平行线的证明训练题
北师大版数学八年级上《平行线的证明 》习题含答案
八年级上册第7章《平行线的证明》专题演练1.(1)如图1,AC平分∠DAB,AB∥CD,求证:∠1=∠2;(2)如图2,在(1)的条件下,AB的下方两点E、F满足:BF平分∠ABE,DF平分∠CDE,若∠DFB=25°,∠CDE=80°,求∠ABE的度数;(3)在前面的条件下,若P是BE上一点,G是CD上任一点,PQ平分∠BPG,PQ∥GN,GM平分∠DGP,如图3,则∠MGN=.2.如图1,点A、B分别在直线GH、MN上,∠GAC=∠NBD,∠C=∠D.(1)求证:GH∥MN;(2)如图2,AE平分∠GAC,DE平分∠BDC,若∠AED=∠GAC,求∠GAC与∠ACD之间的数量关系;(3)如图3,BF平分∠DBM,点K在射线BF上,∠KAG=∠GAC,若∠AKB=∠ACD,直接写出∠GAC的度数.3.已知,如图,在四边形ABCD中,AB∥CD,延长BC至点E,连接AE交CD于点F,使∠BAC=∠DAE,∠ACB=∠CFE(1)求证:∠BAF=∠CAD;(2)求证:AD∥BE;(3)若BF平分∠ABC,请写出∠AFB与∠CAF的数量关系.(不需证明)4.如图,E、F分别在AB和CD上,∠1=∠D,∠2与∠C互余,AF⊥CE于G,求证:AB∥CD.证明:∵AF⊥CE,∴∠CGF=90°,∵∠1=∠D,∴AF∥,∴∠4==90°(),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=,∴AB∥CD.5.(1)①如图1,已知AB∥CD,点E在直线AB、CD之间,探究∠ABE、∠BED、∠CDE之间的数量关系,并说明理由.②将图1中射线BA绕B逆时针方向旋转一定角度后,射线BA交射线DC于F,得到图2,形成四边形BFDE,探究四边形中∠B、∠E、∠D、∠BFD之间有何数量关系,并说明理由.(2)在图3中,AB∥CD,∠ABE与∠CDE的角平分线交于点N,∠ABM=∠ABN,∠CDM =∠CDN,写出∠M与∠E之间数量关系,并说明理由.6.已知:∠BDG+∠EFG=180°,∠B=∠DEF.(1)如图1,求证:DE∥BC.(2)如图2,当∠A=∠EFG=90°时,请直接写出与∠C互余的角.7.如图,直线EF交直线AB、CD与点M、N,NP平分∠ENC交直线AB于点P.已知∠EMB=112°,∠PNC=34°.(1)求证:AB∥CD;(2)若PQ将分∠APN成两部分,且∠APQ:∠QPN=1:3,求∠PQD的度数.8.已知:如图,∠1=∠2,∠B=∠C.(1)求证AB∥CD;(2)若∠A=30°,求∠D的度数.9.完成下面的证明:如图,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,连接DE,DF,DE∥AB,∠BFD=∠CED,连接BE交DF于点G,求证:∠EGF+∠AEG=180°.证明:∵DE∥AB(已知),∴∠A=∠CED()又∵∠BFD=∠CED(已知),∴∠A=∠BFD()∴DF∥AE()∴∠EGF+∠AEG=180°()10.如图,若∠ADE=∠ABC,BE⊥AC于E,MN⊥AC于N,试判断∠1与∠2的关系,并说明理由.参考答案1.解:(1)∵AC平分∠DAB,∴∠1=∠3,∵AB∥CD,∴∠2=∠3,∴∠1=∠2;(2)过F作作FQ∥AB,∵AB∥CD,∴CD∥FQ,∵DF平分∠CDE,∴∠CDF=∠EDF=CDE==40°,∵CD∥FQ,∴∠DFQ=∠CDF=40°,∵∠DFB=25°,∴∠BFQ=15°,∵AB∥FQ,∴∠ABF=∠QFB=15°,∵BF平分∠ABE,∴∠ABE=2∠ABF=30°;(3)过P作PK∥AB,则PK∥DG,∴∠BPK=∠ABP=30°,∵PQ平分∠BPG,∴∠GPQ=∠BPQ,设∠GPQ=∠BPQ=x,∴∠GPK=2x+30°,∵DG∥PK,∴∠DGP=∠GPK=30°+2x,∵GM平分∠DGP,∴∠DGM=∠PGM=DGP=15°+x,∵PQ∥GN,∴∠PGN=∠GPQ=x,∴∠MGN=∠PGM﹣∠PGN=15°,故答案为:15°.2.解:(1)如图1,延长AC交MN于点P,∵∠ACD=∠D,∴AP∥BD,∴∠NBD=∠NPA,∵∠GAC=∠NBD,∴∠GAC=∠NPA,∴GH∥MN;(2)延长AC交MN于点P,交DE于点Q,∵∠E+∠EAQ+∠AQE=180°,∠EQA+∠AQD=180°,∴∠AQD=∠E+∠EAQ,∵AC∥BD,∴∠AQD=∠BDQ,∴∠BDQ=∠E+∠EAQ,∵AE平分∠GAC,DE平分∠BDC,∴∠GAC=2∠EAQ,∠CDB=2∠BDQ,∴∠CDB=2∠E+∠GAC,∵∠AED=∠GAC,∠ACD=∠CDB,∴∠ACD=2∠GAC+∠GAC=3∠GAC;(3)设射线BF交GH于I,∵GH∥MN,∴∠AIB=∠FBM,∵BF平分∠MBD,∴∠DBF=∠FBM=,∴∠AIB=∠DBF,∵∠AIB+∠KAG=∠AKB,∠AKB=∠ACD,∴∠ACD=∠DBF+∠KAG,∵∠KAG=∠GAC,∠GAC=∠NBD,∴∠GAC+=∠ACD=3∠GAC,即∠GAC+∠GAC=3∠GAC,解得∠GAC=.故答案为.3.解:(1)∵∠BAC=∠DAE,∴∠BAC+∠CAF=∠DAE+∠CAF,∴∠BAF=∠CAD;(2)∵∠BAC=∠DAF,∠ACB=∠CFE=∠AFD,∴∠B=∠D,∵AB∥CD,∴∠B+∠BCD=180°,∴∠D+∠BCD=180°,∴AD∥BE;(3)如图2,∵AD∥BE,∴∠E=∠1=∠2,∵BF平分∠ABC,∴∠3=∠4,∵∠AFB是△BEF的外角,∴∠AFB=∠4+∠E=∠4+∠1,∴∠AFB=3+∠2,又∵AD∥BC,∴∠ABC+∠BAD=180°,∴∠3+∠4+∠1+∠CAF+∠2=180°,即2∠AFB+∠CAF=180°.故答案为:2∠AFB+∠CAF=180°.4.证明:如图所示:∵AF⊥CE(已知),∴∠CGF=90°,∵∠1=∠D(已知),∴AF∥ED,∴∠4=∠CGF=90°(两直线平行,同位角相等),又∵∠2与∠C互余(已知),∠2+∠3+∠4=180°,∴∠2+∠C=∠2+∠3=90°,∴∠C=∠3,∴AB∥CD(内错角相等,两直线平行),故答案为:已知,已知,ED,两直线平行,同位角相等;∠3,内错角相等,两直线平行.5.解:(1)①如图1,过E作EF∥AB,∴∠FEB+∠EBA=180°,∵CD∥AB,EF∥AB,∴CD∥EF,∴∠CDE+∠DEF=180°,∴∠CDE+∠DEB+∠ABE=360°,②如图2,过点B作GB∥CD,∴∠BFD=∠GBF,由(1)知∠GBE+∠E+∠D=360°,∴∠B+∠E+∠D+∠BFD=360°;(2)如图3,过M作MF∥AB,∵AB∥CD,∴MF∥CD,∵∠ABM=∠ABN,∠CDM=∠CDN,∴设∠MBN=x,∠MDN=y,则∠MDC=2y,∠ABM=2x,∠EBN=3x,∠EDN=3y,∴∠BMF=2x,∠DMF=2y,∠ABE=6x,∠CDE=6y,∴∠BMD=2(x+y),过E作EG∥AB,∵AB∥CD,∴EG∥CD,∴∠BEG=180°﹣∠ABE=180°﹣6x,∠DEG=180°﹣∠CDE=180°﹣6y,∴∠BED=∠BEG+∠DEG=360°﹣(6x+6y)=360°﹣3∠BMD,∴3∠BMD+∠BED=360°.6.(1)证明:∵∠EFD+∠EFG=180°,∠BDG+∠EFG=180°,∴∠BDG=∠EFD,∴BD∥EF,∴∠BDE+∠DEF=180°,又∵∠DEF=∠B,∴∠BDE+∠B=180°,∴DE∥BC;(2)解:∵∠A=∠EFG=90°,∴∠ADE+∠AED=90°,∠B+∠C=90°,∵DE∥BC,∴∠ADE=∠B,∵∠B=∠DEF,∴与∠C互余的角有∠B,∠ADE,∠DEF.7.(1)证明:∵∠EMB=112°,∴∠PMN=112°,∵NP平分∠EN,∴∠CNE=2∠CNP,∵∠CNP=34°,∴∠CNE=68°,∴∠PMN+∠CNE=180°,∴AB∥CD;(2)解:∵∠APN=∠PMN+∠PNM=112°+34°=146°,∵∠APQ:∠QPN=1:3,∴∠APQ=36.5°,∵AB∥CD,∴∠PQD=∠APQ,∴∠PQD=36.5°.8.解:(1)∵∠1=∠2,∠1=∠FMN,∴∠2=∠FMN,∴CF∥BE,∴∠C=∠BED.又∵∠B=∠C,∴∠B=∠BED,∴AB∥CD.(2)∵AB∥CD,∴∠A=∠D.又∵∠A=30°,∴∠D=30°.9.证明:∵DE∥AB(已知),∴∠A=∠CED(两直线平行,同位角相等)又∵∠BFD=∠CED(已知),∴∠A=∠BFD(等量代换)∴DF∥AE(同位角相等,两直线平行)∴∠EGF+∠AEG=180°(两直线平行,同旁内角互补)故答案为:两直线平行,同位角相等;等量代换;同位角相等,两直线平行;两直线平行,同旁内角互补.10.解:∠1与∠2相等.理由如下:∵∠ADE=∠ABC,∴DE∥BC,∴∠1=∠EBC,∵BE⊥AC于E,MN⊥AC于N,∴BE∥MN,∴∠EBC=∠2,∴∠1=∠2.。
平行线专项证明题
1.已知:如图,CE平分∠ACD,∠1=∠2.求证:AB∥CD.2.如图,M,N,T和P,Q,R分别在同一直线上,且∠1=∠3,∠P=∠T.求证:∠M=∠R.3.如图,直线m⊥l,n⊥l,∠1=∠2.求证:∠3=∠4.4. 如图,BD平分∠ABC,F在AB上,G在AC上,FC与BD相交于点H. ∠GFH+∠BHC=180°.求证:.5如图,已知∠B=∠C,AD∥BC,求证:AD平分∠CAE.6.如图,已知,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠AEF,∠1=40°,求∠2的度数.7.如图,DB ∥FG ∥EC ,∠ABD =60°,∠ACE =36°,AP 平分∠BAC.求∠PAG 的度数.8: 如图1-26所示.AE ∥BD ,∠1=3∠2,∠2=25°,求∠C .9.如图,直线AB 、CD 被直线EF 所截,∠AEF +∠CFE =180°,∠1=∠2,则图中的∠H 与∠G 相等吗?说明你的理由. (12分)10.如图(6),DE ⊥AB ,EF ∥AC ,∠A=35°,求∠DEF 的度数。
A 1 BC DEF G H 211.如图①是长方形纸带,将纸带沿EF 折叠成图②,再沿BF 折叠成图③.(1)若图①中∠DEF=20°,则图③中∠CFE 的度数是多少?(2)若图①中∠DEF=α,把图③中∠CFE 的度数用α表示是多少?12、如图,已知l1∥l2,MN 分别和直线l1、l2交于点A 、B ,ME 分别和直线l1、l2交于点C 、D ,点P 在MN 上(P 点与A 、B 、M 三点不重合).(1)如果点P 在A 、B 两点之间运动时,∠α、∠β、∠γ之间有何数量关系请说明理由;(2)如果点P 在A 、B 两点外侧运动时,∠α、∠β、∠γ有何数量关系(只须写出结论).13、实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被b 反射出的光线n 与光线m 平行,且∠1=50°,则∠2= °,∠3= °.(2)在(1)中,若∠1=55°,则∠3= °;若∠1=40°,则∠3= °.(3)由(1)、(2),请你猜想:当两平面镜a 、b 的夹角∠3= °时,可以使任何射到平面镜a 上的光线m ,经过平面镜a 、b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?321n m b a。
(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试(答案解析)
一、选择题1.下列命题,正确的是( )A .相等的角是内错角B .如果22x y =,那么x y =C .有一个角是60︒的三角形是等边三角形D .角平分线上的点到角两边的距离相等 2.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 3.下列命题的逆命题是真命题的是( ). A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等4.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4B .3C .2D .1 5.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°6.下列命题中的假命题是( )A .三角形的一个外角大于内角B .同旁内角互补,两直线平行C .21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解D .方差是刻画数据离散程度的量7.如图,下列能判定//AB CD 的条件有( )个(1)∠1=∠2;(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;(5)∠5=∠DA .1B .2C .3D .48.如图,已知四边形ABCD 中,98B ∠=︒,62D ∠=︒,点E 、F 分别在边BC 、CD 上.将CEF △沿EF 翻折得到GEF △,若GE AB ∥,GF AD ∥,则C ∠的度数为( )A .80︒B .90︒C .100︒D .110︒9.下列六个命题:①有理数与数轴上的点一一对应;②两条直线被第三条直线所截,内错角相等;③直线外一点到这条直线的垂线段叫做点到直线的距离;④平行于同一条直线的两条直线互相平行;⑤垂直于同一条直线的两条直线互相平行;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等,其中假命题的个数是( )A .3个B .4个C .5个D .6个10.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个11.如图,A B C D E F ∠+∠+∠+∠+∠+∠则等于( )A .90︒B .180︒C .270︒D .360︒12.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行;A .1个B .2个C .3个D .4个二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.证明“若a b >,则22a b >.”是假命题,可举出反例:_________.15.如图,ABC ∆中,60B ∠=︒,55C ∠=︒,点D 为BC 边上一动点.分别作点D 关于AB ,AC 的对称点E ,F ,连接AE ,AF .则EAF ∠的度数等于_______.16.如图,AD 、AE 分别是ABC 的高和角平分线,且76B ∠=︒,36C ∠=︒,则DAE ∠的度数为_________.17.如图,AD 平分,34BDF ∠∠=∠,若150,2130∠=︒∠=︒,则CBD ∠=________︒.18.如图,木工师傅用角尺画平行线的依据是_________________________.19.如图,12∠=∠,4120︒∠=,则3∠=____.20.如图,在ΔABC 中,E 、F 分别是AB 、AC 上的两点,∠1+∠2=235°,则∠A=____度.三、解答题21.如图,已知ABC 与ADG 均为等边三角形,点E 在GD 的延长线上,且GE AC =,连接AE 、BD .(1)求证:AGE DAB ≌△△;(2)F 是BC 上的一点,连接AF 、EF ,AF 与GE 相交于M ,若AEF 是等边三角形,求证://BD EF .22.如图,CAD ∠与CBD ∠的角平分线交于点P .(1)若35C ∠=︒,29D ∠=︒,求P ∠的度数;(2)猜想D ∠,C ∠,P ∠的等量关系.23.如图,AD ,AE 和AF 分别是ABC ∆的高、角平分线和中线.(1)对于下面的五个结论:①2BC BF =;②12CAE CAB ∠=∠;③BE CE =;④AD BC ⊥;⑤AFB AFC S S ∆∆=.其中正确的是 (只填序号)(2)若66C ∠=︒,30ABC ∠=︒,求DAE ∠的度数.24.如图,在ABC 中,EF AB ⊥,CD AB ⊥,G 在AC 边上,AGD ACB ∠=∠.求证:(1)12∠=∠;(2)90BCD ADG ∠+∠=︒.25.已知:如图,180BAE AED ∠+∠=︒,12∠=∠,那么M N ∠=∠.下面是推理过程,请你填空:解:180BAE AED ∠+∠=︒(已知),∴______//______.( )BAE ∴∠=______(两直线平行内错角相等)又12∠=∠(已知)1BAE ∴∠-∠=______2-∠,即MAE ∠=______.∴______//______( ).M N ∴∠=∠( ) 26.△ABC 中,AD 是∠BAC 的角平分线,AE 是△ABC 的高.(1)如图1,若∠B =40°,∠C =60°,请说明∠DAE 的度数;(2)如图2(∠B <∠C ),试说明∠DAE 、∠B 、∠C 的数量关系;(3)如图3,延长AC 到点F ,∠CAE 和∠BCF 的角平分线交于点G ,请直接写出∠G 的度数 .【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【分析】根据各个选项中的说法,可以利用内错角的定义,数的开方,等边三角形的判定及角平分线的性质进行判断是否为真命题,即可得出结论.【详解】解:A 、相等的角不一定是内错角.故原命题是假命题,故此选项不符合题意;B 、如果22x y =,那么x y =.如()2222-=,但()22-≠,此命题是假命题,故此选项不符合题意;C 、有一个角为60°的三角形不一定是等边三角形,如一个三角形的三个角是60°,50°,70°,此命题是假命题,故此选项不符合题意;D 、角平分线上的点到角两边的距离相等,此命题是真命题,故此选项符合题意. 故选:D .【点睛】本题考查了命题与定理,明确题意,灵活运用所学知识判断出各个选项中的命题的真假是解答本题的关键.2.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.3.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A 3的逆命题是:3的平方根,是假命题;BC 、1的立方根是1的逆命题是:1是1的立方根,是真命题;D 、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题; 故选:C .【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.4.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误; ②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.5.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.6.A解析:A【分析】根据三角形的外角、平行线的判断、二元一次方程的解以及方差即可判断出结果.【详解】解:在三角形内角中大于90°角的外角是一个锐角,故A 选项符合题目要求;同旁内角互补,两直线平行,故B 选项不符合题目要求;21x y =-⎧⎨=⎩是二元一次方程231x y +=-的一个解,故C 选项不符合题目要求; 方差是刻画数据离散程度的量,故D 选项不符合题目要求.故选:A【点睛】本题主要考查的是命题与定理的知识,正确的掌握这些知识点是解题的关键. 7.C解析:C【分析】根据平行线的判定定理分别进行判断即可得出结论.【详解】解:当12∠=∠时,//AD BC ,不符合题意;当34∠=∠时,//AB CD , 符合题意;当5B ∠=∠时,//AB CD ,符合题意;当180B BCD ∠+∠=︒时,//AB CD ;符合题意;当5D ∠=∠时,//AD BC ;不符合题意;综上所述,能判定//AB CD 的条件有(2)∠3=∠4;(3)∠B =∠5;(4)∠B +∠BCD =180°;共3个.故选:C .【点睛】本题考查了平行线的判定:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.8.C解析:C【分析】已知GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,根据平行线的性质可得98B GEC ∠=∠=︒,62D GFC ∠=∠=︒;因CEF △沿EF 翻折得到GEF △,由折叠的性质可得1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒;在△EFC 中,由三角形的内角和定理即可求得∠C=00°.【详解】∵GE AB ∥,GF AD ∥,98B ∠=︒,62D ∠=︒,∴98B GEC ∠=∠=︒,62D GFC ∠=∠=︒,∵CEF △沿EF 翻折得到GEF △, ∴1492GEF CEF GEC ∠=∠=∠=︒,1312GFE CFE GFC ∠=∠=∠=︒, 在△EFC 中,由三角形的内角和定理可得,∠C=180°-∠FEC-∠CFE=180°-49°-31°=100°.故选C.【点睛】本题考查了平行线的性质、折叠的性质及三角形的内角和定理,熟练运用相关知识是解决问题的关键.9.C解析:C【分析】分别根据有理数、平行线的判定与性质以点到直线的距离分别判断得出即可.【详解】①实数与数轴上的点一一对应,原命题是假命题;②两条平行线线被第三条直线所截,内错角相等,原命题是假命题;③直线外一点到这条直线的垂线段的长度叫做点到直线的距离,原命题是假命题; ④平行于同一条直线的两条直线互相平行,是真命题;⑤垂直于同一平面内的同一条直线的两条直线互相平行,原命题是假命题;⑥如果一个角的两边分别平行于另一个角的两边,那么这两个角相等或互补,原命题是假命题;故选:C .【点睛】此题主要考查了命题与定理,熟练掌握相关的定理与性质是解题关键.10.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF ∥AB ,∴∠ECA=∠CAD ,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB 是△ACD 的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.11.D解析:D【分析】这个图形可以看成是两个三角形叠放在一起的,根据三角形内角和定理可得出结论.【详解】解:180A E C ∠+∠+∠=︒,180D B F ∠+∠+∠=︒,360A B C D E F ∴∠+∠+∠+∠+∠+∠=︒.故选:D .【点睛】 本题考查的是三角形内角和定理,熟知三角形内角和是180︒是解答此题的关键. 12.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b >,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全 解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误; 逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.答案不唯一例如当但【分析】可根据的正负性来考虑即可例如用来进行判断即可【详解】反例:取有但故答案为:但【点睛】本题考查了命题与定理举反例说明说明命题是假命题时在选取反例时要注意遵循这一原则:反例的选 解析:答案不唯一,例如当1,1,a b a b ==->,但22a b <【分析】可根据a 、b 的正负性来考虑即可,例如用1a =、1b =-来进行判断即可.【详解】反例:取1a =,1b =-,有a b >,但22a b =.故答案为:1a =,1b =-,a b >,但22a b =.【点睛】本题考查了命题与定理,举反例说明说明命题是假命题时,在选取反例时要注意遵循这一原则:反例的选取一定要满足所给命题的题设要求,而不能满足命题的结论.15.130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ∠FAC =∠CAD 再求出∠BAC 的度数即可求解【详解】连接AD ∵D 点分别以ABAC 为对称轴的对称点为EF ∴∠EAB =∠BAD ∠FAC =∠CAD解析:130°【分析】利用轴对称的性质可知:∠EAB =∠BAD ,∠FAC =∠CAD ,再求出∠BAC 的度数,即可求解.【详解】连接AD ,∵D 点分别以AB 、AC 为对称轴的对称点为E 、F ,∴∠EAB =∠BAD ,∠FAC =∠CAD ,∵60B ∠=︒,55C ∠=︒,∴∠BAC =∠BAD +∠DAC =180°−60°−55°=65°,∴∠EAF =2∠BAC =130°,故答案是:130°.【点睛】此题考查轴对称的性质,关键是利用轴对称的性质解答.16.20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°∠CAD=54°进而得出∠DAE 的度数进而得出答案【详解】∵ADAE 分别是△ABC 的高和角平分线且∠B=76°∠C=36°∴∠B解析:20°【分析】根据高线的定义以及角平分线的定义分别得出∠BAD=14°,∠CAD=54°,进而得出∠DAE 的度数,进而得出答案.【详解】∵AD ,AE 分别是△ABC 的高和角平分线,且∠B=76°,∠C=36°,∴∠BAC=180763668︒-︒-︒=︒,∠BAD=9076︒-︒=14°,∠CAD=9036︒-︒=54°,∴∠BAE=12∠BAC=12×68°=34°, ∴∠DAE=34°-14°=20°.故答案为:20°.【点睛】 本题主要考查了高线以及角平分线的性质,得出∠BAD 和∠CAD 的度数是解题关键.17.65【分析】利用平行线的判定定理和性质定理等量代换可得∠CBD=∠EBC 可得结果【详解】∵∠1=50°∴∠DBE=180°-∠1=180°-50°=130°∵∠2=130°∴∠DBE=∠2∴AE∥C解析:65【分析】利用平行线的判定定理和性质定理,等量代换可得∠CBD=∠EBC,可得结果.【详解】∵∠1=50°,∴∠DBE=180°-∠1=180°-50°=130°,∵∠2=130°,∴∠DBE=∠2,∴AE∥CF,∴∠4=∠ADF,∵∠3=∠4,∴∠EBC=∠4,∴AD∥BC,∵AD平分∠BDF,∴∠ADB=∠ADF,∵AD∥BC,∴∠ADB=∠CBD,∴∠4=∠CBD,∴∠CBD=∠EBC=12∠DBE=12×130°=65°.故答案为:65.【点睛】本题主要考查了平行线的判定定理和性质定理,角平分线的定义等,熟练掌握定理是解答此题的关键.18.在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【分析】在同一平面内垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【详解】解:在同一平面内垂直于同一条直线的两条直线平行解析:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【分析】在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.【详解】解:在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行.故答案为在同一平面内,垂直于同一条直线的两条直线平行或根据同位角相等两直线平行【点睛】本题考查的是平行线的判定,熟知平行线的判定方法是解答此题的关键19.60°【分析】本题首先利用证明直线与平行继而利用对顶角性质以及两直线平行同旁内角互补求解【详解】如下图所示:∵∠1=∠5∠2=∠6又∵∠1=∠2∴∠5=∠6∴∥∵∠4=120°∴∠7=∠4=120°解析:60°【分析】本题首先利用12∠=∠证明直线1l 与2l 平行,继而利用对顶角性质以及两直线平行,同旁内角互补求解3∠.【详解】如下图所示:∵∠1=∠5,∠2=∠6,又∵∠1=∠2,∴∠5=∠6,∴1l ∥2l .∵∠4=120°,∴∠7=∠4=120°,又∵∠3+∠7=180°,∴∠3=60°.故填:60°.【点睛】本题考查平行线的判定与性质,需要灵活运用两直线平行,内错角、同位角相等、同旁内角互补.20.55【分析】根据三角形内角和定理可知要求∠A 只要求出∠AEF +∠AFE 的度数即可【详解】∵∠1+∠AEF =180°∠2+∠AFE =180°∴∠1+∠AEF +∠2+∠AFE =360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A 只要求出∠AEF +∠AFE 的度数即可.【详解】∵∠1+∠AEF =180°,∠2+∠AFE =180°,∴∠1+∠AEF +∠2+∠AFE =360°,∵∠1+∠2=235°,∴∠AEF +∠AFE =360°−235°=125°,∵在△AEF 中:∠A +∠AEF +∠AFE =180°(三角形内角和定理)∴∠A =180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A 所在的三角形是关键.三、解答题21.(1)见解析;(2)见解析.【分析】(1)由等边三角形的性质,解得60BAC DAG ∠=∠=︒,,AB BC AC AD DG AG ====,结合GE AC =,可证明ABD ≅()GEA SAS ; (2)由等边三角形的性质,解得60ABC AGD ∠=∠=︒,60ABC AEF ∠=∠=︒继而根据同位角相等,两直线平行判定//GE BC ,由两直线平行,内错角相等解得EFC GEF ∠=∠,接着由全等三角形的对应角相等得到ABD GEA ∠=∠,最后由角的和差解得DBF GEF ∠=∠整理得DBF EFC ∠=∠据此解题即可.【详解】解:(1)ABC 与ADG 均为等边三角形,60BAC DAG ∴∠=∠=︒,,AB BC AC AD DG AG ==== GE AC =∴GE AB =在DAB 与AGE 中,AD AG BAD EGA AB GE =⎧⎪∠=∠⎨⎪=⎩ABD ∴≅()GEA SAS ;(2)ABC 与ADG 均为等边三角形,60ABC AGD ∴∠=∠=︒//GE BC ∴EFC GEF ∴∠=∠ABD ≅()GEA SASABD GEA ∴∠=∠若AEF 是等边三角形,60ABC AEF ∴∠=∠=︒ABC ABD AEF GEA ∴∠-∠=∠-∠即DBF GEF ∠=∠DBF EFC ∴∠=∠//BD EF ∴.【点睛】本题考查等边三角形的性质、全等三角形的判定与性质、平行线的判定与性质等知识,是重要考点,难度较易,掌握相关知识是解题关键.22.(1)32°;(2)()12P C D ∠=∠+∠. 【分析】(1)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而求出∠P ;(2)根据对顶角相等可得∠AFC=∠BFP ,∠BED =∠AEP ,利用三角形的内角和定理可得∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②,两式相加并利用角平分线的定义和等式的基本性质变形可得∠C +∠D=2∠P ,从而证出结论.【详解】解:(1)∵∠AFC=∠BFP ,∠BED =∠AEP∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P ∴∠P=()12C D ∠+∠=()135292︒+︒=32°; (2)()12P C D ∠=∠+∠,理由如下 ∵∠AFC=∠BFP ,∠BED =∠AEP ∴180°-(∠C +∠CAF )=180°-(∠P +∠PBF ),180°-(∠D +∠DBE )=180°-(∠P +∠PAE )∴∠C +∠CAF=∠P +∠PBF①,∠D +∠DBE=∠P +∠PAE②①+②,得∠C +∠CAF +∠D +∠DBE=∠P +∠PBF +∠P +∠PAE∵CAD ∠与CBD ∠的角平分线交于点P∴∠CAF=∠PAE ,∠DBE=∠PBF∴∠C +∠D=2∠P∴∠P=()12C D ∠+∠. 【点睛】 此题考查的是三角形的内角和定理和角的和与差,掌握三角形的内角和定理和角平分线的定义是解题关键.23.解:(1)①②④⑤;(2)18DAE ∠=︒【分析】(1)根据三角形的高、角平分线和中线的定义即可得到AD ⊥BC ,∠CAE=12∠CAB ,BC=2BF ,S △AFB =S △AFC .(2)先根据三角形内角和得到∠CAB=180°-∠ABC-∠C=84°,再根据角平分线与高线的定义得到∠CAE=12∠CAB=42°,∠ADC=90°,则∠DAC=90°-∠C=24°,然后利用∠DAE=∠CAE-∠DAC 计算即可.【详解】(1)∵AD ,AE 和AF 分别是△ABC 的高、角平分线和中线, ∴AD ⊥BC ,∠CAE=∠BAE=12∠CAB ,BF=CF ,BC=2BF , ∵S △AFB =12BF•AD ,S △AFC =12CF•AD , ∴S △AFB =S △AFC ,故①②④⑤正确,③错误,故答案为①②④⑤;(2)∵∠C=66°,∠ABC=30°,∴∠CAB=180°-∠ABC-∠C=84°,∴∠CAE=12∠CAB=42°, ∵∠ADC=90°,∠C=66°,∴∠DAC=24° ∴∠DAE=∠CAE-∠DAC=42°-24°=18°.【点睛】本题考查了三角形的高、角平分线和中线的定义,三角形内角和为180°.也考查了三角形的面积.正确的识别图形是解题的关键.24.(1)见解析;(2)见解析【分析】(1)根据同位角相等证得//DG BC ,根据垂直得到同位角相等进而得到//FE DC ,然后根据平行线的性质,利用等量代换即可证明;(2)根据90CDB ∠=︒,得到190ADG ∠+∠=︒,结合(1)中结论12∠=∠和1DCB ∠=∠,利用等量代换即可证明.【详解】(1)∵AGD ACB ∠=∠∴//DG BC∴1DCB ∠=∠∵EF AB ⊥,CD AB ⊥∴//FE DC∴2DCB =∠∠∴12∠=∠(2)由(1)得1DCB ∠=∠∵CD AB ⊥∴90CDB ∠=︒∴190ADG ∠+∠=︒又∵1DCB ∠=∠∴90BCD ADG ∠+∠=︒【点睛】本题考查了平行的判定和性质,等量代换,熟练掌握平行线的判定和性质是本题的关键. 25.见解析【分析】先根据平行线的判定,得到AB ∥CD ,再根据平行线的性质,得出∠MAE=∠NEA ,进而得出AM ∥NE ,最后根据平行线的性质即可得到结论.【详解】解:∵∠BAE+∠AED=180°,(已知)∴AB ∥CD ,(同旁内角互补,两直线平行)∴∠BAE=∠CEA ,(两直线平行,内错角相等 )又∵∠1=∠2,∴∠BAE-∠1=∠AEC-∠2,即∠MAE=∠NEA ,∴AM ∥NE ,(内错角相等,两直线平行)∴∠M=∠N .(两直线平行,内错角相等)【点睛】本题主要考查了平行线的性质与判定的运用,解题时注意:平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系.26.(1)∠DAE =10°;(2)∠DAE =12∠C ﹣12∠B ;(3)45°. 【分析】(1)先根据三角形的内角和定理求得80BAC ∠=︒、30CAE ∠=︒,再根据角平分线的定义得到40CAD ∠=︒,最后根据角的和差解答即可;(2)先根据三角形的内角和定理求得180BAC B C ∠=︒-∠-∠、90CAE C ∠=︒-∠,再根据角平分线的定义得到12CAD BAD BAC ∠=∠=∠,然后根据角的和差表示出来即可;(3)先根据角平分线的定义得到2,2CAE CAG FCB FCG ∠=∠∠=∠,再结合三角形外角的性质得到2AEC G ∠=∠,然后根据题意得到90AEC ∠=︒,最后算出∠G 即可.【详解】解:(1)40,60,180B C BAC B C ∠=︒∠=︒∠+∠+∠=︒80BAC ∴∠=︒AE ∵是ABC ∆的高,90,AEC ∴∠=︒60,C ∠=︒906030CAE ∴∠=︒-︒=︒ AD 是BAC ∠的角平分线,1402CAD BAD BAC ∴∠=∠=∠=︒, 10DAE CAD CAE ∴∠=∠-∠=︒.(2)180,BAC B C ∠+∠+∠=︒180BAC B C ∴∠=︒-∠-∠AE ∵是ABC ∆的高,90,AEC ∴∠=︒90CAE C ∴∠=︒-∠ AD 是BAC ∠的角平分线,12CAD BAD BAC ∴∠=∠=∠, ()1902DAE CAD CAE BAC C ∴∠=-∠=∠-︒-∠ ()1180902C C =︒-∠B -∠-︒+∠ 1122C B =∠-∠ 即1122DAE C B ∠=∠-∠; (3)CAE ∠和BCF ∠的角平分线交于点G ,2,2CAE CAG FCB FCG ∴∠=∠∠=∠,CAE FCB AEC CAG FCG G ∠=∠-∠∠=∠-∠()2222FCG AEC FCG G FCG G ∴∠-∠=∠-∠=∠-∠,即2AEC G ∠=∠,AE ∵是ABC ∆的高,90AEC ∴∠=︒,45G ∴∠=︒.故答案为:45°.【点睛】本题主要考查了三角形内角和定理、角平分线的定义、三角形外角的性质等知识点,灵活应用相关知识成为解答本题的关键.。
初中数学:平行线的证明测试题
初中数学:平行线的证明测试题一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形6.下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 度.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= °.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= .18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 度.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 度.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= .21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为度.22.如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= .24.如图,一束平行太阳光线照射到正五边形上,则∠1= .25.如图,a∥b,∠1=70°,∠2=50°,∠3= °.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= °.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为°.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 度.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= °.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= .平行线的证明参考答案与试题解析一、选择题(共14小题)1.如图,∠1=∠2,∠3=40°,则∠4等于()A.120°B.130°C.140°D.40°【考点】平行线的判定与性质.【分析】首先根据同位角相等,两直线平行可得a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=40°,∴∠5=40°,∴∠4=180°﹣40°=140°,故选:C.【点评】此题主要考查了平行线的性质与判定,关键是掌握同位角相等,两直线平行;两直线平行,同位角相等.2.如图,直线a,b与直线c,d相交,若∠1=∠2,∠3=70°,则∠4的度数是()A.35°B.70°C.90°D.110°【考点】平行线的判定与性质.【分析】首先根据∠1=∠2,可根据同位角相等,两直线平行判断出a∥b,可得∠3=∠5,再根据邻补角互补可以计算出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠3=∠5,∵∠3=70°,∴∠5=70°,∴∠4=180°﹣70°=110°,故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握平行线的判定定理与性质定理,平行线的判定是由角的数量关系判断两直线的位置关系.平行线的性质是由平行关系来寻找角的数量关系3.如图,直线a,b,c,d,已知c⊥a,c⊥b,直线b,c,d交于一点,若∠1=50°,则∠2=()A.60°B.50°C.40°D.30°【考点】平行线的判定与性质.【分析】先根据对顶角相等得出∠3,然后判断a∥b,再由平行线的性质,可得出∠2的度数.【解答】解:∵∠1和∠3是对顶角,∴∠1=∠3=50°,∵c⊥a,c⊥b,∴a∥b,∵∠2=∠3=50°.故选:B.【点评】本题考查了平行线的判定与性质,解答本题的关键是掌握两直线平行内错角相等,对顶角相等.4.如图所示,∠1+∠2=180°,∠3=100°,则∠4等于()A.70°B.80°C.90°D.100°【考点】平行线的判定与性质.【分析】首先证明a∥b,再根据两直线平行同位角相等可得∠3=∠6,再根据对顶角相等可得∠4.【解答】解:∵∠1+∠5=180°,∠1+∠2=180°,∴∠2=∠5,∴a∥b,∴∠3=∠6=100°,∴∠4=100°.故选:D.【点评】此题主要考查了平行线的判定与性质,关键是掌握两直线平行同位角相等.5.已知在△ABC中,∠C=∠A+∠B,则△ABC的形状是()A.等边三角形 B.锐角三角形 C.直角三角形 D.钝角三角形【考点】三角形内角和定理.【分析】根据在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°可求出∠C的度数,进而得出结论.【解答】解:∵在△ABC中,∠A+∠B=∠C,∠A+∠B+∠C=180°,∴2∠C=180°,解得∠C=90°,、∴△ABC是直角三角形.故选:C.【点评】本题考查的是三角形内角和定理,熟知三角形内角和是180°是解答此题的关键.6.(2013•扬州)下列图形中,由AB∥CD,能得到∠1=∠2的是()A.B.C.D.【考点】平行线的判定与性质.【分析】根据平行线的性质求解即可求得答案,注意掌握排除法在选择题中的应用.【解答】解:A、∵AB∥CD,∴∠1+∠2=180°,故A错误;B、∵AB∥CD,∴∠1=∠3,∵∠2=∠3,∴∠1=∠2,故B正确;C、∵AB∥CD,∴∠BAD=∠CDA,若AC∥BD,可得∠1=∠2;故C错误;D、若梯形ABCD是等腰梯形,可得∠1=∠2,故D错误.故选:B.【点评】此题主要考查了平行线的判定,关键是掌握平行线的判定定理.同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.此题难度不大,注意掌握数形结合思想的应用.7.直线a、b、c、d的位置如图所示,如果∠1=58°,∠2=58°,∠3=70°,那么∠4等于()A.58°B.70°C.110°D.116°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠1=∠2=58°,∴a∥b,∴∠3+∠5=180°,即∠5=180°﹣∠3=180°﹣70°=110°,∴∠4=∠5=110°,故选C.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.8.如图,直线a、b被直线c、d所截,若∠1=∠2,∠3=125°,则∠4的度数为()A.55°B.60°C.70°D.75°【考点】平行线的判定与性质.【分析】利用平行线的性质定理和判定定理,即可解答.【解答】解:如图,∵∠1=∠2,∴a∥b,∴∠3=∠5=125°,∴∠4=180°﹣∠5=180°﹣125°=55°,故选:A.【点评】此题考查了平行线的性质和判定定理.此题难度不大,注意掌握数形结合思想的应用.9.如图,直线a,b与直线c,d相交,已知∠1=∠2,∠3=110°,则∠4=()A.70°B.80°C.110°D.100°【考点】平行线的判定与性质.【分析】根据同位角相等,两直线平行这一定理可知a∥b,再根据两直线平行,同旁内角互补即可解答.【解答】解:∵∠3=∠5=110°,∵∠1=∠2=58°,∴a∥b,∴∠4+∠5=180°,∴∠4=70°,故选A.【点评】本题主要考查了平行线的判定和性质,对顶角相等,熟记定理是解题的关键.10.如图,∠1=∠2,∠3=30°,则∠4等于()A.120°B.130°C.145°D.150°【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,利用同位角相等两直线平行得到a与b平行,再由两直线平行同位角相等得到∠3=∠5,求出∠5的度数,即可求出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5=∠3=30°,∴∠4=180°﹣∠5,=150°,故选D【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.11.如图,在△ABC中,∠B、∠C的平分线BE,CD相交于点F,∠ABC=42°,∠A=60°,则∠BFC=()A.118°B.119°C.120°D.121°【考点】三角形内角和定理.【分析】由三角形内角和定理得∠ABC+∠ACB=120°,由角平分线的性质得∠CBE+∠BCD=60°,再利用三角形的内角和定理得结果.【解答】解:∵∠A=60°,∴∠ABC+∠ACB=120°,∵BE,CD是∠B、∠C的平分线,∴∠CBE=∠ABC,∠BCD=,∴∠CBE+∠BCD=(∠ABC+∠BCA)=60°,∴∠BFC=180°﹣60°=120°,故选:C.【点评】本题主要考查了三角形内角和定理和角平分线的性质,综合运用三角形内角和定理和角平分线的性质是解答此题的关键.12.在△ABC中,∠A:∠B:∠C=3:4:5,则∠C等于()A.45°B.60°C.75°D.90°【考点】三角形内角和定理.【分析】首先根据∠A:∠B:∠C=3:4:5,求出∠C的度数占三角形的内角和的几分之几;然后根据分数乘法的意义,用180°乘以∠C的度数占三角形的内角和的分率,求出∠C等于多少度即可.【解答】解:180°×==75°即∠C等于75°.故选:C.【点评】此题主要考查了三角形的内角和定理,要熟练掌握,解答此题的关键是要明确:三角形的内角和是180°.13.如图,小聪把一块含有60°角的直角三角板的两个顶点放在直尺的对边上,并测得∠1=25°,则∠2的度数是()A.15°B.25°C.35°D.45°【考点】平行线的性质.【专题】压轴题.【分析】先根据两直线平行,内错角相等求出∠3,再根据直角三角形的性质用∠2=60°﹣∠3代入数据进行计算即可得解.【解答】解:∵直尺的两边互相平行,∠1=25°,∴∠3=∠1=25°,∴∠2=60°﹣∠3=60°﹣25°=35°.故选C.【点评】本题考查了平行线的性质,三角板的知识,比较简单,熟记性质是解题的关键.14.如图AB∥CD,AC⊥BC,图中与∠CAB互余的角有()A.1个B.2个C.3个D.4个【考点】平行线的性质;余角和补角;对顶角、邻补角.【分析】两角互余,则两角之和为90°,此题的目的在于找出与∠CAB的和为90°的角,根据平行线的性质及对顶角相等作答.【解答】解:∵AB∥CD,∴∠ABC=∠BCD,设∠ABC的对顶角为∠1,则∠ABC=∠1,又∵AC⊥BC,∴∠ACB=90°,∴∠CAB+∠ABC=∠CAB+∠BCD=∠CAB+∠1=90°,因此与∠CAB互余的角为∠ABC,∠BCD,∠1.故选C.【点评】此题考查的知识点为:平行线的性质,两角互余和为90°,对顶角相等.二、填空题(共16小题)15.如图,∠1=∠2,∠A=60°,则∠ADC= 120 度.【考点】平行线的判定与性质.【分析】由已知一对内错角相等,利用内错角相等两直线平行得到AB与DC平行,再利用两直线平行同旁内角互补,由∠A的度数即可求出∠ADC的度数.【解答】解:∵∠1=∠2,∴AB∥CD,∴∠A+∠ADC=180°,∵∠A=60°,∴∠ADC=120°.故答案为:120°【点评】本题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.16.如图,∠1=∠2=40°,MN平分∠EMB,则∠3= 110 °.【考点】平行线的判定与性质.【分析】根据对顶角相等得出∠2=∠MEN,利用同位角相等,两直线平行得出AB∥CD,再利用平行线的性质解答即可.【解答】解:∵∠2=∠MEN,∠1=∠2=40°,∴∠1=∠MEN,∴AB∥CD,∴∠3+∠BMN=180°,∵MN平分∠EMB,∴∠BMN=,∴∠3=180°﹣70°=110°.故答案为:110.【点评】本题考查了平行线的性质,角平分线的定义,是基础题,熟记性质并准确识图是解题的关键.17.如图,若∠1=40°,∠2=40°,∠3=116°30′,则∠4= 63°30′.【考点】平行线的判定与性质.【分析】根据∠1=∠2可以判定a∥b,再根据平行线的性质可得∠3=∠5,再根据邻补角互补可得答案.【解答】解:∵∠1=40°,∠2=40°,∴a∥b,∴∠3=∠5=116°30′,∴∠4=180°﹣116°30′=63°30′,故答案为:63°30′.【点评】此题主要考查了平行线的判定与性质,关键是掌握同位角相等,两直线平行.18.如图,AB∥CD,∠1=60°,FG平分∠EFD,则∠2= 30 度.【考点】平行线的性质;角平分线的定义.【分析】根据平行线的性质得到∠EFD=∠1,再由FG平分∠EFD即可得到.【解答】解:∵AB∥CD∴∠EFD=∠1=60°又∵FG平分∠EFD.∴∠2=∠EFD=30°.【点评】本题主要考查了两直线平行,同位角相等.19.如图,点B,C,E,F在一直线上,AB∥DC,DE∥GF,∠B=∠F=72°,则∠D= 36 度.【考点】平行线的性质;三角形内角和定理.【分析】根据两直线平行,同位角相等可得∠DCE=∠B,∠DEC=∠F,再利用三角形的内角和定理列式计算即可得解.【解答】解:∵AB∥DC,DE∥GF,∠B=∠F=72°,∴∠DCE=∠B=72°,∠DEC=∠F=72°,在△CDE中,∠D=180°﹣∠DCE﹣∠DEC=180°﹣72°﹣72°=36°.故答案为:36.【点评】本题考查了两直线平行,同位角相等的性质,三角形的内角和定理,是基础题,熟记性质与定理是解题的关键.20.如右图,已知:AB∥CD,∠C=25°,∠E=30°,则∠A= 55°.【考点】平行线的性质.【专题】计算题.【分析】由AB与CD平行,利用两直线平行得到一对同位角相等,求出∠EFD的度数,而∠EFD为三角形ECF的外角,利用外角性质即可求出∠EFD的度数,即为∠A的度数.【解答】解:∵∠EFD为△ECF的外角,∴∠EFD=∠C+∠E=55°,∵CD∥AB,∴∠A=∠EFD=55°.故答案为:55°【点评】此题考查了平行线的性质,以及三角形的外角性质,熟练掌握平行线的性质是解本题的关键.21.如图,已知∠1=∠2,∠3=73°,则∠4的度数为107 度.【考点】平行线的判定与性质.【专题】计算题.【分析】根据已知一对同位角相等,利用同位角相等两直线平行得到a与b平行,利用两直线平行同旁内角互补得到一对角互补,再利用对顶角相等即可确定出∠4的度数.【解答】解:∵∠1=∠2,∴a∥b,∴∠5+∠3=180°,∵∠4=∠5,∠3=73°,∴∠4+∠3=180°,则∠4=107°.故答案为:107【点评】此题考查了平行线的判定与性质,熟练掌握平行线的判定与性质是解本题的关键.22.(2013•南昌)如图△ABC中,∠A=90°,点D在AC边上,DE∥BC,若∠1=155°,则∠B的度数为65°.【考点】平行线的性质;直角三角形的性质.【专题】探究型.【分析】先根据平角的定义求出∠EDC的度数,再由平行线的性质得出∠C的度数,根据三角形内角和定理即可求出∠B的度数.【解答】解:∵∠1=155°,∴∠EDC=180°﹣155°=25°,∵DE∥BC,∴∠C=∠EDC=25°,∵△ABC中,∠A=90°,∠C=25°,∴∠B=180°﹣90°﹣25°=65°.故答案为:65°.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.23.如图,一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=25°,则∠2= 115°.【考点】平行线的性质.【分析】将各顶点标上字母,根据平行线的性质可得∠2=∠DEG=∠1+∠FEG,从而可得出答案.【解答】解:∵四边形ABCD是矩形,∴AD∥BC,∴∠2=∠DEG=∠1+∠FEG=115°.故答案为:115°.【点评】本题考查了平行线的性质,解答本题的关键是掌握平行线的性质:两直线平行内错角相等.24.如图,一束平行太阳光线照射到正五边形上,则∠1= 30°.【考点】平行线的性质;多边形内角与外角.【分析】作出平行线,根据两直线平行:内错角相等、同位角相等,结合三角形的内角和定理,即可得出答案.【解答】解:作出辅助线如图:则∠2=42°,∠1=∠3,∵五边形是正五边形,∴一个内角是108°,∴∠3=180°﹣∠2﹣∠3=30°,∴∠1=∠3=30°.故答案为:30°.【点评】本题考查了平行线的性质,注意掌握两直线平行:内错角相等、同位角相等.25.如图,a∥b,∠1=70°,∠2=50°,∠3= 60 °.【考点】平行线的性质.【专题】探究型.【分析】先根据平行线的性质求出∠4的度数,再由平角的性质求出∠3的度数即可.【解答】解:∵a∥b,∠1=70°,∴∠4=∠1=70°,∴∠3=180°﹣∠4﹣∠2=180°﹣70°﹣50°=60°.故答案为:60.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,同位角相等.26.如图,AD平分△ABC的外角∠EAC,且AD∥BC,若∠BAC=80°,则∠B= 50 °.【考点】平行线的性质.【分析】由∠BAC=80°,可得出∠EAC的度数,由AD平分∠EAC,可得出∠EAD的度数,再由AD∥BC,可得出∠B的度数.【解答】解:∵∠BAC=80°,∴∠EAC=100°,∵AD平分△ABC的外角∠EAC,∴∠EAD=∠DAC=50°,∵AD∥BC,∴∠B=∠EAD=50°.故答案为:50.【点评】本题考查了平行线的性质,解答本题的关键是掌握角平分线的性质及平行线的性质:两直线平行内错角、同位角相等,同旁内角互补.27.如图,AB∥CD,∠BAF=115°,则∠ECF的度数为65 °.【考点】平行线的性质.【分析】先根据平角的定义求出∠BAC的度数,再根据平行线的性质即可得出结论.【解答】解:∵∠BAF=115°,∴∠BAC=180°﹣115°=65°,∵AB∥CD,∴∠ECF=∠BAC=65°.故答案为:65.【点评】本题考查的是平行线的性质,用到的知识点为:两直线平行,内错角相等.28.如图,∠B=30°,若AB∥CD,CB平分∠ACD,则∠ACD= 60 度.【考点】平行线的性质.【专题】压轴题.【分析】根据AB∥CD,可得∠BCD=∠B=30°,然后根据CB平分∠ACD,可得∠ACD=2∠BCD=60°.【解答】解:∵AB∥CD,∠B=30°,∴∠BCD=∠B=30°,∵CB平分∠ACD,∴∠ACD=2∠BCD=60°.故答案为:60.【点评】本题考查了平行线的性质和角平分线的性质,掌握平行线的性质:两直线平行,内错角相等是解题的关键.29.如图,四边形ABCD中,点M、N分别在AB、BC上,将△BMN沿MN翻折,得△FMN,若MF∥AD,FN ∥DC,则∠B= 95 °.【考点】平行线的性质;三角形内角和定理;翻折变换(折叠问题).【分析】根据两直线平行,同位角相等求出∠BMF、∠BNF,再根据翻折的性质求出∠BMN和∠BNM,然后利用三角形的内角和定理列式计算即可得解.【解答】解:∵MF∥AD,FN∥DC,∴∠BMF=∠A=100°,∠BNF=∠C=70°,∵△BMN沿MN翻折得△FMN,∴∠BMN=∠BMF=×100°=50°,∠BNM=∠BNF=×70°=35°,在△BMN中,∠B=180°﹣(∠BMN+∠BNM)=180°﹣(50°+35°)=180°﹣85°=95°.故答案为:95.【点评】本题考查了两直线平行,同位角相等的性质,翻折变换的性质,三角形的内角和定理,熟记性质并准确识图是解题的关键.30.如图,在△ABC中,∠B=40°,三角形的外角∠DAC和∠ACF的平分线交于点E,则∠AEC= 70°.【考点】三角形内角和定理;三角形的外角性质.【分析】根据三角形内角和定理、角平分线的定义以及三角形外角定理求得∠DAC+∠ACF=(∠B+∠B+∠1+∠2);最后在△AEC中利用三角形内角和定理可以求得∠AEC的度数.【解答】解:∵三角形的外角∠DAC和∠ACF的平分线交于点E,∴∠EAC=∠DAC,∠ECA=∠ACF;又∵∠B=40°(已知),∠B+∠1+∠2=180°(三角形内角和定理),∴∠DAC+∠ACF=(∠B+∠2)+(∠B+∠1)=(∠B+∠B+∠1+∠2)=110°(外角定理),∴∠AEC=180°﹣(∠DAC+∠ACF)=70°.故答案为:70°.【点评】此题主要考查了三角形内角和定理以及角平分线的性质,熟练应用角平分线的性质是解题关键.。
平行线的证明100道经典习题练习(含答案)
平行线的证明100道经典习题练习(含答案在卷尾)一、选择题(本大题共64小题,共192.0分)1.一个三角形三个内角的度数之比是1:2:3,则这个三角形一定是()A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰直角三角形2.如图,能判断直线AB//CD的条件是()A. ∠1=∠2B. ∠3=∠4C. ∠1+∠3=180∘D. ∠3+∠4=180∘3.如图,点F,E分别在线段AB和CD上,下列条件能判定AB//CD的是()A. ∠1=∠2B. ∠1=∠4C. ∠4=∠2D. ∠3=∠44.如图,直线a//b,直线c与直线a,b分别交于点D,E,射线DF⊥直线c,则图中与∠1互余的角有()A. 4个B. 3个C. 2个D. 1个5.如图,∠BDC=98°,∠C=38°,∠A=37°,∠B的度数是()A. 33°B. 23°C. 27°D. 37°6.命题“垂直于同一条直线的两条直线互相平行”的条件是().A. 垂直B. 两条直线C. 同一条直线D. 两条直线垂直于同一条直线7.如图,BC//DE,若∠A=35°,∠C=24°,则∠E等于()A. 24°B. 59°C. 60°D. 69°8.在如图所示的四种沿AB进行折叠的方法中,不一定能判断纸带两条边a,b互相平行的是()A. 如图1,展开后测得∠1=∠2B. 如图2,展开后测得∠1=∠2且∠3=∠4C. 如图3,测得∠1=∠2D. 在图④中,展开后测得∠1+∠2=180°9.一次数学活动中,检验两条纸带 ①、 ②的边线是否平行,小明和小丽采用两种不同的方法:如图,小明对纸带 ①沿AB折叠,量得∠1=∠2=50∘;小丽对纸带 ②沿GH折叠,发现GD与GC重合,HF与HE重合.则下列判断正确的是()A. 纸带 ①的边线平行,纸带 ②的边线不平行B. 纸带 ①的边线不平行,纸带 ②的边线平行C. 纸带 ① ②的边线都平行D. 纸带 ① ②的边线都不平行10.对于命题“若a2>b2,则a>b”,下面四组关于a,b的值中,能说明这个命题是假命题的是()A. a=3,b=2B. a=−3,b=2C. a=3,b=−1D. a=−1,b=311.将一个长方形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A. 40°B. 50°C. 60°D. 70°12.通过观察你能肯定的是()A. 图形中线段是否相等B. 图形中线段是否平行C. 图形中线段是否相交D. 图形中线段是否垂直13.学习了平行线后,小敏想出了过已知直线外一点画这条直线的平行线的新方法,她是通过折一张半透明的纸得到的,如图:从图中可知,小敏画平行线的依据有①两直线平行,同位角相等;②两直线平行,内错角相等;③同位角相等,两直线平行;④内错角相等,两直线平行。
平行线的判定》证明题
平行线的判定》证明题1.当∠1=∠2时,直线a、b平行。
因为这时∠1+∠2=180°,根据平行线的性质可知a、b平行。
2.已知∠XXX∠BCD,且∠ABC+∠CDG=180°,因此∠BCD=∠XXX根据三角形内角和定理可知∠XXX∠BCD+∠XXX∠ABC+∠BCD=180°,所以BC∥GD。
3.已知∠1=15°,∠2=15°,因此∠ACE=∠BDF=75°。
但AE与BF不平行,因为它们交于点F。
4.BE平分∠ABD,DE平分∠XXX,且∠DQP=∠1=∠2,因此∠XXX∠XXX∠BCQ。
根据同位角和内错角性质可知AB∥CD,DE∥BE,因此AD∥BC。
5.已知∠2=∠3,且∠1+∠2=90°,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
6.已知∠1=30°,∠B=60°,因此∠C=90°。
根据三角形内角和定理可知∠ABC=∠ACB=60°,因此AB=AC。
又因为∠BAC=90°,所以AD∥BC。
7.已知∠BAD=∠DCB,∠BAC=∠DCA,因此三角形ABD与三角形CBD相似。
根据相似三角形的性质可知AB∥CD。
8.直线EF分别与直线AB、CD相交于点P和点Q,PG 平分∠APQ,QH平分∠DPQ。
根据角平分线的性质可知∠XXX∠GPQ+∠HPQ=1/2(∠APQ+∠DPQ)=1/2(180°)=90°,因此GH∥AB∥CD。
9.已知XXX,XXX,∠1=∠2,因此∠XXX∠BCD。
根据同位角和内错角性质可知BE∥CF。
10.已知AB⊥DF,∠2=90°,∠2=∠3,因此∠1=90°-∠2=90°-∠3.根据同位角和内错角性质可知BE∥DF,因为∠AEB=∠DFB=90°。
七年级数学平行线经典证明题
经典平行线经典证明题一、选择题:1.如图,能与∠α构成同旁内角的角有( ) A . 5个B .4个C . 3个D . 2个α2.如图,∥,直线与、分别交于点E 和点F ,⊥,∠1=130°,则∠2等于 ( ) A .50° B .40° C .30° D .65°3.如图,∥,∠31∠,∠75°,∠65°则∠是 ( ) A .70° B .65° C .60° D .55° 4.如图,如果∥,则α∠、β∠、γ∠之间的关系是( )A 、0180=∠+∠+∠γβαB 、0180=∠+∠-∠γβαC 、0180=∠-∠+∠γβαD 、0270=∠+∠+∠γβα 5.如图所示∥,则∠∠∠∠C 等于( )A.180°B.360°C.540°D.720°6.如图,∥∥,则下列各式中正确的是( )A 、∠1+∠2+∠3=180°B 、∠1+∠2-∠3=90°C 、∠1-∠2+∠3=90°D 、∠2+∠3-∠1=180° 7.如图,∥,那么∠于( )A 、∠2-∠1B 、∠1+∠2C 、180°+∠1-∠2D 、180°+∠2-2∠1二、填空题:8.把一副三角板按如图方式放置,则两条斜边所形成的钝角α=度.α45°30°9.求图中未知角的度数,,.10.如图,∥,平分∠,平分∠.(1)∠∠∠;(2)∠.11.如图,∥,∠120°,∠1=72°,则∠D的度数为.12.如图,∠90°,∥,∠1=∠B,则∠.13.如图,把长方形沿对折,若∠1=500,则∠的度数等于14.如图,已知∥,∠1=100°,∠2=120°,则∠α三、计算证明题:15.如图,在四边形中,∠104°-∠2,∠76°+∠2,⊥于D,⊥于F,能辨认∠1=∠2吗?试说明理由.16..如图,∥,∠70°,∠20°,∠130°,问直线与有怎样的位置关系,为什么?17.已知:如图23,平分∠,点F在上,∥交于G,交的延长线于E,求证:∠=∠E。
(必考题)初中数学八年级数学上册第七单元《平行线的证明》检测题(有答案解析)
一、选择题1.下列说法正确的有( )①每个定理都有逆定理;②每个命题都有逆命题;③假命题没有逆命题;④真命题的逆命题是真命题A .1个B .2个C .3个D .4个2.如图,在ABC 中,90BAC ∠=︒, AD 是BC 边上的高,BE 是AC 边的中线,CF 是ACB ∠的角平分线,CF 交AD 于点G ,交BE 于点H ,下面说法正确的是( ) ①ABE △的面积是ABC 的面积的一半;②BH CH =;③AF AG =;④FAG FCB ∠=∠.A .①②③④B .①②C .①③D .①④ 3.如图,ABC 中,将A ∠沿DE 翻折,若30A ∠=︒,25BDA '∠=︒,则CEA '∠多少度( )A .60°B .75°C .85°D .90° 4.如图,//AB CD ,点E 在AC 上,110A ∠=︒,15D ∠=︒,则下列结论正确的个数是( ) (1)AE EC =;(2)85AED ∠=︒;(3)A CED D ∠=∠+∠;(4)45BED ∠=︒A .1个B .2个C .3个D .4个5.下列命题为真命题的是( )A .内错角相等,两直线平行B .面积相等的两个三角形全等C .若a b >,则22a b ->-D .一般而言,一组数据的方差越大,这组数据就越稳定6.如图,在ABC 中,100ACB ∠=︒,20A ∠=︒,D 是AB 上一点,将ABC 沿CD 折叠,使点B 落在AC 边上的B '处,则ADB '∠等于( )A .25°B .30°C .40°D .55°7.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .388.如图,DE 经过点A ,DE ∥BC ,下列说法错误的是( )A .∠DAB =∠EACB .∠EAC =∠C C .∠EAB+∠B =180°D .∠DAB =∠B9.下列命题是真命题的是( )A .相等的角是对顶角B .内错角相等C .任何非负数的算术平方根是非负数D .直线外一点到这条直线的垂线段叫做点到直线的距离10.下列命题中,真命题的个数为( )(1)如果22a b >,那么a>b ; (2)对顶角相等;(3)四边形的内角和为360︒; (4)平行于同一条直线的两条直线平行; A .1个 B .2个 C .3个 D .4个11.在统一平面内有三条直线a 、b 、c ,下列说法:①若//a b ,//b c ,则//a c ;②若a b ⊥,b c ⊥,则a c ⊥,其中正确的是( )A .只有①B .只有②C .①②都正确D .①②都不正确 12.下列语句中,不是命题的是( ) A .过一点作已知直线的垂线 B .两点确定一条直线C .钝角大于90度D .平角都相等二、填空题13.下列说法中:(1)不相交的两条直线叫做平行线;(2)经过一点,有且只有一条直线与已知直线平行;(3)垂直于同一条直线的两直线平行;(4)直线//a b ,//b c ,则//a c ;(5)两条直线被第三条直线所截,同位角相等.其中正确的是________.14.如图,点P 是三角形三条角平分线的交点,若∠BPC=100︒,则∠BAC=_________.15.在△ABC 中,∠A=∠B+∠C ,∠B=2∠C ﹣6°,则∠C 的度数为_____.16.如图所示,已知∠1=22°,∠2=28°,∠A=56°,则∠BOC 的度数是___________.17.如图,一个直角三角形纸片ABC ,90BAC ∠=,D 是边BC 上一点,沿线段AD 折叠,使点B 落在点E 处(E B 、在直线AC 的两侧),当50EAC ∠=时,则CAD ∠=__________°.18.如图,将一副三角板叠放在一起,使含45°的直角三角板的一个锐角顶点E 恰好落在另一个含30°的直角三角板的斜边AB 上,DE 与AC 交于点G .如果110BEF ∠=︒, 那么AGE ∠=__________度.19.如图,C 为AOB ∠的边OA 上一点,过点C 作CD OB 交AOB ∠的平分线OE 于点F ,作CH OB ⊥交BO 的延长线于点H ,若EFD α∠=,现有以下结论:①COF α∠=;②1802AOH α∠=︒-;③CH CD ⊥;④290OCH α∠=-︒.其中正确的是______(填序号).20.如图,在ΔABC 中,E 、F 分别是AB 、AC 上的两点,∠1+∠2=235°,则∠A=____度.三、解答题21.如图,在ABC 中,P 是ABC ∠,ACB ∠的角平分线的交点.(1)若80A ∠=︒,求BPC ∠的度数;(2)有位同学在解答(1)后得出1902BPC A ∠=︒+∠的规律,你认为正确吗?请说明理由.22.如图,BD 平分ABC ∠,CD 平分ACB ∠.试确定A ∠和D ∠的数量关系.23.如图,BAE ∠,CBF ∠,ACD ∠是ABC 的三个外角.求BAE CBF ACD ∠+∠+∠的度数.(要求:写出求解过程,不能直接用外角和公式)24.已知E ,A ,C 在同一直线上,AD BC ⊥于点D ,EG BC ⊥于点G ,交AB 于F ,3E ∠=∠.求证:(1)//AD EC ;(2)AD 平分BAC ∠证明:(1)∵AD BC ⊥,EG BC ⊥∴ADC EGC ∠==______∴//AD EG(2)∵//AD EG∴1∠=∠______(______),∠2=∠3(_______)∵3E ∠=∠(______)∴______=______即AD 平分BAC ∠25.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.26.如图,点B,F,C,E在一条直线上,AB=DE,FB=CE,AB∥ED.求证:AC∥FD.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据逆定理的定义,某一定理的条件和结论互换所得命题是真命题是这个定理的逆定理可以判断①,对于两个命题,如果一个命题的条件和结论分别是另外一个命题的结论和条件,那么这两个命题叫做互逆命题,其中一个命题叫做原命题,另外一个命题叫做原命题的逆命题,可判断②,利用命题分类分为真命题与假命题都是命题,都有逆命题,可判断③,真命题是正确的命题,真命题的逆命题有真假命题之分,可判断④即可.【详解】解:①每个定理都有逆命题,看根据逆命题的条件能否推出正确的结论,能推出,由逆定理,不能推出,没有逆定理,故①不正确;②每个命题都有逆命题;故②正确;③假命题也是命题,命题都有逆命题,故③不正确;④真命题的逆命题可能是假命题,也可能是真命题,根据条件能否推出正确的结论有关,能推出,由是真命题,不能推出,是假命题,故④不正确.正确的说法只有一个②.故选择:A.本题考查命题,真命题,假命题,逆命题,定理,逆定理,掌握命题,真命题,假命题,逆命题,定理,逆定理的定义,以及它们的区别是解题关键.2.C解析:C【分析】根据三角形的面积公式进行判断①,根据等腰三角形的判定判断②即可,根据三角形的内角和定理求出∠AFG=∠AGF ,再根据等腰三角形的判定判断③即可,根据三角形的内角和定理求出∠FAG=∠ACB ,再判断④即可.【详解】解:∵BE 是AC 边的中线,∴AE=CE 12=AC , ∵△ABE 的面积12=×AE×AB ,△ABC 的面积12=×AC×AB , ∴△ABE 的面积等于△ABC 的面积的一半,故①正确;根据已知不能推出∠HBC=∠HCB ,即不能推出HB=HC ,故②错误;∵在△ACF 和△DGC 中,∠BAC=∠ADC=90°,∠ACF=∠FCB ,∴∠AFG=90°-∠ACF ,∠AGF=∠DGC=90°-∠FCB ,∴∠AFG=∠AGF ,∴AF=AG ,故③正确;∵AD 是BC 边上的高,∴∠ADC=90°,∵∠BAC=90°,∴∠DAC+∠ACB=90°,∠FAG+∠DAC=90°,∴∠FAG=∠ACB ,∵CF 是∠ACB 的角平分线,∴∠ACF=∠FCB ,∠ACB=2∠FCB ,∴∠FAG=2∠FCB ,故④错误;即正确的为①③,故选:C .【点睛】本题考查了角平分线的定义,三角形的面积,三角形的中线,三角形的高,三角形内角和定理等知识点,能综合运用定理进行推理是解此题的关键.3.C解析:C【分析】根据折叠前后对应角相等可得ADE A DE '∠=∠,AED A ED '∠=∠,再运用平角的定义和三角形内角和定理依次求得ADE ∠、AED ∠,再次运用平角的定义即可求得【详解】解:∵将A ∠沿DE 翻折,∴ADE A DE '∠=∠,AED A ED '∠=∠,∵D 是线段AB 上的点,25BDA '∠=︒,∴180ADE A D B E DA '∠+∠-'∠=︒,即251280ADE ︒=∠-︒,解得102.5ADE ∠=︒,∵30A ∠=︒,180A AED ADE ∠+∠+∠=︒,∴180180102.53047.5AED ADE A ∠=︒-∠-∠=︒-︒-︒=︒,∴18018047.547.585CEA AED A ED ''∠=︒-∠-∠=︒-︒-︒=︒.故选:C .【点睛】本题考查折叠的性质,三角形内角和定理,平角的定义.理解折叠前后对应角相等是解题关键.4.B解析:B【分析】过点E 做直线EF 平行于直线AB ,然后根据同位角和同旁内角即可判断(2)和(3),其中(1)和(4)无法判断.【详解】过点E 做直线EF 平行于直线AB ,如下图所示,(1)无法判断;(2)∵AB//CD ,AB//EF∴EF//CD∴70AEF ∠=︒,15DEF ∠=︒∴85AED ∠=︒故(2)正确;(3)由(2)得A CEF CED DEF ∠=∠=∠+∠,DEF D ∠=∠∴A CED D ∠=∠+∠故(3)正确;(4)无法判断;故选B .【点睛】本题考查了平行线的性质和判定,重点是做出辅助线,然后利用平行线的性质进行求解. 5.A解析:A【分析】根据平行线的判定和性质、三角形全等的判定、不等式的性质、方差的性质逐一判断即可.【详解】A 、内错角相等,两直线平行,是真命题,符合题意;B 、面积相等的两个三角形不一定全等,原命题是假命题,不符合题意;C 、若a b >,则22a b -<-,原命题是假命题,不符合题意;D 、一般而言,一组数据的方差越大,这组数据就越不稳定,原命题是假命题,不符合题意;故选:A .【点睛】本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.6.C解析:C【分析】先求出60B ∠=︒,由折叠得60CB D B '∠=∠=︒,得出ADB '∠=40CB D A '∠-∠=︒.【详解】∵100ACB ∠=︒,20A ∠=︒,∴60B ∠=︒,由折叠得60CB D B '∠=∠=︒,∴ADB '∠=40CB D A '∠-∠=︒,故选:C .【点睛】此题考查三角形内角和定理,折叠的性质,三角形的外角性质,熟练掌握折叠的性质是解题的关键.7.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB∥GP∥CD,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B.【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.8.A解析:A【分析】根据两直线平行,内错角相等、同旁内角互补逐一判断可得.【详解】解:∵DE∥BC,∴∠DAB=∠ABC(两直线平行,内错角相等),A选项错误、D选项正确;∠EAC=∠C(两直线平行,内错角相等),B选项正确;∠EAB+∠B=180°(两直线平行,同旁内角互补),C选项正确;故选A.【点睛】本题考查平行线的性质,解题关键是掌握两直线平行,内错角相等、同旁内角互补.9.C解析:C【分析】根据对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义逐一分析即可.【详解】解:A.对顶角相等,但是相等的角不一定是对顶角,该项为假命题;B.两直线平行,内错角相等,该项为假命题;C.任何非负数的算术平方根是非负数,该项为真命题;D.直线外一点到这条直线的垂线段的长度叫做点到直线的距离,该项为假命题;故选:C.【点睛】本题考查判断命题的真假,掌握对顶角的性质、平行线的性质、算术平方根的定义、点到直线距离的定义是解题的关键.10.C解析:C【分析】根据有理数的乘方法则、对顶角相等、多边形的内角和、平行线的判定定理判断即可.【详解】(1)如果22a b ,那么|a|>|b|,本命题是假命题;(2)对顶角相等,本命题是真命题;(3)四边形的内角和为360°,本命题是真命题;(4)平行于同一条直线的两条直线平行,本命题是真命题;故选:C .【点睛】本题考查了命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.11.A解析:A【分析】根据如果两条直线都与第三条直线平行,那么这两条直线也互相平行可得①正确;根据应为同一平面内,垂直于同一条直线的两直线平行可得②错误.【详解】解:①若a ∥b ,b ∥c ,则a ∥c ,说法正确;②若a ⊥b ,b ⊥c ,则a ⊥c ,说法错误,应为同一平面内,若a ⊥b ,b ⊥c ,则a ∥c ; 故选:A .【点睛】此题主要考查了平行公理和垂线,关键是注意同一平面内,垂直于同一条直线的两直线平行.12.A解析:A【分析】根据命题的定义:判断一件事情的语句叫命题,进行选择.【详解】解:A 、没判断一件事情,只是叙述一件事情,故不是命题;B 、两点确定一条直线,判断一件事情,故是命题;C 、钝角大于90°,判断一件事情,故是命题;D 、平角都相等,判断一件事情,故是命题;故选:A .【点睛】本题考查命题的概念,解题关键是熟练掌握并灵活运用概念.二、填空题13.(4)【分析】根据平行线的定义平行线的性质平行公理的推论解答【详解】(1)在同一平面内不相交的两条直线叫做平行线故该项错误;(2)过直线外一点有且只有一条直线与已知直线平行故该项错误;(3)在同一平 解析:(4)【分析】根据平行线的定义,平行线的性质,平行公理的推论解答.【详解】(1)在同一平面内不相交的两条直线叫做平行线,故该项错误;(2)过直线外一点,有且只有一条直线与已知直线平行,故该项错误;(3)在同一平面内,垂直于同一条直线的两直线平行,故该项错误;(4)直线//a b ,//b c ,则//a c ,故该项正确;(5)两条平行线被第三条直线所截,同位角相等,故该项错误.故选:(4).【点睛】此题考查判断语句,熟记平行线的定义,平行线的性质,平行公理的推论是解题的关键. 14.【分析】先根据三角形的内角和求出∠PBC+∠PCB=故可得到∠ABC+∠ACB=即可得出答案【详解】在△BPC 中∠BPC=∴∠PBC+∠PCB=∵P 是三角形三条角平分线的交点∴∠ABC=2∠PBC ∠解析:20︒【分析】先根据三角形的内角和求出∠PBC+∠PCB=80︒,故可得到∠ABC+∠ACB=160︒,即可得出答案.【详解】在△BPC 中,∠BPC=100︒,∴∠PBC+∠PCB=80︒,∵P 是三角形三条角平分线的交点,∴∠ABC=2∠PBC ,∠ACB=2∠PCB ,∴∠ABC+∠ACB=2∠PBC+2∠PCB=160︒,∴∠BAC=180()20ABC ACB ︒-∠+∠=︒,故答案为:20︒.【点睛】此题考查三角形的内角和定理,角平分线的有关计算,熟练应用定理解决问题是解题的关键.15.32°【分析】根据三角形的内角和等于180°求出∠A=90°从而得到∠B ∠C 互余然后用∠C 表示出∠B 再列方程求解即可【详解】∵∠A=∠B+∠C∠A+∠B+∠C=180°∴∠A=90°∴∠B+∠C=9解析:32°【分析】根据三角形的内角和等于180°求出∠A=90°,从而得到∠B、∠C互余,然后用∠C表示出∠B,再列方程求解即可.【详解】∵∠A=∠B+∠C,∠A+∠B+∠C=180°,∴∠A=90°,∴∠B+∠C=90°,∴∠B=90°-∠C,∵∠B=2∠C-6°,∴90°-∠C=2∠C-6°,∴∠C=32°.故答案为32°.【点睛】本题考查了三角形内角和定理,熟记定理并求出∠A的度数是解题的关键.16.106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解【详解】如图连接AO延长AO交BC于点D根据三角形中一个外角等于与它不相邻的两个内角和可得:∠BOD=∠1+∠BAO∠DOC=解析:106°【分析】利用了三角形中一个外角等于与它不相邻的两个内角和即可求解.【详解】如图,连接AO,延长AO交BC于点D.根据三角形中一个外角等于与它不相邻的两个内角和,可得:∠BOD=∠1+∠BAO,∠DOC=∠2+∠OAC,∵∠BAO+∠CAO=∠BAC=56°,∠BOD+∠COD=∠BOC,∴∠BOC=∠1+∠2+∠BAC=22°+28°+56°=106°.故答案为:106°.【点睛】本题考查了三角形的内角和定理,三角形的外角的性质,关键是利用了三角形中一个外角等于与它不相邻的两个内角和求解.17.20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD再根据∠CAB=90°即可求出答案【详解】解:由翻折可得∠EAD=∠BAD又∠CAB=90°∠EAC=50°∴∠EAC+∠CAD=90°-∠解析:20【分析】先根据图形翻折变换的性质得出∠BAD=∠EAD,再根据∠CAB=90°即可求出答案.【详解】解:由翻折可得,∠EAD=∠BAD,又∠CAB=90°,∠EAC=50°,∴∠EAC+∠CAD=90°-∠CAD,∴50°+∠CAD=90°-∠CAD,∴∠CAD=20°.故答案为:20.【点睛】本题考查的是图形翻折变换的性质及四边形内角和定理,熟知折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解答此题的关键.18.125【分析】先求得∠AED的度数然后在△AEG中依据三角形的内角和定理求解即可【详解】解:∵∠BEF=110°∠BEF+∠AEF=180°∴∠AEF=70°∵∠FED=45°∠FED+∠AEG=∠解析:125【分析】先求得∠AED的度数,然后在△AEG中依据三角形的内角和定理求解即可.【详解】解:∵∠BEF=110°,∠BEF+∠AEF=180°,∴∠AEF=70°,∵∠FED=45°,∠FED+∠AEG=∠AEF,∴∠AEG=70°-45°=25°,∵∠A=30°,∴∠AGE=180°-∠AEG -∠A=125°,故答案为:125.【点睛】本题考查了平角定义三角形的内角和定理,解答本题的关键是明确题意,利用数形结合的思想解答.19.①②③④【分析】根据题意按照平行线的性质角平分线及角度之间的和差计算进行求解并逐一判断即可【详解】∵∴∵平分∴故①正确;∴故②正确;又∵∴故③正确;∵∴故④正确;故答案为:①②③④【点睛】本题主要考解析:①②③④【分析】根据题意,按照平行线的性质,角平分线及角度之间的和差计算进行求解并逐一判断即可.【详解】∵//CD OB∴EFD FOB α∠=∠=∵OE 平分COB ∠∴COF FOB α∠=∠=,故①正确;∴1801802AOH COB α∠=︒-∠=︒-,故②正确;又∵//CD OB ,CH OB ⊥∴CH CD ⊥,故③正确;∵180CHO COH HCO ∠+∠+∠=︒∴18018090(1802)290OCH CHO HOC αα∠=︒-∠-∠=︒-︒-︒-=-︒,故④正确;故答案为:①②③④.【点睛】本题主要考查了平行线的性质,角平分线及角度之间的和差计算,熟练掌握几何的相关求解方法是解决本题的关键.20.55【分析】根据三角形内角和定理可知要求∠A 只要求出∠AEF +∠AFE 的度数即可【详解】∵∠1+∠AEF =180°∠2+∠AFE =180°∴∠1+∠AEF +∠2+∠AFE =360°∵∠1+∠2=23解析:55【分析】根据三角形内角和定理可知,要求∠A 只要求出∠AEF +∠AFE 的度数即可.【详解】∵∠1+∠AEF =180°,∠2+∠AFE =180°,∴∠1+∠AEF +∠2+∠AFE =360°,∵∠1+∠2=235°,∴∠AEF +∠AFE =360°−235°=125°,∵在△AEF 中:∠A +∠AEF +∠AFE =180°(三角形内角和定理)∴∠A =180°−125°=55°,故答案为:55°【点睛】本题是有关三角形角的计算问题.主要考察三角形内角和定理的应用和计算,找到∠A 所在的三角形是关键.三、解答题21.(1)130°;(2)正确,理由见解析.【分析】(1) 在△ABC 内,由三角形内角和定理可求得∠ABC+∠ACB ,再利用角平分线的定义可求得∠PBC+∠PCB ,在△PBC 中由三角形内角和可求得∠BPC ;(2) 由(1) 的过程可证明其正确.【详解】解:(1)80A ∠=︒,得到∠ABC+∠ACB=100° ,BP ,CP 分别平分ABC ∠,ACB ∠,1()502PBC PCB ABC ACB ∴∠+∠=∠+∠=︒, 18050130BPC ∴∠=︒-︒=︒.(2)我认为正确.理由如下:BP ,CP 分别平分ABC ∠,ACB ∠, 1()2PBC PCB ABC ACB ∴∠+∠=∠+∠, 180ABC ACB A ∠+∠=︒-∠()111809022PBC PCB A A ∴∠+∠=︒-∠=︒-∠, 11180909022BPC A A ⎛⎫∴∠=︒-︒-∠=︒+∠ ⎪⎝⎭. 【点睛】本题主要考查与角平分线有关的三角形内角和问题,掌握三角形内角和为180°是解题的关键,注意整体思想的应用.22.1902D A ∠=︒+∠【分析】 根据角平分线定义可得12DBC ABC ∠=∠,12DCB ACB ∠=∠,根据()180D DBC DCB ∠=︒-∠+∠,()180A ABC ACB ∠=︒-∠+∠即可求得∠D 与∠A 的数量关系.【详解】解:在DBC △中,()180D DBC DCB ∠=︒-∠+∠,在ABC 中,()180A ABC ACB ∠=︒-∠+∠, ∵12DBC ABC ∠=∠,12DCB ACB ∠=∠, ∴()180D DBC DCB ∠=︒-∠+∠()()11802118018021902ABC ACB A A =︒-∠+∠=︒-︒-∠=︒+∠, ∴1=902D A ∠︒+∠. 【点睛】本题考查角平分线的定义,三角形内角和定理,熟练掌握相关性质、定理是解题的关键. 23.360BAE CBF ACD ∠+∠+∠=︒【分析】利用邻补角的定义以及三角形内角和定理,计算即可求解.【详解】解:∵1180BAE ∠+∠=︒,2180CBF ︒∠+∠=,3180ACD ︒∠+∠=,∴1231803540BAE CBF ACD ∠+∠+∠+∠+∠+∠=︒⨯=︒,又∵123180∠+∠+∠=︒,∴540(123)540180360BAE CBF ACD ︒︒︒︒∠+∠+∠=-∠+∠+∠=-=.【点睛】本题考查了邻补角的定义以及三角形内角和定理,正确的识别图形是解题的关键. 24.(1)90°;(2)E ;两直线平行,同位角相等;两直线平行,内错角相等;已知;∠1;∠2【分析】(1)根据垂直的性质可得对应角等于90°,再根据同位角相等两直线平行即可证明; (2)根据平行线的性质和等量代换可得∠1=∠2,由此可证得结论.【详解】证明:(1)∵AD BC ⊥,EG BC ⊥∴ADC EGC ∠==90°∴//AD EG故答案为:90°.(2)∵//AD EG∴1∠=∠E (两直线平行,同位角相等),∠2=∠3(两直线平行,内错角相等)∵3E ∠=∠(已知)∴∠1=∠2即AD 平分BAC ∠故答案为:E ;两直线平行,同位角相等;两直线平行,内错角相等;已知;∠1;∠2.【点睛】本题考查了平行线的性质和判定.解题的关键是掌握平行线的性质定理和判定定理的运用,注意:平行线的性质有:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.25.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.26.见解析【分析】由“SAS ”可证△ABC ≌△DEF ,可得∠ACB =∠DFE ,可得结论.【详解】证明:∵AB ∥DE ,∴∠B =∠E ,∵BF =CE ,∴BC =EF ,在△ABC 和△DEF 中,AB DE B E BC EF =⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEF (SAS ),∴∠ACB =∠DFE ,∴AC ∥FD .【点睛】本题考查了全等三角形的判定和性质,平行线的判定和性质,掌握全等三角形的判定定理是本题的关键.。
平行线证明题 → 垂直线证明题
平行线证明题→ 垂直线证明题
介绍:
本文档将通过证明题的形式,说明平行线与垂直线之间的关系。
证明题一:平行线
已知:线段AB与线段CD平行。
要证明:直线AB与直线CD平行。
证明过程:
1. 连接线段AB和线段CD,并标出交点E。
2. 假设直线AB与直线CD不平行,因此它们将会相交于某一
点F。
3. 引用平行线的定义,平行线不会相交。
4. 由于AB与CD平行,所以AB的延长线上的点E与CD上
的点F将会相交,与假设矛盾。
5. 结论:直线AB与直线CD平行。
证明题二:垂直线
已知:线段AB与线段CD垂直。
要证明:直线AB与直线CD垂直。
证明过程:
1. 连接线段AB和线段CD,并标出交点E。
2. 假设直线AB与直线CD不垂直,因此它们将会形成非垂直的交角。
3. 引用垂直线的定义,垂直线的交角为90度。
4. 由于AB与CD垂直,所以AB上的点E与CD上的点F将会形成90度的交角,与假设矛盾。
5. 结论:直线AB与直线CD垂直。
总结:
证明题的过程中通过推理和假设来判断给定的线段或直线之间的关系。
在证明平行线时,可以利用平行线的定义来得出结论;而在证明垂直线时,则可以借助垂直线的定义来得出结论。
在证明过程中应注重简洁且避免使用无法确认的引用内容。
平行线的判定练习证明题
平行线的判定练习证明题1.如图,已知直线AB ,CD 被直线EF 所截,∠1+∠2=180°.证明:AB ∥CD .2.如图,已知∠1=60°,∠2=120°,那么AB ∥CD 吗?为什么?3.如图,CB 平分∠ACD ,∠1=∠3.试说明:AB ∥CD.4.如图,∠1=47°,∠2=133°,∠D =47°,那么BC 与DE 平行吗?AB 与CD 呢?为什么?5.如图,AB ⊥BC ,BC ⊥CD ,且∠1=∠2,那么EB ∥CF 吗?为什么?6.如图,直线AB ,CD 被直线GH 所截,且∠AEG =∠CFG ,EM ,FN 分别平分∠AEG 和∠CFG.试说明:EM ∥FN.7.如图,直线AB ,CD 被直线GH 所截,且∠MEG =∠CFN ,EM ,FN 分别平分∠AEG和∠CFG.试说明:AB ∥CD4312A B C D E F8.如图所示,AB⊥BD于点B,CD⊥BD于点D,∠1+∠2=180°,试问CD与EF平行吗?为什么?9.如图,已知:∠A=∠1,∠C=∠2。
求证:求证:AB∥CD。
10.如图,一个由4条线段构成的“鱼”形图案,其中∠1=50°,∠2=50°,∠3=130°,找出图中的平行线,并说明理由.11.如图,已知∠1与∠3互余,∠2与∠3的余角互补,问直线l1∥l2吗?为什么?12.如图所示,已知∠ABC=∠EAB,∠ACB=∠DAC,请问E、A、D三点是否共线?为什么?13.已知:如图:∠AHF+∠FMD=180°,GH平分∠AHM,MN平分∠DMH。
求证:GH∥MN。
平行线的判定专项练习60题(有答案)
平行线的判定专项练习60题(有答案)1.已知:如图,BE平分∠ABC,∠1=∠2.求证:BC∥DE.2.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.3.如图所示,AB⊥BC,BC⊥CD,BF和CE是射线,并且∠1=∠2,试说明BF∥CE.4.如图,AB⊥BC,∠1+∠2=90°,∠2=∠3,求证:BE∥DF.5.如图,OP平分∠MON,A、B分别在OP、OM上,∠BOA=∠BAO,那么AB平行于ON吗?若平行,请写出证明过程;若不平行,请说明理由.6.已知:如图,∠1=∠2,∠A=∠C.求证:AE∥BC.7.已知,如图B、D、A在一直线上,且∠D=∠E,∠ABE=∠D+∠E,BC是∠ABE的平分线,求证:DE∥BC.8.如图,已知∠AEC=∠A+∠C,试说明:AB∥CD.9.如图,已知AC∥ED,EB平分∠AED,∠1=∠2,求证:AE∥BD.10.如图,直线AB、CD与直线EF相交于E、F,已知:∠1=105°,∠2=75°,求证:AB∥CD.11.如图,∠D=∠A,∠B=∠FCB,求证:ED∥CF.12.如图,已知AB⊥BC,CD⊥BC,∠1=∠2,求证:EB∥FC.13.如图所示所示,已知BE是∠B的平分线,交AC于E,其中∠1=∠2,那么DE∥BC吗?为什么?14.如图,已知∠C=∠D,DB∥EC.AC与DF平行吗?试说明你的理由.15.如图,AC⊥AE,BD⊥BF,∠1=35°,∠2=35°,求证:AE∥BF.16.如图,已知AB∥CD,∠1=∠2,求证:BE∥CF.17.已知∠BAD=∠DCB,∠1=∠3,求证:AD∥BC.18.如图,AD是三角形ABC的角平分线,DE∥CA,并且交AB与点E,∠1=∠2,DF与AB是否平行?为什么?19.如图,已知:∠C=∠DAE,∠B=∠D,那么AB平行于DF吗?请说明理由.20.如图,已知点B在AC上,BD⊥BE,∠1+∠C=90°,问射线CF与BD平行吗?说明理由.21.已知∠1的度数是它补角的3倍,∠2等于45°,那么AB∥CD吗?为什么?22.已知:如图,BDE是一条直线,∠ABD=∠CDE,BF平分∠ABD,DG平分∠CDE,求证:BF∥DG.23.如图,四边形ABCD中,∠A=∠C=90°,BF、DE分别平分∠ABC、∠ADC.判断DE、BF是否平行,并说明理由.24.如图,若∠CAB=∠CED+∠CDE,求证:AB∥CD.25.如图,CD⊥AB,GF⊥AB,∠1=∠2.试说明DE∥BC.26.如图所示,∠CAD=∠ACB,∠D=90°,EF⊥CD.试说明:∠AEF=∠B.27.已知:如图所示,C,P,D三点在同一条直线上,∠BAP+∠APD=180°,∠E=∠F,求证:∠1=∠2.28.如图,∠D=∠1,∠E=∠2,DC⊥EC.求证:AD∥BE.29.如图,在四边形ABCD中,∠A=∠C,BE平分∠ABC,DF平分∠ADC,试说明BE∥DF.30.已知:如图,∠1=∠2,∠A=∠F,则∠C与∠D相等吗?试说明理由.31.如图,在四边形ABCD中,∠A=∠C=90°,∠1=∠2,∠3=∠4,求证:BE∥DF.32.如图,已知∠1=∠2求证:a∥b.33.如图,DE⊥AO于E,BO⊥AO于O,FC⊥AB于C,∠1=∠2,找出图中互相平行的线,并加以说明.34.如图,已知∠1=∠2,∠C=∠CDO,求证:CD∥OP.35.如图,已知DE平分∠BDF,AF平分∠BAC,且∠1=∠2.求证(1)DF∥AC;(2)DE∥AF.36.如图,AD平分∠BAC,EF平分∠DEC,且∠1=∠2,试说明DE与AB的位置关系.37.如图,在△ABC中,点D在AB上,∠ACD=∠A,∠BDC的平分线交BC于点E.求证:DE∥AC.38.如图,AB与CD相交于点O,并且∠A=∠1,试问∠2与∠B满足什么关系时,AC∥BD?说明理由.39.如图,已知∠1=∠A,∠2=∠B,那么MN与EF平行吗?如果平行,请说明理由.40.如图,直线AB、CD被直线EF所截,∠1+∠4=180°,求证:AB∥CD.41.如图所示,已知:∠1=∠2,∠E=∠F.试说明AB∥CD.42.如图,已知EF⊥CD于F,∠GEF=25°,∠1=65°,则AB与CD平行吗?请说明理由.43.如图,已知∠1=∠2=90°,∠3=30°,∠4=60°,图中有几对平行线?说说你的理由.44.直线AB,CD被直线EF所截,∠1=∠2,直线AB和CD平行吗?为什么?45.已知:如图,AD⊥BC,EF⊥BC,∠1=∠2.求证:AB∥GF.46.如图,已知B、C、D三点在同一条直线上,∠B=∠1,∠2=∠E,试说明AD∥CE.47.直线AB、CD与GH交于E、F,EM平分∠BEF,FN平分∠DFH,∠BEF=∠DFH,求证:EM∥FN.48.如图所示,∠ABC=∠BCD,BE、CF分别平分∠ABC和∠BCD,请你说出BE与CF的位置关系,并说出你的理由.49.如图,若∠1=∠2,请判断DB与EC的位置关系,并说明理由.50.如图,在△ABC中,CD⊥AB,垂足为D,点E在BC上,EF⊥AB,垂足为F.(1)CD与EF平行吗?为什么?(2)如果∠1=∠2,DG∥BC吗?为什么?51.如图,已知:HG平分∠AHM,MN平分∠DMH,且∠AHM=∠DMH.问:GH与MN有怎样的位置关系,请说明理由.(请注明每一步的理由)52.已知:如图,∠C=∠1,∠2和∠D互余,BE⊥FD于点G.求证:AB∥CD.53.如图,直线AB,CD被EF所截,∠3=∠4,∠1=∠2,EG⊥FG.求证:AB∥CD.54.已知:如图,CD是直线,E在直线CD上,∠1=130°,∠A=50°,求证:AB∥CD.55.如图,已知∠1=∠2,∠DAB=∠DCA,且DE⊥AC,BF⊥AC,问:(1)AD∥BC吗?(2)AB∥CD吗?为什么?56.如图,四边形ABCD,∠1=30°,∠B=60°,AB⊥AC,则AD与BC一定平行吗?AB与CD呢?若平行请说明理由,反之则不用说明理由.57.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.58.如图,AD⊥BC于点D,∠1=2,∠CDG=∠B,请你判断EF与BC的位置关系,并加以证明,要求写出每步证明的理由.59.已知:如图,CE平分∠ACD,∠1=∠B,求证:AB∥CE.60.如图,已知∠1=∠2,∠3=∠4,可以判定哪两条直线平行?平行线的判定60题参考答案:1.∵BE平分∠ABC,∴∠1=∠3,∵∠1=∠2,∴∠2=∠3,∴BC∥DE2.∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).3.∵AB⊥BC(已知),∴∠ABC=90°(垂直定义);∵BC⊥CD(已知),∴∠BCD=90°(垂直定义),∴∠ABC=∠DCB;∵∠1=∠2(已知),∴∠ABC﹣∠2=∠DCB﹣∠1,即∠FBC=∠ECB,∴BF∥CE(内错角相等,两直线平行)4.∵AB⊥BC,∴∠3+∠4=90°.∵∠2=∠3,∠1+∠2=90°,∴∠1=∠4,∴BE∥DF.5.AB平行于ON.证明:∵OP平分∠MON,∴∠BOA=∠NOA,∵∠BOA=∠BAO,∴∠BAO=∠NOA,∴AB∥ON6.∵∠1=∠2,∴DC∥AB,∴∠A+∠ADC=180°.又∵∠A=∠C,∴∠ADC+∠C=180°,∴AE∥BC.7.∵BC是∠ABE的平分线,∴∠ABC=∠CBE(角平分线定义),∵∠ABE=∠D+∠E=∠ABC+∠CBE,∠D=∠E,∴∠ABC=∠D,∴DE∥BC8.过点E作EF∥AB.∵EF∥AB,∴∠A=∠AEF;又∵∠AEC=∠A+∠C,∴∠AEC=∠AEF+∠C;而∠AEC=∠AEF+∠CEF,∴∠CEF=∠C,∴EF∥CD,∴AB∥CD.9.∵AC∥ED,∴∠1=∠4;∵∠1=∠2,∴∠2=∠4;又∵EB平分∠AED,∴∠3=∠4;∴∠2=∠3,∴AE∥BD10.∵∠1+∠BEF=180°,∠1=105°,∴∠BEF=75°,∵∠2=75°,∴∠BEF=∠2,∴AB∥CD.11.∵∠D=∠A,∴ED∥AB;∵∠B=∠BCF,∴AB∥CF;∴ED∥CF.12.∵AB⊥BC,CD⊥BC(已知),∴∠ABC=∠BCD=90°(垂直定义);又∵∠1=∠2(已知),∴∠ABC﹣∠1=∠BCD﹣∠2(等量减等量,差相等),∴∠EBC=∠FCB,∴EB∥FC(内错角相等,两直线平行)13.∵BE是∠B的平分线,∴∠1=∠CBE,∵∠1=∠2,∴∠2=∠CBE,∴DE∥BC.14.AC与DF平行,理由如下:∵BD∥EC,∴∠DBC+∠C=180°,又∠C=∠D,∴∠DBC+∠D=180°,∴AC∥DF.15.∵AC⊥AE,BD⊥BF,∴∠1+∠3=∠2+∠4=90°,∵∠1=35°,∠2=35°,∴∠3=∠4,∴AE∥BF.16.∵AB∥CD,∴∠ABC=∠BCD(两直线平行,内错角相等);∵∠1=∠2,∴∠ABC﹣∠1=∠BCD﹣∠2,即∠EBC=∠BCF,∴BE∥CF(内错角相等,两直线平行).17.∵∠BAD=DCB,∠1=∠3(已知),∴∠BAD﹣∠1=∠DCB﹣∠3(等式性质),即∠2=∠4,∴AD∥BC(内错角相等,两直线平行)18.DF∥AB.理由:∵DE∥CA,∴∠1=∠CAD,∵AD是三角形ABC的角平分线,∴∠BAD=∠CAD,∵∠1=∠2,∴∠2=∠BAD,∴DF∥AB19.AB∥DF(2分)理由:∵∠C=∠DAE,(已知)∴AD∥BC,(内错角相等,两直线平行)(2分)∴∠D=∠DFC,(两直线平行,内错角相等)∴∠B=∠D,(已知)∴∠B=∠DFC,(2分)∴AB∥DF(同位角相等,两直线平行)20.CF∥BD.理由如下:∵BD⊥BE,∴∠1+∠2=90°;∵∠1+∠C=90°,∴∠2=∠C.∴CF∥BD.21.AB∥CD.(1分)理由如下:∵∠1+∠MNC=180°,∠MNC=∠1,∴∠1=135°.(2分)又∵∠AMN=∠2=45°,(3分)∴∠1+∠AMN=180°.(4分)∴AB∥CD22.∵BF平分∠ABD,DG平分∠CDE,∴∠1=∠ABD,∠2=∠CDE,又∵∠ABD=∠CDE,∴∠1=∠2,∴BF∥DG(同位角相等,两直线平行).23.ED∥BF;证明如下:∵四边形ABCD中,∠A=∠C=90°,∴∠ADC+∠ABC=180°,∵BF、DE分别平分∠ABC、∠ADC,∴∠ADC+∠ABC=2∠ADE+2∠ABF=180°,∴∠ADE+∠ABF=90°,又∵∠A=90°,∠ADE+∠AED=90°,∴∠AED=∠ABF,∴ED∥BF(同位角相等,两直线平行).24.在△ECD中∵∠C+∠CED+∠CDE=180°(三角形内角和定理),又∵∠CAB=∠CED+∠CDE(已知),∴∠C+∠CAB=180°(等量代换),∴AB∥CD(同旁内角互补,两直线平行)25.∵CD⊥AB,GF⊥AB,∴CD∥FG,∴∠2=∠DCG;又∵∠1=∠2,∴∠DCG=∠1,∴DE∥BC26.∵∠CAD=∠ACB,∴AD∥BC,∵EF⊥CD,∴∠EFC=90°∵∠D=90°,∴∠EFC=∠D,∴AD∥EF,∴BC∥EF,∴∠AEB=∠B.27.∵∠E=∠F,∴AE∥FP,∴∠PAE=∠APF;又∵∠BAP+∠APD=180°,∴AB∥CD,∴∠BAP=∠APC,即∠2+∠PAE=∠1+∠APF;∴∠2=∠128.∵DC⊥EC,∴∠1+∠2=90°,又∠D=∠1,∠E=∠2,∴∠D+∠1+∠E+∠2=180°.根据三角形的内角和定理,得∠A+∠B=180°,∴AD∥BE29.∵∠A+∠ABC+∠C+∠CDA=360°而∠A=∠C,BE平分∠ABC,DF平分∠CDA∴2∠A+2∠ABE+2∠ADF=360°即∠A+∠ABE+∠ADF=180°又∠A+∠ABE+∠AEB=180°∴∠AEB=∠ADF∴BE∥DF30.∠C=∠D.理由如下:∵∠A=∠F,∴DF∥AC,∴∠D=∠DBA.∵∠1=∠DGF,又∵∠1=∠2,∴∠2=∠DGF,∴DB∥EC,∴∠DBA=∠C,∴∠C=∠D31.∵四边形ABCD中,∠A=∠C=90°,∴∠ABC+∠CDA=180°,∵∠1=∠2,∠3=∠4,∴∠2+∠3=90°,∵∠A=90°,∴∠1+∠AEB=90°,∵∠1=∠2,∴∠AEB=∠3,∴BE∥FD.32.∵∠1=∠2,∠2=∠3,∴∠1=∠3,∴a∥b.33.CF∥OD.理由:∵DE⊥AO,BO⊥AO,∴DE∥BO,∴∠3=∠2,∵∠1=∠2,∴∠1=∠3,∴CF∥OD34.∵∠DOB是△COD的外角,∴∠C+∠CDO=∠DOB,又∵∠DOB=∠1+∠2,而∠1=∠2,∠C=∠CDO,∴∠2=∠C,∴CD∥OP35.(1)∵DE平分∠BDF,AF平分∠BAC,∴∠BDF=2∠1,∠BAC=2∠2,又∵∠1=∠2,∴∠BDF=∠BAC,∴DF∥AC;(2)∵AF平分∠BAC,∴∠BAF=∠2.又∵∠1=∠2,∴∠1=∠BAF,∴DE∥AF.36.DE∥AB,∵AD平分∠BAC,∴∠BAC=2∠1,∵EF平分∠DEC,∴∠DEC=2∠2,∵∠1=∠2,∴∠BAC=∠DEC,∴DE∥AB.37.∵∠BDE+∠CDE=∠A+∠ACD,又DE是∠BDC的平分线,∠ACD=∠A,∴∠A=∠BDE,∴DE∥AC.38.∠2与∠B相等时,AC∥BD.理由如下:∵∠A=∠1,∠1=∠2,∴∠A=∠2,∵∠2=∠B,∴∠A=∠B,∴AC∥BD.39.MN与EF平行.理由如下:∵∠1=∠A,∴MN∥AB,∵∠2=∠B,∴EF∥AB,∴MN∥EF.40.∵∠1+∠2=180°,∠1+∠4=180°,∴∠2=∠4,∴AB∥CD.41.∵∠E=∠F,∴BE∥CF,∴∠EBC=∠BCF,∵∠1=∠2,∴∠CBA=∠DCB,∴AB∥CD.42.∵EF⊥CD于F,∴∠EFG=90°,∵∠GEF=25°,∴∠EGF=65°,∵∠1=65°,∴∠1=∠EGF,∴AB∥CD.43.图中共有2对平行线.①AB∥CD.理由如下:∵∠1=∠2=90°,∴AB∥CD(在同一平面内,如果两条直线同时垂直于同一条直线,那么这两条直线平行);②∵∠2=90°,∴∠4+∠5=90°,又∵∠3=30°,∠4=60°,∴∠3=∠5,∴EF∥HG(同位角相等,两直线平行).综上所述,图中共有2对平行线,它们是:AB∥CD、EF∥HG44.AB∥CD,理由:∵∠1=∠2,∠1=∠3,∴∠2=∠3,∴AB∥CD.45.∵AD⊥BC,EF⊥BC(已知),∴∠ADB=∠EFC=90°(垂直的定义),∴∠B=90°﹣∠1(直角三角形两锐角互余),∠GFC=90°﹣∠2(互余的定义),∵∠1=∠2(已知),∴∠B=∠GFC(等角的余角相等),∴AB∥GF(同位角相等,两直线平行)46.∵∠B=∠1,∴AB∥DE(同位角相等,两直线平行),∴∠2=∠ADE(两直线平行,内错角相等)∵∠2=∠E,∴∠E=∠ADE,∴AD∥CE(内错角相等,两直线平行).47.∵EM平分∠BEF,FN平分∠DFH,∴∠BEF=2∠MEF,∠DFH=2∠NFH,∵∠BEF=∠DFH,∴∠MEF=∠NFH,∴EM∥FN48.BE∥CF,理由是:∵BE,CF分别平分∠ABC和∠BCD,∴∠1=∠ABC,∠2=∠BCD,∵∠ABC=∠BCD,∴∠1=∠2,∴BE∥CF.49.DB与EC的位置关系是平行,理由:∵∠1=∠3,∠2=∠4(对顶角相等),又∵∠1=∠2,∴∠3=∠4,∴BD∥EC.50.(1)CD∥EF,理由是:∵CD⊥AB,EF⊥AB,∴∠CDF=∠EFB=90°,∴CD∥EF.(2)DG∥BC,理由是:∵CD∥EF,∴∠2=∠BCD,∵∠1=∠2,∴∠1=∠BCD,∴DG∥BC.51.GH∥MN.理由如下:∵HG平分∠AHM,MN平分∠DNH(已知),∴∠GHM∠AHM,∠NMH=∠DMH(角平分线定义),而∠AHM=∠DMH(已知)∴∠GHM=∠NMH(等量代换),∴GH∥MN.(内错角相等,两直线平行) 52.∵BE⊥FD,∴∠EGD=90°,∴∠1+∠D=90°,又∠2和∠D互余,即∠2+∠D=90°,∴∠1=∠2,又已知∠C=∠1,∴∠C=∠2,∴AB∥CD53.∵EG⊥FG,∴∠G=90°,∴∠1+∠3=90°,∵∠1=∠2,∠3=∠4,∴∠1+∠2+∠3+∠4=180°,∴AB∥CD.54.:∵∠1+∠2=180°,∠1=130°,∴∠2=50°,∵∠A=50°,∴∠A=∠2,∴AB∥CD.55.(1)∵DE⊥AC,BF⊥AC,∴∠AED=∠CFB=90°,∴∠DAE+∠1=90°,∠BCF+∠2=90°,∵∠1=∠2,∴∠DAE=∠BCF,∴AD∥BC;(2)AB∥CD.理由如下:∵∠DAE=∠BCF,∠DAB=∠DCB,∴∠DAB﹣∠DAE=∠DCB﹣∠BCF,即∠CAB=∠ACD,∴AB∥CD.56.(1)AD与BC一定平行.理由如下:∵AB⊥AC,∴∠BAC=90°,∵∠1=30°,∠B=60°,∴∠1+∠BAC+∠B=180°,即∠BAD+∠B=180°,∴AD∥BC.(2)AB与CD不一定平行.57.∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.58.EF与BC的位置关系是垂直关系.证明:∵∠CDG=∠B(已知),∴DG∥AB(同位角相等,两直线平行),∴∠1=∠DAB(两直线平行,内错角相等),又∠1=2(已知),∴EF∥AD(内错角相等,两直线平行),∴∠EFB=∠ADB(两直线平行,同位角相等),又AD⊥BC于点D(已知),∴∠ADB=90°,∴∠EFB=∠ADB=90°,所以EF与BC的位置关系是垂直.59.∵CE平分∠ACD,∴∠1=∠2,∵∠1=∠B,∴∠2=∠B,∴AB∥CE.60.∵∠1=∠2,∴AB∥CD,∵∠3=∠4,∴AD∥BC,故可以判定AB∥CD,AD∥BC.。
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)
中考数学模拟题汇总《平行线的证明》专项练习(附答案解析)一、综合题1.如图,在△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的角平分线于点E,交∠BCA的外角平分线于点F.(1)求证:EO=FO;(2)当点O运动到何处时,四边形AECF是矩形?并证明你的结论.2.如图,在矩形ABCD中,E是BC边上的点,AE=BC ,DF⊥AE,垂足为F,连接DE。
(1)求证:AB=DF;(2)若CE=1,AF=3,求DF的长。
3.如图,在△ABC和△DCE中,AC=DE,∠B=∠DCE=90°,点A,C,D在同一直线上,且AB∥DE,连接AE.(1)求证:△ABC≌△DCE.(2)当BC=5,AC=12时,求AE的长.4.如图1,将两个完全相同的三角形纸片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.(1)操作发现如图2,固定△ABC,使△DEC绕点C旋转,当点D恰好落在AB边上时,填空:①线段DE与AC的位置关系是;②设△BDC的面积为S1,△AEC的面积为S2,则S1与S2的数量关系是.(2)猜想论证当△DEC绕点C旋转到图3所示的位置时,小明猜想(1)中S1与S2的数量关系仍然成立,并尝试分别作出了△BDC和△AEC中BC、CE边上的高,请你证明小明的猜想.(3)拓展探究已知∠ABC=60°,点D是其角平分线上一点,BD=CD=4,DE//AB交BC于点E(如图4).若在射线BA上存在点F,使SΔDCF=SΔFDE,请直接写出相应的BF的长.5.如图, ∠1+∠2=180° , ∠DEF=∠A , ∠BED=70° .(1)求证: EF//AB :(2)求∠ACB的度数.6.如图,直线AB、BC、CD分别与⊙O相切于E、F、G,且AB∥CD,OB=6cm,OC=8cm.求:(1)∠BOC的度数;(2)BE+CG的长;(3)⊙O的半径.7.在△ABC中,点D在直线AB上,在直线BC上取一点E,连接AE,DE,使得 AE=DE,DE交AC于点G,过点D作DF∥AC,交直线BC于点F,∠EAC=∠DEF.(1)当点E在BC的延长线上,D为AB的中点时,如图1所示.①求证:∠EGC=∠AEC;②若DF=3,求BE的长度;(2)当点E在BC上,点D在AB的延长线上时,如图2所示,若CE=10,5EG=2DE,求AG的长度.8.如图1,在Rt△ABC中,∠C=90°,AC=BC=2√2,点D、E分别在边AC、AB上,AD=DE=12AB,连接DE .将△ADE绕点A顺时针方向旋转,记旋转角为θ .(1)(问题发现)①当θ=0°时,BECD =;②当θ=180°时,BECD=;(2)(拓展研究)试判断:当0°≤θ<360°时,BECD的大小有无变化?请仅就图2的情形给出证明;(3)(问题解决)在旋转过程中,求出BE的最大值.9.如图,已知AB是圆O的直径,F是圆O上一点,∠BAF的平分线交⊙O于点E,交⊙O的切线BC于点C,过点E作ED⊥AF,交AF的延长线于点D.(1)求证:DE是⊙O的切线;(2)若DE=3,CE=2,的值;①求BCAEEG最小值.②若点G为AE上一点,求OG+ 1210.如图,已知在菱形ABCD中,AB=5,cosB=3,点E、F分别在边BC、CD上,AF的延长5∠BAD.线交BC的延长线于点G,且∠EAF=12(1)求证:AE2=EC⋅EG;(2)如果点F是边CD的中点,求S△ABE的值;(3)延长AE、DC交于点H,联结GH、AC,如果△AGH与△ABC相似,求线段BE的长.11.如图,四边形ABCD中,AB∥CD,点O在BD上,以O为圆心的圆恰好经过A、B、C三点,⌢=CE⌢,连接OA、OF.⊙O交BD于E,交AD于F,且AE(1)求证:四边形ABCD是菱形;(2)若∠AOF=3∠FOE,求∠ABC的度数.,过点C作CD∥AB,点E在边AC上,AE=CD,联结12.在△ABC中,AB=AC=10,sin∠BAC= 35AD,BE的延长线与射线CD、射线AD分别交于点F、G.设CD=x,△CEF的面积为y.(1)求证:∠ABE=∠CAD.(2)如图,当点G在线段AD上时,求y关于x的函数解析式及定义域.(3)若△DFG是直角三角形,求△CEF的面积.13.在ΔABC中,∠A=90°,AB=8cm,AC=6cm,点M,点N同时从点A出发,点M沿边AB以4cm/s的速度向点B运动,点N从点A出发,沿边AC以3cm/s 的速度向点C运动(点M不与A,B重合,点N不与A,C重合),设运动时间为xs .(1)求证:ΔAMN∽ΔABC;(2)当x为何值时,以MN为直径的⊙O与直线BC相切?(3)把ΔAMN沿直线MN折叠得到ΔMNP,若ΔMNP与梯形BCNM重叠部分的面积为y,试求y关于x的函数表达式,并求x为何值时,y的值最大,最大值是多少?14.如图,以AB为直径的半圆中,点O为圆心,点C在圆上,过点C作CD∥AB,且CD=OB .连接AD,分别交OC,BC于点E,F,与⊙O交于点G,若∠ABC=45∘ .(1)求证:①△ABF∽△DCF;②CD是⊙O的切线.(2)求EF的值.FG15.小东在做九上课本123页习题:“1:√2也是一个很有趣的比.已知线段AB(如图1),用直尺和圆规作AB上的一点P,使AP:AB=1:√2.”小东的作法是:如图2,以AB为斜边作等腰直角三角形ABC,再以点A为圆心,AC长为半径作弧,交线段AB于点P,点P即为所求作的点.小东称点P为线段AB的“趣点”.(1)你赞同他的作法吗?请说明理由.(2)小东在此基础上进行了如下操作和探究:连结CP,点D为线段AC上的动点,点E在AB的上方,构造△DPE,使得△DPE∽△CPB.①如图3,当点D运动到点A时,求∠CPE的度数.②如图4,DE分别交CP,CB于点M,N,当点D为线段AC的“趣点”时(CD<AD),猜想:点N是否为线段ME的“趣点”?并说明理由.16.在等腰△ABC中,AB=BC,点D,E在射线BA上,BD=DE,过点E作EF//BC,交射线CA于点F.请解答下列问题:(1)当点E在线段AB上,CD是△ACB的角平分线时,如图①,求证:AE+BC=CF;(提示:延长CD,FE交于点M.)(2)当点E在线段BA的延长线上,CD是△ACB的角平分线时,如图②;当点E在线段BA的延长线上,CD是△ACB的外角平分线时,如图③,请直接写出线段AE,BC,CF之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DE=2AE=6,则CF=.参考答案与解析1.【答案】(1)证明:∵MN∥BC,CE平分∠ACB,CF平分∠ACD,∴∠BCE=∠ACE=∠OEC,∠OCF=∠FCD=∠OFC,∴OE=OC,OC=OF,∴OE=OF(2)解:当O运动到AC中点时,四边形AECF是矩形,∵AO=CO,OE=OF,∴四边形AECF是平行四边形,∵∠ECA+∠ACF= 12∠BCD,∴∠ECF=90°,∴四边形AECF是矩形2.【答案】(1)证明:在矩形ABCD中∴BC=AD AD∥BC,∠B=∠C=90°∴∠DAF=∠AEB∵DF⊥AE,AE=BC,∴∠AFD=90°=∠B,AE=AD∴△ABE≌△DFA,∴AB=DF(2)解:由(1)可得△ABE≌△DFA,∴AF=BE=3,DF=AB=CD∴∠DFE=∠DCE∴△DFE≌△DCE,∴CE=EF=1,AE=4在Rt△ABE中,AB= √42−32 = √73.【答案】(1)证明:∵AB∥DE,∴∠BAC=∠D.在△ABC和△DCE中,{∠B=∠DCE∠BAC=∠DAC=DE∴△ABC≌△DCE(AAS)(2)解:由(1)可得△ABC≌△DCE,∴CE=BC=5,在Rt△ACE中,AE=√AC2+CE2=√122+52=13.4.【答案】(1)DE∥AC;S1=S2(2)解:如图,∵△DEC是由△ABC绕点C旋转得到,∴BC=CE,AC=CD,∵∠ACN+∠BCN=90°,∠DCM+∠BCN=180°﹣90°=90°,∴∠ACN=∠DCM,∵在△ACN和△DCM中,{∠ACN=∠DCM∠CMD=∠N=90°AC=CD,∴△ACN≌△DCM(AAS),∴AN=DM,∴△BDC的面积和△AEC的面积相等(等底等高的三角形的面积相等),即S1=S2(3)解:如图,过点D作DF1∥BE,易求四边形BEDF1是菱形,所以BE=DF1,且BE、DF1上的高相等,此时S△DCF1=S△BDE;过点D作DF2⊥BD,∵∠ABC=60°,F1D∥BE,∴∠F2F1D=∠ABC=60°,∵BF1=DF1,∠F1BD= 12∠ABC=30°,∠F2DB=90°,∴∠F1DF2=∠ABC=60°,∴△DF1F2是等边三角形,∴DF1=DF2,∵BD=CD,∠ABC=60°,点D是角平分线上一点,∴∠DBC=∠DCB= 12×60°=30°,∴∠CDF1=180°﹣∠BCD=180°﹣30°=150°,∠CDF2=360°﹣150°﹣60°=150°,∴∠CDF1=∠CDF2,∵在△CDF1和△CDF2中,{DF1=DF2∠CDF1=∠CDF2CD=CD,∴△CDF1≌△CDF2(SAS),∴点F2也是所求的点,∵∠ABC=60°,点D是角平分线上一点,DE∥AB,∴∠DBC=∠BDE=∠ABD= 12×60°=30°,又∵BD=4,∴BE= 12×4÷cos30°=2÷√32= 4√33,∴BF1= 4√33,BF2=BF1+F1F2= 4√33+ 4√33= 8√33,故BF的长为4√33或8√33.5.【答案】(1)解:∵∠1+∠DFE=180°,∴∠1+∠2=180°.∴∠DFE=∠2,∴EF//AB;(2)解:∵EF//AB , ∴∠DEF=∠BDE. 又∵∠DEF=∠A , ∴∠BDE=∠A , ∴DE//AC , ∴∠ACB=∠DEB. 又∵∠DEB=70°, ∴∠ACB=70°.6.【答案】(1)解:连接OF ;根据切线长定理得:BE=BF ,CF=CG ,∠OBF=∠OBE ,∠OCF=∠OCG ; ∵AB ∥CD ,∴∠ABC+∠BCD=180°, ∴∠OBE+∠OCF=90°, ∴∠BOC=90°(2)解:由(1)知,∠BOC=90°.∵OB=6cm ,OC=8cm ,∴由勾股定理得到:BC= √OB 2+OC 2 =10cm ,∴BE+CG=BC=10cm(3)解:∵OF ⊥BC ,∴∠BFO=∠OFC=90°∵∠BOC=90°∴∠BOF+∠COF=90°,∠COF+∠FCO=90°。
平行线的证明试题总集含答案
平行线的证明试题总集含答案(共79页)--本页仅作为文档封面,使用时请直接删除即可----内页可以根据需求调整合适字体及大小--《平行线的证明》单元测试题一、 填空题1.在△ABC 中,∠C =2(∠A +∠B ),则∠C =________.2.如图,AB ∥CD ,直线EF 分别交AB 、CD 于E 、F ,EG 平分∠BEF ,若∠1=72º ,则∠2= ;3.在△ABC 中,∠BAC =90º,AD ⊥BC 于D ,则∠B 与∠DAC 的大小关系是________4.写出“同位角相等,两直线平行”的题设为_______,结论为_______.5.如图,已知AB ∥CD ,BC ∥DE ,那么∠B +∠D =__________.6.如图,∠1=27º,∠2=95º,∠3=38º,则∠4=_______7.如图,写出两个能推出直线AB ∥CD 的条件________________________.8.满足一个外角等于和它相邻的一个内角的△ABC 是_____________ 二、 选择题9.下列语句是命题的是 【 】(A)延长线段AB (B)你吃过午饭了吗 (C)直角都相等 (D)连接A ,B 两点 10.如图,已知∠1+∠2=180º,∠3=75º,那么∠4的度数是 【 】 (A)75º (B)45º (C)105º (D)135º11.以下四个例子中,不能作为反例说明“一个角的余角大于这个角” 是假命题是 【 】(A)设这个角是30º,它的余角是60°,但30°<60°(B)设这个角是45°,它的余角是45°,但45°=45°(C)设这个角是60°,它的余角是30°,但30°<60° (D)设这个角是50°,它的余角是40°,但40°<50°12.若三角形的一个内角等于另外两个内角之差,则这个三角形是 【 】 (A)锐角三角形 (B)直角三角形 (C)钝角三角形 (D)不能确定 13.如图,△ABC 中,∠B =55°,∠C =63°,DE ∥AB , 则∠DEC 等于【 】 (A )63° (B) 118° (C) 55°(D )62°14.三角形的一个外角是锐角,则此三角形的形状是 【 】C A BDE E C D B A 1 3 24 第5题第6题 第7题A BC D E F G 12DABCE第10题(A)锐角三角形 (B)钝角三角形(C)直角三角形(D)无法确定三、解答证明题15.如图,AD=CD,AC平分∠DAB,求证DC∥AB.16.如图,已知∠1=20°,∠2=25°,∠A=55°,求∠BDC的度数.17.如图,BE,CD相交于点A,∠DEA、∠BCA的平分线相交于F.(1)探求:∠F与∠B、∠D有何等量关系?(2)当∠B︰∠D︰∠F=2︰4︰x时,x为多少?C ABD1218.如图,已知点A在直线l外,点B、C在直线l上.(1)点P是△ABC内一点,求证:∠P>∠A;(2)试判断:在△ABC外又和点A在直线l同侧,是否存在一点Q,使∠BQC>∠A试证明你的结论.19、如图,已知∠B=142°,∠BFE=38°,∠EFD=40°,∠D=140°,求证:AB∥C D.20、已知:如图,∠BAF、∠CBD、∠ACE是△ABC的三个外角.求证:∠BAF+∠CBD+∠ACE=360°.21、如图,已知BE、CE分别是△ABC的内角、外角的平分线,∠A=40°,求∠E的度数.22、已知一角的两边与另一个角的两边平行,分别结合下图,试探索这两个角之间的关系,并证明你的结论。
2023年人教版七年级下册数学第五章平行线证明题专项训练
2023年人教版七年级下册数学第五章平行线证明题专项训练1.推理填空如图,已知∠BCD+∠B=180˚,AE平分∠BAD,CD与AE相交于点F,∠CFE=∠E.求证:AD∥BC.证明∵AE平分∠BAD(已知),∴∠1=∠2(),∵∠BCD+∠B=180˚∴AB∥CD(),∴∠1= (),∵∠CFE=∠E(已知),∴∠1=∠E(),∴∠2= ,∴AD∥BC().2.已知:如图,点AA,BB,CC,DD在一条直线上,CCCC与BBBB交于点H,1∠=∠,ACM∥DN.求证:M N∠=∠.3.如图,已知AB∥CD,CF为∠ACD的平分线,∠A=110°,∠EFC=35°.求证:EF∥CD.请将下面的证明过程补充完整.证明:∵AB∥CD,(已知)∴∠+∠ACD=180°.( )∵∠A=110°,(已知)∴∠ACD= °.(等量代换)∵CF为∠ACD的平分线,(已知)∴∠FCD=12∠=35°.(角平分线定义)∵∠EFC=35°,(已知)∴∠FCD=∠EFC,(等量代换)∴EF∥CD.( )4.已知:如图,∠1=∠2,∠3=∠BB ,∠4=∠5.试说明:AADD ∥EEEE .请完成下列填空.解:因为∠1=∠2,所以______∥AABB .所以∠3=______(____________).又因为∠3=∠BB ,所以B ∠=______. 所以______∥BBCC (_____________).所以∠5=∠DDDDEE ,又因为∠4=∠5,所以∠4=∠DDDDEE ,所以AADD ∥EEEE .5.在下面的括号内,填上推理的根据.如图,已知3A ∠=∠,DE BC ⊥,AABB ⊥BBCC .求证DDEE 平分CDB ∠.证明:∵DE BC ⊥,AABB ⊥BBCC (已知)∴∠DDEECC =∠AABBCC =90°(垂直的定义)∴DDEE ∥AABB (________________________)∴∠2=∠3(________________________)∠1=________________________(两直线平行,同位角相等)又∵3A ∠=∠(已知) ∴∠_______=∠__________(________________________)∴DDEE 平分CDB ∠6.完成推理填空.如图,AB ⊥BF ,CD ⊥BF ,∠1=∠2,试说明∠3=∠E .证明:∵AB ⊥BF ,CD ⊥BF (已知),∴∠ABD =∠CDF =90°(垂直定义),∴AABB ∥CCDD (同位角相等,两直线平行).∵∠1=∠2(已知),∴______∥______(______),∴CCDD ∥EEEE (______),∴∠3=∠E (______).7.如图,∠B+∠BAD=180°,∠1=∠2.求证:AB∥C D.请将下面的证明过程补充完整.证明:∵∠B+∠BAD=180°(已知),∠1+∠BAD=180°(),∴∠1=∠B().∵∠1=∠2(已知),∴∠2=().∴AB∥CD().8.如图,已知:在△ABC中,点D是AC边上一点,过点D作DF∥AB交BC于点F,点E为AB边上一点,连接DE、若∠FDE=∠B,∠C=90°,求证:DE⊥A C.证明:∵DF∥AB(已知),∴∠FDE=∠(两直线平行,内错角相等).∠FDE=∠B(已知),∴∠=∠(等量代换).∴∥(同位角相等,两直线平行).∴∠=∠C(两直线平行,同位角相等).又∵∠C=90°(已知),∴∠ADE=90°(等量代换).∴DE⊥AC().9.如图,已知CCDD∥EEFF,∠EEDDCC=∠BBEEFF,试说明DE BC∥的理由.10.如图,已知AB∥CD,EG平分∠BEF,FH平分∠CFE,求证:EG∥HF.请将过程补充完整.证明:AB∥CD(已知)∴∠BEF=______,(____________)又∵EG平分∠BEF,FH平分∠CFE(已知)∴∠1=12∠BBEEEE,∠2=______,(____________)∴∠1=∠2,(____________)∴EG∥HF.(____________)11.如图,直线AABB、CCDD交于点O,OOEE为∠BBOODD的平分线,OOEE⊥OOEE,CG//OOEE,且∠CC=30°.∠的度数;(1)求AOE(2)判断∠AAOOEE与∠DDOOEE的大小关系,并说明理由.12.如图,E,G是分别是AB,AC上的点,F,D是BC上的点,连接EF,AD,DG,如果AB∥DG,∠1+∠2=180°.(1)判断AD与EF的位置关系,并说明理由;(2)若DG是∠ADC的平分线,∠2=145°,求∠B的度数.13.如图,已知AB ∥CD ,∠B =∠D .(1)求证:AD ∥BE(2)若∠1=∠2=60°,∠BAC =3∠EAC ,求∠DAF 的度数.14.如图,在三角形ABC 中,∠AABBCC =90°,将△AABBCC 沿射线BC 方向 平移,得到△DDEEEE ,A ,B ,C 的对应点分别是D ,E ,F ,AD ∥BF .(1)请说明∠DDAACC =∠EE ;(2)若BBCC =6cccc ,当AADD =2EECC 时,求AD 的长.15.如图,AABB ∥CCDD ,AE 平分∠BBAADD ,CD 与AE 相交于点F ,CFE E ∠=∠.求证:∠AADDCC =∠DDCCEE .完成下列证明,并在括号填上理由:证明:∵AABB ∥CCDD (已知)∴∠BBAAEE =∠CCEEEE (______)又∵AE 平分∠BBAADD (______)∴∠BBAAEE =∠______∴∠CCEEEE =∠DDAAEE (______)又∵CFE E ∠=∠, ∴∠DDAAEE =∠EE (______)∴______∥BBEE (______)∴∠AADDCC =∠DDCCEE (______)16.已知:如图,AABB∥CCDD,∠1=∠2.试说明:BBEE∥CCEE.请按照下列说明过程填空.解:∵AABB∥CCDD,根据________________________________∴∠AABBCC=________.∵∠1=∠2,∴∠AABBCC−∠1=________−∠2,即∠EEBBCC=________.根据________________________________∴BBEE∥CCEE.17.如图,已知∠1+∠BBDDEE=180°,∠2+∠4=180°.(1)证明:AADD∥EEEE;∠=°,求∠BBAACC的度数.(2)若∠3=90°,414018.如图,AABB//CCDD,∠AA=∠CC,BE平分∠AABBCC交AADD的延长线于点EE,(1)证明:AADD//BBCC;(2)若∠AADDCC=118°,求∠EE的度数.19.如图,已知∠1+∠2=180°,CCDD∥AABB.求证:3∠=∠A20.如图,在三角形AABBCC中,点DD,EE在BBCC边上,点EE在AABB边上,点FF在AACC边上,EEEE与FFDD的延长线交于点H,∠1=∠BB,∠2+∠3=180°.(1)请写出EEDD与AADD的位置关系,并说明理由;(2)若∠DDFFCC=58°,且∠DD=∠4+10°,求∠DD的度数。
(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试题(含答案解析)
一、选择题1.如图,BE ,CF 都是△ABC 的角平分线,且∠BDC =110°,则∠A 的度数为( )A .40°B .50°C .60°D .70°2.下列命题是真命题的是( )A .平行于同一直线的两条直线平行B .两直线平行,同旁内角相等C .同旁内角互补D .同位角相等 3.下列命题的逆命题是真命题的是( ).A .3的平方根是3B .5是无理数C .1的立方根是1D .全等三角形的周长相等 4.一个三角形的三个内角中( )A .至少有一个等于90°B .至少有一个大于90°C .不可能有两个大于89°D .不可能都小于60° 5.如图,AD ,AE 分别为△ABC 的高线和角平分线,DF ⊥AE 于点F ,当∠ADF =69°,∠C=65°时,∠B 的度数为( )A .21°B .23°C .25°D .30° 6.如图,△CEF 中,∠E=70°,∠F=50°,且AB ∥CF ,AD ∥CE ,连接BC ,CD ,则∠A 的度数是( )A .40°B .45°C .50°D .60°7.如图,//AB CD ,一副三角尺按如图所示放置,18AEG ∠=︒,则HFD ∠为( )A .23B .33C .36D .38 8.在△ABC 中,∠A =80°,∠B =50°,则∠C =( ) A .130°B .50°C .40°D .20° 9.如图,在四边形ABCD 中,要得到AB CD ∥,只需要添加一个条件,这个条件可以是( )A .13∠=∠B .24∠∠=C .BD ∠=∠D .12180B ∠+∠+∠=︒ 10.如图,//AB CD ,BE 交CD 于点F ,48B ∠=︒,20E ∠=︒,则D ∠的度数为( ).A .28B .20C .48D .6811.如图,现给出下列条件:①1B ∠=∠,②25∠=∠,③34∠=∠,④180BCD D ︒∠+∠=.⑤180B BCD ︒∠+∠=,其中能够得到//AB CD 的条件有( )A .①②④B .①③⑤C .①②⑤D .①②④⑤ 12.如图,在ABC ∆中,CD 是ACB ∠的平分线,80A ∠=︒,40ABC ∠=︒,那么BDC ∠=( )A .80︒B .90︒C .100︒D .110︒二、填空题13.如图,在△ABC 中,∠A =50°,BE 平分∠ABC ,CE 平分外角∠ACD ,则∠E 的度数为________.14.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 外,若218∠=︒,则1∠的度数为________________.15.若一个三角形三个内角度数的比为1:3:6,则其最大内角的度数是________. 16.如图所示,在ABC 中,80A ∠=︒,延长BC 到D ,ABC ∠与ACD ∠的平分线相交于1A 点,1A BC ∠与1A CD ∠的平分线相交于A 点,依此类推,4A BC ∠与4A CD ∠的平分线相交于5A 点,则5A ∠的度数是_________.17.如图,将长方形纸片的一角折叠,使顶点A 落在F 处,折痕为BC ,FBD ∠的角平分线为BE ,将FBD ∠沿BF 折叠使BE ,BD 均落在FBC ∠的内部,且BE 交CF 于点M ,BD 交CF 于点N ,若BN 平分CBM ∠,则ABC ∠的度数为_________.18.已知直角三角板和直尺如图放置,若∠1=20°,则∠2的度数为___________.19.如图,把△ABC纸片沿DE折叠,使点B落在图中的B'处,设∠B'EC=∠1,∠B'DA =∠2.若∠B=25°,则∠2﹣∠1=_____°.20.三角形中,如果有一个内角是另外一个内角的3倍,我们把这个三角形叫做“三倍角三角形”.在一个“三倍角三角形”中有一个内角为60°,则另外两个角分别为_____.三、解答题21.阅读感悟:如下是小明在学习完“证明三角形内角和定理”后对所学知识的整理和总结,请仔细阅读,并完成相应的任务.三角形内角和定理的证明今天,在老师的带领下学习了三角形内角和定理证明的多种方法,我对这些方法进行了梳理,主要分为两大类:动手实践操作类①量角器测量法:通过引导同学们画出任意三角形,每人都用量角器测量并将所测得的角度相加,得到结论;②折叠法:如图1,将①所画的三角形剪下并折叠,使每个角都落到三角形一边的同一点处,发现三个角正好可拼为一个平角,进而得到相关结论;③剪拼法:如图2,将方法②用过的三角形展开之后,随意的将某两个角撕下之后,拼到第三个角处,发现三个角正好可拼为一个平角,故而得到相应的结论.证明类(思路:由实际操作的后两种方法得到的启发,我们可以通过构造辅助线,将所证明的三个角通过某些特殊的方法转化到一条直线上,利用所学相关数学知识来证明三角形内角和):①如图3,过三角形的某个顶点作对边的平行线,利用平行线性质来证明;②如图4,延长三角形的某一条边,并过相应的点做一条平行线,进而利用平行线性质来证明;……任务:(1)“折叠法”和“剪拼法”中得到相应结论的根据是:_________.(2)“证明类”的方法中主要体现了_______的数学思想;A .方程B .类比C .转化D .分类(3)结合以上数学思想,请在图5中画出一种不同于以上思路的证明方法,并证明三角形内角和定理.22.已知,//AB CD ,点P 在AB 、CD 之间,连结AP 、CP .(1)如图1,求A C P ∠+∠+∠的度数(提供两种作辅助线的方法:方法一:过点P 作AB 的平行线;方法二:连结AC );(2)已知100APC ∠=︒,PAB ∠和PCD ∠的角平分线AO 、CO 交于点0,请你画出草图,并直接写出AOC ∠的度数.23.已知,如图,ADE B ∠=∠,12∠=∠,GF AB ⊥.求证:CD AB ⊥;下面是证明过,请你将它补充完整证明:∵ADE B ∠=∠ ∴ // ( )∴13∠=∠又∵12∠=∠∴23∠∠=∴ // ( )∴FGB ∠=∵FG AB ⊥∴FGB ∠=∴CDB ∠=∴CD AB ⊥24.如图1,AD //BC ,BAD ∠的平分线交BC 于点G ,90BCD ∠=︒.(1)求证:BAG BGA ∠=∠(2)如图2,若50ABC ∠=︒,BCD ∠的平分线交AD 于点E ,交射线GA 于点F ,AFC ∠的度数.(3)如图3,线段AG 上有一点P ,满足2ABP PBG ∠=∠,过点C 作CH //AG . 若在直线AG 上取一点M ,使PBM DCH ∠=∠,请求:ABM GBM ∠∠的值.25.综合与实践问题情境:在数学活动课上,全班同学分组进行了一副三角尺上角的探究活动,如图所示,放置一副三角尺,两个三角尺的顶点O 重合,边CD 与边AB 重合,试求AOC ∠的度数.(1)探究展示勤奋小组展示了如下的解决方法(请结合图形1,完成填空)解:∵45OCD ∠=︒,60OBC ∠=︒∴BOC ∠=__________(___________________)又∵90AOB ∠=︒,∴AOC ∠=__________.(2)反思交流:创新小组受勤奋小组的启发,继续进行探究,如图2所示,绕顶点O 逆时针旋转DOC △,当DC AO //时,求得AEO ∠的度数.(请你写出解答过程)(3)探索发现:小明受到旋转的启发,继续进行探究(如图3),继续绕顶点O 逆时针旋转DOC △,使点B 落在边DC 上,此时发现1∠与2∠之间的数量关系.以下是他的解答过程,请补充完整解:在AOE △与BCE 中,∵12AEO A CEB C ∠+∠+∠=∠+∠+∠又∵AEO CEB ∠=∠(___________________)A ∠=__________,C ∠=__________,∴12A C ∠+∠=∠+∠12∠-∠=__________.26.已知在DEF ∆中,70E F ∠+∠=︒,现将DEF ∆放置在ABC ∆上,使得D ∠的两条边DE ,DF 分别经过点B 、C .(1)如图①所示,若50A ∠=︒,且//BC EF 时,ABC ACB ∠+∠= 度,DBC DCB ∠+∠= 度,ABD ACD +=∠∠ 度;(2)如图②,改变ABC ∆的位置,使得点D 在ABC ∆内,且BC 与EF 不平行时,请探究ABD ACD ∠+∠与A ∠之间存在怎样的数量关系,并验证你的结论;(3)如图③,改变ABC ∆的位置,使得点D 在ABC ∆外,且BC 与EF 不平行时,请探究ABE ∠、ACF ∠、A ∠之间存在怎样的数量关系,请直接写出你的结论.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的内角和定理以及角平分线的定义,列出算式计算即可.【详解】解:∵BE 、CF 都是△ABC 的角平分线,∴∠A=180°-(∠ABC+∠ACB),=180°-2(∠DBC+∠BCD)∵∠BDC=180°-(∠DBC+∠BCD),∴∠A=180°-2(180°-∠BDC)∴∠BDC=90°+12∠A , ∴∠A=2(110°-90°)=40°.故答案为:A .本题考查的是三角形内角和定理和角平分线的定义,用已知角表示出所求的角是解题的关键.2.A解析:A【分析】对照平行线的性质和定理,逐一判断即可.【详解】∵平行于同一直线的两条直线平行,∴选项A正确;∵两直线平行,同旁内角互补,∴选项B错误;∵两直线平行,同旁内角互补,∴选项C错误;∵两直线平行,同位角相等,∴选项D错误;故选A.【点睛】本题考查了平行线的性质和判定,熟记性质和判定的条件和结论是解题的关键.3.C解析:C【分析】根据把一个命题的条件和结论互换就得到它的逆命题,先得出逆命题,再进行判断即可.【详解】A3的逆命题是:3的平方根,是假命题;BC、1的立方根是1的逆命题是:1是1的立方根,是真命题;D、全等三角形的周长相等的逆命题是:周长相等的三角形全等,是假命题;故选:C.【点睛】此题考查了命题的真假判断及互逆命题的知识,两个命题中,如果第一个命题的条件是第二个命题的结论,而第一个命题的结论又是第二个命题的条件,那么这两个命题叫做互逆命题,其中一个命题称为另一个命题的逆命题,判断命题的真假关键是要熟悉各知识点的性质定理.4.D解析:D【分析】根据三角形的内角性质、三角形的内角和定理逐项判断即可得.A 、反例:锐角三角形的三个内角均小于90︒,此项错误;B 、反例:锐角三角形的三个内角均小于90︒,此项错误;C 、反例:一个三角形的三个内角分别为89.5,89.5,1︒︒︒,此项错误;D 、因为三角形的内角和等于180︒,所以不可能都小于60︒,此项正确;故选:D .【点睛】本题考查了三角形的内角、三角形的内角和定理,熟练掌握三角形的内角和定理是解题关键.5.B解析:B【分析】依据三角形内角和定理即可得到∠DAF 和∠CAD 的度数,再根据角平分线的定义,即可得到∠BAC 的度数,最后依据三角形内角和定理即可得到∠B 的度数.【详解】解:∵DF ⊥AE ,∠ADF =69°∴∠DAF =21°,∵AD ⊥BC ,∠C =65°,∴∠CAD =25°,∴∠CAE =∠DAF+∠CAD =21°+25°=46°,又∵AE 平分∠BAC ,∴∠BAC =2∠CAE =92°,∴∠B =180°﹣∠BAC ﹣∠C =180°﹣92°﹣65°=23°,故选:B .【点睛】本题考查了三角形内角和定理,解题的关键是掌握三角形内角和定理:三角形内角和是180°.6.D解析:D【分析】连接AC 并延长交EF 于点M .由平行线的性质得31∠=∠,24∠∠=,再由等量代换得3412BAD FCE ∠=∠+∠=∠+∠=∠,先求出FCE ∠即可求出A ∠.【详解】连接AC 并延长交EF 于点M .∵AB CF , ∴31∠=∠, ∵AD CE , ∴24∠∠=,∴3412BAD FCE ∠=∠+∠=∠+∠=∠,∵180180705060FCE E F ∠=︒-∠-∠=︒-︒-︒=︒,∴60BAD FCE ∠=∠=︒,故选D .【点睛】本题主要考查了平行线的性质以及三角形的内角和定理,属于基础题型.7.B解析:B【分析】过点G 作AB 平行线交EF 于P ,根据平行线的性质求出∠EGP ,求出∠PGF ,根据平行线的性质、平角的概念计算即可.【详解】解:过点G 作AB 平行线交EF 于P ,由题意易知,AB ∥GP ∥CD ,∴∠EGP=∠AEG=18°,∴∠PGF=72°,∴∠GFC=∠PGF=72°,∴∠HFD=180°-∠GFC-∠GFP-∠EFH=33°.故选:B .【点睛】本题考查的是平行线的性质、三角形内角和定理的应用,掌握两直线平行、内错角相等是解题的关键.8.B解析:B【分析】直接利用三角形内角和定理得到∠C 的度数即可.【详解】解:∵在△ABC 中,∠A=80°,∠B=50°,∴∠C=180°-80°-50°=50°,故选:B .【点睛】本题考查了三角形内角和定理,正确把握定义是解题的关键.9.B解析:B【解析】A 不可以;∵∠1=∠3,∴AD ∥BC(内错角相等,两直线平行),不能得出AB ∥CD ,∴A 不可以;B 可以;∵∠2=∠4,∴AB ∥CD(内错角相等,两直线平行);∴B 可以;C 、D 不可以;∵∠B=∠D,不能得出AB ∥CD ;∵∠1+∠2+∠B=180°,∴AD ∥BC(同旁内角互补,两直线平行),不能得出AB ∥BC ;∴C 、D 不可以;故选B.10.A解析:A【分析】由//AB CD 和48B ∠=︒,可得到CFB ∠;再由对顶角相等和三角形内角和性质,从而完成求解.【详解】∵//AB CD∴180********CFB B ∠=-∠=-=∴132EFD CFB ∠=∠=∴1801801322028D EFD E ∠=-∠-∠=--=故选:A .【点睛】本题考察了平行线和三角形内角和的知识;求解的关键是熟练掌握三角形内角和、平行线的性质,从而完成求解.11.C解析:C【分析】根据平行线的判定定理对各小题进行逐一判断即可.【详解】①∵∠1=∠B,∴AB∥CD,故本小题正确;②∵∠2=∠5,∴AB∥CD,故本小题正确;③∵∠3=∠4,∴AD∥BC,故本小题错误;④∵∠BCD+∠D=180°,∴AD∥CB,故本小题错误;⑤∵∠B+∠BCD=180°,∴AB∥CD,故本小题正确.综上,正确的有①②⑤.故选:C.【点睛】本题考查了平行线的判定,熟知同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行是解答此题的关键.12.D解析:D【分析】根据三角形的内角和得出∠ACB的度数,再根据角平分线的性质求出∠DCA的度数,再根据三角形内角与外角的关系求出∠BDC的度数.【详解】解:∵∠A+∠B+∠ACB=180°(三角形内角和定理),∴∠ACB=180°-∠A-∠B=180°-80°-40°=60°,∵CD是∠ACB的平分线,∠ACB=30°(角平分线的性质),∴∠ACD=12∴∠BDC=∠ACD+∠A=30°+80°=110°(三角形外角的性质).故选:D.【点睛】本题主要考查了三角形的内角和定理,角平分线的定义及三角形外角的知识,三角形的一个外角等于与它不相邻的两个内角的和,难度适中.二、填空题13.25°【分析】根据角平分线定义得出∠ABC=2∠EBC∠ACD=2∠DCE根据三角形外角性质得出2∠E+∠ABC=∠A+∠ABC求出∠A=2∠E即可求出答案【详解】解:∵BE平分∠ABCCE平分∠A解析:25°【分析】根据角平分线定义得出∠ABC=2∠EBC,∠ACD=2∠DCE,根据三角形外角性质得出2∠E +∠ABC=∠A+∠ABC,求出∠A=2∠E,即可求出答案.【详解】解:∵BE平分∠ABC,CE平分∠ACD,∴∠ABC=2∠EBC,∠ACD=2∠DCE,∵∠ACD=2∠DCE=∠A+∠ABC,∠DCE=∠E+∠EBC,∴2∠DCE=2∠E+2∠EBC,∴2∠E+∠ABC=∠A+∠ABC,∴∠A=2∠E,∵∠A=50°,∴∠E=25°,故答案为:25°.【点睛】本题考查的是三角形外角的性质,三角形内角和定理,熟知三角形的内角和等于180°是解答此题的关键.14.98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5解析:98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=82°,然后利用平角的定义即可求出∠1.【详解】∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°-82°=98°.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,明确各个角之间的等量关系,是解决本题的关键.15.108°【分析】已知三角形三个内角的度数之比可以设一份为x°根据三角形的内角和等于180°列方程求三个内角的度数确定最大的内角的度数【详解】解:设一份为x°则三个内角的度数分别为x°3x°6x°根据解析:108°【分析】已知三角形三个内角的度数之比,可以设一份为x°,根据三角形的内角和等于180°列方程求三个内角的度数,确定最大的内角的度数.【详解】解:设一份为x°,则三个内角的度数分别为x°,3x°,6x°,根据三角形内角和定理,可知x+3x+6x=180,解得x=18.所以6x°=108°,即最大的内角是108°.故答案为108°【点睛】此题考查三角形的内角和定理,利用三角形内角和定理和列方程求解可简化计算.16.5度【分析】由∠A1CD=∠A1+∠A1BC∠ACD=∠ABC+∠A而A1BA1C分别平分∠ABC和∠ACD得到∠ACD=2∠A1CD∠ABC=2∠A1BC于是有∠A=2∠A1同理可得∠A1=2∠A解析:5度【分析】由∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,而A1B、A1C分别平分∠ABC和∠ACD,得到∠ACD=2∠A1CD,∠ABC=2∠A1BC,于是有∠A=2∠A1,同理可得∠A1=2∠A2,即∠A=22∠A2,因此推出∠A=25∠A5,而∠A=80°,即可求出∠A5.【详解】解:∵A1B、A1C分别平分∠ABC和∠ACD,∴∠ACD=2∠A1CD,∠ABC=2∠A1BC,∵∠A1CD=∠A1+∠A1BC,∠ACD=∠ABC+∠A,∴∠A=2∠A1同理可得∠A1=2∠A2,即∠A=22∠A2,…,∴∠A=25∠A 5,∵∠A=80°,∴∠A 5=80°÷32=2.5°.故答案为:2.5°.【点睛】本题考查了三角形的内角和定理:三角形的内角和为180°.也考查了三角形的外角性质以及角平分线性质.17.5°【分析】根据角平分线的定义可得再根据折叠的性质可得再根据平分可得进而可得【详解】解:∵的角平分线为∴又∵与关于对称∴∵与关于对称∴又∵平分∴又∵为折痕∴∵∴又∵∴∴又∵∴故答案为:675°【点睛 解析:5°.【分析】根据角平分线的定义可得1FBE ∠=∠,再根据折叠的性质可得1MBF FBE ∠=∠=∠,NBF FBD ∠=∠,CBA CBF ∠=∠, 再根据BN 平分CBM ∠可得CBN NBM ∠=∠,进而可得318067.58ABC ∠=⨯=. 【详解】解:∵FBD ∠的角平分线为BE ,∴1FBE ∠=∠, 又∵BM 与BE 关于BF 对称,∴1MBF FBE ∠=∠=∠, ∵BN 与BD 关于BF 对称,∴NBF FBD ∠=∠FBE EBD =∠+∠11=∠+∠21=∠,又∵BN 平分CBM ∠,∴CBN NBM ∠=∠,又∵BC 为折痕,∴CBA CBF ∠=∠CBN NBF =∠+∠21NBM =∠+∠,∵NBM NBF MBF ∠=∠-∠211=∠=∠1=∠,∴31CBA ∠=∠,又∵180CBA CBF FBD ∠+∠+∠=,∴3112121180∠+∠+∠+∠=,∴81180∠=,又∵31ABC ∠=∠, ∴318067.58ABC ∠=⨯=, 故答案为:67.5°.【点睛】 本题考查了折叠的性质,角平分线的定义,平角的定义,解题的关键是理解题意,找到31808ABC ∠=⨯. 18.40°【分析】如图过E 作EF ∥AB 则AB ∥EF ∥CD 根据平行线的性质和三角形的内角和定理即可求得答案【详解】解:如图过E 作EF ∥AB 则AB ∥EF ∥CD ∴∠1=∠3∠2=∠4∵∠3+∠4=180°-9解析:40°【分析】如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,根据平行线的性质和三角形的内角和定理即可求得答案.【详解】解:如图,过E 作EF ∥AB ,则AB ∥EF ∥CD ,∴∠1=∠3,∠2=∠4,∵∠3+∠4=180°-90°-30°=60°,∴∠1+∠2=60°,∵∠1=20°,∴∠2=40°.故答案为:40°.【点睛】本题以三角板为载体,主要考查了平行线的性质和三角形的内角和定理,正确添加辅助线、熟练掌握平行线的性质是解题的关键.19.50【分析】由折叠性质求得∠B′由三角的外角性质用∠1表示∠2进而求得∠2﹣∠1【详解】如图:∵∠B=25°∴∠B′=∠B=25°∵∠3=∠1+∠B′=∠1+25°∵∠2=∠3+∠B=∠1+25°+解析:50【分析】由折叠性质求得∠B′,由三角的外角性质,用∠1表示∠2,进而求得∠2﹣∠1.【详解】如图:∵∠B=25°,∴∠B′=∠B=25°,∵∠3=∠1+∠B′=∠1+25°,∵∠2=∠3+∠B=∠1+25°+25°,∴∠2﹣∠1=50°,故答案为:50.【点睛】本题主要考查了三角形的外角性质,折叠的性质,关键是根据三角形的外角性质表示出∠1与∠2的关系式.20.100°20°或90°30°【分析】分三种情形讨论求解即可解决问题【详解】解:在△ABC中不妨设∠A=60°①若∠A=3∠C则∠C=20°∠B=100°②若∠C=3∠A则∠C=180°(不合题意)③解析:100°,20°或90°,30°【分析】分三种情形讨论求解即可解决问题.【详解】解:在△ABC中,不妨设∠A=60°.①若∠A=3∠C,则∠C=20°,∠B=100°.②若∠C=3∠A,则∠C=180°(不合题意).③若∠B=3∠C,则∠B=90°,∠C=30°,综上所述,另外两个角的度数为100°,20°或90°,30°.故答案为:100°,20°或90°,30°.【点睛】本题考查了三角形的内角和定理的运用,解题的关键是学会用分类讨论的思想思考问题.三、解答题21.(1)平角为180︒;(2)C ;(3)见解析【分析】(1)分析题意,即可得到“折叠法”和“剪拼法”都是根据平角为180︒进行证明; (2)由题意,证明类主要是通过角度的转化,从而进行证明;(3)过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,由角度的关系,得到A EDF ∠=∠,然后根据平角的定义,即可得到结论成立.【详解】解:(1)根据题意,“折叠法”和“剪拼法”都是根据平角为180︒进行证明;故答案为:平角为180︒;(2)根据题意,“证明类”的方法中主要体现了角度的转化,从而进行证明结论成立; 故选:C ;(3)证明:如图,过点D 作//DE AC 交AB 于,//E DF AB 交AC 于F ,,,180,180FDC B EDB C A AED EDF AED ∴∠=∠∠=∠∠+∠=︒∠+∠=︒. A EDF ∴∠=∠,180A B C EDF FDC EDB CDB ∴∠+∠+∠=∠+∠+∠=∠=︒.∴三角形的内角和为180︒.【点睛】本题考查了三角形的内角和定理的证明,解题的关键是掌握证明三角形内角和等于180°的方法.22.(1)360︒;(2)130AOC ∠=︒或50︒【分析】(1)连结AC ,根据三角形的内角和定理可得∠P+∠PAC+∠PCA=180°,再根据AB//CD 得到∠BAC+∠DCA=180°即可求得.(2)分两种情况,点P 在AC 的左侧,点P 在AC 的右侧,由(1)中的得到的结论,∠P+∠PAB+∠PCD=360°,再由平行线的性质和角平分线的定理,可以得到∠AOC 的度数.【详解】(1)连结AC∴180P PAC PCA ∠+∠+∠=︒,∵//AB CD∴180BAC DCA ∠+∠=︒,∴360PAB PCD P ∠+∠+∠=︒,(2)如图a ,点P 在AC 的左侧,130AOC ∠=︒,∵∠P+∠PAB+∠PCD=360° ,又∠APC=100° ,∴∠PAB+∠PAC=260° ,又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠PAO+∠PCO=12×260° =130° , ∴∠AOC=360° -100° -130° =130° , 如图b ,点P 在AC 的右侧,50AOC ∠=︒,过点P 作MN ∥AB ,∵MN ∥AB ,CD ∥AB ,∴MN ∥CD ,∵MN ∥AB ,∴∠APM=∠BAP ,∵MN ∥CD ,∴∠CPM=∠PCD , ∴∠BAP+∠PCD=∠APM+∠CPM=∠APC=100°, 又AO 、CO 是∠PAB 和 ∠PCD 的角平分线,∴∠BAO+∠DCO= 12×100° =50°, ∴∠AOC=∠BAO+∠DCO=50° ,∴∠AOC=130° 或50°.【点睛】此题考查了平行线的性质和判定,以及角平分线定理,三角形的内角和定理,解题的关键是灵活运用平行线的性质和角的平分线的定理求角的度数.23.DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90【分析】根据平行线、垂线的性质分析,即可将证明过程补充完整.【详解】证明:∵ADE B ∠=∠∴//DE BC (同位角相等,两直线平行)∴13∠=∠(两直线平行 ,内错角相等)又∵12∠=∠∴23∠∠=∴//GF CD (同位角相等,两直线平行)∴FGB CDB ∠=∠∵FG AB ⊥∴ 90FGB ∠=∴90CDB =∠∴CD AB ⊥故答案为:DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90.【点睛】本题考查了平行线、垂线的知识;解题的关键是熟练掌握平行线的判定和性质定理,从而完成求解.24.(1)见解析;(2)20︒;(3)1:5或7:5.【分析】(1)由两直线平行,内错角相等证得DAG AGB ∠=∠,再由角平分线的性质得到12BAG DAG BAD ∠=∠=∠,据此解题; (2)由等腰三角形的性质结合三角形内角和解得65BGA ∠=︒,再由补角的定义解得115AGC ∠=︒,接着由角平分线的性质解得ECB ∠的度数,最后根据三角形内角和180°解题;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-,根据题意,解得ABP PBG ∠∠、的度数,再根据两直线平行,同位角相等解得HCB AGB α∠=∠=,继而解得DCH PBM ∠∠、的度数,接着分两种情况讨论:当M 在BP 上方时,或当M 在BP 下方时,分别解得ABM GBM ∠∠、的度数,即可解题.【详解】解:(1)//AD BCDAG AGB ∴∠=∠AC 平分BAD ∠ 12BAG DAG BAD ∴∠=∠=∠ ∴∠=∠BAG BGA ;(2)50ABC ∠=︒1(180)652BGA ABG ∴∠=︒-∠=︒ 180115AGC AGB ∴∠=︒-∠=︒CE 平分DCB ∠1452ECB DCB ∴∠=∠=︒ 18020AFC AGC ECB ∴∠=︒-∠-∠=︒;(3)设,1802AGB BAG ABG αα∠=∠=∠=︒-2ABP PBG ∠=∠2412033ABP ABG α∴∠=∠=︒- 126033PBG ABG α∠=∠=︒- //CH AGHCB AGB α∴∠=∠=90DCH α∴∠=︒-PBM DCH ∴∠=∠90PBM α∴∠=︒-90α<︒160902αα∴︒-<︒- 4120903αα∴︒->︒- PBG PBM ABP ∴∠<∠<∠当M 在BP 上方时,1303ABM ABP PBM α∠=∠-∠=︒-51503GBM PBG PBM α∠=∠+∠=︒- :1:5ABM GBM ∠∠=当M 在BP 下方时,72103ABM ABP PBM α∠=∠+∠=︒- 51503GBM PBG PBM α∠=∠+∠=︒- 7:5ABM GBM ∠∠=:综上所述,:1:5ABM GBM ∠∠=或7:5ABM GBM ∠∠=:.【点睛】本题考查平行线的性质、角平分线的定义、三角形内角和180°等知识,是重要考点,难度一般,掌握相关知识是解题关键.25.(1)75︒;三角形内角和是180︒;15︒;(2)105︒;见解析;(3)对顶角相等;30;45︒;15︒【分析】(1)利用三角形内角和定理求解即可;(2)利用平行线的性质求得∠AOC=45°,再利用三角形内角和定理求解即可;(3)在△AOE 与△BCE 中,利用三角形内角和定理得到∠1+∠A=∠2+∠C ,计算即可求解.【详解】解:∵∠OCD=45°,∠OBC=60°,∴∠BOC=75°(三角形内角和是180°),又∵∠AOB=90°,∴∠AOC=15°;(2)解:∵DC ∥AO ,∠OCD=45°,∴∠AOC=45°(两直线平行,内错角相等),又∵∠BAO=30°,∴∠AEO=180°−∠AOC−∠BAO=180°−45°−30°=105°(三角形内角和是180°);(3)在△AOE 与△BCE 中,∵∠AEO+∠1+∠A=∠CEB+∠2+∠C ,又∵∠AEO=∠CEB (对顶角相等),∠A=30°,∠C=45°,∴∠1+∠A=∠2+∠C ,∠1−∠2=15°.【点睛】本题考查了三角形内角和定理,平行线的性质,正确的识别图形是解题的关键. 26.(1)130;70;60;(2)110ABD ACD A ∠+∠=︒-∠,见解析;(3)110ABE ACF A ∠+∠=︒+∠【分析】(1)根据三角形的内角和即可求出ABC ACB ∠+∠的度数,根据平行线的性质可得到DBC DCB ∠+∠的度数,利用角度的和差关系即可求出ABD ACD ∠+∠的度数;(2)同(1)分别求出ABC ACB ∠+∠,DBC DCB ∠+∠和ABD ACD ∠+∠的度数,故可求解;(3)先求出ABC ACB ∠+∠,DBC DCB ∠+∠,再根据平角的性质即可计算求解.【详解】(1)∵50A ∠=︒,在△ABC 中,ABC ACB ∠+∠=180°-50°=130°,∵//BC EF∴DBC E ∠=∠,DCB F ∠=∠∴DBC DCB ∠+∠=70E F ∠+∠=︒∴ABD ACD +=∠∠(ABC ACB ∠+∠)-()DBC DCB ∠+∠=60°故答案为:130;70;60;(2)由题意,得()180110D E F ∠=︒-∠+∠=︒所以18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴()()18070110ABD ACD ABC ACB DBC DCB A A ∠+∠=∠+∠-∠+∠=︒-∠-︒=︒-∠即110ABD ACD A ∠+∠=︒-∠(3)由题意,得()180110D E F ∠=︒-∠+∠=︒∴18070DBC DCB D ∠+∠=︒-∠=︒∵180ABC ACB A ∠+∠=︒-∠∴360ABE ACF ∠+∠=︒-(DBC DCB ∠+∠)-(ABC ACB ∠+∠)=110A ︒+∠ 即110ABE ACF A ∠+∠=︒+∠.【点睛】此题主要考查三角形的内角和及平行线的性质,解题的关键是熟知三角形的内角和为180°.。
初中数学平行线证明专题训练含答案
平行线证明专题训练一.选择题(共16小题)1.如图,在△ABC中,∠ABC和∠ACB的平分线交于点O.若∠BOC=130°,则∠A的度数为()A.100°B.90°C.80°D.70°2.下列命题为假命题的是()A.直角都相等B.对顶角相等C.同位角相等D.同角的余角相等3.下列命题中:正确的说法有()①成轴对称的两个图形一定全等;②直线l经过线段AB的中点,则l是线段AB的垂直平分线;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形;④等腰三角形是轴对称图形,对称轴是顶角的角平分线.A.1个B.2个C.3个D.4个4.下列命题是真命题的是()A.如果a>b,a>c,那么b=cB.相等的角是对顶角C.一个角的补角大于这个角D.一个三角形中至少有两个锐角5.如图,在△ABC中,D、E、F分别在AB、BC、AC上,且EF∥AB,要使DF∥BC,只需再有下列条件中的()即可.A.∠1=∠2B.∠1=∠DFE C.∠1=∠AFD D.∠2=∠AFD 6.如图,已知∠1=∠2,则有()A.AD∥BC B.AB∥CD C.∠ABC=∠ADC D.AB⊥CD7.如图,在△ABC中,∠C=36°,将△ABC沿着直线l折叠,点C落在点D的位置,则∠1﹣∠2的度数是()A.36°B.72°C.50°D.46°8.在△ABC中,∠A=35°,∠B=80°,则∠C=()A.85°B.75°C.65°D.55°9.如图,将木条a,b与c钉在一起,∠1=85°,∠2=50°,要使木条a与b平行,木条a旋转的度数至少是()A.15°B.25°C.35°D.50°10.图中,∠2的度数是()A.110°B.70°C.60°D.40°11.如图,在△ABC中,AD平分∠BAC,AE是高,若∠B=40°,∠C=60°,则∠EAD 的度数为()A.30°B.10°C.40°D.20°12.如图,BD是∠ABC的角平分线,CD是∠ACB的角平分线,∠BDC=120°,则∠A的度数为()A.40°B.50°C.60°D.75°13.如图,△ABC中,∠A=75°,∠B=65°,将纸片的一角折叠,使点C落在△ABC内,若∠1=20°,则∠2的度数为()A.40°B.45°C.50°D.60°14.对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是()A.a=2,b=1B.a=﹣1,b=﹣2C.a=﹣2,b=﹣1D.a=﹣1,b=1 15.能说明命题“若a2=b2,则a=b”是假命题的一个反例可以是()A.a=2,b=﹣2B.a=2,b=3C.a=﹣2,b=﹣2D.a=﹣2,b=﹣3 16.如图,下列条件中能得到AB∥CD的是()A.∠1=∠2B.∠3=∠4C.∠1=∠4D.∠2=∠3二.填空题(共3小题)17.如图,△ABC中,∠A=80°,△ABC的两条角平分线交于点P,∠BPD的度数是_____.18.如图,AD,CE为△ABC的角平分线且交于O点,∠DAC=30°,∠ECA=35°,则∠AOB=_____.19.如图,把一张三角形纸片(△ABC)进行折叠,使点A落在BC上的点F处,折痕为DE,点D,点E分别在AB和AC上,DE∥BC,若∠B=75°,则∠BDF的度数为_____.三.解答题(共8小题)20.已知:如图∠B=40°,∠B=∠BAD,∠C=∠ADC,求∠DAC的度数.21.如图,在下列解答中,填写适当的理由或数学式:(1)∵AD∥BE,(已知)∴∠B=∠_____.(_____)(2)∵∠E+∠_____=180°,(已知)∴AC∥DE.(_____)(3)∵_____∥_____,(已知)∴∠ACB=∠DAC.(_____)22.如图,在△ABC中,∠B=60°,∠C=40°,AD是∠BAC的角平分线,AE是高,求∠EAD的度数.23.如图,∠1=∠2,∠A=∠F,求证:∠C=∠D.请阅读下面的解答过程,并填空(理由或数学式)证明:∵∠1=∠2(已知)∠1=∠3(_____)∴∠2=∠3(等量代换)∴BD∥_____(_____)∴∠4=_____(_____)又∵∠A=∠F(已知)∴AC∥_____(_____)∴∠4=_____(_____)∴∠C=∠D(等量代换)24.如图,在△ABC中,BO,CO分别平分∠ABC和∠ACB.(Ⅰ)若∠A=60°,则∠BOC的度数为_____;(Ⅱ)若∠A=100°,则∠BOC的度数_____;(Ⅲ)若∠A=α,求∠BOC的度数,并说明理由.25.已知:如图,∠1+∠2=180°,∠A=∠D.求证:AB∥CD.(在每步证明过程后面注明理由)26.(1)如图,在三角形纸片ABC中.∠A=64°,∠B=76°,将纸片的一角折叠,使点C落在△ABC内部,折痕为MN.如果∠1=17°,求∠2的度数;(2)小明在(1)的解题过程中发现∠1+∠2=2∠C,小明的这个发现对任意的三角形都成立吗?请说明理由.27.如图,点E在直线DF上,点B在直线AC上,若∠AGB=∠EHF,∠C=∠D.试说明:∠A=∠F.请同学们补充下面的解答过程,并填空(理由或数学式).解:∵∠AGB=∠DGF(_____)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(_____)∴_____∥_____(_____)∴∠D=_____(_____)∵∠D=∠C(已知)∴_____=∠C(_____)∴_____∥_____(_____)∴∠A=∠F(_____)平行线证明专题训练参考答案与试题解析一.选择题(共16小题)1.解:在△OBC中,∠OBC+∠OCB=180﹣∠BOC=180﹣130=50°,又∵∠ABC、∠ACB的平分线交于点O.∴∠ABC+∠ACB=2∠OBC+2∠OCB=2(∠OBC+∠OCB)=100°∴∠A=180﹣(∠ABC+∠ACB)=180﹣100=80°故选:C.2.解:A、直角都相等,是真命题;B、对顶角相等,是真命题;C、两直线平行,同位角相等,则同位角相等是假命题;D、同角的余角相等,是真命题;故选:C.3.解:①成轴对称的两个图形一定全等,故符合题意;②直线l经过线段AB的中点且垂直线段,则l是线段AB的垂直平分线,故不符合题意;③一条线段可以看作是以它的垂直平分线为对称轴的轴对称图形,故符合题意;④等腰三角形是轴对称图形,对称轴是顶角的角平分线所在的直线.故不符合题意故选:B.4.解:A、如果a>b,a>c,不能判断b,c的大小,原命题是假命题;B、相等的角不一定是对顶角,原命题是假命题;C、一个角的补角不一定大于这个角,原命题是假命题;D、个三角形中至少有两个锐角,原命题是真命题;故选:D.5.解:∵EF∥AB,∴∠1=∠2,∵∠1=∠DFE,∴∠2=∠DFE,∴DF∥BC,故选:B.6.解:∵∠1=∠2,∴AB∥CD,故选:B.7.解:由折叠的性质得:∠D=∠C=36°,根据外角性质得:∠1=∠3+∠C,∠3=∠2+∠D,则∠1=∠2+∠C+∠D=∠2+2∠C=∠2+72°,则∠1﹣∠2=72°.故选:B.8.解:∵∠A=35°,∠B=80°,∴∠C=180°﹣∠A﹣∠B=180°﹣35°﹣80°=65°,故选:C.9.解:∵∠AOC=∠2=50°时,OA∥b,∴要使木条a与b平行,木条a旋转的度数至少是85°﹣50°=35°.故选:C.10.解:∵∠1=60°+20°=80°,∴∠2=180°﹣60°﹣80°=40°,故选:D.11.解:∵∠B=40°,∠C=60°,∠B+∠C+∠BAC=180°∴∠BAC=80°又∵AD平分∠BAC∴∠CAD=40°∵AE⊥BC,∠C=60°∴∠AEC=90°,∠CAE=30°∴∠EAD=10°,故选:B.12.解:∵BD、CD是∠ABC和∠ACB的角平分线,∴∠DBC=∠ABC,∠DCB=∠ACB,∴∠D=180°﹣(∠DBC+∠DCB)=180°﹣(∠ABC+∠ACB)=180°﹣(180°﹣∠A)=90°+∠A=120°,∴∠A=60°;故选:C.13.解:∵∠A=75°,∠B=65°,∴∠C=180°﹣(65°+75°)=40°,∴∠CDE+∠CED=180°﹣∠C=140°,∴∠2=360°﹣(∠A+∠B+∠1+∠CED+∠CDE)=360°﹣300°=60°.故选:D.14.解:对于命题“若a>b,则a2>b2”,能说明它属于假命题的反例是a=﹣1,b=﹣2,a>b,但(﹣1)2<(﹣2)2,故选:B.15.解:能说明命题“若a2=b2,则a=b”是假命题的一个反例是a=2,b=﹣2,a2=b2,但a=﹣b,故选:A.16.解:A,∠1=∠2不能判定两条直线平行;不符合题意;B,∠3=∠4不能判定两条直线平行,不符合题意;C,∠1=∠4可以判定AD∥BC,不符合题意;D,∠2=∠3可以判定AB∥CD,根据内错角相等,两条直线平行,符合题意.故选:D.二.填空题(共3小题)17.解:∵△ABC中,∠A=80°,∴∠ABC+∠ACB=180°﹣∠A=100°,∵△ABC的两条角平分线交于点P,∴∠PBC=∠ABC,∠PCB=∠ACB,∴∠PBC+∠PCB=(∠ABC+ACB)=×100°=50°,∴∠BPD=∠PBC+∠PCB=50°;故答案为:50°.18.解:∵AD平分∠BAC,CE平分∠ACB,∠DAC=30°,∠ECA=35°,∴∠BAC=2∠DAC=60°,∠ACB=2∠ECA=70°,∴∠ABC=180°﹣∠BAC﹣∠ACB=50°.∵△ABC的三条角平分线交于一点,∴BO平分∠ABC,∴∠ABO=∠ABC=25°,∴∠AOB=180°﹣25°﹣30°=125°故答案为125°19.解:∵DE∥BC,∴∠ADE=∠B=75°,又∵∠ADE=∠EDF=75°,∴∠BDF=180°﹣75°﹣75°=30°,故答案为30°.三.解答题(共8小题)20.解:∵∠B=40°,∴∠B=∠BAD=40°,∴∠ADC=80°,∴∠C=∠ADC=80°,∴∠DAC=180°﹣80°﹣80°=20°.21.解:(1)∵AD∥BE,(已知)∴∠B=∠F AD.(两直线平行,同位角相等)(2)∵∠E+∠ACE=180°,(已知)∴AC∥DE.(同旁内角互补,两直线平行)(3)∵AD∥BE,(已知)∴∠ACB=∠DAC.(两直线平行,内错角相等)故答案为:(1)F AD;两直线平行,同位角相等;(2)ACE;同旁内角互补,两直线平行;AD;BE;两直线平行,内错角相等.22.解:∵∠B=60°,∠C=40°,∴∠BAC=180°﹣∠B﹣∠C=180°﹣60°﹣40°=80°,∵AD是角平分线,∴∠BAD=∠BAC=×80°=40°,∵AE是高,∴∠BEA=90°,∴∠BAE=90°﹣∠B=90°﹣60°=30°,∴∠EAD=∠BAD﹣∠BAE=40°﹣30°=10°.23.解:∵∠1=∠2(已知)∠1=∠3(对顶角相等)∴∠2=∠3(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠4=∠C(两直线平行,同位角相等)又∵∠A=∠F(已知)∴AC∥DF(内错角相等,两直线平行)∴∠4=∠D(两直线平行,内错角相等)∴∠C=∠D(等量代换);故答案为:对顶角相等;CE;同位角相等,两直线平行;∠C;两直线平行,同位角相等;DF;内错角相等,两直线平行;∠D;两直线平行,内错角相等.24.解:(Ⅰ)∵BO、CO分别平分∠ABC和∠ACB,∠A=60°,∴∠CBO+∠BCO=(180°﹣∠A)=(180°﹣60°)=60°,∴∠BOC=180°﹣(∠CBO+∠BCO)=180°﹣60°=120°;故答案为:120°;(Ⅱ)同理,若∠A=100°,则∠BOC=180°﹣(180°﹣∠A)=90°+∠A=140°,故答案为140°;(Ⅲ)同理,若∠A=α,则∠BOC=180°﹣(180°﹣∠A)=90°+.25.证明:∵∠1与∠CGD是对顶角,∴∠1=∠CGD(对顶角相等),∵∠1+∠2=180°(已知),∴∠CGD+∠2=180°(等量代换),∴AE∥FD(同旁内角互补,两直线平行),∴∠A=∠BFD(两直线平行,同位角相等),又∵∠A=∠D(已知),∴∠BFD=∠D(等量代换),∴AB∥CD(内错角相等,两直线平行).26.解:(1)∵△ABC中,∠A=64°,∠B=76°,∴∠C=180°﹣∠A﹣∠B=180°﹣64°﹣76°=40°,∵∠1=17°,∴∠CNM=,在△CMN中,∠CMN=180°﹣∠C﹣∠CNM=180°﹣40°﹣81.5°=58.5°,∴∠2=180°﹣2∠CMN=180°﹣2×58.5°=63°.(2)由题意可知:2∠CNM+∠1=180°,2∠CMN+∠2=180°,∴2(∠CNM+∠CMN)+∠1+∠2=360°,∵∠C+∠CNM+∠CMN=180°,∴∠CMN+∠CMN=180°﹣∠C,∴2(180°﹣∠C)=360°﹣(∠1+∠2),∴∠1+∠2=2∠C.27.解:∵∠AGB=∠DGF(对顶角相等)∠AGB=∠EHF(已知)∴∠DGF=∠EHF(等量代换)∴BD∥CE(同位角相等,两直线平行)∴∠D=∠CEF(两直线平行,同位角相等)∵∠D=∠C(已知)∴∠CEF=∠C(等量代换)∴DF∥AC(内错角相等,两直线平行)∴∠A=∠F(两直线平行,内错角相等)故答案为:对顶角相等;等量代换;BD;CE;同位角相等,两直线平行;∠CEF;两直线平行,同位角相等;∠CEF;等量代换;DF;AC;内错角相等,两直线平行;两直线平行,内错角相等.。
第七章 平行线的证明单元测试(解析版)
第七章平行线的证明单元测试一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角D.锐角小于它的余角3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线B.交点C.两条直线相交D.只有一个交点4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等B.互余或互补C.互补D.相等或互补5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°;B.30°,60°,90°; C.25°,25°,130°;D.36°,72°,72°6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等;(2)如果∠1和∠2是对顶角,那么∠1=∠2;(3)一个角的余角一定小于这个角的补角;(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定(第8题) (第9题) (第10题)9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=.(第11题) (第12题) (第13题)12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=°.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是三角形.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=度.(第16题) (第18题)17.命题:“同角的余角相等”的题设是,结论是.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为°.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于度.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.24.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.参考答案与试题解析一、选择题(本题共10小题,每小题3分,共30分)1.下列语句中,是命题的为()A.延长线段AB到C B.垂线段最短C.过点O作直线a∥b D.锐角都相等吗【考点】命题与定理.【分析】根据命题的定义对各个选项进行分析从而得到答案.【解答】解:A,不是,因为不能判断其真假,故不构成命题;B,是,因为能够判断真假,故是命题;C,不是,因为不能判断其真假,故不构成命题;D,不是,不能判定真假且不是陈述句,故不构成命题;故选B.【点评】此题主要考查学生对命题与定理的理解及掌握情况.2.下列命题中真命题是()A.两个锐角之和为钝角B.两个锐角之和为锐角C.钝角大于它的补角 D.锐角小于它的余角【考点】命题与定理.【分析】根据补角、余角的定义结合反例即可作出判断.【解答】解:A、两个30°角的和是60°,是锐角,不正确;B、两个80°的角之和是160°,是钝角,不正确;C、钝角大于90°,它的补角小于90°,正确;D、80°锐角的余角是10°,不正确.故选C.【点评】可以举具体角的度数来证明.3.“两条直线相交,有且只有一个交点”的题设是()A.两条直线 B.交点 C.两条直线相交 D.只有一个交点【考点】直线、射线、线段.【分析】本题考查两直线相交,有且只有一个交点的命题,题设和结论要搞清楚.【解答】解:两条直线相交,有且只有一个交点这一命题题设是两条直线相交,结论是有且只有一个交点,故选C.【点评】本题主要考查直线、线段、射线的知识点,不是很难,不过做题要仔细.4.如果∠A和∠B的两边分别平行,那么∠A和∠B的关系是()A.相等 B.互余或互补C.互补 D.相等或互补【考点】平行线的性质.【分析】本题主要利用两直线平行,同位角相等以及同旁内角互补作答.【解答】解:如图知∠A和∠B的关系是相等或互补.故选D.【点评】如果两个的两条边分别平行,那么这两个角的关系是相等或互补.5.三角形的一个外角等于与它不相邻的内角的4倍,等于与它相邻的一个内角的2倍,则三角形各角的度数为()A.45°,45°,90°B.30°,60°,90° C.25°,25°,130°D.36°,72°,72°【考点】三角形的外角性质.【专题】探究型.【分析】设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,再由2x+4x=180°即可求出x的值,故可得出各内角的度数.【解答】解:设这个外角为4x,则与它不相邻的内角的度数为x,则与它相邻的一个内角为2x,另一个内角为4x﹣x=3x,∵2x+4x=180°,∴x=30°,∴2x=60°,4×30°﹣30°=90°,∴三角形各角的度数为30°,60°,90°.故选B.【点评】本题主要考查了三角形的外角性质及三角形的内角和定理,解题的关键是熟练掌握三角形的外角性质定理,即三角形的一个外角等于与它不相邻的两个内角之和,难度适中.6.如图所示,AB⊥EF,CD⊥EF,∠1=∠F=30°,那么与∠FCD相等的角有()A.1个B.2个C.3个D.4个【考点】平行线的判定与性质.【分析】利用平行线的性质进行求解.【解答】解:∵AB⊥EF,CD⊥EF,∴AB∥CD,∴∠FCD=∠A,∵∠1=∠F=30°,∴BG∥AF,∴∠A=∠ABG;故选B.【点评】考查了平行线的判定以及平行线的性质,需要熟练掌握.7.下列四个命题中,真命题有()(1)两条直线被第三条直线所截,内错角相等(2)如果∠1和∠2是对顶角,那么∠1=∠2(3)一个角的余角一定小于这个角的补角(4)如果∠1和∠3互余,∠2与∠3的余角互补,那么∠1和∠2互补.A.1个B.2个C.3个D.4个【考点】命题与定理;余角和补角;对顶角、邻补角;同位角、内错角、同旁内角.【分析】根据常用知识点对各个选项进行分析,从而判定真命题的个数.【解答】解:(1)不正确,应该是两条平行线被第三条直线所截,内错角相等;(2)正确,因为对顶角相等;(3)正确,因为一个角的补角比它的余角大90°;(4)正确,因为∠3的余角即∠1,则∠1与∠2互补.所以正确有的三个,故选:C.【点评】此题主要考查学生对命题与定理的理解及对常用知识点的综合运用能力.8.如图,∠B=∠C,则∠ADC和∠AEB的大小关系是()A.∠ADC>∠AEB B.∠ADC=∠AEBC.∠ADC<∠AEB D.大小关系不能确定【考点】三角形的外角性质.【分析】利用三角形的内角和为180度计算.【解答】解:在△ADC中有∠A+∠C+∠ADC=180°,在△AEB有∠AEB+∠A+∠B=180°,∵∠B=∠C,∴等量代换后有∠ADC=∠AE B.故选B.【点评】本题利用了三角形内角和为180度.9.如下图,在△ABC中,AD平分外角∠CAE,∠B=30°,∠CAD=65°,则∠ACD等于()A.50°B.65°C.80°D.95°【考点】三角形的外角性质;角平分线的定义;三角形内角和定理.【分析】利用平分线的性质,三角形的内角和定理以及外角的性质计算.【解答】解:由题意可得,∠CAE=130°,∴∠BAC=50°,∴∠ACD=∠B+∠BAC=30°+50°=80°.故选C.【点评】此题主要考查角平分线的性质,三角形的内角和定理以及外角的性质.10.如图AB∥CD,AD、BC交于点O,∠A=42°,∠C=58°,则∠AOB=()A.42°B.58°C.80°D.100°【考点】平行线的性质;三角形内角和定理.【专题】计算题.【分析】由AB∥CD,可得∠B=∠C=58°,根据三角形的内角和为180°即可求得∠AOB的值.【解答】解:∵AB∥CD,∴∠B=∠C=58°;∵∠A+∠B+∠AOB=180°,∠A=42°,∴∠AOB=80°.故选C.【点评】此题考查了平行线的性质:两直线平行,内错角相等.还考查了三角形的内角和为180°.二、填空题(本大题共10小题,每小题4分,共40分)11.如图所示,∠1=∠2,∠3=80°,那么∠4=80°.【考点】平行线的判定与性质.【专题】计算题.【分析】由∠1=∠2,根据同位角相等,两直线平行得到a∥b,然后根据平行线的性质得∠4=∠3=80°.【解答】解:∵∠1=∠2,∴a∥b,∴∠4=∠3=80°.故答案为80°.【点评】本题考查了平行线的判定与性质:同位角相等,两直线平行;两直线平行,内错角相等.12.如图所示,∠ABC=36°40′,DE∥BC,DF⊥AB于F,则∠D=53°20′.【考点】平行线的性质;垂线.【专题】计算题.【分析】由平行线的性质可得出∠ABC=∠DAF=36°40′,再由DF⊥AB于F,可得出∠D的值.【解答】解:∵DE∥BC,∴∠ABC=∠DAF=36°40′,又∵DF⊥AB,∴∠D=90°﹣∠DAF=53°20′.【点评】本题考查平行线的性质,关键在于掌握两直线平行同位角相等,内错角相等,同旁内角互补.13.如图所示,AB∥CD,∠1=115°,∠3=140°,∠2=75°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,同旁内角互补求出∠4的度数,再根据三角形的一个外角等于和它不相邻的两个内角的和即可求出∠2的度数.【解答】解:如图,∵AB∥CD,∠3=140°,∴∠4=180°﹣140°=40°,∵∠1=115°,∴∠2=∠1﹣∠4=115°﹣40°=75°.【点评】本题主要利用两直线平行,同旁内角互补的性质和三角形的一个外角等于和它不相邻的两个内角的和求解.14.如果一个三角形三个内角的比是1:2:3,那么这个三角形是直角三角形.【考点】三角形内角和定理.【分析】根据三角形的内角和等于180°和已知求出三角形的最大角的度数,即可得出答案.【解答】解:∵一个三角形三个内角的比是1:2:3,∴这个三角形的最大内角的度数是:180°×=90°,∴这个三角形是直角三角形,故答案为:直角.【点评】本题考查了三角形内角和定理的应用,能求出这个三角形的最大内角是解此题的关键,注意:三角形的内角和等于180°.15.一个三角形的三个外角的度数比为2:3:4,则与此对应的三个内角的比为5:3:1.【考点】三角形的外角性质.【分析】设设三个外角的度数分别为2x、3x、4x,根据三角形的外角和等于360°列出方程,解方程即可求出三个外角的度数,得到与此对应的三个内角的度数,计算即可.【解答】解:设三个外角的度数分别为2x、3x、4x,由题意得,2x+3x+4x=360°,解得,x=40°,则三个外角分别为80°、120°、160°则对应的三个内角分别为:100°、60°、20°,∴与此对应的三个内角的比为5:3:1.故答案为:5:3:1.【点评】本题考查的是三角形的外角的性质,掌握三角形的外角和等于360°是解题的关键.16.如图,在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°,则∠BEC=122.5度.【考点】三角形内角和定理;角平分线的定义.【分析】根据三角形的内角和定理和角平分线的定义求得.【解答】解:∵在△ABC中,BE平分∠ABC,CE平分∠ACB,∠A=65°.∴∠EBC+∠ECB==57.5°,∴∠BEC=180°﹣57.5°=122.5°.【点评】此题考查了三角形内角和定理,属简单题目.17.命题:“同角的余角相等”的题设是如果是同角的余角,结论是那么这两个角相等..【考点】命题与定理.【专题】计算题.【分析】命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论,因此可正确找出题设和结论.【解答】解:“同角的余角相等”可写成是“如果是同角的余角,那么这两个角相等”.故答案为:如果是同角的余角;那么这两个角相等.【点评】本题考查命题的题设和结论,命题一般都能够写成“如果…,那么…”的形式,“如果”后面就是题设,“那么”后面就是结论.18.如图所示,AB∥EF∥CD,且∠B=∠1,∠D=∠2,则∠BED的度数为90°.【考点】平行线的性质.【专题】计算题.【分析】根据两直线平行,内错角相等可得∠B=∠BEF,∠D=∠DEF,又知∠B=∠1,∠D=∠2,可得出∠1+∠2=∠DEF+∠DEF,由平角的定义,求出∠BED的值即可.【解答】解:∵AB∥EF∥CD,∴∠B=∠BEF,∠D=∠DEF,又∵∠B=∠1,∠D=∠2,∴∠1=∠BEF,∠2=∠DEF,又∵∠1+∠BEF+∠2+∠DEF=180°,∴∠BED=×180°=90°.【点评】本题主要考查运用平行线的性质的能力,主要考查平行线的性质(两直线平行,内错角相等)以及等量代换等知识点.19.如果等腰三角形底边上的高等于底边的一半,那么这个等腰三角形的顶角等于90度.【考点】等腰直角三角形.【分析】根据等腰直角三角形底边上的“三线合一”的性质,判定等腰直角三角形.【解答】解:根据等腰三角形底边上的高也是底边上的中线和顶角的角平分线可知,高把原等腰直角三角形分成两个等腰直角三角形,顶角也就平分成两个45°,故顶角是90°,故填90.【点评】本题充分运用等腰直角三角形底边上的“三线合一”的性质解题.20.过△ABC的顶点C作边AB的垂线,如果这垂线将∠ACB分为40°和20°的两个角,那么∠A、∠B中较大的角的度数是70°.【考点】直角三角形的性质.【分析】根据直角三角形两锐角互余可以得到,∠A、∠B中有一个是70°,另一个是50°,因而∠A、∠B中较大的角的度数是70°.【解答】解:如图,依题意得∠ACD=40°,∠DCB=20°,而CD⊥AB于D,∴∠A=50°,∠B=70°,因而∠A、∠B中较大的角的度数是70°.故填空答案:70°.【点评】本题主要考查的是直角三角形两锐角互余的性质,比较简单.三、解答题(本大题共5小题,共30分)21.如图所示,∠1=∠2,AE∥BC,求证:△ABC是等腰三角形.【考点】等腰三角形的判定.【专题】证明题.【分析】由平行线的性质可得∠2=∠C,∠1=∠B,已知∠1=∠2,从而推出∠B=∠C,根据等角对等边可得到AB=AC,即△ABC是等腰三角形.【解答】证明:∵AE∥BC(已知),∴∠2=∠C(两直线平行,内错角相等).∠1=∠B(两直线平行,同位角相等).∵∠1=∠2(已知),∴∠B=∠C(等量代换).∴AB=A C.∴△ABC是等腰三角形(等角对等边).【点评】此题主要考查平行线的性质及等腰三角形的判定;进行角的等量代换是正确解答本题的关键.22.如图所示,BF∥DE,∠1=∠2,求证:GF∥B C.【考点】平行线的判定与性质.【专题】证明题.【分析】先根据两直线平行,同位角相等,得∠2=∠FBC,再结合已知条件和等量代换证得内错角∠FBC=∠1,从而得GF∥B C.【解答】解:∵BF∥DE(已知),∴∠2=∠FBC(两直线平行,同位角相等),∵∠2=∠1(已知),∴∠FBC=∠1(等量代换),∴GF∥BC(内错角相等,两直线平行).【点评】本题主要考查平行线的性质及判定,熟练记忆公理和定义是学好数学的关键.23.如图所示,已知AB∥CD,FH平分∠EFD,FG⊥FH,∠AEF=62°,求∠GFC的度数.【考点】平行线的性质;角平分线的定义;垂线.【专题】计算题.【分析】根据平行线的性质,结合角平分线的定义和垂线的定义求解.【解答】解:∵AB∥CD,∠AEF=62°,∴∠EFD=∠AEF=62°,∠CFE=180°﹣∠AEF=180°﹣62°=118°;∵FH平分∠EFD,∴∠EFH=∠EFD=×62°=31°;又∵FG⊥FH,∴∠GFE=90°﹣∠EFH=90°﹣31°=59°,∴∠GFC=∠CFE﹣∠GFE=118°﹣59°=59°.【点评】此题考查的是平行线的性质,即两直线平行内错角相等,同旁内角互补.24.已知,如图所示,直线AB∥CD,∠AEP=∠CFQ.求证:∠EPM=∠FQM.【考点】平行线的判定与性质.【专题】证明题.【分析】根据题意证得∠AEF=∠CFM,再由∠AEP=∠CFQ,可得出∠PEM=∠QFM,PE∥QF,即能得出∠EPM=∠FQM.【解答】证明:∵AB∥CD(已知),∴∠AEF=∠CFM(两直线平行,同位角相等).又∵∠PEA=∠QFC(已知),∴∠AEF+∠PEA=∠CFM+∠QFC(等式性质).即∠PEM=∠QFM.∴PE∥QF(同位角相等,两直线平行).∴∠EPM=∠FQM(两直线平行,同位角相等).【点评】本题考查平行线的判定与性质,正确识别“三线八角”中的同位角、内错角、同旁内角是正确答题的关键.25.△ABC中,BE平分∠ABC,AD为BC上的高,且∠ABC=60°,∠BEC=75°,求∠DAC的度数.【考点】三角形内角和定理;角平分线的定义.【分析】要求∠DAC的度数,只要求出∠C的度数即可.先根据角平分线的定义,可得∠EBC的度数,在△BEC中利用三角形的内角和可得∠C的度数.因AD为BC上的高,所以∠ADC=90°,在△ADC 中,再运用三角形的内角和可求∠DAC的度数.【解答】解:∵BE平分∠ABC,且∠ABC=60°,∴∠ABE=∠EBC=30°,∴∠C=180°﹣∠EBC﹣∠BEC=180°﹣30°﹣75°=75°.又∵∠C+∠DAC=90°,∴∠DAC=90°﹣∠C=90°﹣75°=15°.【点评】灵活运用垂直的定义和角平分线的定义,结合三角形的内角和定理是解决本题的关键.特别注意“三角形的内角和是180°”这一隐含的条件.。
2022学年北师大版八年级数学上册第七章《平行线的证明》期末复习训练卷附答案
2022学年秋学期八年级数学上册第七章《平行线的证明》期末复习训练卷一、选择题(共15小题)1. 如图,点E在延长线上,下列条件中不能判定AB∥CD的是( )A. ∠1=∠2B. ∠3=∠4C. ∠5=∠BD. ∠B+∠BDC=180∘2. 如图中的同旁内角有( )A. 1对B. 2对C. 3对D. 4对3. 如图,下列不能判定DE∥BC的条件是( )A. ∠AED=∠ACBB. ∠2=∠4C. ∠1=∠3D. ∠DFC+∠EDF=180∘4. 一副直角三角板如图放置,点A在DF延长线上,已知:∠D=∠BAC=90∘,∠E=30∘,∠C=45∘,BC∥DA,那么∠ABF的度数为( )A. 15∘B. 20∘C. 25∘D. 30∘5. 下列各数中,可以用来说明命题“任何偶数都是4的倍数”是假命题的反例为( )A. 5B. 4C. 8D. 66. 图书馆将某一本书和某一个关键词建立联系,规定:当关键词A i出现在书B j中时,元素a ij=1,否则a ij=0(i,j为正整数).例如:当关键词A1出现在书B4中时,a14=1,否则a14=0.根据上述规定,某读者去图书馆寻找同时有关键词“A2,A5,A6”的书,则下列相关表述错误的是( )A. 当a21+a51+a61=3时,选择B1这本书B. 当a22+a52+a62<3时,不选择B2这本书C. 当a2j,a5j,a6j全是1时,选择B j这本书D. 只有当a2j+a5j+a6j=0时,才不能选择B j这本书7. 下面是投影屏上出示的抢答一题,需要回答横线上符号代表的内容.则回答正确的是( )A. 代表∠FECB. @代表同位角C. ▲代表∠EFCD. ⋇代表AB8. 下列语句不是命题的是( )A. 两直线平行,同位角相等B. 锐角都相等C. 画直线AB平行于CDD. 所有质数都是奇数9. 下列命题中的真命题是( )A. 在同一平面内,a,b,c是直线,如果a∥b,b⊥c,则a∥cB. 在同一平面内,a,b,c是直线,如果a⊥b,b⊥c,则a⊥cC. 在同一平面内,a,b,c是直线,如果a∥b,b∥c,则a∥cD. 在同一平面内,a,b,c是直线,如果a∥b,b∥c,则a⊥c10. 已知同一平面有三条直线a,b,c,且a∥b,b∥c,则直线a与c的位置关系是( )A. 垂直B. 平行C. 相交D. 不能确定11. 下列句子属于命题的是( )A. 正数大于一切负数吗?B. 将16开平方C. 钝角大于直角D. 作线段AB的中点12. 如图,直线a∥b,若∠1=40∘,∠2=55∘,则∠3等于( )A. 85∘B. 95∘C. 105∘D. 115∘13. 用三个不等式a>b,ab>0,1a <1b中的两个不等式作为题设,余下的一个不等式作为结论组成一个命题,组成真命题的个数为( )A. 0B. 1C. 2D. 314. 甲乙两人轮流在黑板上写下不超过10的正整数(每次只能写一个数),规定禁止在黑板上写已经写过的数的约数,最后不能写的为失败者,如果甲写第一个,那么,甲写数字( )时有必胜的策略.A. 10B. 9C. 8D. 615. 如图所示,在△ABC中,AD是BC边上的高,AE,BF分别是∠BAC,∠ABC的平分线,∠BAC=50∘,∠ABC=60∘,则∠EAD+∠ACD=( )A. 75∘B. 80∘C. 85∘D. 90∘二、填空题(共8小题)16. 如果两条直线都与同一条直线平行,那么这两条直线互相.17. 将命题“等角对等边”改写成“如果⋯⋯,那么⋯⋯”的形式:.18. 如图所示,一条公路修到湖边时,需要拐弯绕湖而过,第一次拐的角∠A=110∘,第二次拐的角∠B=145∘,则第三次拐的角∠C=时,道路CE才能恰好与AD平行.19. 如图,(1)∠A与∠4是直线和直线被直线所截得的;(2)∠A与∠5是直线和直线被直线所截得的;(3)∠4与∠5是直线和直线被直线所截得的;(4)图中所有的同位角有对,它们是;(5)图中所有的内错角有对,它们是;(6)图中所有的同旁内角有对,它们是.20. 小聪,小玲,小红三人参加“普法知识竞赛”.其中前5题是选择题,每题10分,每题有A,B两个选项,且只有一个选项是正确的,三人的答案和得分如下表,试问:这五道题的正确答案的选项(A或者B)(按1∼5题的顺序排列)是.题号12345得分小聪B A A B A40小玲B A B A A40小红A B B B A3021. 已知直线a,b,c在同一平面内,且满足a∥b,b⊥c,那么直线a与c的位置关系是:a c.(从“∥”或“⊥”中选填)22. 用一组a,b的值说明命题“若a>b,则a2>b2 "是错误的,这组值可以是.(按顺序分别写出a,b的值)23. 如图,AD是△ABC的角平分线,△ABC的一个外角的平分线AE交边BC的延长线于点E,且∠BAD=20∘,∠E=30∘,则∠B的度数为.三、解答题(共7小题)24. 根据图形回答:(1)由∠1=∠A,可得∥,理由是.(2)由∠1=∠2,可得∥,理由是.(3)由∠2+∠ADO=180∘,可得∥,理由是.25. 已知:如图,AB,CD相交于点O,∠1=∠A,∠2=∠B.求证:AC∥BD.26. 如图,AB=AD,AC=AE,BC=DE,说明∠BAC=∠DAE的理由.27. 求证:如果一个角的两条边与另一个角的两条边分别平行,那么这两个角相等或互补.28. 砸“金蛋”游戏:把210个“金蛋”连续编号为1,2,3,⋯,210,接着把编号是3的整数倍的“金蛋”全部砸碎;然后将剩下的“金蛋”重新连续编号为1,2,3,⋯,再把编号是3的整数倍的“金蛋”全部砸碎⋯⋯按照这样的方法操作,直到无编号是3的整数倍的“金蛋”为止.操作过程中砸碎编号是“66”的“金蛋”共多少个?29. 如图,AB∥CD,∠DCE的平分线CG的反向延长线和∠ABE的平分线BF交于点F,∠E−∠F=42∘,求∠E的度数.30. 判断下列命题是真命题还是假命题,若是假命题,请举一反例加以说明.(1)两个角的和是180∘,则这两个角是邻补角.(2)已知三条线段a,b,c,如果a+b>c,那么这三条线段一定能围成三角形.答案1. A2. D3. C4. A【解析】∵∠D=∠BAC=90∘,∠C=45∘,∠E=30∘,∴∠ABC=45∘,∠DFE=60∘,且BC∥AD,∴∠FAB=∠ABC=45∘,∴∠ABF=∠DFE−∠FAB=60∘−45∘=15∘.5. D【解析】因为6是偶数,符合命题的条件,但6不是4的倍数,不符合命题的结论,所以可以用来说明命题“任何偶数都是4的倍数”是假命题的反例是6.6. D【解析】根据题意a ij的值要么为1,要么为0,a21+a51+a61=3,说明a21=1,a51=1,a61=1,故关键词“A2,A5,A6”同时出现在书B1中,故读者去图书馆寻找同时有关键词“A2,A5,A6”的书可选B1这本书,故选项A表述正确;当a22+a52+a62<3时,则a22,a52,a62中必有值为0的,即关键词“A2,A5,A6”不同时具有,从而不选择B2这本书,故选项B表述正确;当a2j,a5j,a6j全是1时,即a2j=1,a5j=1,a6j=1,故关键词“A2,A5,A6”同时出现在书B j中,则选择B j这本书,故选项C表述正确;根据前述分析可知,只有当a2j+a5j+a6j=3时,才能选择B j这本书,当a2j+a5j+a6j的值为0、1或2时,都不能选择B j这本书,故选项D表述错误.7. C 【解析】延长BE交CD于点F,则∠BEC=∠EFC+∠C(三角形的外角等于与它不相邻的两个内角之和),又∠BEC=∠B+∠C,得∠B=∠EFC,故AB∥CD(内错角相等,两直线平行).故选C.8. C9. C10. B【解析】同一平面有三条直线a,b,c,且a∥b,b∥c,则直线a与c的位置关系是平行,原因是平行与同一条直线的两直线平行.11. C12. B13. D【解析】命题①,如果a>b,ab>0,那么1a <1b.∵a>b,ab>0,∴a−b>0.∴a−bab>0.整理得1a <1b.∴命题①是真命题.命题②,如果a>b,1a <1b,那么ab>0.∵1a <1b,∴1a−1b<0.∴b−aab<0.∵a>b,∴b−a<0,∴ab>0.∴命题②是真命题.命题③,如果ab>0,1a <1b,那么a>b.∵1a <1b,∴1a−1b<0.∴b−aab<0,∵ab>0,∴b−a<0,∴b<a.∴命题③为真命题.综上,真命题的个数为3.14. D 【解析】对于选项A:当甲写10时,乙可以写3,4,6,7,8,9,如果乙写7,则乙必胜,因为无论甲写3,4,6,8,9这五个数中的6(连带3)或8(连带4),乙可以写4或3,剩下2个数字;当甲写3或4时,乙可以写8(连带4)或6(连带3),剩下偶数个数字甲最后不能写,乙必胜;对于选项B:当甲写9后,乙可以写2,4,5,6,7,8,10,如果乙写6,则乙必胜,因为剩下4,5,7,8,10这5个数中,无论甲写8(连带4)或10(连带5),乙可以写5或4;当甲写4或5时,乙可以写10(连带5)或8(连带4),甲最后不能写,乙必胜;对于选项C:当甲写8时,乙可以写3,5,6,7,9,10,当乙写6(或10)时,甲就必须写10(或6),因为乙写6(或10)后,连带3(或5)也不能写了,这样才能保证剩下能写的数有偶数个,甲才可以获胜;对于选项D:甲先写6,由于6的约数有1,2,3,6,接下来乙可以写的数只有4,5,7,8,9,10,把这6个数分成三组:(4,7),(5,8),(9,10),当然也可(4,5),(8,10),(7,9)或(4,9),(5,7),(8,10)等等,只要组内两数大数不是小数的倍数即可,这样,乙写某组数中的某个数时,甲就写同组中的另一数,从而甲一定写最后一个,甲必获胜,综上可知,只有甲先写6,才能必胜,故选:D.15. A【解析】根据三角形内角和定理,得∠ACD=180∘−(∠BAC+∠ABC)=180∘−(50∘+60∘)=70∘,所以∠CAD=90∘−∠ACD=90∘−70∘=20∘.因为AE是∠BAC的平分线,所以∠CAE=12∠BAC=12×50∘=25∘.所以∠EAD=∠CAE−∠CAD=25∘−20∘=5∘.所以∠EAD+∠ACD=5∘+70∘=75∘.16. 平行17. 在三角形中,如果有两个角相等,那么这两个角所对的边也相等18. 145∘【解析】如图所示,作BF∥AD.因为AD∥CE,所以BF∥CE.当AD∥BF时,∠1=∠A=110∘,得∠2=∠ABC−∠1=145∘−110∘=35∘.因为CE∥BF,所以∠C+∠2=180∘,得∠C=180∘−∠2=180∘−35∘=145∘.即第三次拐的角为145∘时,道路CE才能恰好与AD平行.19. AC,DE,AB,同位角,AB,DE,AC,同旁内角,AB,AC,DE,内错角,6,∠A与∠4,∠A与∠8,∠3与∠6,∠2与∠5,∠1与∠8,∠4与∠7,4,∠A与∠2,∠A与∠6,∠4与∠5,∠3与∠8,4,∠A与∠3,∠A与∠5,∠3与∠5,∠4与∠820. BABBA21. ⊥22. −1,−2(答案不唯一)【解析】当a=−1,b=−2时,满足a>b,但是a2<b2,所以命题“若a>b,则a2>b2 "是错误的.答案不唯一.23. 40∘【解析】∵AD 是 △ABC 的角平分线,∠BAD =20∘,∴∠BAC =40∘, ∴∠FAC =180∘−∠BAC =180∘−40∘=140∘.∵AE 平分 ∠CAF , ∴∠CAE =70∘, ∴∠BAE =40∘+70∘=110∘.∵∠AED =30∘, ∴∠B =180∘−30∘−110∘=40∘.故答案为:40∘.24. (1) AC ;OD ;同位角相等,两直线平行(2) AB ;OE ;内错角相等,两直线平行(3) AB ;OE ;同旁内角互补,两直线平行25. 因为 ∠1=∠2(对顶角相等),∠1=∠A ,∠2=∠B (已知),所以 ∠A =∠B (等量代换).所以 AC ∥BD (内错角相等,两直线平行).26. 在 △ABC 和 △ADE 中, {AB =AD(已知),AC =AE(已知),BC =DE(已知),所以 △ABC ≌△ADE (SSS ).所以 ∠BAC =∠DAE (全等三角形对应角相等).27. 已知:如图,OA ∥O ʹA ʹ,OB ∥O ʹB ʹ,求证:∠O =∠O ʹ.证明:∵OA ∥O ʹA ʹ, ∴∠O =∠A ʹCB .∵OB ∥O ʹB ʹ, ∴∠A ʹCB =∠O ʹ. ∴∠O =∠O ʹ.已知:如图,OA ∥O ʹA ʹ,OB ∥O ʹB ʹ,求证:∠AOB +∠A ʹO ʹB ʹ=180∘.证明:∵OA ∥O ʹA ʹ,∴∠O =∠O ʹCB .∵OB ∥O ʹB ʹ, ∴∠O ʹCB +∠O ʹ=180∘. ∴∠O +∠O ʹ=180∘.28. 210÷3=70,第一次砸碎3的倍数的金蛋个数为70;剩下210−70=140个金蛋,重新编号为1,2,3,⋯,140,140÷3=46⋯⋯2,第二次砸碎3的倍数的金蛋个数为46;剩下140−46=94个金蛋,重新编号为1,2,3,⋯,94,94÷3=31⋯⋯1,第三次砸碎3的倍数的金蛋个数为31;剩下94−31=63个金蛋,因为63<66,所以砸三次后,就不再存在编号为66的金蛋,故操作过程中砸碎编号是“66”的“金蛋”共3个.29. 如图,过点F作FH∥AB.因为AB∥CD,所以FH∥AB∥CD,因为∠DCE的平分线CG的反向延长线和∠ABE的平分线BF交于点F,所以设∠ABF=∠EBF=α=∠BFH,∠DCG=∠ECG=β=∠CFH,所以∠ECF=180∘−β,∠BFC=∠BFH−∠CFH=α−β,所以四边形BFCE中,∠E+∠BFC=360∘−α−(180∘−β)=180∘−(α−β)=180∘−∠BFC,即∠E+2∠BFC=180∘,又因为∠E−∠BFC=42∘,所以∠BFC=∠E−42∘,所以∠E+2(∠E−42∘)=180∘,所以∠E=88∘.30. (1)假命题.如图所示,在等腰△ABC中,∠B=∠ACB,∠ACD+∠ACB=180∘,则∠B+∠ACD=180∘,但∠B与∠ACD不是邻补角.(2)假命题.例如a=9,b=1,c=8,9+1>8,但1+8=9,构不成三角形.。
(典型题)初中数学八年级数学上册第七单元《平行线的证明》测试题(有答案解析)
一、选择题1.如图,△ABC 中,∠BAC =58°,∠C =82°,∠BAC 的平分线AD 交BC 于点D ,点E 是AC 上一点,且∠ADE =∠B ,则∠CDE 的度数是( )A .29°B .39°C .42°D .52°2.如图,将ABC 绕点C 顺时针旋转90︒得到EDC △,点A 、D 、E 在同一条直线上.若20ACB ∠=︒,则ADC ∠的度数是( )A .60︒B .65︒C .70︒D .75︒3.下列命题的逆命题是真命题的是( )A .两个全等三角形的对应角相等B .若一个三角形的两个内角分别为30和60︒,则这个三角形是直角三角形C .两个全等三角形的面积相等D .如果一个数是无限不循环小数,那么这个数是无理数4.下列选项中,可以用来证明命题“若,a b >则a b >”是假命题的反例是( ) A .1,0a b ==B .1,2a b ==-C .2,1a b =-=D .2,1a b ==- 5.一副透明的三角板,如图叠放,直角三角板的斜边AB 、CE 相交于点D ,则BDC∠的度数是( )A .65︒B .75︒C .85︒D .105︒ 6.下列语句正确的有( )个.①“对顶角相等”的逆命题是真命题.②“同角(或等角)的补角相等”是假命题.③立方根等于它本身的数是非负数.④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒.⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是9cm 或12cm . A .4 B .3 C .2 D .17.如图,AD 平分∠BAC ,AE ⊥BC ,∠B=45°,∠C=73°,则∠DAE 的度数是( ).A .22°B .16°C .14°D .23°8.如图,要得到AB ∥CD ,只需要添加一个条件,这个条件不可以...是( )A .∠1=∠3B .∠B +∠BCD =180°C .∠2=∠4D .∠D +∠BAD =180°9.下列命题是真命题的是( )A .两直线平行,同位角相等B .面积相等的两个三角形全等C .同旁内角互补D .相等的两个角是对顶角 10.如图,//AB EF ,C 点在EF 上,EAC ECA ∠=∠,BC 平分DCF ∠,且AC BC ⊥.下列结论:①AC 平分DCE ∠;②//AE CD ;③190B ∠+∠=︒;④BDC 21∠=∠.其中结论正确的个数有( )A .1个B .2个C .3个D .4个11.如图,给出下列条件中的一个:①12∠=∠;②180D BAD ∠+∠=︒;③34∠=∠;④BCE D ∠=∠.则一定能判定//AD BC 的条件是( )A .①②④正确B .①③正确C .②③④正确D .①④正确12.下列说法正确的是( )A .无限小数都是无理数B .有最小的正整数,没有最小的整数C .a ,b ,c 是直线,若 a ⊥b ,b ⊥c ,则 a ⊥cD .内错角相等二、填空题13.下列命题,①对顶角相等;②两直线平行,同位角相等;③全等三角形的对应角相等.其中逆命题是真命题的命题共有_________个.14.如图,65A ∠=︒,75B ∠=︒,将纸片的一角折叠,使点C 落在ABC 外,若218∠=︒,则1∠的度数为________________.15.如图,在△ABC 中,点O 是△ABC 内一点,且点O 到△ABC 三边的距离相等,若∠A =70°,则∠BOC =________.16.已知,如图,在ABC 中,AD ,AE 分别是ABC 的高和角平分线,若30ABC ∠=︒;60ACB ∠=︒,则DAE =∠__________.17.如图,AE 平分,BAC BE AE ∠⊥于,//E ED AC ,,BAC a ∠=则BED ∠的度数为________________.(用含α的式子表示)18.如图, AM 、CM 分别平分∠BAD 和∠BCD ,且∠B=31°,∠D=39°,则∠M=______.19.如图,BD =BC ,BE =CA ,∠DBE =∠C =60°,∠BDE =75°,则∠AFE 的度数等于_____.20.数学课上,同学提出如下问题:老师说这个证明可以用反证法完成,思路及过程如下: 如图1,我们想要证明“如果直线AB ,CD 被直线所截EF ,AB ∥CD ,那么∠EOB=EO D '∠.”如图2,假设∠EOB≠EO D '∠,过点O 作直线A'B',使EOB '∠=EO D '∠,可得A B ''∥CD .这样过点O 就有两条直线AB ,A B ''都平行于直线CD ,这与基本事实_________矛盾,说明∠EOB≠EO D '∠的假设是不对的,于是有∠EOB=∠EO D '∠.小贴士 反证法不是直接从命题的已知得出结论,而是假设命题的结论不成立,由此经过推理得出矛盾,由矛盾断定所作假设不正确,从而得到原命题成立.在某些情形下,反证法是很有效的证明方法.请补充上述证明过程中的基本事实:_________________________三、解答题21.如图,178∠=︒,2102∠=︒,C D ∠=∠.求证://AC DF .22.已知,如图,ADE B ∠=∠,12∠=∠,GF AB ⊥.求证:CD AB ⊥;下面是证明过,请你将它补充完整证明:∵ADE B ∠=∠ ∴ // ( ) ∴13∠=∠又∵12∠=∠∴23∠∠=∴ // ( )∴FGB ∠=∵FG AB ⊥∴FGB ∠=∴CDB ∠=∴CD AB ⊥23.完成下面推理过程,在括号内的横线上填空或填上推理依据.如图,已知://AB EF ,EP EQ ⊥,90EQC APE ∠+∠=︒,求证://AB CD证明://AB EFAPE ∴∠=__________(__________)EP EQ ⊥PEQ ∴∠=_________(___________)即90QEF PEF ∠+∠=︒90APE QEF ∴∠+∠=︒90EQC APE ∠+∠=︒EQC ∠=________//EF ∴_______(__________________)//AB CD ∴(________________)24.如图,12∠=∠,34∠=∠,56∠=∠,求证://CE BF .25.如图,将△ABC 沿着平行于BC 的直线DE 折叠,点A 落到点A ′,若∠C =125°,∠A =20°,求∠BD A ′的度数.26.如图,AB DB =,ABD ACD ∠=∠,AC 与BD 交于点F ,点E 在线段AF 上,AE DC =,6DBE ∠=︒,108BCD ∠=︒.(1)求证:BCD BEA ≅△△;(2)求AFD ∠的度数.【参考答案】***试卷处理标记,请不要删除一、选择题1.A解析:A【分析】根据三角形的内角和得到∠B =180︒-∠BAC -∠C =40︒,根据角平分线的定义得到∠BAD=12∠BAC=29︒,根据三角形的外角的性质即可得到结论. 【详解】解:∵在△ABC 中,∠BAC =58︒,∠C =82︒,∴∠B =180︒-∠BAC -∠C =180︒-58︒-82︒=40︒,∵AD 平分∠BAC ,∴∠BAD =12∠BAC =29︒, ∴∠ADC =∠B +∠BAD =69︒,∵∠ADE =∠B =40︒,∴∠CDE =29︒,故选:A .【点睛】本题考查了三角形的内角和定理,熟练掌握三角形的内角和定理是解题的关键. 2.B解析:B【分析】根据全等三角形的性质和三角形内角和定理解答即可;【详解】∵将ABC 绕点C 顺时针旋转90︒得到EDC △,∴ABC EDC ≅△△,∴20DCE ACB ∠=∠=︒,90BCD ACE ∠=∠=︒,AC CE =,∴902070ACD ∠=︒-︒=︒,∵点A 、D 、E 在同一条直线上,∴180ADC EDC ∠+∠=︒,∵180EDC E DCE ∠+∠+∠=︒,∴20ADC E ∠=∠+︒,∵90ACE ∠=︒,AC CE =,∴90DAC E ∠+∠=︒,45E DAC ∠=∠=︒,∴65ADC ∠=︒; 故选:B .【点睛】本题主要考查了全等三角形的性质,三角形的外角性质,准确计算是解题的关键. 3.D解析:D【分析】根据原命题分别写出逆命题,然后再判断真假即可.【详解】A 、两个全等三角形的对应角相等,逆命题是:对应角相等的两个三角形全等,是假命题;B 、若一个三角形的两个内角分别为 30° 和 60° ,则这个三角形是直角三角形,逆命题是:如果一个三角形是直角三角形,那么它的两个内角分别为 30° 和 60° ,是假命题;C 、两个全等三角形的面积相等,逆命题是:面积相等的两个三角形全等,是假命题;D 、如果一个数是无限不循环小数,那么这个数是无理数,逆命题是:如果一个数是无理数,那么这个数是无限不循环小数 ,是真命题.故选:D【点睛】本题考查了命题与定理,解决本题的关键是掌握真命题.4.B解析:B【分析】需要证明一个结论不成立,可以举反例证明;【详解】∵当1a =,2b =-时,1<2-,∴证明了命题“若,a b >则a b >”是假命题;故答案选B .【点睛】本题主要考查了命题与定理,准确分析判断是解题的关键.5.B解析:B【分析】根据三角板的性质以及三角形内角和定理计算即可.【详解】解:∵∠CEA =60︒,∠BAE =45︒,∴∠ADE = 180︒−∠CEA −∠BAE =75︒,∴∠BDC =∠ADE =75︒,故选:B【点睛】本题考查三角板的性质,三角形内角和定理等知识,对顶角相等,解题的关键是熟练掌握基本知识,属于中考基础题.6.D解析:D【分析】先写出逆命题,进而即可判断;根据补角的性质,即可判断②;根据立方根的性质,即可判断③;根据反证法的定义,即可判断④根据等腰三角形的定义和三角形三边长关系,即可判断⑤.【详解】①“对顶角相等”的逆命题是“相等的角是对顶角”,是假命题,故该小题错误;②“同角(或等角)的补角相等”是真命题,故该小题错误;③立方根等于它本身的数是0,±1,故该小题错误;④用反证法证明:如果在ABC 中,90C ∠=︒,那么A ∠、B 中至少有一个角不大于45°时,应假设45A ∠>︒,45B ∠>︒,故该小题正确;⑤如果一个等腰三角形的两边长分别是2cm 和5cm ,则周长是12cm ,故该小题错误. 故选D .【点睛】本题主要考查补角的性质,真假命题,反证法以及等腰三角形的定义,掌握反证法的定义,等腰三角形的定义是解题的关键.7.C解析:C【分析】根据∠DAE=∠DAC-∠CAE ,只要求出∠DAC ,∠CAE 即可.【详解】解:∵∠BAC=180°-∠B-∠C ,∠B=45°,∠C=73°,∴∠BAC=62°,∵AD 平分∠BAC ,∴∠DAC=12∠BAC=31°, ∵AE ⊥BC ,∴∠AEC=90°,∴∠CAE=90°-73°=17°,∴∠DAE=31°-17°=14°,故选:C .【点睛】本题考查三角形内角和定理,角平分线的定义等知识,解题的关键是熟练掌握基本知识. 8.A解析:A【分析】根据B 、D 中条件结合“同旁内角互补,两直线平行”可以得出AB ∥CD ,根据C 中条件结合“内错角相等,两直线平行”可得出AB ∥CD ,而根据A 中条件结合“内错角相等,两直线平行”可得出AD ∥BC .由此即可得出结论.【详解】解:A .∵∠1=∠3,∴AD ∥BC (内错角相等,两直线平行);B .∵∠B +∠BCD =180°,∴AB ∥CD (同旁内角互补,两直线平行);C .∠2=∠4,∴AB ∥CD (内错角相等,两直线平行);D .∠D +∠BAD =180°,∴AB ∥CD (同旁内角互补,两直线平行).故选A .【点睛】本题考查了平行线的判定,解题的关键是根据四个选项给定的条件结合平行线的性质找出平行的直线.本题属于基础题,难度不大,解决该题型题目时,根据相等或互补的角找出平行的两直线是关键.9.A解析:A【分析】根据平行线的性质,全等三角形的性质,对顶角的性质等逐一对选项进行分析即可.【详解】A 选项中,两直线平行,同位角相等,说法正确,是真命题;B 选项中,一个三角形底为3,高为4,另一个三角形底为6,高为2,面积相等但不全等,是假命题;C 选项中,只有两直线平行时,同旁内角才互补,是假命题;D 选项中,相等的两个角不一定是对顶角,也可能是同位角,内错角等,是假命题. 故选:A.【点睛】本题主要考查真命题,会判断命题的真假是解题的关键.10.D解析:D【分析】根据平行线的性质及角度的计算,等腰三角形的性质即可进行一一求解判断.【详解】根据//AB EF , BC 平分DCF ∠,且AC BC ⊥可得∠1+∠BCD=90°,∠BCD=12∠DCF , 又∠DCF+∠ECD=180°,∴∠1=12∠ECD ,故AC 平分DCE ∠,①正确; ∵AC 平分DCE ∠,∴∠1=∠ECA,∵EAC ECA ∠=∠∴EAC ∠=∠1,∴//AE CD ,②正确;∵EF ∥AB ,∴∠FCB=∠B ,∴∠B=∠DCB ,∵∠1+∠DCB=90°,∴190B ∠+∠=︒,③正确;∵EF∥AB,∴∠ECA=∠CAD,∵∠1=∠ECA∴∠1=∠CAD∵∠CDB是△ACD的一个外角,∴∠CAD=∠1+∠CAD=2∠1,④正确;故选D【点睛】此题主要考查平行线的角度计算,解题的关键是根据图像的特点进行求解.11.D解析:D【分析】分别利用同旁内角互补两直线平行,同位角相等两直线平行,内错角相等两直线平行得出答案即可.【详解】解:①∵∠1=∠2,∴BC∥AD,本选项符合题意;②∵∠B+∠BAD=180°,∴AB∥CD,本选项不符合题意;③∵∠3=∠4,∴AB∥CD,本选项不符合题意;(4)∵∠BCE=∠D,∴AD∥BC,本选项符合题意.一定能判定AD∥BC条件是①④.故选:D.【点睛】本题考查了平行线的判定,平行线的判定方法有:同位角相等两直线平行;内错角相等两直线平行;同旁内角互补两直线平行,熟练掌握平行线的判定是解题的关键.12.B解析:B【分析】A、根据无理数的定义即可判定;B、根据整数的定义可以判断;C、根据在同一平面内,垂直同一直线的两直线互相平行可判断;D、根据平行线的性质可以判断.【详解】解:A、无限小数包含无限循环小数和无限不循环小数,无限不循环小数才是无理数,故选项错误;B、有最小的正整数是1,没有最小的整数,故选项正确;C、在同一平面内,a,b,c 是直线,若 a⊥b,b⊥c,则 a∥c,故选项错误;D、两直线平行,内错角相等,故选项错误.故选:B.【点睛】本题考查数、直线、角的若干基本概念,深刻理解有关基本概念是解题关键.第II卷(非选择题)请点击修改第II卷的文字说明二、填空题13.1【分析】根据逆命题对顶角平行线全等三角形的性质对各个选项逐个分析即可得到答案【详解】对顶角相等的逆命题为:相等的角是对顶角故①错误;两直线平行同位角相等的逆命题为:同位角相等两直线平行故②正确;全解析:1【分析】根据逆命题、对顶角、平行线、全等三角形的性质,对各个选项逐个分析,即可得到答案.【详解】对顶角相等的逆命题为:相等的角是对顶角,故①错误;两直线平行,同位角相等的逆命题为:同位角相等,两直线平行,故②正确;全等三角形的对应角相等的逆命题为:对应角相等的三角形为全等三角形,故③错误;逆命题是真命题的命题共有:1个故答案为:1.【点睛】本题考查了逆命题、对顶角、平行线、全等三角形的知识;解题的关键是熟练掌握对顶角、平行线、全等三角形的性质,从而完成求解.14.98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5解析:98°【分析】先根据三角形的内角和定理得出∠C=180°-∠A-∠B=180°-65°-75°=40°;再根据折叠的性质得到∠C′=∠C=40°,再利用三角形的内角和定理以及外角性质得∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,即可得到∠3+∠4=82°,然后利用平角的定义即可求出∠1.【详解】∵∠A=65°,∠B=75°,∴∠C=180°-∠A-∠B=180°-65°-75°=40°;又∵将三角形纸片的一角折叠,使点C落在△ABC外,∴∠C′=∠C=40°,而∠3+∠2+∠5+∠C′=180°,∠5=∠4+∠C=∠4+40°,∠2=18°,∴∠3+18°+∠4+40°+40°=180°,∴∠3+∠4=82°,∴∠1=180°-82°=98°.【点睛】本题综合考查了三角形内角和定理、外角定理以及翻折变换的问题,而翻折变换实际上就是轴对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等,明确各个角之间的等量关系,是解决本题的关键.15.125°【分析】求出O为△ABC的三条角平分线的交点求出∠OBC=∠ABC∠OCB=∠ACB根据三角形内角和定理求出∠ABC+∠ACB求出∠OBC+∠OCB再根据三角形内角和定理求出∠BOC的度数即解析:125°【分析】求出O为△ABC的三条角平分线的交点,求出∠OBC=12∠ABC,∠OCB=12∠ACB,根据三角形内角和定理求出∠ABC+∠ACB,求出∠OBC+∠OCB,再根据三角形内角和定理求出∠BOC的度数即可;【详解】∵在△ ABC中,点O是△ABC内的一点,且点O到△ ABC三边距离相等,∴ O为△ABC的三条角平分线的交点,∴∠OBC=12∠ABC,∠OCB=12∠ACB,∵∠A=70°,∴∠ABC+∠ACB=180°-∠A=110°,∴∠OBC+∠OCB=55°,∴∠BOC=180°-∠OBC-∠OCB=125°,故答案为:125°.【点睛】本题考查了角平分线的有关计算,三角形内角和定理的应用,能正确掌握与角平分线有关的三角形内角和问题是解题的关键;16.15°【分析】根据三角形的内角和等于180°求出∠BAC再根据角平分线的定义求出∠BAE根据直角三角形两锐角互余求出∠BAD然后根据∠DAE=∠BAE-∠BAD计算即可得解【详解】解:∵∠ABC=3解析:15°【分析】根据三角形的内角和等于180°求出∠BAC,再根据角平分线的定义求出∠BAE,根据直角三角形两锐角互余求出∠BAD ,然后根据∠DAE =∠BAE -∠BAD 计算即可得解.【详解】解:∵∠ABC =30°,∠ACB =60°,∴∠BAC =180°-∠B -∠C =180°-30°-60°=90°,∵AE 是三角形的平分线,∴∠BAE =12∠BAC =12×90°=45°, ∵AD 是三角形的高, ∴∠BAD =90°-∠B=90°-30°=60°,∴∠DAE =∠BAD -∠BAE =60°-45°=15°.故答案为:15.【点睛】本题考查了三角形的内角和定理,三角形的角平分线的定义,高线的定义, 熟记定理与概念并准确识图,理清图中各角度之间的关系是解题的关键.17.【分析】由ED//AC 可以得到所以由三角形内角和定理可以得到的值再次利用三角形内角和定理就可以得到的度数【详解】解:由已知得:又ED//AC ∴∴∴∠BED=故答案为【点睛】本题考查三角形内角和定理和 解析:1902a + 【分析】由ED//AC 可以得到EDB C ∠=∠,所以由三角形内角和定理可以得到EDB EBD ∠+∠的值,再次利用三角形内角和定理就可以得到BED ∠的度数.【详解】 解:由已知得:1909022a ABE BAC ∠=︒-∠=︒-, 又ED//AC ,∴EDB C ∠=∠, ∴180180909022a a EDB EBD BAC ABE a ⎛⎫∠+∠=︒-∠-∠=︒--︒-=︒- ⎪⎝⎭ ∴∠BED=180909022a a ⎛⎫︒-︒-=︒+ ⎪⎝⎭ 故答案为902a ︒+. 【点睛】本题考查三角形内角和定理和角平分线的综合应用,灵活运用三角形内角和定理是解题关键. 18.35°【分析】根据三角形内角和定理用∠B ∠M 表示出∠BAM-∠BCM 再用∠B ∠M 表示出∠MAD-∠MCD 再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD 然后求出∠M 与∠B ∠D 关系代入数解析:35°【分析】根据三角形内角和定理用∠B、∠M表示出∠BAM-∠BCM,再用∠B、∠M表示出∠MAD-∠MCD,再根据角平分线的定义可得∠BAM-∠BCM=∠MAD-∠MCD,然后求出∠M与∠B、∠D关系,代入数据进行计算即可得解;【详解】解:根据三角形内角和定理,∠B+∠BAM=∠M+∠BCM,∴∠BAM-∠BCM=∠M-∠B,同理,∠MAD-∠MCD=∠D-∠M,∵AM、CM分别平分∠BAD和∠BCD,∴∠BAM=∠MAD,∠BCM=∠MCD,∴∠M-∠B=∠D-∠M,∴∠M=12(∠B+∠D)=12(31°+39°)=35°;故答案为:35°【点睛】本题考查了三角形的内角和定理,角平分线的定义.注意利用“8字形”的对应角相等求出角的关系是解题的关键,要注意整体思想的利用.19.150°【分析】由三角形内角和定理可得∠E=45°由SAS可证△ABC≌△EDB 可得∠A=∠E=45°由三角形的外角性质可求∠AFD=30°即可求解【详解】解:∵∠DBE=60°∠BDE=75°∴∠解析:150°【分析】由三角形内角和定理可得∠E=45°,由“SAS”可证△ABC≌△EDB,可得∠A=∠E=45°,由三角形的外角性质可求∠AFD=30°,即可求解.【详解】解:∵∠DBE=60°,∠BDE=75°,∴∠E=180°﹣60°﹣75°=45°,∵BD=BC,BE=CA,∠DBE=∠C=60°,∴△ABC≌△EDB(SAS),∴∠A=∠E=45°,∵∠BDE=∠A+∠AFD=75°,∴∠AFD=30°,∴∠AFE=150°,故答案为:150°.【点睛】本题考查了三角形内角和定理,全等三角形的判定和性质,三角形外角的性质,证明△ABC≌△EDB是解题关键.20.经过直线外一点有且只有一条直线与已知直线平行经过直线外一点有且只有一条直线与已知直线平行【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案【详解】解:假设∠EOB≠∠EOD 过点O 作直线解析:经过直线外一点,有且只有一条直线与已知直线平行, 经过直线外一点,有且只有一条直线与已知直线平行.【分析】直接利用反证法的基本步骤以及结合平行线的性质分析得出答案.【详解】解:假设∠EOB≠∠EO'D ,过点O 作直线A'B',使∠EOB'=∠EO'D ,依据基本事实 同位角相等,两直线平行,可得A'B'∥CD .这样过点O 就有两条直线AB ,A′B′都平行于直线CD ,这与基本事实: 经过直线外一点,有且只有一条直线与已知直线平行矛盾,说明∠EOB≠∠EO'D 的假设是不对的,于是有∠EOB=∠EO'D .故答案为:经过直线外一点,有且只有一条直线与已知直线平行; 经过直线外一点,有且只有一条直线与已知直线平行.【点睛】本题考查了反证法,正确掌握反证法的基本步骤是解题的关键.三、解答题21.证明见解析【分析】先根据已给的角度判断BD//CE ,从而可得∠ABD=∠C ,再根据等量代换可得∠ABD=∠D ,从而可证//AC DF .【详解】证明:∵178∠=︒,2102∠=︒,∴∠1+∠2=78°+102°=180°,∴BD//CE ,∴∠ABD=∠C ,∵C D ∠=∠,∴∠ABD=∠D ,∴//AC DF .【点睛】本题考查平行线的性质和判定.熟练掌握平行线的性质和判定定理,并能正确识别同位角、同旁内角是解题关键.22.DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90【分析】根据平行线、垂线的性质分析,即可将证明过程补充完整.【详解】证明:∵ADE B ∠=∠∴//DE BC (同位角相等,两直线平行)∴13∠=∠(两直线平行 ,内错角相等)又∵12∠=∠∴23∠∠=∴//GF CD (同位角相等,两直线平行)∴FGB CDB ∠=∠∵FG AB ⊥∴ 90FGB ∠=∴90CDB =∠∴CD AB ⊥故答案为:DE ,BC ,同位角相等,两直线平行 ;GF ,CD ,同位角相等,两直线平行;CDB ∠,90,90.【点睛】本题考查了平行线、垂线的知识;解题的关键是熟练掌握平行线的判定和性质定理,从而完成求解.23.∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【分析】根据平行线的性质得到∠APE=∠PEF ,根据余角的性质得到∠EQC=∠QEF 根据平行线的判定定理即可得到结论.【详解】证明:∵AB ∥EF∴∠APE=∠PEF (两直线平行,内错角相等)∵EP ⊥EQ∴∠PEQ=90°(垂直的定义)即∠QEF+∠PEF=90°∴∠APE+∠QEF=90°∵∠EQC+∠APE=90°∴∠EQC=∠QEF∴EF ∥CD (内错角相等,两直线平行)∴AB ∥CD (同一平面内,平行于同一条直线的两条直线互相平行),故答案为:∠PEF ;两直线平行,内错角相等;90°;垂直的定义;∠QEF ;CD ;内错角相等,两直线平行;同一平面内,平行于同一条直线的两条直线互相平行.【点睛】本题考查了平行线的判定和性质,垂直的定义,熟练掌握平行线的判定和性质是解题的关键.24.见解析【分析】根据平行线的判定得出//BC DF ,再根据平行线的性质定理即可得到结论.【详解】证明:∵34∠=∠,∴//BC DF ,∴236180∠+∠+∠=︒,∵56∠=∠,12∠=∠,∴135180∠+∠+∠=︒,∴//CE BF .【点睛】本题考查了平行线的判定和性质,熟练掌握平行线的判定和性质定理是解题的关键. 25.110°【分析】利用翻折变换的性质以及三角形内角和定理求出∠BDE ,∠A′DE ,即可解决问题.【详解】∵∠A +∠B +∠C =180°,∠A =20°,∠C =125°,∴∠B =35°,∵DE ∥BC ,∴∠ADE =∠B =35°,∠BDE +∠B =180°,∴∠BDE =180−∠B =180°−35°=145°,∵△ADE 沿DE 折叠成△A′DE ,∴∠A′DE =∠ADE =35°,∴∠BDA′=∠BDE−∠A′DE =145°−35°=110°.【点睛】本题考查三角形内角和定理,翻折变换的性质以及平行线的性质,解题的关键是熟练掌握翻折变换的性质,属于中考常考题型.26.(1)见解析;(2)78︒【分析】(1)根据ABD ACD ∠=∠,AFB CFD ∠=∠得出D A ∠=∠,然后利用SAS 即可证明三角形全等;(2)由(1)可知BCD BEA ∆≅∆,由题意知108BCD ∠=︒,即可得出 BEF ∠的度数,然后由AFD BEF DBE ∠=∠+∠求值即可;【详解】解:(1)证明:ABD ACD ∠=∠,AFB CFD ∠=∠,D A ∴∠=∠.在BCD ∆和BEA ∆中,CD EA D A BD BA =⎧⎪∠=∠⎨⎪=⎩()BCD BEA SAS ∴∆≅∆.(2)BCD BEA ∆≅∆,108BCD ∠=︒,108BEA BCD ∴∠=∠=︒,18010872BEF ∴∠=︒-=︒.6DBE ∠=︒,72678AFD BEF DBE ∴∠=∠+∠=︒+︒=︒.【点睛】本题考查了全等三角形的性质与判定以及三角形的内角和,正确理解知识点是解题的关键;。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4、如图所示,E在直线DF上,B在直线 AC上,若∠AGB=∠EHF,∠C=∠D,试
判断∠A与∠F的关系,并说明理由.
解:∠A=∠F. 理由:∵∠AGB=∠DGF, ∠AGB=∠EHF, ∴∠DGF=∠EHF, ∴BD∥CE; ∴∠C=∠ABD, 又∵∠C=∠D, ∴∠D=∠ABD, ∴DF∥AC; ∴∠A=∠F.
7、如图,BD是∠ABC的平分线,ED∥BC,
∠FED=∠BDE,则EF也是∠AED的平分
线.完成下列推理过程:
证明:∵BD是∠ABC的平分线( )
∴∠ABD=∠DBC( )
∵ED∥BC( )
∴∠BDE=∠DBC( )
∴
()
又∵∠FED=∠BDE( )
∴∥
()
∴∠AEF=∠ABD( )
∴∠AEF=∠DEF( )
5、如图,CD∥AB,∠DCB=70°, ∠CBF=20°,∠EFB=130°,问直线EF 与AB有怎样的位置关系?为什么?
解:平行.理由如下: ∵CD∥AB, ∴∠ABC=∠DCB=70°; 又∵∠CBF=20°, ∴∠ABF=∠ABC-∠CBF=70°-20°=50°; ∴∠ABF+∠EFB=50°+130°=180°; ∴EF∥AB(同旁内角互补,两直线平行).
证:∠1=∠2.
• 证明:∵EF⊥AB,CD⊥AB, ∴EF∥CD, ∴∠2=∠3; ∵∠AGD=∠ACB, ∴DG∥BC, ∴∠1=∠3; ∴∠1=∠2.
3、已知,如图,∠1=∠ACB, ∠2=∠3,FH⊥AB于H.问CD与AB 有什么关系?
解:CD⊥AB;理由如下: ∵∠1=∠ACB, ∴DE∥BC,∠2=∠DCB, 又∵∠2=∠3, ∴∠3=∠DCB, 故CD∥FH, ∵FH⊥AB ∴CD⊥AB.
6、已知:如图,DG⊥BC,AC⊥BC,EF⊥AB, ∠1=∠2,求证:CD⊥AB. 证明:∵DG⊥BC,AC⊥BC(已知) ∴∠DGB=∠ACB=90°(垂直定义) ∴DG∥AC( ) ∴∠2= ( ) ∵∠1=∠2(已知) ∴∠1=∠ (等量代换) ∴EF∥CD( ) ∴∠AEF=∠ ( ) ∵EF⊥AB(已知) ∴∠AEF=90°( ) ∴∠ADC=90°( ) ∴CD⊥AB( )
∴EF是∠AED的平分线( )
8、如图,E点为DF上的点,B为AC上的点,
∠1=∠2,∠C=∠D.
试说明:AC∥DF.
解:∵∠1=∠2(已知),
∠1=∠3(
),
∴∠2=∠3(等量代换).
∴ ∥ (同位角相等,两直线平行).),
∴∠D=∠ABD(等量代换).
平行线的证明训练题
1、如图,∠1=∠2,∠D=∠A,那么 ∠B=∠C吗?为什么?
• 解:∠B=∠C.理由如下: ∵∠1=∠2, ∴AE∥DF, ∴∠AEC=∠D, ∵∠A=∠D, ∴∠AEC=∠A; ∴AB∥CD, ∴∠B=∠C.
2、如图,已知在△ABC中,EF⊥AB, CD⊥AB,G在AC边上,∠AGD=∠ACB.求
∴AC∥DF(
).
9.填空并完成以下证明: 已知,如图,∠1=∠ACB,∠2=∠3
求证:∠BDC+∠DGF=180°. 证明:∵∠1=∠ACB(已知) ∴DE∥BC ( ) ∴∠2=∠DCF ( ) ∵∠2=∠3(已知) ∴∠3=∠DCF ( ) ∴CD∥FG( ) ∴∠BDC+∠DGF=180°( ).