二次函数含参问题

合集下载

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总

二次函数专题——含参二次函数完整版题型汇总含参的二次函数在高中阶段考试中经常出现,因为参数的存在使得函数形成一种动态,随着参数的变化,函数也会不同。

这就使得本来简单的二次函数变得复杂起来。

例如,考虑求解$f(x)=x-2ax$在$[2,4]$上的最大值和最小值。

由于参数的存在,这个函数是动态的。

为了解决这个问题,我们需要考虑动轴定区间问题,即对称轴随着参数的变化而变化,但是在给定区间上问最大值和最小值。

对于这个问题,需要分类讨论。

在$[2,4]$这个区间上,可能出现对称轴不在这个区间里面的情况,对称轴就在区间里面的情况,或者对称轴在区间右侧的情况。

因此,我们需要分别考虑这些情况。

具体来说,我们需要找到在整个函数的区间上,哪个数离对称轴最远。

这个分界线就应该在$2$和$4$中间的位置上,即$3$。

当对称轴在$x=3$这条线左边的时候,对称轴离$2$就比较近,离$4$就比较远;对称轴在右边的时候,离$2$就比较近,离$4$就比较远。

因此,这个函数的最大值可以表示为:f_{\max}(x)=\begin{cases}f(4)=16-8a& (a\leq 3)\\f(2)=4-4a&(a>3)\end{cases}$$当$a=3$时,放在哪边都可以。

代入上面的式子,得到$f_{\max}(x)=-8$。

因此,最大值为$-8$。

接下来,我们来讨论含参的二次函数的最大值和最小值问题。

这类问题的重点在于能否清晰地做分类讨论,得到一个分段函数的解析式。

我们可以按照对称轴的位置进行分类讨论。

首先,对于对称轴在区间左侧,且$a\leq 2$的情况,函数在$x=2$处取得最小值,即$f_{min}(x)=f(2)=4-4a$。

其次,对于对称轴在区间中间,即$24$的情况,函数在$x=4$处取得最小值,即$f_{min}(x)=f(4)=16-8a$。

另外,还有一类问题叫做定轴动区间的问题。

对于这类问题,我们同样需要进行分类讨论,只不过区间在变化。

2023中考数学重难点练习 专题03 二次函数含参解析式问题(学生版+解析版)

2023中考数学重难点练习 专题03 二次函数含参解析式问题(学生版+解析版)

专题03二次函数含参解析式问题一、E知识回顾】(1)二次函数的一般形式:丘且主且正怡,b,c是常数,a手。

)注:未知数的最高次数是2,a,;c:0,b, c是任意实数。

(2)二次函数的国i象与性质二次函数y=ax2+b x+c(a,b, c为常数,a学0)图象开口方向对称输顶点坐标增减。

|全故值y\ :/x(a>O)开口向七b直线x=-一2a(」4a c一2a’4a当x<-2a时,y随x的增大而减尘:当x>一丢.:a时,y|施x的瞅而增大2ba’_:4ac-b2当x=一' y有最尘直4a(3)二次函数阁像与系数的关系Y,队。

\x(a<O)开口向下b直线x=-一2a(-!. 4a c-b引2a’4ab当x<-2a时,y随x的增大而盟主:b当x>-2a时,d罐x的增大而温尘当x=一一时,y有最本值4a…c-b22a 4a某1比特别t形式代数式的决定抛物线的当a>O时,抛物线开口向上;a开口方向及开口大小当a<O时,抛物线开口向下.符号.a±b+c即为x=+l时一,y 当a,b问号,二<O,对称轴在泱定对称轴的值:②4a±2b+c1111为x=±2时,y的值a、y轴左边:(x=一一〉的位2a2a吨的符号,需判置当时时,斗o,对称轴为y b对称轴τ..;;与1tt飞!大小.轴:b当a,b异号,τ.;aγ>O,对称输布,y轴�边.当c>O时,抛物线与y轴的交点决定抛物线与在夜半轴上.c y轴的交点的当c=O时,抛物线经过原点:位置当c<O时,抛物线与y轴的交点在1这半轴上.b2-4ac>O时,抛物线与且铀有2个交点;决定抛物线与b2-4ac=O时,抛物线与x轴有l b2-4ac x轴的交点个个交点;数b2-4a c<O时,抛物线与x轴i立主交点(4)利用二次函数的对称轴判断函数值大小关系〈福建常考i在择题10)方法技巧g 若对称粉1在直线x=l的b左边,贝tl2a>l,再根据a的符号即可得出络果.④2a-b的符号,需步I]断对称轴与-1的大小.①已知点A Ca. b)为二次函数图像上一点,对称轴已失U x=c,则A点对称点B(2c-a b)②己知点A(a, c)、B( b, c)为二次函数图像上一点,则根据网点纵坐标相等,可知A、B为对称点,那么对称轴x干③不等式解读:la-cl斗b-c卜a到对称轴c的距离>b到对称输的距离l a-cJ=lb-cj a到对称轴c的距离=b到对称轴的距离la-cl斗b-c卜a到对称轴c的距离<b到对称铀的距离二、E考点类型】考点1:二次函数函数图像与系数的关系典例1:( 2022福建商|到校考一模〉二次函数y=a).-2+你+c(α,b, c是常数,但0)的图象如阁所示,对称轴为直线x=-1.有以下结论:①abc>O;①a(/!+2) 2+b (仇2)<a (k2+1) 2+b (的1)(k为实数〉:①m (am+b) �,。

含参二次函数的最值问题

含参二次函数的最值问题

5a x
(2)当1 a 5时
f (x)min =f(1)=-4 f (x)max =f(-3)=12
(3)当a 5时
f (x)min=f(1)=-4 f (x)max =f(a)= a2-2a-3
小结:
本节课讨论了两类含参数的二次函数最 值问题:
(1)轴动区间定 (2)轴定区间动 核心思想仍然是判断对称轴与区间的 相对位置,从中体会到数形结合思想、分类 讨论思想。
❖第2类:函数对称轴固定,动区间 例2:
求函数f (x) x2 2x 5在区间t,t 2上的最大值
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
若0 a 2,则函数f(x)的最小值为f (a) a2 1
若 a 2 ,则函数f(x)的最小值为f(2)=3—4a.
所以,
1, (a 0) f (x)min a2 1, (0 a 2)
3 4a, (a 2)
变式作业上第9题
已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 23:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
a -3 o 1
(1)当 3 a 1时
f (x)min=f(a)=a2-2a-3 x f (x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)

(完整版)二次函数含参问题

(完整版)二次函数含参问题

二次函数含参问题本质:解决二次函数含参问题就是解决对称轴与定义域的问题。

课堂例题:1. 若函数a ax x x f --=2)(在区间[0,2]上的最大值为1,则实数=a ;2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为⎥⎦⎤⎢⎣⎡-0,49,则m 的取值范围为 ;当堂练习:1. 若函数)0(22≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ;2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;1. 若函数f(x)=4x−12−a ·2x +272在区间[]2,0上的最大值为9,求实数a 的值;当堂练习:1. 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值;2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值;家庭作业:1.函数432--=x x y 的定义域为[]m ,0,值域为⎥⎦⎤⎢⎣⎡--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ;3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ;4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ;5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ;3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a1.不等式(2−α)x2−2(a−2)x+4>0对于一切实数x都成立,求α的取值范围;2.若不等式x2−2αx+a2−a>0,当x∈[0,1]时恒成立,求 α的取值范围;当堂练习:1.求对于−1≤α≤1,不等式x2+(α−2)x+1−a>0恒成立的x的取值范围;)恒成立,则α的取值范围是多少;2. 若不等式 x2+αx+1≥0对于一切x∈(0,123.不等式αx2+2x+1>0在x∈[−2,1]上恒成立,求实数α的取值范围;4.设不等式αx2−2x−a+1<0对于满足|α|≤2的一切值都恒乘以,求x的取值范围;家庭作业:1.函数f(x)=αx2−2x+2 (a∈R),对于满足1<x<4的一切x值都有f(x)>0,求实数α的取值范围;>0 对任意2.已知f(x)是定义在区间[−1,1]上的函数,且f(1)=1,若m,n∈[−1,1],m+n≠0时,有f(m)+f(n)m+n x∈[−1,1],f(−x)=−f(x)都成立。

数学《二次函数的含参问题》专题训练及答案

数学《二次函数的含参问题》专题训练及答案

2020-2021学年中考数学培优训练讲义(九)《二次函数的含参问题》专题训练○2班级姓名座号成绩1.(2019秋•台州期中)已知:在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为2.(2020•永嘉县模拟)已知:抛物线y=a(x﹣2)2+1经过点A(m,y1),B(m+2,y2),若点A在抛物线对称轴的左侧,且1<y1<y2,则m的取值范围是3.(2020•宁波模拟)已知:点P(m,n)在抛物线y=a(x﹣5)2+9(a≠0)上,当3<m<4时,总有n>1,当7<m<8时,总有n<1,则a的值为4.(2020•厦门模拟)函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是5.(2021•闽侯县模拟)在平面直角坐标系xOy中,已知抛物线y=x2+bx.(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K.①判断△AOB的形状,并说明理由;②已知E(﹣2,0),F(0,4),设△AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围.6. (2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.作业思考:1.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m 的取值范围.1.(2019秋•台州期中)在抛物线y=ax2﹣2ax﹣3a上有A(﹣0.5,y1)、B(2,y2)和C(3,y3)三点,若抛物线与y轴的交点在正半轴上,则y1、y2和y3的大小关系为()A.y1>y2>y3B.y2>y1>y3C.y3>y1>y2D.y2>y3>y1【分析】先求出a<0和对称轴是直线x=1,根据二次函数的性质得出当x>1时,y随x的增大而减小,再根据点的坐标和二次函数的性质比较即可.【解答】解:∵抛物线y=ax2﹣2ax﹣3a与y轴的交点在正半轴上,∴﹣3a>0,∴a<0,即抛物线的开口向下,∵抛物线的解析式是y=ax2﹣2ax﹣3a,∴对称轴是直线x=﹣=1,∴当x>1时,y随x的增大而减小,∴点A(﹣0.5,y1)关于直线x=1的对称点的坐标是(2.5,y1)∵图象过点(2.5,y1)、B(2,y2)和C(3,y3),又∵2<2.5<3,∴y2>y1>y3,故选:B.【点评】本题考查了二次函数图象上点的坐标特征和二次函数的图象函数性质,能熟记二次函数的性质是解此题的关键.2.(2020•永嘉县模拟)已知抛物线y=a(x﹣2)2+1经过点A(m,y1),B(m+2,y2),若点A在抛物线对称轴的左侧,且1<y1<y2,则m的取值范围是()A.0<m<1 B.0<m<2 C.1<m<2 D.m<2【分析】根据题目中的抛物线,可以得到该抛物线的对称轴,然后根据题意,可知点A和点B在对称轴两侧,从而可以得到m的取值范围,本题得以解决.【解答】解:∵抛物线y=a(x﹣2)2+1,∴该抛物线的对称轴为直线x=2,∵点A(m,y1),B(m+2,y2)在抛物线y=a(x﹣2)2+1上,点A在抛物线对称轴的左侧,且1<y1<y2,∴1<m<2,故选:C.【点评】本题考查二次函数的性质、二次函数图象上点的坐标特征,解答本题的关键是明确题意,利用二次函数的性质解答.3.(2020•宁波模拟)已知点P(m,n)在抛物线y=a(x﹣5)2+9(a≠0)上,当3<m<4时,总有n >1,当7<m<8时,总有n<1,则a的值为()A.1 B.﹣1 C.2 D.﹣2【分析】依解析式可知顶点坐标,根据当7<m<8时,总有n<1,可知a<0,由增减性可列不等式组,解出即可.【解答】解:∵抛物线y=a(x﹣5)2+9(a≠0),∴抛物线的顶点为(5,9),∵当7<m<8时,总有n<1,∴a不可能大于0,则a<0,∴x<5时,y随x的增大而增大,x>5时,y随x的增大而减小,∵当3<m<4时,总有n>1,当7<m<8时,总有n<1,且x=3与x=7对称,∴m=3时,n≤1,m=7时,n≥1,∴,∴4a+9=1,∴a=﹣2,故选:D.【点评】本题考查了二次函数图象上点的坐标特征以及二次函数的性质,解题的关键是熟练掌握增减性,理解“3<m<4时,总有n>1,当7<m<8时,总有n<1”的意义.4.(2020•厦门模拟)函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,且x1>1,x2﹣x1=4,当1≤x≤3时,该函数的最小值m与b的关系式是()A.m=2b+5 B.m=4b+8 C.m=6b+15 D.m=﹣b2+4【分析】由韦达定理得:x1•x2=6,而x2﹣x1=4,求出x1、x2的值,函数的对称轴为直线x=(x1+x2)=<3,故当1≤x≤3时,函数在x=3时,取得最小值,即可求解.【解答】解:函数y=x2+2bx+6的图象与x轴两个交点的横坐标分别为x1,x2,∴x1•x2=6,而x2﹣x1=4,解得:x1=﹣2,x2=2+,∵x1+x2=﹣2b,∴b=﹣;函数的对称轴为直线x=(x1+x2)=>3,故当1≤x≤3时,函数在x=3时,取得最小值,即m=y=x2+2bx+6=15+6b,故选:C.【点评】主要考查图象与二次函数系数之间的关系,解题的关键是利用韦达定理处理根和系数之间的关系.5.(2021•闽侯县模拟)在平面直角坐标系xOy中,已知抛物线y=x2+bx.(1)求抛物线顶点Q的坐标;(用含b的代数式表示)(2)抛物线与x轴只有一个公共点,经过点(0,2)的直线与抛物线交于点A,B,与x轴交于点K.①判断△AOB的形状,并说明理由;②已知E(﹣2,0),F(0,4),设△AOB的外心为M,当点K在线段EF上时,求点M的纵坐标m的取值范围.【分析】(1)y=x2+bx=(x+b)2﹣b2,即可求解;(2)①求出抛物线的表达式为y=x2,联立y=x2和y=kx+2并整理得:x2﹣2kx﹣4=0,证明△ADO∽△OEB,即可求解;②△AOB的外心为M,则点M是AB的中点,MN是Rt△ABH的中位线,则m=y1﹣MN=(y1+y2)=k2+2,进而求解.【解答】解:(1)∵y=x2+bx=(x+b)2﹣b2,∴抛物线的顶点坐标为(﹣b,﹣b2);(2)①∵抛物线与x轴只有一个公共点,∴△=b2﹣4××0=0,解得b=0,∴抛物线的表达式为y=x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、E,设经过点(0,2)的直线的表达式为y=kx+2,联立y=x2和y=kx+2并整理得:x2﹣2kx﹣4=0,则x1+x2=2k,x1x2=﹣4,∴y1=x12,y2=x22,则y1y2=x12x22=4=﹣x1x2,∵AD=y1,DO=﹣x2,BE=y2,OE=x1,∴,∴∠ADO=∠BEO=90°,∴△ADO∽△OEB,∴∠AOD=∠OBE,∵∠OBE+∠BOE=90°,∴∠BOE+∠DOD=90°,即AO⊥BO,∴△AOB为直角三角形;②过点A作x轴的平行线交BE的延长线于点H,过点M与y轴的平行线于点N,∵△AOB的外心为M,MN∥y轴∥BH,∴点M是AB的中点,MN是Rt△ABH的中位线,∴MN=BH=(y2﹣y1),则m=y1﹣MN=(y1+y2)=(kx1+2+kx2+2)=[k(x1+x2)+4]=k2+2,令y=kx+2=0,解得x=﹣,即点K的坐标为(﹣,0),由题意得:2≤﹣≤4,解得﹣1≤k≤且k≠0,∴≤k2+2≤3,即点M的纵坐标m的取值范围≤m≤3.【点评】主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养.要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系.6.(2020•北京)在平面直角坐标系xOy中,M(x1,y1),N(x2,y2)为抛物线y=ax2+bx+c(a>0)上任意两点,其中x1<x2.(1)若抛物线的对称轴为x=1,当x1,x2为何值时,y1=y2=c;(2)设抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,求t的取值范围.【分析】(1)根据抛物线的对称性解决问题即可.(2)由题意点(x1,0),(x2,0)连线的中垂线与x轴的交点的坐标大于,利用二次函数的性质判断即可.【解答】解:(1)由题意y1=y2=c,∴x1=0,∵对称轴x=1,∴M,N关于x=1对称,∴x2=2,∴x1=0,x2=2时,y1=y2=c.(2)①当x1≥t时,恒成立.②当x1<x2≤t时,恒不成立.③当x1<t.x2>t时,∵抛物线的对称轴为x=t,若对于x1+x2>3,都有y1<y2,当x1+x2=3,且y1=y2时,对称轴x=,∴满足条件的值为:t≤.【点评】本题考查二次函数的性质,二次函数的对称性等知识,解题的关键是理解题意,灵活运用所学知识解决问题.作业思考:1.(2021•石景山区一模)在平面直角坐标系xOy中,点A是抛物线y=﹣x2+2mx﹣m2+2m+1的顶点.(1)求点A的坐标(用含m的代数式表示);(2)若射线OA与x轴所成的锐角为45°,求m的值;(3)将点P(0,1)向右平移4个单位得到点Q,若抛物线与线段PQ只有一个公共点,直接写出m 的取值范围.【分析】(1)直接将解析式配成顶点式,可以求得点A坐标;(2)因为OA与x轴夹角为45°,则点A到坐标轴距离相等,所以需要分类讨论,即横坐标与纵坐标相等,或者横坐标与纵坐标互为相反数,同时,也可以发现点A在直线y=2x+1上运动;(3)先由平移知识,可以得到Q点坐标,且PQ∥x轴,画出草图,可以发现,顶点A所在直线y=2x+1也经过P点,并且当A与P重合时,此时m取得最小值,当A沿直线y=2x+1向上运动时,m值越来越大,最大值位置是当抛物线刚好经过Q点时,同时,要注意排除抛物线与直线PQ的两个交点均落在线段PQ上的特殊情况.【解答】解:(1)∵y=﹣x2+2mx﹣m2+2m+1=﹣(x﹣m)2+2m+1,∴顶点A(m,2m+1);(2)设x=m,y=2m+1,消掉m,得y=2x+1,∴A在直线y=2x+1上运动,∴A所在象限可能为第一、第二、第三象限,∵射线OA与x轴所成的夹角为45°,∴可以分两类讨论,①当A在第一、第三象限时,m=2m+1,解得m=﹣1,②当A在第二象限时,m+2m+1=0,解得m=,∴m=﹣1或;(3)当P(0,1)向右平移4个单位长度得到Q,则Q(4,1),且PQ∥x轴∵抛物线与线段PQ只有一个交点,且抛物线顶点A在直线y=2x+1上运动,∴由图1可得,当顶点A与P点重合时,符合条件,此时m=0,由图2,数形结合,当顶点A沿直线y=2x+1向上运动时,抛物线与直线PQ均有两个交点,当抛物线经过Q点时,即当x=4,y=1时,﹣(4﹣m)2+2m+1=1,∴m=2或8,当m=2时,抛物线为y=﹣(x﹣2)2+5,它与线段PQ的交点为P和Q,有两个交点,不合题意,舍去,当m=8时,抛物线对称轴右侧的部分刚好经过点Q,符合题意,∴当0≤m≤8,且m≠2时,抛物线与线段PQ只有一个交点【点评】此题考查的是二次函数综合题,主要考查的是数形结合思想,根据题意,充分挖掘题目中的数据参数,是画图的关键,根据图像,判断临界位置,即可解决问题.。

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数(word版+详细解答)

中考数学专项突破——含参二次函数类型一 函数类型确定型1. 已知抛物线 y =3ax 1 2+ 2bx +c.(1) 若 a =3k ,b = 5k ,c =k +1,试说明此类函数图象都具有的性质;1(2) 若 a =3, c =2+b ,且抛物线在- 2≤x ≤2区间上的最小值是- 3,求 b 的值;(3) 若a +b +c =1,是否存在实数 x ,使得相应的 y 值为 1,请说明理 由.解:(1)∵a =3k ,b =5k ,c =k +1,∴抛物线 y =3ax 2+ 2bx +c 可化为 y =9kx 2+10kx +k +1=(9x 2+10x +1)k +1,∴令 9x 2+10x + 1=0,1解得 x 1=- 1,x 2=-9,1∴图象必过点 (-1,1),(-9, 1),1(2)∵a =3,c =2+b ,∴抛物线 y =3ax 2+2bx +c 可化为 y =x 2+2bx +2+b ,∴对称轴为直线 x =- 2 =- b ,∴对称轴为直线 x =10k2×9k 59;当-b>2 时,即b<-2,∴x=2时,y 取到最小值为- 3.9∴4+4b+2+b=-3,解得b=-5(不符合题意,舍去),当- b <-2 时即b>2,∴x=-2时,y 取到最小值为- 3.∴4-4b+2+b=-3,解得b=3;当-2<-b<2时,即-2<b<2,当x=-b 时,y取到最小值解得b1=1+221(不符合题意,舍去),1-214(2+b)-4b2为-3,∴4=-3,综上所述,b=3 或2;(3)存在.理由如下:∵ a+b+c=1,∴c-1=-a-b,令y=1,则3ax2+2bx+c=1.∴Δ=4b2-4(3a)(c-1)=4b2+4(3a)(a+b)=9a2+12ab+4b2+3a2=(3a+2b)2+3a2,∵a≠0,∴(3a+2b)2+3a2>0,∴Δ>0,∴必存在实数x,使得相应的y 值为 1.2. 在平面直角坐标系中,一次函数y=kx+b 的图象与x 轴、y 轴分别相交于 A (-3,0)、B (0,- 3)两点,二次函数 y =x 2+mx +n 的图 象经过点 A.(1)求一次函数 y =kx +b 的表达式;(2)若二次函数 y =x 2+ mx +n 的图象顶点在直线 AB 上,求 m ,n 的 值;(3)①设 m =- 2,当- 3≤x ≤0时,求二次函数 y =x 2+mx +n的最小值; ②若当- 3 ≤x ≤0时,二次函数 y =x 2+mx +n 的最小值为- 4,求 m , n 的值.解: (1)将点 A (-3,0),B (0,-3)代入 y =kx +b 得-3k +b =0,解得b =-3∴一次函数 y =kx +b 的表达式为 y =- x -3; m 4n - m 2 (2)二次函数 y =x 2+mx +n 的图象顶点坐标为 (- 2, 4 ),∵顶点在直线 AB 上,4n - m 2 m ∴ 4 = 2 - 3,又 ∵ 二次函数 y =x 2+ mx +n 的图象经过点 A (- 3,0),∴9- 3m +n =0,4n - m 2 m∴组成方程组为 4 = 2-3,9-3m +n =0k =-1 b =-3(3)①当 m =- 2时,由(2)得 9-3m +n =0,解得 n =- 15, ∴y = x 2-2x -15.∵二次函数对称轴为直线 x =1,在- 3 ≤x ≤0右侧, ∴当x =0 时, y 取得最小值是- 15.②∵二次函数 y = x 2+mx + n 的图象经过点 A , ∴9- 3m +n =0,二次函数 y =x 2+mx +n 的对称轴为直线 x =- m 2 ,i) 如解图①,m4n - m 2当对称轴- 3<- m 2<0 时,最小值为 4 =- 4,联立 4n -m 2 4 =-4 ,9-3m +n =0m = 2m =10 m解得 或 (由- 3<- 2 <0 知不符合题意舍去 )n =- 3 n =21 2m =2 n =-3ii) 如解图②,当对称轴- m 2>0 时,∵-3≤x ≤0,∴当 x =0时,y 有最小值为- 4,m =4 解得或n =3m =6 n =9把(0,- 4)代入 y =x 2+mx +n ,得 n =-4,5把 n =- 4 代入 9-3m +n = 0,得 m =3.m-2>0, ∴m <0,∴此种情况不成立;iii ) 当对称轴- m 2=0 时, y =x 2+mx +n 当 x =0 时,取得最小值 为-4,把(0,- 4)代入 y =x 2+mx +n 得 n =-4, 5 把 n =- 4 代入 9- 3m +n = 0,得 m =3.0,∴m =0,∴此种情况不成立;iiii ) 当对称轴- 2≤-3 时,∵-3 ≤x ≤0,∴当x =- 3 时,y取得最小值-4,∵当x =-3 时,y =0,不成立.第2 题解图综上所述, m3. 在平面直角坐标系中,二次函数y1=x2+2(k-2)x+k2-4k +5.(1)求证:该二次函数图象与坐标轴仅有一个交点;(2)若函数y2=kx+3经过y1图象的顶点,求函数y1的表达式;(3)当1≤x≤3时,二次函数的最小值是2,求k 的值.(1)证明:∵b2-4ac=4(k-2)2-4(k2-4k+5)=-4<0,∴函数图象与x 轴没有交点,当x=0 时,y1=k2-4k+5=(k-2)2+1>0,∴二次函数与坐标轴仅有一个交点;(2)解:∵y1=(x+k-2)2+1,∴函数y1 的顶点坐标为(2-k,1),代入函数y2=kx+3 得(2-k)k+3=1,解得k=1+3或k=1-3,∴y1=x2+2( 3-1)x+5-2 3或y1=x2-2( 3+1)x+5+23;b(3)解:①当对称轴x=-2b a=2-k≤1时,k≥1,当x=1 时,y1 取得最小值2,即1+2(k-2)+k2-4k+5=2,解得k=0(舍去)或k=2;②当对称轴1<2-k<3 时,-1<k<1,当x=2-k 时,最小值恒为1,无解;③当对称轴x=2-k≥3时,k≤-1,当x=3 时,y1 取得最小值2,即9+6(k-2)+k2-4k+5=2,化简得k2+2k=0,解得k =0(舍去)或 k =- 2.综上所述, k 的值为 2 或-2.4. 已知二次函数 y =ax 2+bx +c (a ≠ 0的) 图象经过 A (1,1)、B (2,4) 和 C 三点.(1)用含 a 的代数式分别表示 b 、 c ;(2)设抛物线 y = ax 2+bx +c 的顶点坐标为 (p ,q ),用含 a 的代数式分 别表示 p 、 q ;3(3)当 a >0 时,求证: p <2, q ≤1.(1)解:∵二次函数 y =ax 2+bx +c 的图象经过 A (1,1)、B(2,4)两点, 1=a +b +c 4=4a +2b +c化解得 3= 3a + b , ∴b = 3- 3a , ∴1= a + 3-3a +c , ∴c =2a -2;(2)解:由(1)得 b =3-3a ,c =2a -2,4a (2a -2)-( 3-3a )2 -a 2+10a -9 ∴q =(3)证明: ∵a > 0,3b 3a- 3∴p =-2a=2a4a4a2a<0,3a-3 3 3 3 ∴p=2a =2-2a<2;-(a-3)2 ∵≤0,4a-a2+6a-9 4a-(a-3)2 ∴q=4a+4a=+1 ≤1.4a5. 已知抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),顶点为B,且抛物线不经过第三象限.(1)用含a、c 的代数式表示b;(2)判断点 B 所在象限,并说明理由;c (3)若直线y2=2x+m 经过点B,且与该抛物线交于另一点C(a,b+8),求当x≥1时,y1 的取值范围.解:(1)∵抛物线y1=ax2+bx+c(a≠0,a≠c)经过点A(1,0),把点A(1,0)代入即可得到a+b+c=0,即b=-a-c;(2)点 B 在第四象限.理由如下:∵抛物线y1=ax2+bx+c(a≠0,a≠c)过点A(1,0),∴抛物线y1与x 轴至少有1个交点,令ax2+bx+c=0,c ∴x1·x2=a,c ∴x1=1,x2=,∵a≠c,a∴抛物线与x 轴有两个不同的交点,又∵抛物线不经过第三象限,∴a>0,且顶点 B 在第四象限;(3)∵ 点C(a c,b+8)在抛物线上,令b+8=0,得b=-8,由(1)得a+c=-b,∴a+c=8,b4ac-b2c把B(-2a,4a)、C(a,b+8)两点代入直线解析式得4ac-b2b4a=2×(-2a)+mc b+8=2× +maa+c=8a= 2 a= 4b=-8 b=-8或(a≠c,舍去),c= 6 c= 4如解图所示,C在A的右侧,6. 在平面直角坐标系中,设二次函数y1=ax2+2ax+3(a≠ 0.)(1)若函数y1的图象经过点(-1,4),求函数y1 的表达式;(2)若一次函数y2=bx+a(b≠ 0的)图象经过y1图象的顶解得m=-6 m=-2当x≥1时,4ac-b2y1≥4a点,探究实数a, b 满足的关系式;(3)已知点P(1,m)和Q(x0,n)在函数y1 的图象上,若m>n,求x0 的取值范围.解:(1)∵二次函数y1=ax2+2ax+3 的图象经过点(-1,4),∴4=a-2a+3,∴a=-1,∴函数y1的表达式为y1=-x2-2x+3;(2)∵y1=ax2+2ax+3=a(x+1)2+3-a,∴y1 图象的顶点坐标为(-1,3-a).∵一次函数y2=bx+a(b≠ 0的)图象经过y1 图象的顶点,∴3-a=-b+a,∴实数a、b 满足的关系式为b=2a-3;2a(3)∵ 二次函数y1=ax2+2ax+3 的图象的对称轴为直线x=-2a=-1,∴当m=n 时,x0=- 3.当a>0时,如解图①所示,第6 题解图m>n,∴-3<x0<1;当a<0时,如解图②所示,∵m>0,∴x0<-3或x0>1.综上所述:-3<x0<1 (a>0)x0 的取值范围为.x0<-3或x0> 1 (a< 0)类型二函数类型不确定型1. 已知函数y=(n+1)x m+mx+1-n(m,n 为实数).(1)当m,n 取何值时,此函数是我们学过的哪一类函数?它一定与x轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设n>-1,那么:①当x<0时,y随x的增大而减小,请判断这个命题的真假并说明理由;②它一定经过哪个点?请说明理由.解:(1)①当m=1,n≠-2 时,函数y=(n+1)x m+mx+1-n(m,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y=0 时,(n+1)x m+mx+1-n=0,n-1∴x=n+2∴函数y=(n+1)x m+mx+1-n(m,n为实数)与x轴有交点;②当m=2,n≠-1 时,函数y=(n+1)x m+mx+1-n (m,n 为实数)是二次函数,当 y =0 时, (n +1)x m +mx + 1-n =0,即(n +1)x 2+2x +1-n =0,∴Δ=22-4(n +1)(1-n )=4n 2≥0, ∴函数y =(n +1)x m+mx +1-n (m ,n 为实数)与 x 轴有交点;③ 当 n =- 1,m ≠0 时,函数 y =(n +1)x m +mx +1-n 是一次函 n -1数,当 y =0 时, x = m ,∴函数y =(n +1)x m +mx +1-n (m ,n 为实数)与 x 轴有交点;(2)①假命题,若它是一个二次函数,则 m = 2,函数 y =(n +1)x 2+2x +1-n ,∵n >- 1,∴n + 1>0,抛物线开口向上,∴对称轴在 y 轴左侧,当 x <0时,y 可能随 x 的增大而增大,也 可能随 x 的增大而减小,故为假命题;②它一定过点 (1,4)和 (-1,0),理由如下:当 x =1 时, y =n +1+2+1-n =4.当 x =- 1 时, y = 0.∴它一定经过点 (1,4)和(-1,0).2. 设函数 y =kx 2+(2k +1)x +1(k 为实数).(1)写出其中的两个特殊函数,使它们的图象不全是抛物线,并且b对称轴: x =-2b a =-2(n +1)= 1 n +11<0,在同一坐标系中,用描点法画出它们的图象;(2) 根据所画图象,猜想出:对任意实数k,函数的图象都具有的特征,并给予证明;(3) 对于任意负实数k,当x<m时,y随x的增大而增大,试求m的取值范围.第 2 题图解:(1)令k=0,k=1,则这两个函数为y=x+1,y=x2+3x+1,描点法画函数图象如解图所示;(2)不论k取何值,函数y=kx2+(2k+1)x+1的图象必过定点(0,1),(-2,-1),且与x 轴至少有1个交点.证明:①∵当x=0 时,y=1;当x=-2 时,y=- 1.∴函数图象必过(0,1),(-2,-1);②∵当k=0时,函数为一次函数,∴y=x+1的图象是一条直线,且与x 轴有一个交点;∵当k≠0时,函数为二次函数,y=kx2+(2k+1)x+1 的图象是一条抛物线.Δ=(2k+1)2-4×k×1=4k2+4k+1-4k=4k2+1>0,∴抛物线y=kx2+(2k+1)x+ 1 与x 轴有两个交点.综上所述,函数y=kx2+(2k+1)x+1(k 为实数)与x 轴至少有一个交点;(3)∵k<0,2k+1 ∴函数y=kx2+(2k+1)x+ 1 的图象在对称轴直线x=-2k的左侧时,y 随x 的增大而增大.2k+1根据题意,得m≤-2k,2k+ 1 1而当k<0 时,-2k=-1-2k>-1,∴m≤-1.43. 已知函数y=kx2+(3-3k)x-4.(1)求证:无论k 为何值,函数图象与x 轴总有交点;(2)当k≠0时,A(n-3,n-7)、B(-n+1,n-7)是抛物线上的两个不同点.①求抛物线的表达式;②求 n 的值.4(1)证明:当 k =0时,函数为一次函数,即 y =3x -4,与 x 轴交于点(3,0);当 k ≠0时,函数为二次函数,44 ∵Δ=(3-3k )2-4k ×(-4)=(3k +3)2≥0,∴函数与 x 轴有一个或两个交点;综上可知,无论 k 为何值,函数图象与 x 轴总有交点;4 (2)解:①当 k ≠0时,函数 y =kx 2+(3-3k )x -4 为二次函数,∵A (n -3,n -7)、B (-n +1,n -7)是抛物线上的两个不同点,n - 3-n +1∴抛物线的对称轴为直线 x ==- 1, 4解得 k =145, ∴抛物线的表达式为 y =15x2+15x - 4;48 ②∵(n - 3,n -7)是抛物线 y =15x 2+ 15x -4 上的点,4 2 8∴n -7=15(n -3)2+15(n -3)-4,19解得 n 1= 4 , n 2=3.43-3k 2k -1,4. 已知y 关于x 的函数y=(k-1)x2-2kx+k+2的图象与x轴有交点.(1)求k 的取值范围;(2)若x1,x2是函数图象与x 轴两个交点的横坐标,且满足(k-1)x12+2kx2+k+2=4x1x2.①求k 的值;②当k≤x≤k+2 时,请结合函数图象确定y的最大值和最小值.解:(1)当k=1 时,函数为一次函数y=-2x+3,其图象与x轴有一个交点.当k≠1时,函数为二次函数,其图象与x 轴有一个或两个交点,令y=0 得(k-1)x2-2kx+k+2=0.Δ=(-2k)2-4(k-1)(k+2)≥,0解得k≤ 2即. k≤2且k≠ 1. 综上所述,k的取值范围是k≤ 2.(2)①∵ x1≠x2,由(1)知k<2且k≠1,函数图象与x轴有两个交点,∴由题意得(k-1)x12+(k+2)=2kx1①,将①代入(k-1)x12+2kx2+k+2=4x1x2中得:2k(x1+x2)=4x1x2.令(k-1)x2-2kx+k+2=0,2k k+2则x1+x2=,x1x2=,k- 1 k-1∴2k 2k·k-1=k+2 4·k-1解得k1=-1,k2=2(不合题意,舍去).∴所求k的值为-1;第 4 题解图13 ②如解图,∵k=-1,∴y=-2x2+2x+1=-2(x-2)2+2.且- 1 ≤x≤ 1.13 由图象知:当x=-1时,y 最小=-3;当x=2时,y 最大=2.∴y的最大值为23,最小值为- 3.5. 设函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,函数y1,y2的图象的顶点分别为B和 C.(1)画出当k=0,1 时,函数y1,y2在直角坐标系中的图象;(2)观察(1)中所画函数图象的顶点位置,发现它们均分布在某个函数的图象上,请写出这个函数的解析式,并说明理由;(3) 设A(x,y),求证:x 是与k 无关的常数,并求y 的最小值.第 5 题图(1)解:画出图象如解图所示;(2)解:∵当k=0时,函数y1=y2=x2的顶点为(0,0),当k=1 时,函数y1=(x-1)2+1的顶点为(1,1),函数y2=(x+1)2-1的顶点为(-1,-1),∴它们的顶点都在直线y=x 的图象上,因为它们的坐标均满足解析式y=x;(3)证明:令(x-k)2+k=(x+k)2-k,整理得4kx=2k,∵函数y1=(x-k)2+k 和y2=(x+k)2-k 的图象相交于点A,∴k≠0,1解得x=12,∴x 是与k 无关的常数;1 1 1 1此时y=(21+k)2-k=k2+41≥14,即y的最小值为41.。

二次函数专题——含参二次函数

二次函数专题——含参二次函数

含参的二次函数二次函数在初中的时候就比较重要,那么在高中阶段二次函数的考点更加重要,难度也会加大。

高中阶段比较喜欢考含有参数的二次函数,参数就会让函数形成一种动态,随着参数不同,函数是不一样的,这就使得本来简单的二次函数变得复杂起来。

例1. 求2()2f x x ax =-在[2,4]上的最大值和最小值。

解析:这道题因为参数的存在使得函数的本身是动的,在动的情况下考虑这个函数最大值和最小值的问题,这就涉及到高中比较爱考的一类问题,动轴定区间问题。

这道题中对称轴正好是x a =,随着a 不同,这个对称轴在变化,但是在给定区间上问最大值和最小值,那么就会有下面几种情况,在[2,4]这个区间上,有可能(1)这个对称轴不在这个区间里面这个时候的最大值最小值;也有可能(2)这个对称轴就在区间里面,这个时候的最值,还可能(3)对称轴在区间右侧这几个图针对这个函数并不严谨,上面的是一般函数的示意图,这道题中的函数一定是过原点的。

可以感受,随着a 的不同,最大值和最小值是不一样的,所以这种含参的动态的问题往往需要我们做的一个工作就是分类讨论。

那么函数在什么时候取到最大值呢,比如说(1),就会在4的地方取得最大值,(2)在4的地方取得最大值,(3)就会在2的地方取得最大值。

那么在整个函数的区间上,什么时候能取得最大值呢,我们就要看在这个区间上,哪个数离对称轴最远。

那么就有两种情况了,有的时候是2离得比较远,有的时候是4离得比较远,是怎么分界的呢?这个分界线就应该在2和4中间的位置上是3,当对称轴在3x =这条线左边的时候,对称轴离2就比较近,离4就比较远,对称轴在右边的时候,离2就比较近,离4就比较远。

因此这个函数的最大值,经过分类讨论之后,就会得到一个分段函数:max (4)=168(3)()(2)44(3)f a a f x f a a -≤⎧=⎨=->⎩也就是如果这个对称轴在3的左侧,也就是3a ≤的时候,离4远,在4处取得最大值,如果在右侧的话,也就是3a >的时候,离2远,在2处取得最大值。

含参数二次函数的最值问题(初中数学中考专题)

含参数二次函数的最值问题(初中数学中考专题)
解得 综上所述m=1,n=﹣1或m=﹣1,n=﹣1.
变式练习 (1)、当 - 2 x 1时,二次函数 y x2 4ax 3a的最小值等于 -1,求a的值.
(2)、当﹣1≤x≤1时,函数y=﹣x2﹣ax+b+1(a>0)的最小值是﹣4, 最大值是0,求a、b的值.
(3)、当﹣2≤x≤1时,二次函数y=﹣(x﹣m)2+m2+1有最大值4, 求实数m的值.
变式练习 (1)、当a﹣1≤x≤a时,函数y=x2﹣2x+1的最小值为1,求a的值.
(2)、已知二次函数y=﹣x2+6x﹣5.当t≤x≤t+3时,函数的最 大值为m,最小值为n,若m﹣n=3,求t的值.
变式练习 (3)、设a,b是任意两个不等实数,我们规定:满足不等式a≤x≤b的实数 x的所有取值的全体叫做闭区间,表示为[a,b].对于任何一个二次函数, 它在给定的闭区间上都有最小值.求函数y=x2﹣4x﹣4在区间[t﹣2,t﹣1] (t为任意实数)上的最小值f(x)的解析式.
5 55
是闭区间[a,b]上的“闭函数”,求a+b的值.
变式练习
(5)、已知关于x的二次函数y=x2+bx+c(实数b,c为常数).若b2﹣c= 0,当b﹣3≤x≤b时,二次函数的最小值为21,求b的值.
初中数学中考专题讲解 二次函数含参数的最值问题
引例 引例.对于二次函数 (1)求它的最小值和最大值. (2)当1≤x≤4时,求它的最小值和最大值. (3)当-2≤x≤1时,求它的最小值和最大值. (4)二次函数的最值与哪些因素有关?对于给定的范围,最值可能出 现在哪些位置?
二次函数三要素:开口方向,对称轴,自变量取值范围,画 草图,数形结合。

数学《二次函数的含参问题》专题训练含答案

数学《二次函数的含参问题》专题训练含答案

2020-2021学年中考数学培优训练讲义(八)《二次函数的含参问题》专题训练班级 姓名 座号 成绩1. 已知:抛物线)(0142≠+-=k k kx y ,无论k 取何值,都过某定点,则定点坐标为 2. 已知:抛物线y =-x 2+bx +4经过(-2,n )和(4,n )两点,则n 的值为3. 已知点A (-4,m ),B (1,6),C (2,m )在抛物线y =x 2+bx +c 上,则该抛物线的解析式为______________.4. 已知:二次函数322+-=x x y 的图像,当m x ≤≤0时,函数有最大值3,最小值2,则m 的取值范围 是5. 已知:抛物线122+-=mx x y ,当1≤x 时,y 的值随x 值的增大而减小,则m 的取值范围是6. 已知:抛物线32++=bx x y 的对称轴为直线x=1,若关于x 的一元二次方程032=-++t bx x (t 为实数)在41<<-x 的范围内有实数根,则t 的的取值范围是7.如图抛物线y =(x ﹣1)2+k 与x 轴相交于A ,B 两点(点A 在B 的左侧),与y 轴相交于点C (0,﹣3).P 为抛物线上一点,横坐标为m ,且m >0.(1)求此抛物线的解析式;(2)当点P 位于x 轴下方时,求△ABP 面积的最大值;(3)设此抛物线在点C 与点P 之间部分(含点C 和点P )最高点与最低点的纵坐标之差为h . ①求h 关于m 的函数解析式,并写出自变量m 的取值范围;②当h =9时,直接写出△BCP 的面积.8.在平面直角坐标系xOy 中,抛物线y =ax 2+bx -1a与y 轴交于点A ,将点A 向右平移2个单位长度,得到点B ,点B 在抛物线上.(1)求点B 的坐标(用含a 的式子表示);(2)求抛物线的对称轴;(3)已知点P (12,-1a ),Q (2,2),若抛物线与线段PQ 恰有一个公共点,结合函数图象,求a 的取值范围.作业思考:1. 如图,抛物线l :y =(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线l 在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数f 的图象.(1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数f 的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数f 的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标;(2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.7.(2019•吉林)如图,抛物线y=(x﹣1)2+k与x轴相交于A,B两点(点A在点B的左侧),与y轴相交于点C(0,﹣3).P为抛物线上一点,横坐标为m,且m>0.(1)求此抛物线的解析式;(2)当点P位于x轴下方时,求△ABP面积的最大值;(3)设此抛物线在点C与点P之间部分(含点C和点P)最高点与最低点的纵坐标之差为h.①求h关于m的函数解析式,并写出自变量m的取值范围;②当h=9时,直接写出△BCP的面积.【分析】(1)将点C(0,﹣3)代入y=(x﹣1)2+k即可;(2)易求A(﹣1,0),B(3,0),抛物线顶点为(1,﹣4),当P位于抛物线顶点时,△ABP的面积有最大值;(3))①当0<m≤1时,h=﹣3﹣(m2﹣2m﹣3)=﹣m2+2m;当1<m≤2时,h=﹣3﹣(﹣4)=1;当m>2时,h=m2﹣2m﹣3﹣(﹣4)=m2﹣2m+1;②当h=9时若﹣m2+2m=9,此时△<0,m无解;若m2﹣2m+1=9,则m=4,则P(4,5),△BCP的面积=8×4﹣5×1﹣(4+1)×3=6;【解答】解:(1)将点C(0,﹣3)代入y=(x﹣1)2+k,得k=﹣4,∴y=(x﹣1)2﹣4=x2﹣2x﹣3;(2)令y=0,x=﹣1或x=3,∴A(﹣1,0),B(3,0),∴AB=4;抛物线顶点为(1,﹣4),当P位于抛物线顶点时,△ABP的面积有最大值,S==8;(3)①当0<m <1时,h =﹣3﹣(m 2﹣2m ﹣3)=﹣m 2+2m ;当1≤m ≤2时,h =﹣3﹣(﹣4)=1;当m >2时,h =m 2﹣2m ﹣3﹣(﹣4)=m 2﹣2m +1;②当h =9时若﹣m 2+2m =9,此时△<0,m 无解;若m 2﹣2m +1=9,则m =4,∴P (4,5),∵B (3,0),C (0,﹣3),∴△BCP 的面积=8×4﹣5×1﹣(4+1)×3=6;【点评】本题考查二次函数的图象及性质,是二次函数综合题;熟练掌握二次函数的性质,数形结合,分类讨论是解题的关键.8.解:(1)在y =ax 2+bx -1a 中,当x =0时,y =-1a. ∴A (0,-1a). ∵点A 向右平移2个单位长度得到点B ,∴B (2,-1a); (2)∵点B (2,-1a)在抛物线上, ∴-1a =a ×22+b ×2-1a. ∴b =-2a .∴抛物线的对称轴为直线x =-b 2a =--2a 2a=1; (3)由(2)知b =-2a .∴y =ax 2+bx -1a =ax 2-2ax -1a. 若a >0,在y =ax 2-2ax -1a 中,当x =12时,y =-34a -1a. ∵-34a -1a<-1a , ∴点P (12,-1a )在抛物线的上方. 当x =2时,y =-1a. ∵-1a<2,∴点Q (2,2)在抛物线的上方.∴抛物线与线段PQ 没有公共点,舍去.若a <0,∵-34a -1a >-1a ,∴点P (12,-1a )在抛物线的下方. ∴当-1a ≤2,即a ≤-12时,Q (2,2)在抛物线上方,此时抛物线与线段PQ 恰好有一个公共点. 综上,a 的取值范围是a ≤-12.数学思考:1.(2020•河西区二模)如图,抛物线l :y =(x ﹣h )2﹣2与x 轴交于A ,B 两点(点A 在点B 的左侧),将抛物线l 在x 轴下方部分沿轴翻折,x 轴上方的图象保持不变,就组成了函数f 的图象.(1)若点A 的坐标为(1,0).①求抛物线l 的表达式,并直接写出当x 为何值时,函数f 的值y 随x 的增大而增大;②如图2,若过A 点的直线交函数f 的图象于另外两点P ,Q ,且S △ABQ =2S △ABP ,求点P 的坐标;(2)当2<x <3时,若函数f 的值随x 的增大而增大,直接写出h 的取值范围.【分析】(1)①利用待定系数法求抛物线的解析式,由对称性求点B 的坐标,根据图象写出函数f 的值y 随x 的增大而增大(即呈上升趋势)的x 的取值;②如图2,作辅助线,构建对称点F 和直角角三角形AQE ,根据S △ABQ =2S △ABP ,得QE =2PD ,证明△PAD ∽△QAE ,则,得AE =2AD ,设AD =a ,根据QE =2FD 列方程可求得a 的值,并计算P 的坐标;(2)先令y =0求抛物线与x 轴的两个交点坐标,根据图象中呈上升趋势的部分,有两部分:分别讨论,并列不等式或不等式组可得h 的取值.【解答】解:(1)①把A (1,0)代入抛物线y =(x ﹣h )2﹣2中得:(x﹣h)2﹣2=0,解得:h=3或h=﹣1,∵点A在点B的左侧,∴h>0,∴h=3,∴抛物线l的表达式为:y=(x﹣3)2﹣2,∴抛物线的对称轴是:直线x=3,由对称性得:B(5,0),由图象可知:当1<x<3或x>5时,函数f的值y随x的增大而增大;②如图2,作PD⊥x轴于点D,延长PD交抛物线l于点F,作QE⊥x轴于E,则PD∥QE,由对称性得:DF=PD,∵S△ABQ=2S△ABP,∴AB•QE=2×AB•PD,∴QE=2PD,∵PD∥QE,∴△PAD∽△QAE,∴,∴AE=2AD,设AD=a,则OD=1+a,OE=1+2a,P(1+a,﹣[(1+a﹣3)2﹣2]),∵点F、Q在抛物线l上,∴PD=DF=﹣[(1+a﹣3)2﹣2],QE=(1+2a﹣3)2﹣2,∴(1+2a﹣3)2﹣2=﹣2[(1+a﹣3)2﹣2],解得:a=或a=0(舍),∴P(,);(2)当y=0时,(x﹣h)2﹣2=0,解得:x=h+2或h﹣2,∵点A在点B的左侧,∴A(h﹣2,0),B(h+2,0),如图3,作抛物线的对称轴交抛物线于点C,分两种情况:①由图象可知:图象f在AC段时,函数f的值随x的增大而增大,则,∴3≤h≤4,②由图象可知:图象f点B的右侧时,函数f的值随x的增大而增大,即:h+2≤2,h≤0,综上所述,当3≤h≤4或h≤0时,函数f的值随x的增大而增大.【点评】本题是二次函数的综合题,考查了利用待定系数法求二次函数的解析式、二次函数的增减性问题、三角形相似的性质和判定,与方程相结合,找等量关系,第二问还运用了数形结合的思想解决问题.。

初中含参二次函数的最值问题

初中含参二次函数的最值问题

初中含参二次函数的最值问题二次函数在数学中是一种比较常见的函数形式,也是我们初中阶段需要掌握的重要知识点之一。

其中,最值问题是二次函数题目中比较典型和常见的一类问题。

在这篇文章中,我将通过一些例题和解题思路的介绍,来帮助大家更好地理解含参二次函数的最值问题。

1. 带参数二次函数的最值问题下面是一个含参数的二次函数的例子:$y=ax^2+bx+c(a>0)$ 。

我们来考虑这个函数的最值问题。

(1)当$a>0$时,这个二次函数的值域为$[q,\infty)$。

其中$q$为$a,b,c$的函数,满足$a>0$时,有如下的公式:$$q=f(\frac{-b}{2a})=\frac{4ac-b^2}{4a}$$那么,这个二次函数的最小值就是$q$,也就是当$x=\frac{-b}{2a}$时,函数取得最小值。

(2)当$a<0$时,这个二次函数的值域为$(-\infty,q]$。

其最大值也是$q$,即当$x=\frac{-b}{2a}$时,函数取得最大值。

可以通过公式来求解含参二次函数的最值问题。

具体来说,找到函数的最小值或最大值所在的$x$坐标,然后代入函数中求出对应的函数值即可。

下面让我们通过一个例题来进一步了解含参二次函数的最值问题。

2. 例题分析【例题】已知函数$y=ax^2+bx+c(a>0)$,并满足:$|x-2|+|x-4|+|x-6|=k(k>0)$求函数$y$的最小值和最大值并确定此时$x$的值。

【解题思路】该题要求我们求解带有约束条件的含参二次函数的最值问题。

实际上,约束条件中的绝对值形式会让我们比较难受,不过我们可以将其转化为分段描述,从而更好地理解这个问题。

具体来说,考虑以下的情况:(1)当$x\leq 2$时,有$|x-2|=2-x$。

(2)当$2<x\leq4$时,有$|x-2|=x-2$、$|x-4|=4-x$。

(3)当$4<x\leq 6$时,有$|x-4|=x-4$、$|x-6|=6-x$。

含参数的二次函数参数取值范围-答案

含参数的二次函数参数取值范围-答案

参考答案与试题解析一.选择题(共 4 小题)1.二次函数 y=x2+(a﹣2)x+3 的图象与一次函数 y=x(1≤x≤2)的图象有且仅有一个交点,则实数 a 的取值范围是()A.a=3±2 B.﹣1≤a<2C.a=3 或﹣≤a<2 D.a=3﹣2 或﹣1≤a<﹣【解答】解:由题意可知:方程 x2+(a﹣2)x+3=x 在 1≤x≤2 上只有一个解,即 x2+(a﹣3)x+3=0 在 1≤x≤2 上只有一个解,当△=0 时,即(a﹣3)2﹣12=0a=3±2当 a=3+2 时,此时 x=﹣,不满足题意,当 a=3﹣2 时,此时 x=,满足题意,当△>0 时,令 y=x2+(a﹣3)x+3,令 x=1,y=a+1,令 x=2,y=2a+1(a+1)(2a+1)≤0解得:﹣1≤a≤,当 a=﹣1 时,此时 x=1 或 3,满足题意;当 a=﹣时,此时 x=2 或 x=,不满足题意,综上所述,a=3﹣2 或﹣1≤a<,故选:D.2.对于题目“一段抛物线 L:y=﹣x(x﹣3)+c(0≤x≤3)与直线 l:y=x+2 有唯一公共点,若 c 为整数,确定所有 c 的值,”甲的结果是 c=1,乙的结果是 c=3 或 4,则()A.甲的结果正确第1页(共27页)B.乙的结果正确C.甲、乙的结果合在一起才正确D.甲、乙的结果合在一起也不正确【解答】解:∵抛物线 L:y=﹣x(x﹣3)+c(0≤x≤3)与直线 l:y=x+2 有唯一公共点∴①如图 1,抛物线与直线相切,联立解析式得 x2﹣2x+2﹣c=0△=(﹣2)2﹣4(2﹣c)=0解得 c=1②如图 2,抛物线与直线不相切,但在 0≤x≤3 上只有一个交点此时两个临界值分别为(0,2)和(3,5)在抛物线上∴c 的最小值=2,但取不到,c 的最大值=5,能取到∴2<c≤5又∵c 为整数∴c=3,4,5综上,c=1,3,4,5故选:D.3.在平面直角坐标系 xOy 中,已知点 M,N 的坐标分别为(﹣1,2),(2,1),若抛物线 y第2页(共27页)=ax2﹣x+2(a≠0)与线段 MN 有两个不同的交点,则 a 的取值范围是()A.a≤﹣1 或≤a<B.≤a<C.a≤或 a>D.a≤﹣1 或 a≥【解答】解:∵抛物线的解析式为 y=ax2﹣x+2.观察图象可知当 a<0 时,x=﹣1 时,y≤2 时,且﹣>﹣1,满足条件,可得 a≤﹣1;当 a>0 时,x=2 时,y≥1,且抛物线与直线 MN 有交点,且﹣≤2 满足条件,∴a≥,∵直线 MN 的解析式为 y=﹣x+ ,由,消去 y 得到,3ax2﹣2x+1=0,∵△>0,∴a<,∴≤a<满足条件,综上所述,满足条件的 a 的值为 a≤﹣1 或≤a<,故选:A.4.如图,已知点 A(0,2),B(2,2),C(﹣1,0),抛物线 y=a(x﹣h)2+k 过点 C,顶点 M 位于第一象限且在线段 AB 的垂直平分线上.若抛物线与线段 AB 无公共点,则 k 的取值范围是()第3页(共27页)A.0<k<2 B.0<k<2 或 k>C.k>D.0<k<2 或 k>【解答】解:∵抛物线 y=a(x﹣h)2+k 的顶点 M 位于第一象限且在线段 AB 的垂直平分线上,且点 A(0,2),B(2,2),∴h=1,k>0.抛物线与线段 AB 无公共点分两种情况:当点 M 在线段 AB 下方时,∵点 M 的坐标为(1,k),∴0<k<2;当点 M 在线段 AB 上方时,有,解得:k>.综上所述:k 的取值范围为 0<k<2 或 k>.故选:B.二.填空题(共 3 小题)5.如图,以扇形 OAB 的顶点 O 为原点,半径 OB 所在的直线为 x 轴,建立平面直角坐标系,点 B 的坐标为(2,0),若抛物线 y=x2+k 与扇形 OAB 的边界总有两个公共点,则实数k 的取值范围是﹣2<k<.第4页(共27页)【解答】解:由图可知,∠AOB=45°,∴直线 OA 的解析式为 y=x,联立消掉 y 得,x2﹣2x+2k=0,△=b2﹣4ac=(﹣2)2﹣4×1×2k=0,即 k=时,抛物线与 OA 有一个交点,此交点的横坐标为 1,∵点 B 的坐标为(2,0),∴OA=2,∴点 A 的坐标为(,),∴交点在线段 AO 上;当抛物线经过点 B(2,0)时,×4+k=0,解得 k=﹣2,∴要使抛物线 y=x2+k 与扇形 OAB 的边界总有两个公共点,实数 k 的取值范围是﹣2<k<.故答案为:﹣2<k<.6.已知抛物线 C1:y=x2﹣2x﹣8 及抛物线 C2:y=x2﹣(4a+3)x+4a2+6a(a 为常数),当﹣2<x<2a+3 时,C1,C2 图象都在 x 轴下方,则 a 的取值范围为﹣<a≤﹣1 .【解答】解:当 y=0 时,有 x2﹣2x﹣8=0,解得:x1=﹣2,x2=4;当 y=0 时,有 x2﹣(4a+3)x+4a2+6a=0,第5页(共27页)解得:x3=2a,x4=2a+3.∵两抛物线均开口向上,且当﹣2<x<2a+3 时,C 1,C2 图象都在 x 轴下方,∴,解得:﹣<a≤﹣1.故答案为:﹣<a≤﹣1.7.在直角坐标系中,点 A 的坐标为(3,0),若抛物线 y=x2﹣2x+n﹣1 与线段 OA 有且只有一个公共点,则 n 的取值范围为﹣2≤n<1 或 n=2 .【解答】解:∵点 A 的坐标为(3,0),抛物线y=x2﹣2x+n﹣1=(x﹣1)2+n﹣2 与线段OA 有且只有一个公共点,∴n﹣2=0 或,解得,﹣2≤n<1 或 n=2,故答案为:﹣2≤n<1 或 n=2.三.解答题(共 11 小题)8.已知抛物线 y=ax2﹣2anx+an2+n+3 的顶点 P 在一条定直线 l 上.(1)直接写出直线 l 的解析式;(2)对于任意非零实数 a,存在确定的 n 的值,使抛物线与 x 轴有唯一的公共点,求此时 n 的值;(3)当点 P 在 x 轴上时,抛物线与直线 l 的另一个交点 Q,过点 Q 作 x 轴的平行线,交抛物线于点 A,过点 Q 作 y 轴的平行线,交 x 轴于点 B,求的值或取值范围.【解答】解:(1)∵抛物线 y=ax2﹣2anx+an2+n+3=a(x﹣n)2+(n+3),∴抛物线 P(n,n+3),∵顶点 P 在一条定直线 l 上,令 n=x,n+3=y,∴y=x+3,即:直线 l 的解析式为 y=x+3,(2)抛物线与 x 轴有唯一的公共点,第6页(共27页)令 y=0,即:ax2﹣2anx+an2+n+3=0,∴△=(﹣2an)2﹣4a×(an2+n+3)=﹣4a(n+3)=0,∵任意非零实数 a,∴n+3=0,∴n=﹣3,∴抛物线与 x 轴有唯一的公共点,此时 n 的值为﹣3,(3)由(1)知,P(n,n+3),∵点 P 在 x 轴上,∴n+3=0,∴n=﹣3,∴抛物线 y=a(x+3)2,①∵直线 l 的解析式为 y=x+3②,联立①②得 Q(﹣3+ ,),∵过点 Q 作 y 轴的平行线,交 x 轴于点 B,∴BQ=| |,∵过点 Q 作 x 轴的平行线,交抛物线于点 A,∴a(x+3)2=,∴x=﹣3±,∴A(﹣3﹣,),∵Q(﹣3+ ,),∴AQ=|﹣3+ ﹣(﹣3﹣)|=| |∴=2.9.如图 1,B(2m,0),C(3m,0)是平面直角坐标系中两点,其中 m 为常数,且 m>0,E(0,n)为 y 轴上一动点,以 BC 为边在 x 轴上方作矩形 ABCD,使 AB=2BC,画射线OA,把△ADC 绕点 C 逆时针旋转 90°得△A′D′C′,连接 ED′,抛物线 y=ax2+bx+n (a≠0)过 E,A′两点.第7页(共27页)(1)填空:∠AOB=45 °,用 m 表示点 A′的坐标:A′(m ,﹣m );(2)当抛物线的顶点为 A′,抛物线与线段 AB 交于点 P,且=时,△D′OE 与△ABC 是否相似?说明理由;(3)若 E 与原点 O 重合,抛物线与射线 OA 的另一个交点为点 M,过 M 作 MN⊥y 轴,垂足为 N:①求 a,b,m 满足的关系式;②当 m 为定值,抛物线与四边形 ABCD 有公共点,线段 MN 的最大值为 10,请你探究 a 的取值范围.【解答】解:(1)∵B(2m,0),C(3m,0),∴OB=2m,OC=3m,即 BC=m,∵AB=2BC,∴AB=2m=0B,∵∠ABO=90°,∴△ABO 为等腰直角三角形,∴∠AOB=45°,由旋转的性质得:OD′=D′A′=m,即 A′(m,﹣m);故答案为:45;m,﹣m;(2)△D′OE∽△ABC,理由如下:由已知得:A(2m,2m),B(2m,0),∵=,∴P(2m,m),第8页(共27页)∵A′为抛物线的顶点,∴设抛物线解析式为 y=a(x﹣m)2﹣m,∵抛物线过点 E(0,n),∴n=a(0﹣m)2﹣m,即 m=2n,∴OE:OD′=BC:AB=1:2,∵∠EOD′=∠ABC=90°,∴△D′OE∽△ABC;(3)①当点 E 与点 O 重合时,E(0,0),∵抛物线 y=ax2+bx+n 过点 E,A′,∴,整理得:am+b=﹣1,即 b=﹣1﹣am;②∵抛物线与四边形 ABCD 有公共点,∴抛物线过点 C 时的开口最大,过点 A 时的开口最小,若抛物线过点 C(3m,0),此时MN 的最大值为 10,∴a(3m)2﹣(1+am)•3m=0,整理得:am=,即抛物线解析式为 y=x2﹣x,由 A(2m,2m),可得直线 OA 解析式为 y=x,联立抛物线与直线 OA 解析式得:,解得:x=5m,y=5m,即 M(5m,5m),令 5m=10,即 m=2,当 m=2 时,a=;若抛物线过点 A(2m,2m),则a(2m)2﹣(1+am)•2m=2m,解得:am=2,∵m=2,∴a=1,则抛物线与四边形 ABCD 有公共点时 a 的范围为≤a≤1.10.如图,已知抛物线与 x 轴交于点 A(﹣2,0),B(4,0),与y 轴交于点 C(0,8).第9页(共27页)(1)求抛物线的解析式及其顶点 D 的坐标;(2)设直线 CD 交 x 轴于点 E.在线段 OB 的垂直平分线上是否存在点 P,使得点 P 到直线 CD 的距离等于点 P 到原点 O 的距离?如果存在,求出点 P 的坐标;如果不存在,请说明理由;(3)过点 B 作 x 轴的垂线,交直线 CD 于点 F,将抛物线沿其对称轴平移,使抛物线与线段 EF 总有公共点.试探究:抛物线向上最多可平移多少个单位长度?向下最多可平移多少个单位长度?【解答】解:(1)设抛物线解析式为 y=a(x+2)(x﹣4).把 C(0,8)代入,得 a=﹣1.∴y=﹣x2+2x+8=﹣(x﹣1)2+9,顶点 D(1,9);(2 分)(2)假设满足条件的点 P 存在.依题意设 P(2,t).由 C(0,8),D(1,9)求得直线 CD 的解析式为 y=x+8,它与 x 轴的夹角为 45°.设 OB 的中垂线交 CD 于 H,则 H(2,10).则 PH=|10﹣t|,点 P 到 CD 的距离为.又.(4 分)∴.平方并整理得:t2+20t﹣92=0,解之得 t=﹣10±8 .∴存在满足条件的点 P,P 的坐标为(2,﹣10±8 ).(6 分)(3)由上求得 E(﹣8,0),F(4,12).①若抛物线向上平移,可设解析式为 y=﹣x2+2x+8+m(m>0).第10页(共27页)当 x=﹣8 时,y=﹣72+m.当 x=4 时,y=m.∴﹣72+m≤0 或 m≤12.∴0<m≤72.(8 分)②若抛物线向下平移,可设解析式为 y=﹣x2+2x+8﹣m(m>0).由,有﹣x2+x﹣m=0.∴△=1﹣4m≥0,∴m≤.∴向上最多可平移 72 个单位长,向下最多可平移个单位长.(10 分)11.如图,在直角坐标系中,抛物线 y=x2+bx+c 的顶点 D 在直线 y=x 上运动.抛物线与 y 轴相交于 C 点.(1)当 b=﹣4 时,求 C 点坐标;(2)抛物线与 x 轴相交于 A、B 两点,当△ABD 为直角三角形时,求 b,c 的值;(3)线段 MN 的端点 M(﹣2,4),N(﹣1,1),若抛物线与线段 MN 有公共点,求 b 的取值范围.第11页(共27页)【解答】解:∵抛物线 y=x2+bx+c 的顶点 D 在直线 y=x 上运动,∴设抛物线 y=x2+bx+c 的顶点 D 的坐标是(﹣,﹣).(1)如图 1,∵点 D 在抛物线上,∴﹣=(﹣)2+b•(﹣)+c,即 c=﹣+ .又∵b=﹣4,c=﹣+ =6,即 c=6.令 x=0,则 y=c=6,即 C(0,6);(2)如图 2,连接 AD、BD.∵点 A、B 是抛物线 y=x2+bx+c 与 x 轴的两个交点,点 D 是顶点,∴AD=BD,∴在直角△ABD 中,∠ADB=90°.设 A(x1,0)、B(x2,0),则x1+x2=﹣b,x1x2=c.∴AB=|x1﹣x2|==,则,解得,即 b,c 的值分别是 2、0;(3)如图 3,当点 M(﹣1,1)在抛物线 y=x2+bx+c 上时,b 取最小值,所以,1=1﹣b+c,即 b=c,则 b=﹣+ ,解得 b=6;当点 N(﹣2,4)在抛物线 y=x2+bx+c 上时,b 取最大值,所以 4=4﹣2b+c,即 2b=c,则 2b=﹣+ ,解得 b=10,所以 b 的取值范围是 6≤b≤10.第12页(共27页)12.已知抛物线 y=a(x+1)2+c(a>0)与 x 轴交于 A、B 两点(点 A 在点 B 的左侧),与y 轴交于点 C,其顶点为 M,已知直线 MC 的函数表达式为 y=kx﹣3,与x 轴的交点为 N,且 cos∠BCO=.(1)求抛物线的解析式;(2)在此抛物线上是否存在异于点 C 的点 P,使以 N、P、C 为顶点的三角形是以 NC 为一条直角边的直角三角形?若存在,求出点 P 的坐标;若不存在,请说明理由.(3)如图 2,过点 A 作 x 轴的垂线,交直线 MC 于点 Q,若将抛物线沿其对称轴上下平移,使抛物线与线段 NQ 总有公共点,则抛物线向上最多可平移多少单位长度?向下最多可平移多少个单位长度?【解答】解:(1)由 y=kx﹣3,可知 OC=3,在 Rt△OBC 中,∵cos∠BCO =,∴BC=,OB==1,将 B(1,0))、C(0,﹣3)代入抛物线解析式,得,第13页(共27页)解得,∴抛物线解析式为 y=(x+1)2﹣4;(2)存在.由抛物线解析式得 M(﹣1,﹣4),设直线 MN 解析式为 y=kx+b,则,解得,∴y=x﹣3,N(3,0),△OCN 为等腰直角三角形.过 N 点作 CN 的垂线交 y 轴于(0,3),垂线解析式为 y=﹣x+3.联立,得 P 点坐标为(,)或(,),连接 AC,则 A(﹣3,0)点满足题意,∴P 点坐标为(,)或(,)或(﹣3,0);(3)设平移后抛物线解析式为 y=(x+1)2+m,①当抛物线与直线 MN 只有一个交点时,联立,得 x2+x+m+4=0,当方程组有一个解时,△=0,即 1﹣4(m+4)=0,解得 m=﹣,∴向上平移 4﹣=个单位,②当抛物线经过 N(3,0)时,(3+1)2+m=0,解得 m=﹣16,当抛物线经过 Q(﹣3,﹣6)时,(﹣3+1)2+m=﹣6,解得 m=﹣10,∴向下平移 16﹣4=12 个单位.即抛物线向上最多可平移个单位长度,向下最多可平移 12 个单位长度.13.如图,平面直角坐标系中,y=ax2﹣2amx+am2+2m+2 的顶点为 P,且 OP2 最小.(1)求 m 的值;(2)直线 l:y=2x+2 与 x 轴交于点 A、与 y 轴交于点 B.第14页(共27页)①抛物线与直线 l 交于两点,当这两点之间的距离为时,求 a 的值;②若抛物线与线段 AB 有两个公共点,请直接写出 a 的值或取值范围是a≥或 a≤﹣10 .【解答】解:(1)∵y=ax2﹣2amx+am2+2m+2=a(x﹣m)2+2m+2,∴P(m,2m+2),∴OP2=m2+(2m+2)2=5m2+8m+4=5(m+ )2+ ,∵OP2 最小.∴m=﹣;(2)设抛物线与直线 l 交于两点 C(x 1,y1),D(x2,y2),=2x1+2,y2=2x2+2,∴y∴y1﹣y2=2(x1﹣x2)由(1)知,m=﹣,∴y=ax2﹣2amx+am2+2m+2=ax2+ ax+ a+ ①;①∵直线 l:y=2x+2②,联立①②得,ax2+ ax+ a+ =2x+2,化简得,ax2+ x+ =0,∴x1+x2=﹣,x1x2=,∴CD2=(x1﹣x2)2+(y1﹣y2)2=5(x1﹣x2)2=5[(x1+x2)2﹣4x1x2]=5[ ﹣4×],第15页(共27页)∵两点之间的距离为,∴5[ ﹣4×]=,∴4a2=25,∴a=±;②如图,∵直线 l:y=2x+2 与 x 轴交于点 A、与 y 轴交于点 B,∴A(﹣1,0),B(0,2),y=ax2+ ax+ a+ =a(x+ )2+ ,∴抛物线的顶点 P 坐标(﹣,),把 x=﹣代入 y=2x+2 得,y=,∴点 P 在直线 l:y=2x+2 上,当 a>0 时,把 B(0,2)代入 y=a(x+ )2+ 得,a×+ =2,∴a=,∵抛物线与线段 AB 有两个公共点,且|a|越小抛物线开口就越大,根据图象得,a≥,当 a<0 时,把 A(﹣1,0)代入 y=a(x+ )2+ 得,a×+ =0,∴a=﹣10,∵抛物线与线段 AB 有两个公共点,且|a|越小抛物线开口就越大,根据图象得,a≤﹣10,即:抛物线与线段 AB 有两个公共点,a 的取值范围为 a≥或 a≤﹣10,故答案为:a≥或 a≤﹣10.第16页(共27页)14.如图,在平面直角坐标系中,点P 从原点O 出发,沿x 轴向右以每秒 1 个单位长的速度运动t(t>0)秒,抛物线y=x2+bx+c 经过点O 和点P.已知矩形ABCD 的三个顶点为A(1,0),B(1,﹣5),D(4,0).(1)求 c,b(可用含t 的代数式表示);(2)当t>1 时,抛物线与线段AB 交于点M.在点P 的运动过程中,你认为∠AMP 的大小是否会变化?若变化,说明理由;若不变,求出∠AMP 的值;(3)在矩形 ABCD 的内部(不含边界),把横、纵坐标都是整数的点称为“好点”.若抛物线将这些“好点”分成数量相等的两部分,请直接写出t 的取值范围.【解答】解:(1)把 x=0,y=0 代入 y=x2+bx+c,得 c=0,再把 x=t,y=0 代入 y=x2+bx,得 t2+bt=0,∵t>0,∴b=﹣t;(2)不变.第17页(共27页)∵抛物线的解析式为:y=x2﹣tx,且 M 的横坐标为 1,∴当 x=1 时,y=1﹣t,∴M(1,1﹣t),∴AM=|1﹣t|=t﹣1,∵OP=t,∴AP=t﹣1,∴AM=AP,∵∠PAM=90°,∴∠AMP=45°;(3)<t<.①左边 4 个好点在抛物线上方,右边 4 个好点在抛物线下方:无解;②左边 3 个好点在抛物线上方,右边 3 个好点在抛物线下方:则有﹣4<y2<﹣3,﹣2<y3<﹣1 即﹣4<4﹣2t<﹣3,﹣2<9﹣3t<﹣1,<t<4 且<t<,解得<t<;③左边 2 个好点在抛物线上方,右边 2 个好点在抛物线下方:无解;④左边 1 个好点在抛物线上方,右边 1 个好点在抛物线下方:无解;⑤左边 0 个好点在抛物线上方,右边 0 个好点在抛物线下方:无解;综上所述,t 的取值范围是:<t<.15.在平面直角坐标系 xOy 中,直线 y=4x+4 与 x 轴,y 轴分别交于点 A,B,抛物线 y=ax2+bx ﹣3a 经过点 A,将点 B 向右平移 5 个单位长度,得到点 C.(1)求点 C 的坐标;(2)求抛物线的对称轴;(3)若抛物线与线段 BC 恰有一个公共点,结合函数图象,求 a 的取值范围.【解答】解:(1)与 y 轴交点:令 x=0 代入直线 y=4x+4 得 y=4,∴B(0,4),∵点 B 向右平移 5 个单位长度,得到点 C,∴C(5,4);(2)与 x 轴交点:令 y=0 代入直线 y=4x+4 得 x=﹣1,第18页(共27页)∴A(﹣1,0),∵点 B 向右平移 5 个单位长度,得到点 C,将点 A(﹣1,0)代入抛物线 y=ax2+bx﹣3a 中得 0=a﹣b﹣3a,即 b=﹣2a,∴抛物线的对称轴 x=﹣=﹣=1;(3)∵抛物线 y=ax2+bx﹣3a 经过点 A(﹣1,0)且对称轴 x=1,由抛物线的对称性可知抛物线也一定过 A 的对称点(3,0),①a>0 时,如图 1,将 x=0 代入抛物线得 y=﹣3a,∵抛物线与线段 BC 恰有一个公共点,∴﹣3a<4,a>﹣,将 x=5 代入抛物线得 y=12a,∴12a≥4,a≥,∴a≥;②a<0 时,如图 2,将 x=0 代入抛物线得 y=﹣3a,∵抛物线与线段 BC 恰有一个公共点,∴﹣3a>4,a<﹣;③当抛物线的顶点在线段 BC 上时,则顶点为(1,4),如图 3,将点(1,4)代入抛物线得 4=a﹣2a﹣3a,解得 a=﹣1.综上所述,a≥或 a<﹣或 a=﹣1.第19页(共27页)16.如图,在平面直角坐标系中,点 P 从原点 O 出发,沿 x 轴向右以每秒一个单位长的速度运动 t 秒(t>0),抛物线y=﹣x2+bx 经过点 O 和点 P.已知矩形 ABCD 的三个顶点为A(1,0),B(3,0),D(1,3).(1)求 b 的值(用 t 的代数式表示);(2)当 3<t<4 时,设抛物线分别与线段 AD,BC 交于点 M,N.①设直线 MP 的解析式为 y=kx+m,在点P 的运动过程中,你认为 k 的大小是否会变化?若变化,请说明理由;若不变,请求出 k 的值;②在点 P 的运动过程中,当 OM⊥MN 时,求出 t 的值;第20页(共27页)(3)在点 P 的运动过程中,若抛物线与矩形 ABCD 的四条边有四个交点,请直接写出 t 的取值范围.【解答】解:(1)∵点 P 的坐标为(t,0),∴0=﹣t2+bt,解得:b=t,(2)①把 x=1 代入 y=﹣x2+tx,得 y=t﹣1,即 M(1,t﹣1),∴,解得 k=﹣1,②如图,过点 N 作 NH⊥AD 于点 H,求得:BN=3t﹣9,MH=8﹣2t,HN=AB=2,当 OM⊥MN 时,可证得△OAM∽△MHN,故可得,即,解得,(舍去)从而可得:.(3)抛物线的解析式为 y=﹣x2+bx=﹣(x﹣)2+ ,①因为抛物线的顶点纵坐标大于点 D 和点 C 的纵坐标,所以>3,解得 b>2 或 b<﹣2 ;②当 x=1 时,y=﹣1+b<3,解得:b<4,综上可得:2 <b<4.第21页(共27页)17.如图,在平面直角坐标系 xOy 中,矩形 OABC 的边 OA、OC 分别在 y 轴和 x 轴的正半轴上,且长分别为 1、4,D 为边 AB 的中点,一抛物线 l 经过点 A、D 及点 M(﹣1,m).(1)把△OAD 沿直线 OD 折叠后点 A 落在点 A′处,DA′与 OC 交于 H,求证:△OHD 是等腰三角形.(2)求点 A′的坐标;(3)求抛物线的解析式(用含 m 的式子表示);(4)连接 OA′并延长与线段 BC 的延长线交于点 E,若抛物线与线段 CE 相交,求实数m 的取值范围.【解答】解:(1)如图 1,由折叠得:∠ADO=∠ODH,∵四边形 ABCO 为矩形,∴AB∥OC,∴∠ADO=∠DOH,∴∠DOH=∠ODH,∴△OHD 是等腰三角形;(2)如图 2,过 A′作 A′F⊥x 轴于 F,由折叠得:A′D=AD=AB=2,OA′=OA=1,∠OA′H=90°,设 A′H=x,则 DH=OH=2﹣x,第22页(共27页)由勾股定理得:12+x 2=(2﹣x )2,x = ,即 A ′H = ,∴DH =OH =2﹣ = ,∴S △A ′OH = OA ′•A ′H = OH •A ′F ,∴1× = ×A ′F ,∴A ′F = ,由勾股定理得:OF = = = ,∴A ′( ,﹣ ),(3)设抛物线的解析式为:y =ax 2+bx+c ,把 A (0,1)、D (2,1)、M (﹣1,m )代入得: ,解得: ,∴抛物线的解析式为:y = + +1,(4)∵A ′F ∥BE , ∴,∴ ,∴CE =3, ∴E (4,﹣3),当 x=4 时,y=+ +1,y=,∵﹣3≤y≤0,∴﹣3≤≤0,第23页(共27页)∴﹣≤m≤.18.在平面直角坐标系中,给出如下定义:已知两个函数,如果对于任意的自变量 x,这两个函数对应的函数值记为 y1、y2,都有点(x,y1)和(x,y2)关于点(x,x)中心对称(包括三个点重合时),由于对称中心都在直线 y=x 上,所以称这两个函数为关于直线 y =x 的特别对称函数.例如:和为关于直线 y=x 的特别对称函数.(1)若 y=3x+2 和 y=kx+t(k≠0)为关于直线 y=x 的特别对称函数,点 M(1,m)是y=3x+2 上一点.①点 M(1,m)关于点(1,1)中心对称的点坐标为(1,﹣3).②求 k、t 的值.(2)若 y=3x+n 和它的特别对称函数的图象与 y 轴围成的三角形面积为 2,求 n 的值.(3)若二次函数 y=ax2+bx+c 和 y=x2+d 为关于直线 y=x 的特别对称函数.①直接写出 a、b 的值.②已知点 P(﹣3,1)、点Q(2,1),连结PQ,直接写出 y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围.第24页(共27页)【解答】解:(1)①∵点 M(1,m)是 y=3x+2 上一点,∴m=5,∴M(1,5),∴点 M 关于(1,1)中心对称点坐标为(1,﹣4),故答案为(1,﹣3);②∵y=3x+2 和 y=kx+t(k≠0)为关于直线 y=x 的特别对称函数,∴=x,∴(1+k)x+(t+2)=0,∴k=﹣1,t=﹣2;(2)设 y=3x+n①的特别对称函数为 y=m'x+n',∴=x,∴(1+m')x+n+n'=0,∴m'=﹣1,n'=﹣n,∴y=3x+n 的特别对称函数为 y=﹣x﹣n②,联立①②解得,x=﹣n,y=﹣n,∵y=3x+n 和它的特别对称函数的图象与 y 轴围成的三角形面积为 2,∴|n﹣(﹣n)|×|﹣n|=2,∴n=±2;(3)①∵二次函数 y=ax2+bx+c 和 y=x2+d 为关于直线 y=x 的特别对称函数,∴,∴(a+1)x2+(b﹣2)x+c+d=0,∴a=﹣1,b=2,c=﹣d;②由①知,a=﹣1,b=2,c=﹣d,∴二次函数 y=﹣x2+2x﹣d 和 y=x2+d,第25页(共27页)∴这两个函数的对称轴为直线 x=1 和 x=0,∵P(﹣3,1)、点Q(2,1),当d<0 时,如图 1,当抛物线 C2:y=x2+d 恰好过点 P(﹣3,1)时,即:9+d=1,∴d=﹣8,当抛物线 C1:y=﹣x2+2x﹣d 恰好过点 Q(2,1)时,即:﹣4+2﹣d=1,∴d=﹣3,y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为﹣8≤d <﹣3,如图 2,当 0≤d<1 时,抛物线 C1 与线段 PQ 有两个交点,而抛物线 C2 与线段 PQ 没有交点,∴y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为 0≤d <1,即:y=ax2+bx+c 和 y=x2+d 两条抛物线与线段 PQ 恰好有两个交点时 d 的取值范围为﹣8 ≤d<﹣3 或 0≤d<1.第26页(共27页)1、一知半解的人,多不谦虚;见多识广有本领的人,一定谦虚。

(完整版)含参数的二次函数问题

(完整版)含参数的二次函数问题

杭九年级数学校本作业 编制人: 含参数的二次函数问题 姓名_________1、将二次函数2()1y x k k =--++的图象向右平移1个单位,向上平移2个单位后,顶点在直线21y x =+上,则k 的值为( )A .2B .1C .0D .1-2、关于x 的二次函数2()1y x m =--的图象与x 轴交于A,B 两点,与y 轴交于点C.下列说法正确的是( )A .点C 的坐标是(0,-1)B .点(1, -2m )在该二次函数的图象上C .线段AB 的长为2mD .若当1≤x 时,y 随x 的增大而减小,则1≥m3、如图,抛物线2+(0)y ax bx c a =+≠过点(1,0)和点(0,-4),且顶点在第三象限,设P =c b a +-,则P 的取值范围是( ) A .-8<P <0B .-8<P <-4C .-4<P <0D .-2<P <04、下列四个说法:①已知反比例函数6y x =,则当32y ≤时自变量x 的取值范围是4x ≥; ②点11(,)x y 和点22(,)x y 在反比例函数3y x=-的图象上,若12x x <,则12y y <; ③二次函数228+13-30)y x x x =+≤≤(的最大值为13,最小值为7;④已知函数2213y x mx =++的图象当24x ≤时,y 随着x 的增大而减小,则m =23-.其中正确的是( )A .④B .①②C .③④D .四个说法都不对 5、已知下列命题:①对于不为零的实数c ,关于x 的方程1+=+c xcx 的根是c ;②在反比例函数xy 2=中,如果函数值y <1时,那么自变量x >2; ③二次函数 2222-+-=m mx x y 的顶点在x 轴下方;④函数y = kx 2+(3k +2)x +1,对于任意负实数k ,当x <m 时,y 随x 的增大而增大,则m 的最大整数值为2-.其中真命题为( )A .①③B .③C .②④D .③④6、二次函数y =ax 2+bx +c (a ,b ,c 为常数,且a <0)的图象经过点(﹣1,1),(4,﹣4).下列结论:(1)c a<0;(2)当x >1时,y 的值随x 值的增大而减小;(3)4=x 是方程ax 2+(b +1)x +c =0的一个根;(4)当﹣1<x <4时,ax 2+(b +1)x +c >0.其中正确的个数为( ) A .1个 B .2个 C .3个D .4个7、设二次函数y =ax 2+bx +c (a ≠0)的图象经过点(3,0),(7,– 8),当3≤x ≤7时,y 随x 的增大 而减小,则实数a 的取值范围是 . 8、已知抛物线)2)(1(kx x k y -+=与x 轴交于点A ,B ,与y 轴交于点C .若△ABC 为等腰三角形,则k 的值为 . 9、已知函数()⎪⎭⎫ ⎝⎛-+=k x x k y 31,下列说法:①方程()3-31=⎪⎭⎫ ⎝⎛-+k x x k 必有实数根;②若移动函数图象使其经过原点,则只能将图象向右移动1个单位;③当k >3时,抛物线顶点在第三象限;④若k <0,则当x<-1时,y 随着x 的增大而增大. 其中正确的序号是 . 10、如图,等腰梯形ABCD 的底边AD 在x 轴上,顶点C 在y 轴正半轴上,B )2,4(,一次函数1-=kx y 的图象平分它的面积. 若关于x 的函数k m x k m mx y +++-=2)3(2的图象与坐标轴只有两个交点,则m 的值为 .11、已知函数()n mx x n y m-+++=11(m ,n 为实数)(1)当m ,n 取何值时,此函数是我们学过的哪一类函数?它一定与x 轴有交点吗?请判断并说明理由;(2)若它是一个二次函数,假设,那么:①当时,y 随x 的增大而减小. 请判断这个命题的真假并说明理由; ②它一定过哪个点?请说明理由.12、已知抛物线p :123)1(2-++-=kx k x y 和直线l :2k kx y +=: (1)对下列命题判断真伪,并说明理由:①无论k 取何实数值,抛物线p 总与x 轴有两个不同的交点; ②无论k 取何实数值,直线l 与y 轴的负半轴没有交点;(2)设抛物线p 与y 轴交点为C ,与x 轴的交点为A 、B ,原点O 不在线段AB 上;直线l 与x 轴的交点为D ,与y 轴交点为C 1,当OC 1=OC +2且OD 2=4AB 2时,求出抛物线的解析式及最小值.13、我们知道,x y =的图象向右平移1个单位得到1-=x y 的图象.类似的,xky = )0(≠k 的图象向左平移2个单位得到)0(2≠+=k x ky 的图象.请运用这一知识解决问题.如图,xy 2=的图象C 与y =ax (a ≠0)的图象L 相交于点A (1,m )和点B . (1)写出点B 的坐标,并求a 的值; (2)将函数xy 2=的图象和直线AB 同时向右平移n (n >0)个单位,得到的图象分别记为C 1和L 1, 已知图象C 1经过点M (3,2).①分别写出平移后的两个图象C 1和L 1对应的函数 关系式; ②直接写出不等式 ax x ≤+-422的解集.14、已知二次函数22(21)h x m x m m =--+-(m 是常数,且0m ≠).(1)证明:不论m 取何值时,该二次函数图象总与x 轴有两个交点;(2)若A 2(3,2)n n -+、B 2(1,2)n n -++是该二次函数图象上的两个不同点,求二次函数解析式和n 的值;(3)设二次函数22(21)h x m x m m =--+-与x 轴两个交点的横坐标分别为1x ,2x (其中1x >2x ),若y 是关于m 的函数,且2122x y x =-,请结合函数的图象回答:当y <m 时,求m 的取值范围.15、如图,抛物线与x 轴相交于B 、C 两点,与y 轴相交于点A ,P (a ,m a a ++-272)(a 为任意实数)在抛物线上,直线b kx y +=经过A 、B 两点,平行于y 轴的直线2=x 交直线AB 于点D ,交抛物线于点E .(1)若2=m ,①求直线AB 的解析式;②直线t x =0(≤t ≤)4与直线AB 相交于点F ,与抛物 线相交于点G . 若FG :DE =3:4,求t 的值;(2)当EO 平分AED ∠时,求m 的值.(第14题)16、已知抛物线n m x a y +-=2)(与y 轴交于点A ,它的顶点为B ,点A 、B 关于原点O 的对称点分别是点C 、D .若点A 、B 、C 、D 中任何三点都不在一直线上,则称四边形ABCD 为抛物线的伴随四边形,直线AB 为抛物线的伴随直线.(1)如图1,求抛物线1)2(2+-=x y 的伴随直线的解析式;(2)如图2,若n m x a y +-=2)((m>0)的伴随直线是3-=x y ,伴随四边形的面积为12,求此抛物线的解析式;(3)如图3,若抛物线n m x a y +-=2)(的伴随直线是b x y +-=2(b>0),且伴随四边形ABCD 是矩形.①用含b 的代数式表示m,n 的值;②在抛物线的对称轴上是否存在点P ,使得△PBD 是一个等腰三角形?若存在,请直接写出点P 的坐标(用含b 的代数式表示);若不存在,请说明理由.答案与评分标准 1.C 2. D 3.C 4.D 5.D 6.C 7. 21021≥<≤-a a 或 8. 2,215,34+ 9. 10.21-1-0或或=m 11.(1)①当m=1,n ≠-2时,函数y=(n+1)xm+mx+1-n (m ,n 为实数)是一次函数,它一定与x 轴有一个交点,∵当y=0时,(n+1)xm+mx+1-n=0,∴x=1-nn+2,∴函数y=(n+1)xm+mx+1-n (m ,n 为实数)与x 轴有交点;②当m=2,n≠-1时,函数y=(n+1)xm+mx+1-n (m ,n 为实数)是二次函数, 当y=0时,y=(n+1)xm+mx+1-n=0, 即:(n+1)x2+2x+1-n=0, △=22-4(1+n )(1-n )=n2≥0;(2)①假命题,若它是一个二次函数, 则m=2,函数y=(n+1)x2+2x+1-n , ∵n >-1,∴n+1>0, 抛物线开口向上,对称轴:-b2a=-22(n+1)=-1n+1<0,∴对称轴在y 轴左侧,当x <0时,y 有可能随x 的增大而增大,也可能随x 的增大而减小, ②当x=1时,y=n+1+2+1-n=4. 当x=-1时,y=0.∴它一定经过点(1,4)和(-1,0).12.(1)①正确∵0123)1(2=-++-kx k x 的解是抛物线与x 轴的交点, 由判别式△=)123(4)1(2--+k k =542+-k k =01)2(2>+-k∴无论k 取何实数值,抛物线总与x 轴有两个不同的交点; ②正确∵直线2k kx y +=与y 轴交点坐标是(0,2k )而无论k 取何实数值2k ≥0,∴直线与y 轴的负半轴没有交点(2)∵|OD|=|―k | ,|AB |=542+-k k ∴OD 2=4AB 2 ⇒2016422+-=k k k解得310k 2==或k 又∵OC 1=2k ,OC =123-k >0,∴2k =123-k +2,解得21k 2-==或k 综上得k =2,∴抛物线解析式为232+-=x x y ,最小值为41-(3)1≤x <2或x ≥3 …………3分14.(1)由题意有△=[-(2m-1)]2-4(m2-m )=1>0. 即不论m 取何值时,该二次函数图象总与x 轴有两个交点; (2)∵A (n-, ∴m=-12,∴抛物线解析式为h=x2+2x+34; (3)令h=x2-(2m-1)x+m2-m=0,解得x1=m ,x2=m-3,n2+2)、B (-n+1,n2+2)是该二次函数图象上的两个不同点, ∴抛物线的对称轴x=n-3-n+12=-1, ∴2m-12=-1即y=2-2x2x1=2m , 作出图象如右: 当2m=m 时, 解得m=±2,当y <m 时,m 的取值范围为m >2或m <-2.15.(1)若2=m ,①则抛物线的解析式为2272++-=x x y ,得)2,0(A ,)0,4(B ,)0,21(-C 所以直线AB 的解析式为221+-=x y . ②易得)5,2(E ,)1,2(D ,)227,(2++-t t t G ,)221,(+-t t F ,所以DE=4,FG=t t 42+-,因FG:DE=3:4,所以t t 42+-=3,解得3,121==t t . (2) 抛物线的解析式为m x x y ++-=272,易得),0(m A ,)3,2(+m E ,过点A 作AH ⊥DE 于点H ,可得),2(m H .因EO 平分AED ∠,所以DEO AEO ∠=∠,又因为DE ∥AO ,所以AOE DEO ∠=∠,即AOE AEO ∠=∠,所以AO=AE.在直角AHE ∆中,222EH AH AE +==133222=+, 即=m AO=AE=13.16.(1)解:(1)由已知得B (2,1),A (0,5),设所求直线的解析式为y=kx+b ,则⎩⎨⎧=+=b b k 521,解得⎩⎨⎧=-=52b k ,∴所求直线的解析式为y=-2x+5;(2)如图1,作BE ⊥AC 于点E ,由题意得四边形ABCD 是平行四边形,点A 的坐标为(0,-3),点C 的坐标为(0,3),可得AC=6, ∵□ABCD 的面积为12,∴S △ABC =6,即S △ABC =21AC ·BE=6,∴BE=2, ∵m >0,即顶点B 在y 轴的右侧,且在直线y=x-3上,∴顶点B 的坐标为B (2,-1)又抛物线经过点A (0,-3),∴a=21-,∴y=-21(x-2)2-1;(3)①如图2,作BF ⊥x 轴于点F ,由已知得:A 的坐标为(0,b ),C 的坐标为(0,-b ),∵顶点B (m ,n )在直线y=-2x+b 上,∴n=-2m+b ,即点B 的坐标为(m ,-2m+b ),在矩形ABCD 中,OC=OB ,OC 2=OB 2,即b 2=m 2+(-2m+b )2,∴5m 2-4mb=0,∴m (5m-4b )=0, ∴m 1=0(不合题意,舍去),m 2=54b , ∴n=-2m+b=-2×54b+b=-53b ;②存在,共四个点如下: P 1(54b ,57b ),P 2(54b ,59b ),P 3(54b ,1516b ),P 4(54b ,513-b )。

二次函数含参问题

二次函数含参问题

一般地,含参的二次函数有三种情形,其一是函数式中含参,其二是定义区间含参;这两种情形的基本做法都是将函数的对称轴与定义区间的位置关系进行讨论;其三是涉及含参的二次方程的根的分布问题,一般可结合图像研究。

一.含参二次函数最值问题。

例1. 函数2()44f x x x =--在闭区间[t ,t +1](t ∈R )上的最小值记为g (t )。

(I )试写出g (t )的函数表达式;(II )求出g (t )的最小值。

变式训练1:讨论函数2()44f x x tx =--在定义域[0,1]上的最小值。

变式训练2:20443p p x px x p x ≤≤+>+-对于满足的所有实数,是不等式都成立,求的取值范围。

二.二次函数根的区间分布归纳。

例2、已知方程()2210x m x m -++=有两个不等正实根,求实数m 的取值范围。

变式训练1:已知二次方程()()221210m x mx m +-+-=有一正根和一负根,求实数m 的取值范围。

变式训练2:已知二次函数()()()222433y m x m x m =+-+++与x 轴有两个交点,其横坐标一个大于1,一个小于1,求实数m 的取值范围。

例3. 已知函数2()(3)1f x mx m x =+-+的图像与x 轴的交点至少有一个在原点的右侧,求实数m 的取值范围。

变式训练1:已知关于x 的方程012)1(22=-+-mx x m 的根在区间[0,1]内,求实数m 的取值范围。

变式训练2 (2007年广东卷)已知a 是实数,函数2()223f x ax x a =+--,如果函数()y f x =在区间[-1,1]上有零点,求a 的取值范围。

(资料素材和资料部分来自网络,供参考。

可复制、编制,期待你的好评与关注)。

二次函数含参问题总结归纳

二次函数含参问题总结归纳

二次函数含参问题总结归纳二次函数含参问题总结归纳二次函数是高中数学中的一个重要内容,也是考试中经常考察的知识点。

在学习二次函数的过程中,我们会遇到含参问题,即函数中会存在一个或多个参数,这些参数会对函数的图像、性质等产生影响。

本文将对二次函数含参问题进行总结归纳。

一、二次函数基本性质回顾在介绍二次函数含参问题之前,我们先来回顾一下二次函数的基本性质。

1. 二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为常数,且a ≠ 0。

2. 二次函数的图像是一个抛物线,开口方向由a的正负决定。

- 当a>0时,抛物线开口向上;- 当a<0时,抛物线开口向下。

3. 二次函数的对称轴方程为x = -b/2a,对称轴与抛物线的凹凸性质相同。

4. 二次函数的顶点坐标为(-b/2a, f(-b/2a)),其中f(-b/2a)即为函数的最值。

- 当a>0时,函数有最小值;- 当a<0时,函数有最大值。

二、含参二次函数的图像变化含参二次函数是指函数中存在一个或多个参数,这些参数会对函数的图像产生影响。

下面我们讨论几种常见的含参二次函数的图像变化情况。

1. 含参二次函数f(x) = ax^2 + bx + c中的参数a的变化对图像的影响:- 当a>0时,随着a的增大,抛物线的开口变得越来越窄,即变得越陡;- 当a<0时,随着a的减小,抛物线的开口变得越来越宽,即变得越矮胖。

2. 含参二次函数f(x) = ax^2 + bx + c中的参数b的变化对图像的影响:- 当b>0时,整个抛物线向左平移;- 当b<0时,整个抛物线向右平移。

平移的距离与b的绝对值成正比。

3. 含参二次函数f(x) = ax^2 + bx + c中的参数c的变化对图像的影响:- 当c>0时,在y轴上方平移;- 当c<0时,在y轴下方平移。

平移的距离与c的绝对值成正比。

含参二次函数的最值问题

含参二次函数的最值问题

(2)t<1<t+2,即-1<t<1时 当x=1时,y有最大值, y max = f(1)= 6
y
x (2)
(3)t≥1时,函数f(x)在区间 [t,t+2]上单调递减, 当x=t时,y有最大值, y max = f(t)= -t2+2t+5
y
x
(1)
y
综上所述:
(1) t ≤ -1时, y max = -t2-2t+5 (2) -1<t<1时, y max = 6 (3) t ≥1时, y max = -t2+2t+5
变式作业上第9题 已知函数f(x)=-x2+2ax+1-a在区间[0,1]上有最大值 2,求a?
第2类:函数对称轴固定,动区间
例2:
t, t 2上的最大值 求函数f ( x) x2 2x 5在区间
对称轴:x=1
(1)t+2≤1时,即:t ≤ -1时, 函数f(x)在区间[t,t+2]上单调递 增当x=t+2时,y有最大值, y max = f(t+2)= -t2-2t+5
x
(3)
例3:求二次函数f(x)=x2-2x-3 在[-3,a] (a>-3)上的最值
y
(1)当 3 a 1时
a -3 o
1
f ( x)min =f(a)=a2-2a-3
x
f ( x)max =f(-3)=12
f(x)=x2-2x-3,x∈[-3,a] (a>-3)
y
y
-3 o1Leabharlann a5x-3 o
1
5a
x

二次函数含参问题

二次函数含参问题

二次函数含参问题本质:解决二次函数含参问题就是解决对称轴与定义域的问题。

课堂例题:1. 若函数a ax x x f --=2)(在区间 上的最大值为1,则实数=a ;2. 若函数x x x f 3)(2-=,在[]m ,0上的值域为⎥⎦⎤⎢⎣⎡-0,49,则m 的取值范围为 ;当堂练习:1. 若函数)0(22≠-=a ax ax y 在区间]3,0[上有最大值3,则a 的值是 ;2. 已知函数22)(22++-=a ax x x f [])3,1(-∈x 有最大值18,则实数a 的值为 ;1. 若函数在区间[]2,0上的最大值为9,求实数a 的值;当堂练习:1. 已知函数)0(49433)(22>++--=b b x x x f 在区间[-b, 1-b]上的最大值为25,求b 的值;2. 已知函数2244)(22+-+-=a a ax x x f 在区间[]2,0上有最小值3,求实数a 的值;家庭作业:1.函数432--=x x y 的定义域为[]m ,0,值域为⎥⎦⎤⎢⎣⎡--4,425,则实数m 的取值范围是__________. 2.若函数12)(2+-=x x x f 在区间[]2,+a a 上的最大值为4,则a 的值为 ;3.已知函数32)(2+-=x x x f 在闭区间[]m ,0上的最大值为3,最小值为2,则m 的取值范围为 ;4.若函数22422y x ax a a =-+-+在[0,2]的最小值是2,则a 的值为 ;5.若三条抛物线,,中至少有一条与轴有交点,则的取值范围是 ;3442+-+=a ax x y 22)1(a x a x y +-+=a ax x y 222-+=x a1.不等式对于一切实数x都成立,求的取值范围;2.若不等式,当x∈时恒成立,求的取值范围;当堂练习:1.求对于,不等式恒成立的x的取值范围;2. 若不等式对于一切x∈,恒成立,则的取值范围是多少;3.不等式在x∈,上恒成立,求实数的取值范围;4.设不等式对于满足的一切值都恒乘以,求x的取值范围;家庭作业:1.函数,对于满足的一切x值都有,求实数的取值范围;2.已知是定义在区间上的函数,且,若m,n∈,时,有对任意x∈,都成立。

培优专题01 二次函数含参数最值问题(解析版)

培优专题01 二次函数含参数最值问题(解析版)

培优专题01二次函数含参数最值问题【题型目录】题型一:定轴动区间问题题型二:定区间动轴问题题型三:含绝对值二次函数问题题型四:定义域为[]n m ,,值域为[]kn km ,求参数问题题型五:二次函数值域包含性问题【典型例题】题型一:定轴动区间问题【例1】已知二次函数满足2()(0)f x ax bx c a =++≠,满足(1)()21f x f x x +-=-,且(0)0f =.(1)求()f x 的解析式;(2)当[]()2R x t t t ∈+∈,时,求函数()f x 的最小值()g t (用t 表示).【答案】(1)()22f x x x =-(2)()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩【详解】(1)因为二次函数2()(0)f x ax bx c a =++≠,且满足(0)0f =,(1)()21f x f x x +-=-,所以0c =,()()221121221a x b x ax bx x ax a b x +++--=-⇒++=-,所以221a ab =⎧⎨+=-⎩,得12a b =⎧⎨=-⎩.所以()22f x x x =-.(2)()22f x x x =-是图象的对称轴为直线1x =,且开口向上的二次函数.当1t ≥时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递增,则()()2min 2f x f t t t ==-;当21t +≤即1t ≤-时,()22f x x x =-在[]()2R x t t t ∈+∈,上单调递减,则()()()()22min 22222f x f t t t t t =+=+-+=+;当11t t <<+,即11t -<<时,()()()2min 11211f x f ==-=-;综上所述()222,11,112,1t t t g t t t t t ⎧-≥⎪=--<<⎨⎪+≤-⎩.【例2】已知定义在R 上的函数)f x ,满足()226f x x x -=--.(1)求()f x 的解析式.(2)若()f x 在区间[]0,m 上的值域为25,44⎡⎤--⎢⎥⎣⎦,写出实数m 的取值范围(不必写过程).f x 在区间[],2t t +上的最小值为6,求实数t 的值.【例3】对于函数()f x ,若存在0R x ∈,使得()00f x x =成立,则称0x 为()f x 的不动点,已知函数2()(2)4f x ax b x =+++的两个不动点分别是-2和1.(1)求,a b 的值及()f x 的表达式;[,1]t t +【例4】已知函数为二次函数,不等式的解集是,且在区间上的最小值为12-.(1)求()f x 的解析式;上的最大值为【例1】已知函数2()f x x mx m =-+-.(1)若函数()f x 在[]1,0-上单调递减,求实数m 的取值范围;(2)若当1x >时,()4f x <恒成立,求实数m 的取值范围;(3)是否存在实数m ,使得()f x 在[]2,3上的值域恰好是[]2,3?若存在,求出实数m 的值;若不存在,说明上单调递减,应满足【例2】已知二次函数的图象过点,且不等式20ax bx c ++≤1(1)求()f x 的解析式:24g x f x t x =--在区间[]1,2-上有最小值2,求实数t 的值.(1)若函数()f x 在(1,)+∞上是增函数,求实数a 的取值范围;(2)若不等式()0f x ≤的解集为{|02}x x ≤≤,求,a b 的值;时,函数【例4】已知函数,R b ∈.(1)若函数()f x 的图象经过点()4,3,求实数b 的值;(2)在(1)条件下,求不等式()0f x <的解集;1,2x ∈-时,函数()y f x =的最小值为1,求当[]1,2x ∈-时,函数()y f x =的最大值.【例5】在①2,2x ∀∈-,②1,3x ∃∈这两个条件中任选一个,补充到下面问题的横线中,并求解该问题.已知函数()24f x x ax =++.(1)当2a =-时,求函数()f x 在区间]22-,上的值域;【例1】已知二次函数()()20,,,f x ax bx c a a b c =++>∈R ,()11f -=,对任意x ∈R ,()()2f x f x +=-,且()0f x x +≥恒成立.(1)求二次函数()f x 的解析式;(1)若x f 为偶函数,求a 的值;(1)当2a =时,试写出函数()()g x f x x =-的单调递增区间;)x(1)当2a =时,求f x 的单调增区间;,所以(1)若函数f x 在[]1,2上单调递增,求实数m 的取值范围;2g x xf x m =+在[]1,2的最小值为7,求实数m 的值.【例1】已知a ,b 是常数,0a ≠,()2f x ax bx =+,()20f =,且方程()f x x =有两个相等的实数根.(1)求a ,b 的值;(2)是否存在实数m ,n ()m n <,使得()f x 的定义域和值域分别为[],m n 和[]2,2m n ?若存在,求出实数m ,=【例2】已知函数()1,111,01x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩.(1)当0a b <<,且()()f a f b =时,求11a b+的值;(2)若存在实数,(1)a b a b <<,使得函数()y f x =的定义域为[],a b 时,其值域为[],ma mb ,求实数m 的取值【例3】已知函数()22f x a a x=+-,实数a R ∈且0a ≠.(1)设0m n <<,判断函数()f x 在[],m n 上的单调性,并说明理由;f x 的定义域和值域都是[],m n ,求n m -的最大值.【例4】已知二次函数,满足对任意实数(3)(1)f x f x -=-,且关于x 的方程()2f x x =有两个相等的实数根.(1)求函数()f x 的解析式:(2)是否存在实数m 、()n m n <,使得()f x 的定义域为[,]m n ,值域为22,m n ⎡⎤⎣⎦?若存在,求出m ,n 的值;【例5】已知函数-2x +b 的自变量的取值区间为A ,若其值域区间也为A ,则称A 为的保值区间.(1)若b =0,求函数f (x )形如[,)()t t R ∞+∈的保值区间;m n <【例6】已知函数()2f x x-=.(1)求函数()y f x =的值域;(2)若不等式()231x f x x kx +≥+在[]1,2x ∈时恒成立,求实数k 的最大值;(3)设()()1g x t f x =⋅+(11,x m n ⎡⎤∈⎢⎥⎣⎦,0m n >>,0t >),若函数()y g x =的值域为[]23,23m n --,求实数【例7】已知是定义在R 上的函数,且0f x f x +-=,当0x >时,(1)求函数()f x 的解析式;(2)当[)1,x ∞∈+时,()()g x f x =,当(),1x ∞∈-时()223g x x mx m =-+-,()g x 在R 上单调递减,求m 的取值范围;(3)是否存在正实数a b ,,当[],x a b ∈时,()()h x f x =且()h x 的值域为11,b a ⎡⎤⎢⎥⎣⎦,若存在,求出a b ,,若不【例1】已知函数()1f x x x=+,()21g x x ax a =-+-.(1)若()g x 的值域为[)0,∞+,求a 的值.证明:对任意1,2x ∈,总存在1,3x ∈-,使得f x g x =成立.【例2】函数y f x =的图象关于坐标原点成中心对称图形的充要条件是函数y f x =为奇函数,可以将其推广为:函数()y f x =的图象关于点(),P a b 成中心对称图形的充要条件是函数()y f x a b =+-为奇函数,给定函数()261+-=+x x f x x .(1)求()f x 的对称中心;(2)已知函数()g x 同时满足:①()11+-g x 是奇函数;②当[]0,1x ∈时,()2g x x mx m =-+.若对任意的0,2x ∈1,5x ∈,使得()()g x f x =所以【例3】已知函数(1)若函数()g x 的值域为[0,)+∞,求a 的取值集合;[2,2]x ∈-[2,2]x ∈-f x g x =。

初中二次函数含参问题总结归纳

初中二次函数含参问题总结归纳

初中二次函数含参问题总结归纳在初中数学中,二次函数是一个非常重要的知识点,其中含参问题也是二次函数中比较典型的问题之一。

下面我们对二次函数含参问题进行总结归纳:1. 已知函数图像和顶点位置,求函数的解析式和参数值。

这是含参问题的第一个要求,需要画出函数的图像,并确定函数的顶点位置和参数值。

具体而言,可以通过函数顶点的位置来确定参数值,通过函数图像的斜率来确定参数位置。

2. 已知函数图像和一次函数的关系,求二次函数的解析式和参数值。

含参问题的第二个要求,需要确定函数与一次函数的关系。

例如,如果二次函数的系数是-2,而一次函数的系数是x^2,那么可以确定这是一种特殊的二元一次函数,其图像为抛物线。

此时,需要确定抛物线的解析式和参数值。

3. 已知函数图像和一次函数、二次函数的关系,求三者的解析式和参数值。

这是含参问题的三个要求,需要确定一次函数、二次函数和函数之间的关系。

例如,如果一次函数的系数是-2,二次函数的系数是-1,且一次函数和二次函数的交点在函数图像的左侧,那么可以确定这是一种特殊的二元一次函数,其图像为抛物线,且抛物线的解析式为x^2+2x-3。

此时,需要确定抛物线的解析式、参数值和一次函数的参数值。

4. 已知函数图像和二次函数的解析式,求函数的值域和周期。

含参问题的第四项要求,需要确定函数的值域。

例如,如果函数的解析式是y=x^2+2x-3,且-1<=x<=3,那么可以确定函数的值域为[-3,3]。

此外,还需要确定函数的周期,即函数图像在x轴上循环的次数。

综上所述,二次函数含参问题需要通过函数图像和参数值来确定解析式和参数值,同时还需要确定函数的值域和周期。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

二次函数含参问题(1)
姓名_________ 班级 __________ 学号________________ 1•“动轴定区间”型的二次函数最值
例函数f(x) x2 2ax 3在x [0,4]上的最值。

ax2(2a 1)x 3在区间[|,2]上最大值为1,求实数a的值
例函数f (x)
2 “动区间定轴”型的二次函数最值例求函数f (x) x2 2x 3在x €[a,a+2 [上的最值。

3•“动轴动区间”型的二次函数最值
a [3,),求实数
b 的范围.
巩固习题
1 •已知函数f x x
2 2x 2,若x a, a 2, a R ,求函数的最小值,并作出最小 值的函数图象。

范围。

2
3 •已知k 为非零实数,求二次函数 y kx 2kx 1, x (
2•已知函数f (x)
x 2 3,若f (x) 2kx 6在区间 1,2上恒成立,求实数k 的取值
已知函数f (x)
2 2 9x 6ax a 10a 6在[-,b ]上恒大于或等于0,其中实数 3
,2]的最小值。

2
x x 2
2ax 1在 1,3 上的最大值为 M a ,最小值为 m a , m a ,求 g a 的表达式。

ax 1,若 f x 0恒成立,求实数 a 的取值范围。

3,在0 x m 时有最大值3,最小值2,求实数m 的取值范
6. 当 0 x 2 时,函数 取值
范围。

f x ax 2 4 a 1 x 3在x 2时,取得最大值,求实数 a 的
4.已知 a 3 ,若函数 f 又已知函数 g a M a
2
5. 已知函数 f x ax
2 7. 已知函数y x 2 2x 围。

x 2 2px 1,当 x 0时,有 f x 0恒成立,求实数 p 的取值范围。

ax a 2 3 0 的两根都在 0,2 内,求实数 a 的取值范围。

9. 方程 ax 2 2 x 1
0 至少的一个负数根,求实数 a 的取值范围。

8. 已知函数 f x
10. 方程 x 2。

相关文档
最新文档