习题答案整理材料⼒学性能课后习题答案第⼀章单向静拉伸⼒学性能1、解释下列名词。

1弹性⽐功:⾦属材料吸收弹性变形功的能⼒,⼀般⽤⾦属开始塑性变形前单位体积吸收的最⼤弹性变形功表⽰。

2.滞弹性:⾦属材料在弹性范围内快速加载或卸载后,随时间延长产⽣附加弹性应变的现象称为滞弹性,也就是应变落后于应⼒的现象。

3.循环韧性:⾦属材料在交变载荷下吸收不可逆变形功的能⼒称为循环韧性。

4.包申格效应:⾦属材料经过预先加载产⽣少量塑性变形,卸载后再同向加载,规定残余伸长应⼒增加;反向加载,规定残余伸长应⼒降低的现象。

5.解理刻⾯:这种⼤致以晶粒⼤⼩为单位的解理⾯称为解理刻⾯。

6.塑性:⾦属材料断裂前发⽣不可逆永久(塑性)变形的能⼒。

脆性:指⾦属材料受⼒时没有发⽣塑性变形⽽直接断裂的能⼒韧性:指⾦属材料断裂前吸收塑性变形功和断裂功的能⼒。

7.解理台阶:当解理裂纹与螺型位错相遇时,便形成⼀个⾼度为b的台阶。

8.河流花样:解理台阶沿裂纹前端滑动⽽相互汇合,同号台阶相互汇合长⼤,当汇合台阶⾼度⾜够⼤时,便成为河流花样。

是解理台阶的⼀种标志。

9.解理⾯:是⾦属材料在⼀定条件下,当外加正应⼒达到⼀定数值后,以极快速率沿⼀定晶体学平⾯产⽣的穿晶断裂,因与⼤理⽯断裂类似,故称此种晶体学平⾯为解理⾯。

10.穿晶断裂:穿晶断裂的裂纹穿过晶内,可以是韧性断裂,也可以是脆性断裂。

沿晶断裂:裂纹沿晶界扩展,多数是脆性断裂。

11.韧脆转变:具有⼀定韧性的⾦属材料当低于某⼀温度点时,冲击吸收功明显下降,断裂⽅式由原来的韧性断裂变为脆性断裂,这种现象称为韧脆转变2、说明下列⼒学性能指标的意义。

答:E 弹性模量 G 切变模量 r σ规定残余伸长应⼒ 2.0σ屈服强度 gt δ⾦属材料拉伸时最⼤应⼒下的总伸长率 n 应变硬化指数P153、⾦属的弹性模量主要取决于什么因素?为什么说它是⼀个对组织不敏感的⼒学性能指标?答:主要决定于原⼦本性和晶格类型。

材料力学第四章知识点总结(刘鸿文主编)

材料力学第四章知识点总结(刘鸿文主编)

跨长——梁在两支座间的长度。
材料力学
a A l FAX A FAY
§4-3
剪力和弯矩
[例] 已知:如图,F,a,l。
一、弯曲内力的确定(截面法):
F B 求:距A端 x 处截面上内力。 解:①求外力(支座反力)

F
B FBY
∑ X = 0, ∴ F = 0 ∑ M = 0 , F l − Fa = 0 ∑Y = 0 , F − F + F = 0
¾ 利用特殊点的内力值(截面法)来定值; ¾ 利用剪力、弯矩与分布荷载间积分关系定值。 积分关系:
dFs ( x ) Q = q (x ) dx ∴ ∫ dFs ( x ) = ∫ q ( x ) dx
Q1 x1 Q2 x2
dM ( x ) Q = Fs ( x ) dx ∴∫
M2 M1
dM ( x ) = ∫ Fs ( x ) dx
特点:铰链传力不传力偶矩,与铰 相连的两横截面上,M = 0 , FS 不 一定为零。
A FA C
qa 2
a a
MB
B FB
a
a
FS 0.5qa
O
0.5qa
2 M qa /8 O
x 1.5qa qa2 x 2qa 2 2.5qa 2
0.5qa 2
材料力学
1、刚架
§4-6 平面刚架和曲杆的内力图
用刚性接头连接的杆系结构。 刚性接头的特点: z 约束-限制相连杆端截面间的相对线位移与角位移。 z 受力-既可传力,也可传递力偶矩。 平面刚架:轴线由同一平面折线组成的刚架。 特点:刚架各杆横截面上的内力有:Fs、M、FN 。
M(x)+d M(x)
dM ( x ) = Fs ( x) dx

刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第3~4章【圣才出品】

刘鸿文《材料力学》(第6版)复习笔记和课后习题及考研真题详解-第3~4章【圣才出品】
Me 2 r 2
2.切应力互等定理
2 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

单元体相互垂直的两个平面上,切应力必然成对存在,且数值相等,都垂直于两个平面 的交线,方向则共同挃向或共同背离这一交线。
3.剪切胡克定律
(1)纯剪切
若单元体的各个侧面上只有切应力并无正应力,这种情况称为纯剪切。
4.剪切应变能
在应力小于剪切比例枀限的情况下,单位体积内的剪切应变能密度为
ν
1
2
2
2G
上述公式主要用于线弹性范围内纯剪切应力状态下剪切应变能密度的计算。
3 / 166
圣才电子书 十万种考研考证电子书、题库视频学习平台

三、囿轴扭转时的应力和变形 1.囿轴扭转时的应力 (1)应力计算公式 推导囿轴扭转时的应力计算公式,需同时考虑变形几何、物理和静力三方面的关系。 ①变形几何关系:囿轴扭转的平面假设; ②物理关系:剪切胡克定律; ③静力关系:横截面上的内力系对囿心的力矩合成为扭矩。 如图 3-1-2 所示,横截面上任一点的切应力为 τρ=Tρ/Ip 囿截面边缘的最大切应力 τmax=TR/Ip=T/Wt 式中,ρ 为应力点到囿心的距离;Ip 为横截面的枀惯性矩;Wt 为扭转截面系数。
4c 1 4c 4
0.615 c
8FD πd 3
k
8FD πd 3
式中,c 为弹簧挃数,c=D/d;k 为曲度系数
k 4c 1 0.615 4c 4 c
(3)强度条件
τmax≤[τ]
2.弹簧的变形计算
在作用点在弹簧圀中心的力 F 的作用下,沿力的作用方向的位秱
8FD3n 64FR3n F
图 3-1-2 对于直徂为 D 实心囿形截面 Ip=πD4/32,Wt=πD3/16 对于内徂为 d,外徂为 D 的空心囿截面

《材料力学》读书笔记思维导图

《材料力学》读书笔记思维导图

第七节 强度理论
第九节 各种强度理 论的应用
第八章 组合变形
第一节 组合变 1
形概念和工程 实例
第二节 斜弯曲 2
变形的应力及 强度计算
3 第三节 拉伸
(压缩)与弯 曲的组合变形
4
第四节 偏心压 缩(拉伸)
5
第五节* 弯扭 组合变形
第九章 压杆稳定
1
第一节 压杆稳 定性的概念
第二节 细长中 2
心受压直杆临 界力的欧拉公 式
3 第三节 临界应
力·欧拉公式的 适用范围·临...
4 第四节 压杆稳
定性条件及实 用计算
5 第五节 提高压
杆稳定性的措 施
附录Ⅰ 截面图形的几何性质
附录Ⅱ 常用截面的几何性质计算 公式
附录Ⅲ 型钢规格表
参考文献
感谢观看




第一章 绪论及基本概念
第一节 材料力学的 任务
第二节 材料力学的 基本假设
第三节 内力、截面 法、应力和位移
第四节 杆件的基本 变形形式
第二章 轴向拉压杆件的强度与变 形
第一节 轴向拉 1
压杆的轴力及 轴力图
第二节 轴向拉 2
压杆横截面上 的应力及强度 计...
3
第三节 轴向拉 压杆的变形
4 第四节 轴向拉
压杆的力学性 能
5
第五节 连接件 的强度计算
第三章 圆轴扭转的强度与变形
第二节 圆轴扭转的 应力及强度计算
第一节 圆轴扭转的 扭矩及扭矩图
第三节 圆轴扭转的 变形及刚度计算
第四章 梁的强度计算
1
第一节 平面弯 曲的概念
2
第二节 梁的内 力及内力图

(完整版)材料力学基本概念和公式

(完整版)材料力学基本概念和公式

(完整版)材料力学基本概念和公式第一章绪论第一节材料力学的任务1、组成机械与结构的各组成部分,统称为构件。

2、保证构件正常或安全工作的基本要求:a)强度,即抵抗破坏的能力;b)刚度,即抵抗变形的能力;c)稳定性,即保持原有平衡状态的能力。

3、材料力学的任务:研究构件在外力作用下的变形与破坏的规律,为合理设计构件提供强度、刚度和稳定性分析的基本理论与计算方法。

第二节材料力学的基本假设1、连续性假设:材料无空隙地充满整个构件。

2、均匀性假设:构件内每一处的力学性能都相同3、各向同性假设:构件某一处材料沿各个方向的力学性能相同。

木材是各向异性材料。

第三节内力1、内力:构件内部各部分之间因受力后变形而引起的相互作用力。

2、截面法:用假想的截面把构件分成两部分,以显示并确定内力的方法。

3、截面法求内力的步骤:①用假想截面将杆件切开,一分为二;②取一部分,得到分离体;③对分离体建立平衡方程,求得内力。

4、内力的分类:轴力N F ;剪力S F ;扭矩T ;弯矩M第四节应力1、一点的应力:一点处内力的集(中程)度。

全应力0limA Fp A→?=?;正应力σ;切应力τ;p =2、应力单位:Pa (1Pa=1N/m 2,1MPa=1×106 Pa ,1GPa=1×109 Pa )第五节变形与应变1、变形:构件尺寸与形状的变化称为变形。

除特别声明的以外,材料力学所研究的对象均为变形体。

2、弹性变形:外力解除后能消失的变形成为弹性变形。

3、塑性变形:外力解除后不能消失的变形,称为塑性变形或残余变形。

4、小变形条件:材料力学研究的问题限于小变形的情况,其变形和位移远小于构件的最小尺寸。

对构件进行受力分析时可忽略其变形。

5、线应变:ll ?=ε。

线应变是无量纲量,在同一点不同方向线应变一般不同。

6、切应变:tan γγ≈。

切应变为无量纲量,切应变单位为rad 。

第六节杆件变形的基本形式1、材料力学的研究对象:等截面直杆。

材料力学笔记(第四章)

材料力学笔记(第四章)

材料力学笔记(第四章)材料力学(土)笔记第四章弯曲应力1.对称弯曲的概念及梁的计算简图1.1弯曲的概念在包含其轴线的纵向平面内,当等长直杆受到横向外力或垂直于杆轴线的外力耦合作用时,杆的轴线将变成曲线。

这种变形称为弯曲。

所有以弯曲为主要变形的钢筋在梁工程中通常称为梁,其截面具有对称轴。

如果梁上的所有横向外力或(和)力偶作用于包含对称轴的纵向平面(称为纵向对称平面),由于梁的几何、物理特性和外力与梁的纵向对称平面对称,变形梁的轴必须是纵向对称平面中的平面曲线。

这种弯曲叫做对称弯曲若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲1.2梁计算图梁的计算简图可用梁的轴线表示根据梁在荷载作用面上的约束,梁的支撑一般可简化为以下三种基本形式:① 固定端这种支座使梁的端截面既不能移动,也不能转动梁端截面上有三个约束。

因此,有三种支撑反应,即水平支撑反应frx、垂直支撑反应fry和支撑反应耦合力矩Mr② 固定铰链支架这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2个支反力,即水平支反力frx和铅垂支反力fry③ 活动铰链支架这种铰支座只限制梁在支座处沿垂直于支承面的支反力fr如果梁有1个固定端或1个固定铰链支架和1个活动铰链支架则其3个支反力可由平面力系的3个独立的平衡方程求出,这种梁称为静定梁工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁梁的支承反作用力的数量大于独立平衡方程的数量。

此时,只有平衡方程不能确定所有的支撑反应。

这种梁称为超静定梁梁在两支座间的部分称为跨,其长度称为梁的跨长常见的静定梁大多是单跨的2.梁的剪力、弯矩图和弯矩图2.1梁的剪力和弯矩为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力当作用在梁上的所有外力(包括荷载和支承反力)已知时,可使用截面法获得内梁的任何横截面M-M。

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】

孙训方《材料力学》(第6版)笔记和课后习题(含考研真题)详解-第4~5章【圣才出品】
8 / 123
圣才电子书 十万种考研考证电子书、题库规频学习平台

图 4-2-3(a)(b)
(2)建立如图 4-2-3(b)所示坐标系
根据平衡方程求得固定端支反力:FA=45kN,MA=127.5kN·m。
剪力方程为: 弯矩方程为:
45
(0 x 2)
FS(x) 45 15x (2 x 3)
10 / 123
圣才电子书 十万种考研考证电子书、题库规频学习平台

0.6 0.2x (0 x 8) FS(x) 0.6 0.2x (8 x 10)
弯矩方程为:
M
(x)
0.6x 0.1x2
0.6x
0.1x2
4
(0 x 8) (8 x 10)
绘制内力图如图 4-2-3(d)所示。
7 / 123
圣才电子书 十万种考研考证电子书、题库规频学习平台

图 4-2-2 解:(1)建立如图 4-2-3(a)所示坐标系 剪力方程为: FS(x)=-(1/2)·(q0/l)x·x=-q0 x2/(2l)(0≤x≤l) 弯矩方程为: M(x)=-(1/2)·(q0/l)x·x·(x/3)=-q0x3/(6l)(0≤x<l) 做内力图如图 4-2-3(a)所示。
一、弯曲的概念和梁的计算简图 1.弯曲的概念(见表 4-1-1)
表 4-1-1 弯曲的概念
2.梁的计算简图 根据支座对梁在荷载作用平面的约束情况,支座通常简化为三种基本形式:固定端、固 定铰支座、可动铰支座,主要内容见表 4-1-2。
表 4-1-2 梁的计算简图
1 / 123
圣才电子书 十万种考研考证电子书、题库规频学习平台
圣才电子书

十万种考研考证电子书、题库规频学习平台

(完整版)材料力学知识点总结

(完整版)材料力学知识点总结

以家为家,以乡为乡,以国为国,以天下为天下。——《管子·牧民》
六、材料的力学性质
脆性材料 <5%
塑性材料 ≥5% 低碳钢四阶段: (1)弹性阶段
(2) 屈服阶段 (3) 强化阶段 (4) 局部收缩阶段
强度指标 s , b
e
塑性指标 ,


α
s
tg
b
E 扭
45



滑移线与轴线 45,剪
只有s,无b
( l)2
cr
2
cr p
p
柔度:
ul

i
E

0
a s b

柔度是一个与杆件长度、约束、截面尺寸、形 状有关的数据,λ↑Pcr↓σcr↓
>p——大柔度杆:
cr
2E
2
临界应力
o<<p——中柔度杆:cr=a-b
cr cr=s o
cr=a-b
2E
cr
2
P
<0——小柔度杆:cr=s
P 稳定校核:安全系数法: n cr n ,折减系数法:
材料疲劳极限:材料经无限次应力循环而不发生疲劳破坏的应力极限值——N=107:
1
条件疲劳极限:(有色金属)无水平渐近线:N=(5-7)107 对应的
1
构件疲劳极限:考虑各种因素 0
;
1
0 1
1 k
1 k
6
谋事在人,成事在天!——《增广贤文》
我尽一杯,与君发三愿:一愿世清平,二愿身强健,三愿临老头,数与君相见。——《白居易》
P
[]
P
w
A
I
提高杆件稳定性的措施有:

4.(第四章)-回采工作面上覆岩层活动规律

4.(第四章)-回采工作面上覆岩层活动规律
直接顶 伪顶 老顶
煤层
直接底 底板
(2)伪顶(false roof):直接顶与煤层间厚度小于 0.5m极易垮落的软弱岩层(随采随冒)。 (3)老顶(基本顶,main roof):直接顶上方(有时直 接位于煤层之上)厚(>2m)而且坚硬(Rc≥60~80Mpa) 的岩石。一般由砂岩、石灰岩、砂砾岩等岩层组成。也有人 认为冒落带以上的裂隙带岩层统属老顶。 位于直接顶之上(有时直接位于煤层之上)一般由砂岩, 石灰岩,砂砾岩等组成,也有人认为冒落带以上的裂隙带岩 层统属于老顶。 底板:位于煤层以下的岩层。 直接底:直接位于煤层之下的岩层。
采空区的处理方法 disposal method for gob
工艺中是如 何实现的?
煤柱支撑法(刀柱法):pillar propping method 缓慢下沉法:lentitude subsidence method 充填法:filling method 垮落法:caving method
其中全部垮落法具有回采率高、成本低、简单的优点, 在条件适宜时,尽量采用这种方法。采用全部垮落法时, 随着工作面推进,回采工作面空间形状变化见下图。
二、悬臂梁假说
(1916.德.施托克)

将顶板视为叠合弹性梁 双固梁\悬臂梁式的平衡及与外部 岩梁的联系等 可以解释:周期来压与来压步距关 系; 顶板下沉与支架受力关系 存在问题: 弹性梁过于简化(弱面等) 未查明覆岩活动规律 计算顶板下沉量与支架荷载与 实际相差甚远


用悬臂梁理论可以解释,在靠近工作面煤壁的地方,
在煤体内形成回采空间,其上方的岩体部分重量则有支架 承担,同时前方煤壁和采空区冒落的矸石也要承担部分压力。 有时由于上位岩层的变化对支架也会产生压力。将这些原因 对支架产生的压力常称为顶板压力或矿山压力。 回采空间或巷道上方岩层中未破坏部分或未产生剧烈变形 部分,或虽然岩层已破断但仍能整齐排列的部分,有时能形 成岩体内的大“结构”。这种大结构能够承担上覆岩层重量, 从而对巷道及回采空间起保护作用。根据实际测定,回采工 作面支架所承受的力仅为上覆岩层的百分之几。但当工作空 间维护的时间较长时,围岩不易形成稳定性结构。这种现象 在巷道中极易出现,从而导致巷道围岩的“挤、压、臌”现 象。对于回采工作空间,尤其是工作面推进较快时,这种时 间影响因素就会变得次要,上覆岩层极易形成大“结构”。

《材料力学》第四章-扭转精选全文完整版

《材料力学》第四章-扭转精选全文完整版

精选全文完整版第四章 扭转§4—1 工程实例、概念一、工程实例1、螺丝刀杆工作时受扭。

2、汽车方向盘的转动轴工作时受扭。

3、机器中的传动轴工作时受扭。

4、钻井中的钻杆工作时受扭。

二、扭转的概念受力特点:杆两端作用着大小相等方向相反的力偶,且作用面垂直杆的轴线。

变形特点:杆任意两截面绕轴线发生相对转动。

轴:主要发生扭转变形的杆。

§4—2 外力偶矩、扭矩一、外力:m (外力偶矩)1、已知:功率 P 千瓦(KW ),转速 n 转/分(r /min ; rpm)。

外力偶矩:m)(N 9549⋅=nPm 2、已知:功率 P 马力(Ps),转速 n 转/分(r /min ;rpm)。

外力偶矩:m)(N 7024⋅=nPm 二、内力:T (扭矩) 1、内力的大小:(截面法)mT m T mx==-=∑002、内力的符号规定:以变形为依据,按右手螺旋法则判断。

(右手的四指代表扭矩的旋转方向,大拇指代表其矢量方向,若其矢量方向背离所在截面则扭矩规定为正值,反之为负值。

)3、注意的问题:(1)、截开面上设正值的扭矩方向;(2)、在采用截面法之前不能将外力简化或平移。

4、内力图(扭矩图):表示构件各横截面扭矩沿轴线变化的图形。

作法:同轴力图:§4—3 薄壁圆筒的扭转 一、薄壁圆筒横截面上的应力(壁厚0101r t ≤,0r :为平均半径) 实验→变形规律→应力的分布规律→应力的计算公式。

1、实验:2、变形规律:圆周线——形状、大小、间距不变,各圆周线只是绕轴线转动了一个不同的角度。

纵向线——倾斜了同一个角度,小方格变成了平行四边形。

3、切应变(角应变、剪应变):直角角度的改变量。

4、定性分析横截面上的应力(1) 00=∴=σε ;(2)00≠∴≠τγ因为同一圆周上切应变相同,所以同一圆周上切应力大小相等。

⑶ 因为壁厚远小于直径,所以可以认为切应力沿壁厚均匀分布,而且方向垂直于其半径方向。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

材料力学(土)笔记第四章 弯曲应力1.对称弯曲的概念及梁的计算简图 1.1 弯曲的概念等直杆在包含其轴线的纵向平面内,承受垂直于杆轴线的横向外力或外力偶作用时 杆的轴线将变成曲线,这种变形称为弯曲 凡是以弯曲为主要变形的杆件,通称为梁 工程中常见的梁,其横截面都具有对称轴 若梁上所有的横向外力或(及)力偶均作用在包含该对称轴的纵向平面(称为纵对称面)内,由于梁的几何、物性和外力均对称于梁的纵对称面,则梁变形后的轴线必定是在该纵对称面内的平面曲线,这种弯曲称为对称弯曲若梁不具有纵对称面,或者,梁虽然具有纵对称面但横向力或力偶不作用在纵对称面内,这种弯曲统称为非对称弯曲1.2 梁的计算简图梁的计算简图可用梁的轴线表示梁的支座按其对梁在荷载作用平面的约束情况,通常可简化为以下三种基本形式 ①固定端这种支座使梁的端截面既不能移动,也不能转动对梁端截面有3个约束,相应地,就有3个支反力,即水平支反力Rx F ,铅垂支反力Ry F 和支反力偶矩R M ②固定铰支座这种支座限制梁在支座处沿平面内任意方向的移动,而不限制梁绕铰中心转动,相应地,就有2个支反力,即水平支反力Rx F 和铅垂支反力Ry F③可动铰支座这种铰支座只限制梁在支座处沿垂直于支承面的支反力R F如果梁具有1个固定端,或具有1个固定铰支座和1个可动铰支座则其3个支反力可由平面力系的3个独立的平衡方程求出,这种梁称为静定梁 工程上常见的三种基本形式的静定梁,分别称为简支梁、外伸梁和悬臂梁梁的支反力数目多于独立的平衡方程的数目,此时仅用平衡方程就无法确定其所有的支反力,这种梁称为超静定梁梁在两支座间的部分称为跨,其长度称为梁的跨长 常见的静定梁大多是单跨的2.梁的剪力和弯矩·剪力图和弯矩图 2.1 梁的剪力和弯矩为计算梁的应力和位移,应先确定梁在外力作用下任一横截面上的内力当作用在梁上的全部外力(包括荷载和支反力)均为已知时,用截面法即可求出其内力 梁的任一横截面m-m ,应用截面法沿横截面m-m 假想地吧梁截分为二 可得剪力S F ,弯矩M剪力和弯矩的正负号规定dx 微段有左端向上右端向下的相对错动时,横截面m-m 上的剪力S F 为正,反之为负dx 微段的弯曲为向下凸,即该段的下半部纵向受拉时,上半部纵向受压时,横截面上的弯矩为正,反之为负为简化计算,梁某一横截面上的剪力和弯矩可直接从横截面任意一侧梁上的外力进行计算,即①横截面上的剪力在数值上等于截面左侧(或右侧)梁段上横向力的代数和在左侧梁段上向上(或右侧梁段上向下)的横向力将引起正值剪力,反之则引起负值剪力 ②横截面上的弯矩在数值上等于截面的左侧(或右侧)梁段上的外力对该截面形心的力矩之代数和,对于截面左侧梁段,外力对截面形心的力矩为顺时针转向的引起正值弯矩,逆时针转向的引起负值弯矩;截面右侧梁段则与其相反2.2 剪力方程和弯矩方程·剪力图和弯矩图一般情况下,梁横截面上的剪力和弯矩是随横截面的位置而变化的 设横截面沿梁轴线的位置用坐标x 表示则梁各横截面上的剪力和弯矩可表示为坐标x 的函数,即)(x F F S S =和)(x M M = 以上两式表示沿梁轴线各横截面上的剪力和弯矩的变化规律 分别称为梁的剪力方程和弯矩方程以横截面上的剪力或弯矩为纵坐标,以横截面沿梁轴线的位置为横坐标 根据剪力方程或弯矩方程绘出)(x F S 和)(x M 的图线表示沿梁轴线各横截面上剪力或弯矩的变化情况 分别称为梁的剪力图和弯矩图绘图时将正值的剪力画在x 轴的上侧正值的弯矩花在梁的受拉侧,也就是画在x 轴的下侧应用剪力图和弯矩图可以确定梁的剪力和弯矩的最大值,及其所在截面的位置 作剪力、弯矩图步骤 ①计算支反力②列剪力、弯矩方程 ③作剪力、弯矩图可归纳规律如下①在集中力或集中力偶作用处,梁的弯矩方程应分段列出;推广而言,在梁上外力不连续处(即在集中力、集中力偶作用处和分布荷载开始或结束处),梁的弯矩方程和弯矩图应该分段。

对于剪力方程和剪力图,除去集中力偶作用处以外,也应分段列出或绘制②集中力作用处,剪力图有突变,其左、右两侧横截面上剪力的代数差,即等于集中力值。

而在弯矩图上的相应处则形成一个尖角。

与此相仿,梁上受集中力偶作用处,弯矩图有突变,其左、右两侧横截面上的弯矩代数差,即等于集中力偶值,但在剪力图上相应处无变化 ③全梁的最大剪力和最大弯矩可能发生在全梁或各段梁的边界截面,或极值点的截面处2.3 弯矩、剪力与分布荷载集度间的微分关系及其应用 若将弯矩函数)(x M 对x 求导数,即剪力函数)(x F S 将剪力函数)(x F S 对x 求导数,则得均布荷载集度q这些关系在直梁中是普遍存在的,设梁上作用有任意分布荷载,其集度)(x q q =是x 的连续函数,并规定以向上为正 取梁的左端为x 轴的坐标原点用坐标为x 和dx x +的两横截面截取长度为dx 的梁段设坐标为x 处横截面上的剪力和弯矩分别为)(x F S 和)(x M ,该处的荷载集度为)(x q 并均设为正值,则在坐标为dx x +处横截面上的剪力和弯矩将分别为)()(x dF x F S S +和)()(x dM x M +梁段在以上所有外力作用下处于平衡由于dx 很小,可略去荷载集度沿dx 长度的变化,于是,由梁段的平衡方程0=∑yF,0)()]()([)(=++-dx x q x dF x F x F S S S从而得到)()(x q dxx dF S = 以及0=∑C M ,2)()()()]()([dx dx x q dx x F x M x dM x M S ⨯---+ 略去二阶微量,即得)()(x F dxx dM S = 由上述两个式子又可得到)()(22x q dxx M d = 以上三式子就是弯矩)(x M 、剪力)(x F S 和荷载集度)(x q 三函数间的微分关系式两式子的意义分别为:剪力图上某点处的切线斜率等于该点处荷载集度的大小弯矩图上某点处的切线斜率等于该点处剪力的大小可检验所作剪力图和弯矩图的正确性,或直接作梁的剪力图和弯矩图2.4 按叠加原理作弯矩图当梁在荷载作用下为微小变形时,其跨长的改变可略去不计 在求梁的支反力、剪力和弯矩时,均可按原始尺寸进行计算 而所得到的结果均与梁上荷载成线性关系 在这种情况下,当梁上受几项荷载共同作用时某一横截面上弯矩就等于梁在各项荷载单独作用下同一横截面上弯矩的叠加叠加原理:当所求参数(内力、应力或位移)与梁上荷载为线性关系时,由几项荷载共同作用时所引起的某一参数,就等于每项荷载单独作用时所引起的该参数值的叠加 当该参数处于同一平面内同一方向,叠加即为代数和 若处于不同平面或不同方向,则为几何和3.平面刚架和曲杆的内力图平面刚架是由在同一平面内、不同取向的杆件,通过杆端相互刚性连接而组成的结构 平面刚架各杆横截面上的内力分量通常有轴力、剪力和弯矩 轴力以拉为正剪力、弯矩的正负号规定如下:设想人站在刚架内部环顾刚架各杆,则剪力、弯矩的正负号与梁的规定相同轴力图及剪力图:画在刚架轴线任一侧(通常正值画在刚架的外侧),须标明正负号 弯矩图:画在各杆的受拉一侧,不注明正负号4.梁横截面上的正应力·梁的正应力强度条件 一般情况下,梁的横截面上有弯矩M 和剪力S F由截面上分布力系的合成关系可知横截面上与正应力有关的法向内力元素dA dF N ⋅=σ才可能合成为弯矩 横截面上与切应力有关的切向内力元素dA dF s ⋅=τ才可能合成为剪力则梁的横截面上一般是既有正应力,又有切应力 研究梁在对称弯曲时,横截面上的正应力若梁在某段内各横截面上的剪力为零,弯矩为常量,则该段梁的弯曲称为纯弯曲4.1 纯弯曲时梁横截面上的正应力推导梁在横截面上正应力的计算公式,需考虑几何、物理和精力学三方面 ①几何方面假设:梁在受力发生纯弯曲后,其原来的横截面保持为平面,并绕垂直于纵对称面的某一轴旋转,且仍垂直于梁变形后的轴线,此即弯曲问题中的平面假设 设用两横截面从梁中假想地截取长度为dx 的微段,由平面假设可知 在梁弯曲时,两横截面将相对旋转一微小角度θd横截面的转动将使梁凹边的纵向线缩短,凸边的纵向线伸长由于变形的连续性,中间必有一层纵向线¼12OO 无长度改变,称为中性层 中性层与横截面的交线称为中性轴梁在弯曲时,相邻横截面就是绕中性轴作相对转动的 由于外力、横截面形状及梁的物性均对称于梁的纵对称面 故梁变形后的形状也必对称与该平面 因此,中性轴应与横截面的对称轴正交将梁的轴线取为x 轴,横截面的对称轴取为y 轴,中性轴取为z 轴 研究在横截面上距中性轴为y 处的纵向线应变 作21O B 与11O A 平行,则可得该点处的纵向线应变为¼¼¼¼11112AB B B yd dx AB O O θε∆===式中,¼12O O dx =为中性层上纵向线段的长度,而中性层的曲率为1d dxθρ=代入上式,即得yερ=式子表明横截面上任意一点处的纵向线应变ε与该点至中性轴的距离y 成正比 ②物理方面若各纵向线之间不因纯弯曲而引起相互挤压则可认为横截面上各点处的纵向线段均处于单轴应力状态 当材料处于线弹性范围内,且拉伸和压缩弹性模量相同时 由单轴应力状态下的胡克定律可得物理关系E σε=代入上式可得yE Eσερ==上式表明,横截面上任一点处的正应力与该点至中性轴的距离成正比 距中性轴为y 的等高线上各点处的正应力均相等③静力学方面横截面上法向内力元素dA σ构成空间平行力系 可能组成三个内力分量N AF dA σ=⎰,y AM z dA σ=⎰,z AM y dA σ=⎰当梁上仅有外力偶e M 作用,则由截面法,上式中N F 和y M 均等于零 而z M 即为横截面上的弯矩M ,其值等于e M 由静力学关系可得0N AF dA σ==⎰0y AM z dA σ==⎰z AM y dA M σ==⎰整理得到0zN AES EF ydA ρρ===⎰0yz y A EI EM zydA p ρ===⎰2z z AEI EM y dA M ρρ===⎰由于Eρ不可能等于零,故必有0z S = 于是z 轴必通过横截面形心,从而确定了中性轴的位置 y 轴是横截面的对称轴,所以yz I 必等于零由于y 轴为对称轴,其左右两侧对称位置处的法向内力元素dA σ对y 轴的矩必等值而反向 故横截面上dA σ所组成的力矩y M 必等于零M EI ρ= z EI 称为弯曲刚度可得等直梁在纯弯曲时横截面上任一点处正应力为zMyI σ=式中,M 为横截面上的弯矩;z I 为横截面对中性轴z 的惯性矩;y 为所求应力点的纵坐标 问题的几何方面为平面假设物理方面有各纵向线段间相互不挤压,材料在线弹性范围内且拉伸和压缩弹性模量相等 是应用这些公式的限制条件式子中,将弯矩M 和坐标y 按规定的正负号代入,所得的正应力σ为正值,即为拉应力 具体计算中,也可不考虑弯矩和坐标的正负号,而直接根据梁变形的情况来判断 即以中性层为界,梁变形后凸出边的应力为拉应力,而凹入边的应力为压应力 在横截面上离中性轴最远的各点处,正应力值最大当中性轴z 为截面的对称轴时,则横截面上的最大正应力为maxmax z My I σ=若令max zz I W y =则max zM W σ=式子中,z W 称为弯曲截面系数,其值与横截面的形状和尺寸有关,其单位为3m矩形截面32/12/2/26z z I bh bh W h h === 圆形截面43/64/2/232z z I d d W d h ππ=== 对于中性轴为对称轴的横截面,其最大拉应力和最大压应力的数值相等对于中性轴为非对称轴的横截面,其最大拉应力和最大压应力的数值不等应分别以横截面上受拉和受压部分距中性轴最远的距离,max t y 和,max c y 直接代入公式计算4.2 纯弯曲理论的推广横力弯曲:当梁上有横向力作用时,横截面上一般既有弯矩又有剪力 梁的横截面既有正应力,又有切应力由于切应力的存在,亮的横截面将发生翘曲在于中性层平行的纵截面上,还有横向力引起的挤压应力因此,梁在纯弯曲时所作的平面假设和各纵向线段间互不挤压的假设均不能成立 弹性理论的分析结构指出,在均布荷载作用下的矩形截面简支梁当其跨长与截面高度之比为/l h 大于5时,若按纯弯曲计算正应力,足以满足精度要求 且/l h 越大,误差越小max ()zM x W σ=4.3 梁的正应力强度条件等直梁的最大正应力发生在最大弯矩的横截面上距中性轴最远的各点处 而该处的切应力等于零纵截面上由横向力引起的挤压应力可略去不计横截面上的最大工作正应力所在各点处于单轴应力状态 得强度条件max []σσ≤ 将上式改写为maxzM W 材料在弯曲与轴向拉伸时的强度并不相同脆性材料要求梁的最大工作拉应力和最大工作压应力(两者往往并不发生在同一横截面上)要求分别不超过材料的许用拉应力和许用压应力5.梁横截面上的切应力·梁的切应力强度条件 5.1 梁横截面上的切应力横力弯曲的情况下,梁的横截面上有剪力,相应的将有切应力①矩形截面梁以m-m 和n-n 两横截面假想地从梁中截取长为dx 的微段 一般情况下,该两横截面上的弯矩并不相等 因而两截面上同一y 坐标处的正应力也不相等再用平行于中性层的纵截面11AA B B 假想地从微段截取体积元素11mA B n 则在端面1mA 和1B n 上,与正应力对应的法向内力*1N F 与*2N F 也不相等 为维持体积元素11mA B n 的平衡,在纵面1AB 上必有沿x 方向的切向内力'S dF 故在纵面上就存在相应的切应力'τ为推导切应力的表达式,还需确定切应力沿截面宽度的变化规律以及切应力的方向 对于狭长矩形截面,由于梁的侧面上无切应力 故横截面上侧边各点处的切应力必与侧边平行在对称弯曲情况下,对称轴y 处的切应力必沿y 方向 且狭长矩形截面上切应力沿截面宽度的变化不可能大 作如下两个假设横截面上各点处的切应力均与侧边平行 横截面上距中性轴等远处的切应力大小相等确定横截面上切应力的变化规律后,即可由静力学关系导出切应力的计算公式 设横截面m-m 和n-n 上的弯矩分别为M 和M dM + 两端截面上的法向内力*1N F 与*2N F 分别为*****1111N z A A A z z zMy M M F dA dA y dA S I I I σ====⎰⎰⎰ ****221()N z A A z zM dM M dM F dA y dA S I I σ++===⎰⎰ 式子中,**1z AS y dA =⎰为横截面上距中性轴为y 的横线以外部分面积*A 对中性轴的静矩纵截面1AB 上由'dA τ所组成的是切向内力'S dF由假设横截面上距中性轴等远处的切应力大小相等以及切应力互等定理可知 在纵截面上横线1AA 上各点处的切应力'τ的大小相等 在微段dx 长度上,'τ的变化为高阶微量可略去不计 从而认为'τ在纵截面1AB 上为一常量,于是得''S dF b dx τ=⋅代入平衡方程0xF=∑,**'210N N S F F dF --=经化简后可得到*'zz S dM dx I b τ=⨯由弯矩与剪力间的微分关系S dMF dx=,上式即为 *'S z z F S I bτ= 由切应力互等定理,'ττ=,即得矩形截面等直梁在对称弯曲时横截面上任一点处切应力*S zz F S I bτ=式子中,S F 为横截面上的剪力;z I 为整个横截面对其中性轴的惯性矩;b 为矩形的宽度;*z S 为横截面上距中性轴为y 的横线以外部分面积*A 对中性轴的静矩τ的方向与剪力S F 的方向相同S F 、z I 和b 对某一横截面而言均为常量横截面上的切应力τ沿截面高度(即随坐标y )的变化情况,由部分面积静矩*z S 与坐标y 之间的关系所反映若取1bdy 为面积元素dA ,可得2*2211()24h zyb h S y bd y y ==-⎰代入可得,22()24S z F h y I τ=-τ沿截面高度按二次抛物线规律变化当2hy =±时,即在横截面上距中性轴最远处,切应力0τ=当0y =时,即在中性轴上各点处,切应力达到最大值max τ,将0y =代入可得22max3388/122S S S z F h F h F I bh bhτ===⨯⨯ 或max 32SF Aτ=⨯式中,A bh =,为矩形截面的面积对于其他形状的对称截面,均可按上述的推导方法,求得切应力的解 但对于侧边与对称轴不平行的截面(例如梯形截面),前面所作假设必须作相应变动 中性轴一侧的半个横截面面积对中性轴上的静矩*z S 为最大所以中性轴上各点处的切应力为最大其他形状的对称截面,横截面上的最大切应力通常也均发生在中性轴上的各点处 只有宽度在中性轴处显著增大的截面(如十字形截面),或某些变宽度的截面(如等腰三角线截面)等除外②工字型截面梁对于工字型截面梁腹板上任一点处的切应力τ 由于腹板是狭长矩形,前述假设依然适用,于是*S zz F S I dτ= 式中,d 为腹板厚度;*z S 为距中性轴为y 的横线以外部分的面积对中性轴的静矩 在腹板范围内,*z S 是y 的二次函数故腹板部分的切应力τ沿腹板高度同样按二次抛物线规律变化 其最大切应力也发生在中性轴上,其值为*,maxmax S z z F S I dτ=式中,*,max z S 为中性轴一侧的部分面积对中性轴的静矩对于工字型截面翼缘上的切应力,由于翼缘上、下表面上无切应力,而翼缘又很薄因此,翼缘上平行于y 轴的切应力分量是次要的,主要是与翼缘长边平行的切应力分量 由于翼缘上的最大切应力远小于腹板上的max τ,一般情况下不必计算③薄壁环形截面梁一段薄壁环形截面梁,环壁厚度为δ,环的平均半径为0r 由于δ与0r 相比很小,故可假设横街面上切应力的大小沿壁厚无变化 切应力的方向与圆周相切由对称关系可知,横截面与y 轴相交的各点处的切应力为零且y 轴向一侧量取ϕ角,并以ϕ角所包围的一段圆环作为部分面积 只讨论横截面上的max τ对于圆环形截面,其max τ仍发生在中性轴上 在求中性轴的切应力时,以半圆环截面为研究对象 式中的b 应为2δ,*z S 为半圆环面积对中性轴的静矩,即环形截面对中性轴的惯性矩为30z I r πδ=可得*20max30222S z S S z F S F r F I b r Aδτπδδ⨯===⨯ 式中,22000[(2)(2)]24A r r r πδδπδ=+--=,代表环形截面面积上述对薄壁环形截面所作的两个假设,同样适用于其他形式具有纵向对称轴的薄壁截面可仿照上述方法来计算器横截面上的最大切应力④圆截面梁由切应力互等定理可知,在截面边缘上各点处切应力τ的方向必与圆周相切 在与对称轴y 相交的各点处,剪力、截面图形和材料物性均对称于y 轴 因此,其切应力必沿y 方向 假设沿距中性轴y 的宽度'kk 上各点处的切应力均汇交于'O 点 沿宽度各点处切应力沿y 方向的分量相等根据上述假设,即可应用式子求出界面上距中性轴截面上距中性轴为y 的各点处切应力沿y 方向的分量,然后按所在点处切应力方向与y 轴间夹角,求出该点处切应力 圆截面的最大切应力仍然在中性轴上各点处由于在中性轴两端处切应力的方向均与圆周相切,且与外力作用方向平行 故中性轴上各点处的切应力方向均与外力平行利用矩形截面的切应力公式,即可求得圆截面上max τ的近似结果 对于圆截面,式中的b 对应为圆的直径圆截面的惯性矩4/64z I d π=,而*z S 为则为半圆面积对中性轴z 的静矩,即43*1224312zd d d S πππ=⨯⨯=其中半圆截面形心距中性轴距离为2/3d π于是,可得圆截面上的最大弯曲切应力*3max4/124(/64)3S z S S z F S F d F I b d d Aτπ===⨯ 式中,2/4A d π=为圆截面的面积对于等直梁,其最大切应力max τ发生在最大剪力,max S F 所在的横截面上 而且一般地说,是位于该截面的中性轴上由以上各种形状的横截面上的最大切应力计算公式可知 全梁各横截面中最大切应力max τ可统一表达为*,max ,maxmax S z z F S I bτ=式中,max S F 为全梁的最大剪力;*,max z S 为横截面上中性轴一侧的面积对中性轴的静矩;b 为横截面在中性轴处的宽度;z I 是整个横截面对中性轴的惯性矩5.2 梁的切应力强度条件横力弯曲下的等直梁,梁需要同时保证正应力和切应力的强度要求 等直梁的最大切应力一般发生在最大剪力所在横截面的中性轴上各点处 这些点处的正应力0σ=在略去纵截面上的挤压应力后,最大切应力所在点处于纯剪切应力状态 于是可按纯剪切应力状态下的强度条件max []ττ≤ 建立梁的切应力强度条件将弯曲最大切应力的表达式代入,即得*,max ,maxmax []S z z F S I bττ=≤[]τ为材料在横力弯曲时的许用切应力梁在荷载作用下,须同时满足正应力和切应力强度条件进行强度计算时,通常是先按正应力强度进行计算,再按切应力强度进行校核 一般地说,梁的强度大多数由正应力控制,并不需要再按切应力进行强度校核 但在以下几种情况下,需校核梁的切应力 ①梁的最大弯矩较小,而最大剪力却很大②在焊接或铆钉的组合截面(例如工字钢)钢梁中,当其横截面腹板部分的厚度与梁高之比小于型钢截面的相应比值③由于木材在其顺纹方向的剪切强度较差,木梁在横力弯曲时可能因中性层上的切应力过大而使梁沿中性层发生剪切破坏6.梁的合理设计按强度设计梁时,主要是依据梁的正应力强度条件降低最大弯矩,提高弯曲截面系数,或局部加强弯矩较大的梁段都能降低梁的最大正应力,从而提高梁的承载能力,使梁的设计更为合理 6.1 合理配置梁的荷载和支座合理地配置梁的荷载,可降低梁的最大弯矩值 合理地设置支座位置,也可降低梁内的最大弯矩值6.2 合理选取截面形状当弯矩确定时,横截面上的最大正应力与弯曲截面系数成反比 因此尽可能地增大横截面弯曲截面系数W 与其面积A 之比值 由于在一般横截面中,W 与其高度的平方成正比所以尽可能使横截面面积分布在距中性轴较远的地方总之,在选择梁截面的合理形状时应综合考虑横截面上的应力情况、材料力学性能、梁的使用条件及制造工艺等元素6.3 合理设计梁的外形为节约材料,减轻自重,或降低梁的刚度,将梁设计成变截面的可在弯矩较大的部分进行局部加强若使得梁各横截面上的最大正应力都相等,并均达到材料的许用应力,称为等强度梁。

相关文档
最新文档