LCD 驱动电路分析

合集下载

lcd驱动ic原理

lcd驱动ic原理

lcd驱动ic原理
LCD驱动IC是一种用于控制液晶显示屏(LCD)的集成电路。

它负责接收来自主控芯片的指令,并将图像、文本等数据转换为适合液晶显示的信号。

LCD驱动IC的原理主要包括以下几
个方面:
1. 数据处理:LCD驱动IC接收来自主控芯片的指令和数据,
通过内部的逻辑电路对这些数据进行解析和处理。

根据不同的指令和数据格式,LCD驱动IC会执行相应的操作。

2. 显示控制:LCD驱动IC需要根据指令和数据来控制液晶显
示屏的像素点亮和灭。

一般来说,液晶显示屏由一组行和列组成的像素阵列,LCD驱动IC根据接收到的数据来选择哪些像
素点亮、哪些像素灭,从而显示出图像或文字。

3. 电源控制:LCD驱动IC还负责控制液晶显示屏的电源供应。

它可以通过控制不同的电压信号来调节液晶的对比度、亮度等参数,以达到最佳的显示效果。

4. 时序控制:液晶显示屏的像素点亮和灭需要按照一定的时序来进行。

LCD驱动IC会通过内部的时序生成电路来生成准确
的时序信号,确保像素点能够按照正确的时序进行驱动。

5. 数据传输:LCD驱动IC需要将处理后的数据传输给液晶显
示屏,通常采用并行或串行的方式进行。

并行传输通常速度较快,适用于大尺寸液晶显示屏;串行传输则需要较少的线材,适用于小尺寸液晶显示屏。

总之,LCD驱动IC是一种重要的芯片,负责控制液晶显示屏的显示和电源供应。

通过合理的数据处理、显示控制、电源控制、时序控制以及数据传输,LCD驱动IC能够实现高质量的图像和文字显示效果。

LCD显示屏电路分析与检修

LCD显示屏电路分析与检修

LCD显示屏电路分析与检修数码相机的LCD显示屏主要用来取景、设置功能菜单、浏览照片、播放视频等,一般由背光灯、液晶面板等组成。

LCD显示屏背光电路分析由于液晶本身不会发光,LCD显示屏需要专用的背光灯为其提供背光,因此就需要专用的背光电路来控制背光灯的亮度。

LCD显示屏的背光方式主要有两种。

早期的数码相机一般采用高压驱动氖管作为数码相机的背光光源。

因为高压氖管的背光驱动线路复杂,要求驱动电压高,背光不均匀,已基本被淘汰。

另一种背光光源为高亮度发光二极管(LED)。

半导体LED,尤其是氮化物白光发光二极管,具有体积小、电压低、寿命长、回应快、无频闪、耗能少、发热少等优点,因此目前的数码相机液晶背光源一般都采用LED背光光源。

数码相机背光驱动电路主要有两种方式:一种是背光电流驱动方式,一种是背光恒流驱动方式。

背光电流驱动方式背光电流驱动方式主要是由微处理器发出控制信号,然后通过软件调节改变控制信号占空比,从而控制单位时间内流过发光二极管的电流,来改变LCD显示屏的亮度。

背光电流驱动方式电路如图所示。

图中三极管Q5、Q6组成一个恒流源电路。

Q5、Q6工作在放大状态,当Q5工作时,调节B极电阻R23,使Q5的C 极电流达到额定电流值。

因为LED发光二极管导通后,内阻会变小,电流会逐渐增大,增加Q6的目的是分流Q5的B极电流,调节反馈电阻R205就可以控制流过背光发光二极管的电流并通过Q6使电流达到稳定。

工作时,微处理器的LCD_BKLT_ON引脚发出控制信号,此信号为方波,信号频率是固定的,例如7.5KHZ。

通过软件调节改变信号占空比,控制Q5的导通时间,可控制单位时间内流过发光二极管的电流,改变LCD显示屏的亮度。

从图中可以看出,背光电流驱动方式线路简单,软件调整方便。

但由于背光LED差异,很难确保LCD显示屏亮度控制的一致性,因此实际效果不理想。

背光恒流驱动方式背光恒流驱动方式主要为了保证驱动电流的可靠性,使驱动LED的电流低于LED额定值。

LCD驱动方式图解

LCD驱动方式图解

LCD驱动方式图解2006-4-10一、静态驱动基本思想:在相对应的一对电极间连续外加电场或不外加电场。

如图1所示;驱动电路原理:如图2所示:驱动波形:根据此电信号,笔段波形不是与公用波形同相就是反相。

同相时液晶上无电场,LCD 处于非选通状态。

反相时,液晶上施加了一矩形波。

当矩形波的电压比液晶阈值高很多时,LCD处于选通状态。

二、多路驱动基本思想:电极沿X、Y方向排列成矩阵(如图4),按顺序给X电极施加选通波形,给Y电极施加与X电极同步的选通或非选通波形,如此周而复始。

通过此操作,X、Y电极交点的相素可以是独立的选态或非选态。

图4、电极阵列驱动X电极从第一行到最后一行所需时间为帧周期Tf(频率为帧频),驱动每一行所用时间Tr与帧周期的比值为占空比:Duty=Tr/Tf=1/N。

电压平均化:从多路驱动的基本思想可以看出,不仅选通相素上施加有电压,非选通相素上也施加了电压。

非选通时波形电压与选通时波形电压之比为偏压比Bias=1/a。

为了使选通相素之间及非选通相素之间显示状态一致,必须要求选点电压Von一致,非选点电压Voff一致。

为了使相素在选通电压作用下被选通;而在非选通电压作用下不选通,必须要求LCD的光电性能有阈值特性,且越陡越好。

但由于材料和模式的限制,LCD电光曲线陡度总是有限的。

因而反过来要求Von、Voff拉得越开越好,即Von/Voff越大越好。

经理论计算,当Duty、Bias满足以下关系时,Von/Voff取极大值。

满足以下公式的a,即为驱动路数为N的最佳偏压值。

公式:。

在一帧中每行的选择时间是相等的。

假设一帧的扫描行数为N,扫描时间为1,那么一行所占有选择时间为一帧时间的1/N。

这就是液晶显示驱动的占空比系数,也称为占空比。

克服交叉效应在动态驱动方式下,要使某一位置如(i,j)点显示,就需在第i列和第j行上同时施加选择电压,使该点的变电场强最大,但此时除(i,j)点外,第i列和第j行的其余各点也承受了一定电压,这些点称为半选择点。

LCD驱动电路说明

LCD驱动电路说明

液晶显示驱动电路1、LCD基础:液晶(Liquid Crystal):是一种介于固态和液态之间的具有规则性分子排列,及晶体的光学各向异性的有机化合物,液晶在受热到一定温度的时候会呈现透明状的液体状态,而冷却则会出现结晶颗粒的混浊固体状态,因为物理上具有液体与晶体的特性,故称之为“液晶”。

液晶显示器LCD(Liquid Crystal Display):是新型平板显示器件。

显示器中的液晶体并不发光,而是控制外部光的通过量。

当外部光线通过液晶分子时,液晶分子的排列扭曲状态不同,使光线通过的多少就不同,实现了亮暗变化,可重现图像。

液晶分子扭曲的大小由加在液晶分子两边的电压差的大小决定。

因而可以实现电到光的转换。

即用电压的高低控制光的通过量,从而把电信号转换成光像。

TN(扭曲向列型)LCD:TN是指在两块导电玻璃基片之间充入约10微米具有正介名向异性的向列液晶,液晶分子沿面排列,但分子长轴在上下基片之间连续扭曲90度,形成扭曲(TN)排列的液晶显示器。

图中所表示的是TN型液晶显示器的简易构造图,包括了垂直方向与水平方向的偏光板,具有细纹沟槽的配向膜,液晶材料以及导电的玻璃基板。

在不加电场的情况下,入射光经过偏光板后通过液晶层,偏光被分子扭转排列的液晶层旋转90度。

在离开液晶层时,其偏光方向恰与另一偏光板的方向一致,所以光线能顺利通过,使整个电极面呈光亮。

当加入电场的情况时,每个液晶分子的光轴转向与电场方向一致。

液晶层也因此失去了旋光的能力,结果来自入射偏光片的偏光,其方向与另一偏光片的偏光方向成垂直的关系,并无法通过,这样电极面就呈现黑暗的状态。

TN型的显像原理是将液晶材料置于两片贴附光轴垂直偏光板的透明导电玻璃间,液晶分子会依附向膜的细沟槽方向,按序旋转排列。

如果电场未形成,光线就会顺利的从偏光板射入,液晶分子将其行进方向旋转,然后从另一边射出。

如果在两片导电玻璃通电之后,玻璃间就会造成电场,进而影响其间液晶分子的排列,使分子棒进行扭转,光线便无法穿透,进而遮住光源。

基于mPower1203测量评估一款2寸 LCD屏的背光驱动电路

基于mPower1203测量评估一款2寸 LCD屏的背光驱动电路

近期需要评估一款2寸LCD,是一款mcu 屏,自己搭了背光驱动电路,想验证下驱动电路。

测试了一下背光电流来计算验证一下电路具体电路如下:GPIO拉高,Q2导通,随即Q1导通, 背光点亮。

根据LCD的规格书,背光二级管的导通电压范围是3V~3.4V,典型值3.2V所以背光驱动的理论电流为(5V-3.2V)/51R=35.3mA,背光功耗5V*35.3mA=176.5mW后面进行实测,测量方法为先不开背光,测量整板的功耗,记录下数据;然后打开背光,测量下整板的功耗,记录下数据,前后数据相减就是背光的功耗。

测试仪器:mPower1203功耗分析仪测试条件:室温,3.8V供电,电源拓扑为电池电压(3.5V~4.2V)boost到5V给背光电路实测图片如下:①测量不开背光的整机功耗,测量波形如下取了2分钟的平均值测量后得到平均电流730.8uA,最大值2.99mA 平均功耗:P1=6730.8uA*3.8V=2.78mW②测量开背光的整机功耗取了2分钟的平均值测量后得到平均电流60.989mA平均功耗:P2=60.989mA*3.8V=231.758mW由以上测试数据可以计算得到背光+boost内部消耗产生的功耗P=P2-P1=228.978mW③用万用表测量是验证二级管导通电压测得导通电压Vf=2.9V,由此可以计算得到背光电流为(5V-2.9V)/51R=41.18mA背光功耗为:Pbk=41.18mA*5V=205.9mW④可以计算出boost消耗的功率为Pboost=P-Pbk=228.978-205.9=23.078mW⑤通过以上可以计算出boost的电源转换效率为1-23.078/228.978≈90%符合boost规格书标明值至此,评估结束,该电路符合规格书要求以及应用场景。

TFTLCD驱动控制电路解析

TFTLCD驱动控制电路解析
Gate D-IC
LVDS in
T/CON
图象数据产生
信号格式转换
变换成面板显示的控制和数据信号
图象显示
1.4 图像数据信号流程
■ Source Driver IC : 源极驱动IC ( = Data Driver IC = X COF= Column Driver IC )
■ Gate Driver IC :栅极驱动IC ( = Y Driver IC =Y COF = Row Driver IC )
DE (Data Enable)
STH
TP
MPOL
Active Area
Horizontal Blanking Area
Data Output
Clk
源极控制信号时序
Data signal Timing
CPV
Gate n
Gate n+1
TP
Data
Data
OE2
Gate&Source signal Timing
Texas Instruments
NEC OKI
TCON输出数据信号比较
T/CON的定义: T/CON : Timing Controller的缩写 它将AD board供给的图像数据信号、控制信号以及时钟信号分别转换成适合于数据和栅极驱动 IC的数据信号、控制信号、时钟信号。它的功能是色度控制和时序控制,内含RAM。具有数据反转,像素极性反转功能,并具有自动刷新模式和老化用的图形。
Module Process bonding
Panel/PCBA Assy.
Backlight unit
Module Process Assy.
TFT-LCD Module

LCD电视背光驱动电路设计

LCD电视背光驱动电路设计

LCD电视背光驱动电路设计挑战分析和方案设计LCD电视应用中可以采用多种架构产生驱动CCFL所需的交流波形,驱动多个CCFL时所要面对的三个关键的设计挑战是选择最佳的驱动架构、多灯驱动、灯频和脉冲调光频率控制。

本文对四种常用驱动架构进行了对比分析,并提出多灯设计中解决亮度不均以及驱动频率可能干扰画面等问题的方法,并给出基于DS3984/DS3988的电路方案。

液晶显示器(LCD)正在成为电视的主流显示技术。

LCD面板实际上是电子控制的光阀,需要靠背光源产生可视的图像,LCD电视通常用冷阴极荧光灯提供光源。

其他背光技术,例如发光二极管也受到一定的重视,但由于成本过高限制了它的应用。

由于LCD电视是消费品,压倒一切的设计考虑是成本—当然必须满足最低限度的性能要求。

驱动背光灯的CCFL逆变器不能明显缩短灯的寿命。

此外,由于要用高压驱动,安全性也是一个必须考虑的因素。

LCD电视应用中,驱动多个CCFL时所要面对的三个关键的设计挑战是:挑选最佳的驱动架构;多灯驱动;灯频和脉冲调光频率的严格控制。

挑选最佳的驱动架构可以用多种架构产生驱动CCFL所需的交流波形,包括Royer(自振荡,self-oscillating)、半桥、全桥和推挽。

表1详细归纳了这四种架构各自的优缺点。

1. Royer架构Royer架构(图1)的最佳应用是在不需要严格控制灯频和亮度的设计中。

由于Royer架构是自振荡设计,受元件参数偏差的影响,很难严格控制灯频和灯电流,而这两者都会直接影响灯的亮度。

因此,Royer架构很少用于LCD电视,尽管它是本文所述四种架构中最廉价的。

图1:Royer驱动器简单,但不太精确。

2.全桥架构全桥架构最适合于直流电源电压非常宽的应用(图2),这就是几乎所有笔记本PC都采用全桥方式的原因。

在笔记本中,逆变器的直流电源直接来自系统的主直流电源,其变化范围通常在7V(低电池电压)至21V(交流适配器)。

有些全桥方案要求采用p沟道MOSFET,比n沟道MOSFET更贵。

LCD基本电路原理分析

LCD基本电路原理分析

LCD基本电路原理分析LCD(液晶显示器)的基本电路原理可以分为电压驱动和信号驱动两种类型。

1.电压驱动液晶显示器电路原理电压驱动液晶显示器主要由液晶元件、触摸层、驱动电路和控制电路等组成。

液晶元件:液晶单元是液晶显示器的核心部件,由两片平行排列的玻璃基板封装起来,两片基板上分别涂有透明的导电层,并在中间加入液晶材料。

液晶材料是一种有机化合物,其分子结构可以根据电场的变化而改变排列状态,从而控制光的透过程度。

驱动电路:驱动电路负责给液晶单元提供所需的电场。

在横向和纵向各涂一层透明导电层,并根据屏幕的分辨率设计导电线网状结构。

通过外部的驱动电源分别给纵向和横向的导电层施加电压,形成一个均匀的电场。

控制电路:控制电路接收到来自计算机或者其他信号源的图像信号,将图像信号转换为控制电压并传输给驱动电路。

同时还会接收用户的输入指令,如触摸屏的触摸操作。

2.信号驱动液晶显示器电路原理信号驱动液晶显示器与电压驱动液晶显示器相比,最大的区别是信号驱动液晶显示器不需要驱动电路。

它的驱动原理利用了TFT(薄膜晶体管)。

TFT:TFT是一种特殊的薄膜晶体管,可用于控制像素点的亮度和颜色。

每个像素点都有一个对应的TFT,单个像素点由三个互相组合的TFT组成,分别对应红、绿、蓝三个颜色通道。

这样就能够分别控制每个像素点的亮度和颜色输出。

信号驱动液晶显示器使用TFT作为驱动元件,通过控制TFT的导通与截止状态,从而控制液晶分子的排列,实现亮度和颜色的输出。

计算机或者其他信号源通过信号线向TFT传输图像信号,控制TFT的导通与截止,从而控制每个像素点的亮度和颜色。

总结起来,LCD的基本电路原理分为电压驱动和信号驱动两种类型。

电压驱动液晶显示器需要驱动电路提供均匀的电场给液晶单元,而信号驱动液晶显示器通过TFT控制液晶分子的排列,实现亮度和颜色的输出。

无论是哪种驱动方式,控制电路都起着传输图像信号和接收用户输入指令的作用。

液晶显示屏背光驱动集成电路工作原理

液晶显示屏背光驱动集成电路工作原理

对“剖析液晶屏逻辑板TFT偏压电路”一文的一点看法(此文为技术探讨)在国内某知名刊物2010年12月份期刊看到一篇关于介绍液晶屏逻辑板TFT偏压电路的文章,文章的标题是:“剖析液晶屏逻辑板TFT偏压电路”这是一篇选题极好的文章、目前液晶电视出现的极大部分屏幕故障例如:图像花屏、彩色失真、灰度失真、对比度不良、亮度暗淡、图像灰暗等等故障都与此电路有关,维修人员在维修此类故障时往往的面对液晶屏图像束手无策,而介绍此电路、无疑对类似故障的分析提供了极大的帮助,目前在一般的期刊书籍介绍分析此电路的文章极少。

什么是TFT屏偏压电路?现代的液晶电视都是采用TFT屏作为图像终端显示屏,由于我们现在的电视信号(包括各种视频信号)是专门为CRT显示而设计的,液晶屏和CRT的显示成像方式完全不同,液晶屏要显示专门为CRT而设计的电视信号,就必须对信号的结构、像素排列顺序、时间关系进行转换,以便液晶屏能正确显示。

图像信号的转换,这是一个极其复杂、精确的过程;先对信号进行存储,然后根据信号的标准及液晶屏的各项参数进行分析计算,根据计算的结果在按规定从存储器中读取预存的像素信号,并按照计算的要求重新组合排列读取的像素信号,成为液晶屏显示适应的信号。

这个过程把信号的时间过程、排列顺序都进行了重新的编排,并且要产生控制各个电路工作的辅助信号。

重新编排的像素信号在辅助信号的协调下,施加于液晶屏正确的重现图像。

每一个液晶屏都必须有一个这样的转换电路,这个电路就是我们常说的“时序控制电路”或“T-CON(提康)电路”,也有称为“逻辑板电路”的。

这个电路包括液晶屏周边的“行、列驱动电路”构成了一个液晶屏的驱动系统。

也是一个独立的整体。

这个独立的整体是由时序电路、存储电路、移位寄存器、锁存电路、D/A变换电路、译码电路、伽马(Gamma)电路(灰阶电压)等组成,这些电路的正常工作也需要各种不同的工作电压,并且还要有一定的上电时序关系,不同的屏,不同的供电电压。

LCD显示屏的器件选择和驱动电路设计说明

LCD显示屏的器件选择和驱动电路设计说明

LCD显示屏的器件选择和驱动电路设计如何实现LCD平板显示屏驱动电路的高性能设计是当前手持设备设计工程师面临的重要挑战。

本文分析了LCD显示面板的分类和性能特点,介绍了LCD显示屏设计中关键器件L DO和白光LED的选择要点,以及电荷泵LED驱动电路的设计方法。

STN-LCD彩屏模块的内部结构如图1所示,它的上部是一块由偏光片、玻璃、液晶组成的LCD屏,其下面是白光LED和背光板,还包括LCD驱动IC和给LCD驱动IC提供一个稳定电源的低压差稳压器(LDO),二到八颗白光LED以及LED驱动的升压稳压IC。

STN-LCD彩屏模块的电路结构如图2所示,外来电源Vcc经LDO降压稳压后,向LCD驱动IC如S6B33BOA提供工作电压,驱动彩色STN-LCD的液晶显示图形和文字;外部电源Vcc经电荷泵升压稳压,向白光LED如NACW215/NSCW335提供恒压、恒流电源,LED的白光经背光板反射,使LCD液晶的65K色彩充分表现出来,LED的亮度直接影响LCD色彩的靓丽程度。

LCD属于平板显示器的一种,按驱动方式可分为静态驱动(Static)、单纯矩阵驱动(Simple Matrix)以及有源矩阵驱动(Active Matrix)三种。

其中,单纯矩阵型又可分为扭转式向列型(Twisted Nematic,TN)、超扭转式向列型(Super Twisted Nematic,STN),以及其它无源矩阵驱动液晶显示器。

有源矩阵型大致可区分为薄膜式晶体管型(ThinFilmTr ansistor,TFT)及二端子二极管型(Metal/Insulator/Metal,MIM)两种。

TN、STN及TFT型液晶显示器因其利用液晶分子扭转原理的不同,在视角、彩色、对比度及动画显示品质上有优劣之分,使其在产品的应用范围分类亦有明显差异。

以目前液晶显示技术所应用的范围以及层次而言,有源矩阵驱动技术是以薄膜式晶体管型为主流,多应用于笔记本电脑及动画、影像处理产品;单纯矩阵驱动技术目前则以扭转向列以及STN为主,STN液晶显示器经由彩色滤光片(colorfilter),可以分别显示红、绿、蓝三原色,再经由三原色比例的调和,可以显示出全彩模式的真彩色。

LCD驱动电路分析 绿、红、蓝三个节点波形产生

LCD驱动电路分析 绿、红、蓝三个节点波形产生

LCD驱动电路分析绿、红、蓝三个节点波形产生可能有些玩家会认为,这个电源接口是什么的问题,还会有人不知道吗?对于认识 PC 玩家来说,这个固然不是什么问题,你甚至可以闭着眼睛都可以正确衔接 PC 电源的,不过对于刚入门的玩家来说,他们可能连 PC 电源有多少种接口都还摸不清晰,这个时候正确熟悉 PC 电源的各个接口就显得很重要了。

首先我们从 PC 电源必备的接口开头讲起,个要讲的是体积的24Pin 主供电接口,它也叫做 24Pin 主板供电接口,之所以这么叫是由于其是挺直插入主板上的,是主要的 PC 供电接口。

电源 24Pin 主供电接口24Pin 主板电源接口定义电源的 24Pin 主供电接口共计有 2 组+12V 供 3 电、5 组+5V 供电和4 组+3.3V 供电,每组供电的传输普通为 6A,因此 24Pin 主供电接口的+12V、+5V 和+3.3V 供电的功率分离为 144W、150W 和 79.2W。

值得注重的是现在 24Pin 主供电接口分为两种结构,一种是整体式的24Pin,另一种是分别式的 20+4Pin,两种接口的 24Pin 主供电接口都适用于现在的主板,性能上并无区分,后者之所以采纳分别式的设计主要是为了兼容以前采纳 20Pin 供电接口的老式主板,不过这样的主板早已被市场淘汰,因此现在不少电源都会挺直用法整体式设计的24Pin 主供电接口。

ATX 12V 4Pin 及 ATX12V/EPS 12V 4+4/8Pin 接口:CPU 供电的来源因为 24Pin 主供电接口所提供的+12V 供电功率有限,因此现在的CPU 都采纳了自立接口来猎取+12V 供电,而负责给 CPU 供电的就是电源上的 ATX 12V 4Pin 或 EPS 12V 4+4/8Pin 接口,也就是我们常说的 CPU 4Pin/4+4Pin/8Pin 供电接口。

CPU 4+4Pin 与 CPU 8Pin 供电接口ATX 12V 4Pin 及 ATX12V/EPS 12V 4+4Pin 接口定义CPU 供电接口有 4Pin、4+4Pin 和 8Pin 等三种,其中 4+4Pin 和第1页共4页。

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理详解

TFT LCD液晶显示器的驱动原理TFT LCD液晶显示器的驱动原理(一)我们针对TFT LCD的整体系统面来做介绍, 也就是对其驱动原理来做介绍, 而其驱动原理仍然因为一些架构上差异的关系, 而有所不同. 首先我们来介绍由于Cs(storage capacitor)储存电容架构不同, 所形成不同驱动系统架构的原理.Cs(storage capacitor)储存电容的架构一般最常见的储存电容架构有两种, 分别是Cs on gate与Cs on common这两种. 这两种顾名思义就可以知道, 它的主要差别就在于储存电容是利用gate走线或是common走线来完成的. 在上一篇文章中, 我曾提到, 储存电容主要是为了让充好电的电压,能保持到下一次更新画面的时候之用. 所以我们就必须像在CMOS的制程之中, 利用不同层的走线, 来形成平行板电容. 而在TFT LCD的制程之中, 则是利用显示电极与gate走线或是common走线,所形成的平行板电容,来制作出储存电容Cs.图1就是这两种储存电容架构, 从图中我们可以很明显的知道, Cs on gate由于不必像Cs on common一样, 需要增加一条额外的common走线, 所以它的开口率(Aperture ratio)会比较大. 而开口率的大小, 是影响面板的亮度与设计的重要因素. 所以现今面板的设计大多使用Cs on gate的方式. 但是由于Cs on gate的方式, 它的储存电容是由下一条的gate走线与显示电极之间形成的.(请见图2的Cs on gate与Cs on common的等效电路) 而gate走线, 顾名思义就是接到每一个TFT的gate端的走线, 主要就是作为gate driver送出信号, 来打开TFT, 好让TFT对显示电极作充放电的动作. 所以当下一条gate走线, 送出电压要打开下一个TFT时 ,便会影响到储存电容上储存电压的大小. 不过由于下一条gate走线打开到关闭的时间很短,(以1024*768分辨率, 60Hz更新频率的面板来说. 一条gate走线打开的时间约为20us, 而显示画面更新的时间约为16ms, 所以相对而言, 影响有限.) 所以当下一条gate走线关闭, 回复到原先的电压, 则Cs储存电容的电压, 也会随之恢复到正常. 这也是为什么, 大多数的储存电容设计都是采用Cs on gate 的方式的原因.至于common走线, 我们在这边也需要顺便介绍一下. 从图2中我们可以发现, 不管您采用怎样的储存电容架构, Clc的两端都是分别接到显示电极与common. 既然液晶是充满在上下两片玻璃之间, 而显示电极与TFT都是位在同一片玻璃上, 则common电极很明显的就是位在另一片玻璃之上. 如此一来, 由液晶所形成的平行板电容Clc, 便是由上下两片玻璃的显示电极与common电极所形成. 而位于Cs储存电容上的common电极, 则是另外利用位于与显示电极同一片玻璃上的走线, 这跟Clc上的common电极是不一样的, 只不过它们最后都是接到相同的电压就是了.整块面板的电路架构从图3中我们可以看到整片面板的等效电路, 其中每一个TFT与Clc跟Cs所并联的电容, 代表一个显示的点. 而一个基本的显示单元pixel,则需要三个这样显示的点,分别来代表RGB三原色. 以一个1024*768分辨率的TFT LCD来说, 共需要1024*768*3个这样的点组合而成. 整片面板的大致结构就是这样, 然后再藉由如图3中 gate driver所送出的波形, 依序将每一行的TFT打开, 好让整排的source driver同时将一整行的显示点, 充电到各自所需的电压, 显示不同的灰阶. 当这一行充好电时, gate driver便将电压关闭, 然后下一行的gate driver便将电压打开, 再由相同的一排source driver对下一行的显示点进行充放电. 如此依序下去, 当充好了最后一行的显示点, 便又回过来从头从第一行再开始充电. 以一个1024*768 SVGA分辨率的液晶显示器来说, 总共会有768行的g ate走线, 而source走线则共需要1024*3=3072条. 以一般的液晶显示器多为60Hz的更新频率来说, 每一个画面的显示时间约为1/6 0=16.67ms. 由于画面的组成为768行的gate走线, 所以分配给每一条gate走线的开关时间约为16.67ms/768=21.7us. 所以在图3 g ate driver送出的波形中, 我们就可以看到, 这些波形为一个接着一个宽度为21.7us的脉波, 依序打开每一行的TFT. 而sourcedriver则在这21.7us的时间内, 经由source走线, 将显示电极充放电到所需的电压, 好显示出相对应的灰阶.面板的各种极性变换方式由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原状, 以避免液晶分子的特性遭到破坏. 但是如果画面一直不动, 也就是说画面一直显示同一个灰阶的时候怎么办? 所以液晶显示器内的显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电压低于c ommon电极的电压时, 就称之为负极性. 不管是正极性或是负极性, 都会有一组相同亮度的灰阶. 所以当上下两层玻璃的压差绝对值是固定时, 不管是显示电极的电压高, 或是common电极的电压高, 所表现出来的灰阶是一模一样的. 不过这两种情况下, 液晶分子的转向却是完全相反, 也就可以避免掉上述当液晶分子转向一直固定在一个方向时, 所造成的特性破坏. 也就是说, 当显示画面一直不动时, 我们仍然可以藉由正负极性不停的交替, 达到显示画面不动, 同时液晶分子不被破坏掉特性的结果. 所以当您所看到的液晶显示器画面虽然静止不动, 其实里面的电压正在不停的作更换, 而其中的液晶分子正不停的一次往这边转, 另一次往反方向转呢!图4就是面板各种不同极性的变换方式, 虽然有这么多种的转换方式, 它们有一个共通点, 都是在下一次更换画面数据的时候来改变极性. 以60Hz的更新频率来说, 也就是每16ms, 更改一次画面的极性. 也就是说, 对于同一点而言, 它的极性是不停的变换的. 而相邻的点是否拥有相同的极性, 那可就依照不同的极性转换方式来决定了. 首先是frame inversion, 它整个画面所有相邻的点, 都是拥有相同的极性. 而row inversion与column inversion则各自在相邻的行与列上拥有相同的极性. 另外在dot inversion上, 则是每个点与自己相邻的上下左右四个点, 是不一样的极性. 最后是delta inversion, 由于它的排列比较不一样, 所以它是以RGB 三个点所形成的pixel作为一个基本单位, 当以pixel为单位时, 它就与dot inversion很相似了, 也就是每个pixel与自己上下左右相邻的pixel,是使用不同的极性来显示的.Common电极的驱动方式图5及图6为两种不同的Common电极的电压驱动方式, 图5中Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不同, 不停的上下变动. 图5中是256灰阶的显示电极波形变化, 以V0这个灰阶而言, 如果您要在面板上一直显示V0这个灰阶的话, 则显示电极的电压就必须一次很高, 但是另一次却很低的这种方式来变化. 为什么要这么复杂呢? 就如同我们前面所提到的原因一样, 就是为了让液晶分子不会一直保持在同一个转向, 而导致物理特性的永久破坏. 因此在不同的frame中, 以V0这个灰阶来说, 它的显示电极与common电极的压差绝对值是固定的, 所以它的灰阶也一直不曾更动. 只不过位在Clc两端的电压, 一次是正的, 称之为正极性, 而另一次是负的, 称之为负极性. 而为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次小的变化.这两种不同的Common驱动方式影响最大的就是source driver的使用. 以图7中的不同Common电压驱动方式的穿透率来说, 我们可以看到, 当common电极的电压是固定不变的时候, 显示电极的最高电压, 需要到达common电极电压的两倍以上. 而显示电极电压的提供, 则是来自于source driver. 以图七中common电极电压若是固定于5伏特的话, 则source driver所能提供的工作电压范围就要到10伏特以上. 但是如果common电极的电压是变动的话, 假使common电极电压最大为5伏特, 则source driver的最大工作电压也只要为5伏特就可以了. 就source driver的设计制造来说, 需要越高电压的工作范围, 制程与电路的复杂度相对会提高, 成本也会因此而加高.面板极性变换与common电极驱动方式的选用并不是所有的面板极性转换方式都可以搭配上述两种common电极的驱动方式. 当common电极电压固定不变时, 可以使用所有的面板极性转换. 但是如果common电压是变动的话, 则面板极性转换就只能选用frame inversion与row inversion.(请见表1) 也就是说, 如果你想使用column inversion或是dot inversion的话, 你就只能选用 common电极电压固定不动的驱动方式. 为什么呢? 之前我们曾经提到 common电极是位于跟显示电极不同的玻璃上, 在实际的制作上时, 其实这一整片玻璃都是common电极. 也就是说, 在面板上所有的显示点, 它们的common电压是全部接在一起的. 其次由于gate driver的操作方式是将同一行的所有TFT打开,好让source driver去充电, 而这一行的所有显示点, 它的common电极都是接在一起的, 所以如果你是选用common电极电压是可变动的方式的话, 是无法在一行TFT上, 来同时做到显示正极性与负极性的. 而column inversion与dot inversion的极性变换方式, 在一行的显示点上, 是要求每个相邻的点拥有不同的正负极性的. 这也就是为什么 common电极电压变动的方式仅能适用于frame inv ersion与row inversion的缘故. 而common电极电压固定的方式, 就没有这些限制. 因为其common电压一直固定, 只要source dri ver能将电压充到比common大就可以得到正极性, 比common电压小就可以得到负极性, 所以common电极电压固定的方式, 可以适用于各种面板极性的变换方式.表1面板极性变换方式 可使用的common电极驱动方式Frame inversion固定与变动Row inversion固定与变动Column inversion只能使用固定的common电极电压Dot inversion只能使用固定的common电极电压各种面板极性变换的比较现在常见使用在个人计算机上的液晶显示器, 所使用的面板极性变换方式, 大部分都是dot inversion. 为什么呢? 原因无它, 只因为dot inversion的显示品质相对于其它的面板极性变换方式, 要来的好太多了. 表2是各种面板极性变换方式的比较表. 所谓F licker的现象, 就是当你看液晶显示器的画面上时, 你会感觉到画面会有闪烁的感觉. 它并不是故意让显示画面一亮一灭来做出闪烁的视觉效果, 而是因为显示的画面灰阶在每次更新画面时, 会有些微的变动, 让人眼感受到画面在闪烁. 这种情况最容易发生在使用frame inversion的极性变换方式, 因为frame inversion整个画面都是同一极性, 当这次画面是正极性时, 下次整个画面就都变成了是负极性. 假若你是使用common电压固定的方式来驱动, 而common电压又有了一点误差(请见图8),这时候正负极性的同一灰阶电压便会有差别, 当然灰阶的感觉也就不一样. 在不停切换画面的情况下, 由于正负极性画面交替出现,你就会感觉到Flicker的存在. 而其它面板的极性变换方式, 虽然也会有此flicker的现象, 但由于它不像frame inversion 是同时整个画面一齐变换极性, 只有一行或是一列, 甚至于是一个点变化极性而已. 以人眼的感觉来说, 就会比较不明显. 至于crosstalk 的现象, 它指的就是相邻的点之间, 要显示的资料会影响到对方, 以致于显示的画面会有不正确的状况. 虽然crosstalk的现象成因有很多种, 只要相邻点的极性不一样, 便可以减低此一现象的发生. 综合这些特性, 我们就可以知道, 为何大多数人都使用dot inve rsion了. 表2面板极性变换方式 Flicker的现象 Crosstalk的现象Frame inversion明显 垂直与水平方向都易发生Row inversion不明显 水平方向容易发生Column inversion不明显 垂直方向容易发生Dot inversion几乎没有 不易发生面板极性变换方式, 对于耗电也有不同的影响. 不过它在耗电上需要考量其搭配的common电极驱动方式. 一般来说 common电极电压若是固定, 其驱动common电极的耗电会比较小. 但是由于搭配common电压固定方式的source driver其所需的电压比较高, 反而在source driver的耗电会比较大. 但是如果使用相同的common电极驱动方式, 在source driver的耗电来说,就要考量其输出电压的变动频率与变动电压大小. 一般来说, 在此种情形下, source driver的耗电,会有 dot inversion > row inversion > column inversion > frame inversion的状况. 不过现今由于dot inversion的source driver多是使用PN型的OP, 而不是像row inversi on是使用rail to rail OP, 在source driver中OP的耗电就会比较小. 也就是说由于source driver在结构及电路上的改进, 虽然先天上它的输出电压变动频率最高也最大(变动电压最大接近10伏特,而row inversion面板由于多是使用common电极电压变动的方式,其source driver的变动电压最大只有5伏特,耗电上会比较小), 但dot inversion面板的整体耗电已经减低很多了. 这也就是为什么大多数的液晶显示器都是使用dot inversion的方式.TFT LCD液晶显示器的驱动原理(二)上次跟大家介绍液晶显示器的驱动原理中有关储存电容架构,面板极性变换方式,以及common电压的驱动方式.这次我们延续上次的内容,继续针对feed through电压,以及二阶驱动的原理来做介绍.简单来说Feed through电压主要是由于面板上的寄生电容而产生的,而所谓三阶驱动的原理就是为了解决此一问题而发展出来的解决方式,不过我们这次只介绍二阶驱动,至于三阶驱动甚至是四阶驱动则留到下一次再介绍.在介绍feed through电压之前,我们先解释驱动系统中gate driver 所送出波形的timing图.SVGA分辨率的二阶驱动波形我们常见的1024*768分辨率的屏幕,就是我们通常称之为SVGA分辨率的屏幕.它的组成顾名思义就是以1024*768=7864 32个pixel来组成一个画面的数据.以液晶显示器来说,共需要1024*768*3个点(乘3是因为一个pixel需要蓝色,绿色,红色三个点来组成.)来显示一个画面.通常在面板的规划,把一个平面分成X-Y轴来说,在X轴上会有1024*3=3072列.这3072列就由8颗384输出channel的source driver来负责推动.而在Y轴上,会有768行.这768行,就由3颗256输出channel 的gate driver来负责驱动.图1就是SVGA分辨率的gate driver输出波形的timing图.图中gate 1 ~ 768分别代表着76 8个gate driver的输出.以SVGA的分辨率,60Hz的画面更新频率来计算,一个frame的周期约为16.67 ms.对gate 1来说,它的启动时间周期一样为16.67ms.而在这16.67 ms之间,分别需要让gate 1 ~ 768共768条输出线,依序打开再关闭.所以分配到每条线打开的时间仅有16.67ms/768=21.7us而已.所以每一条gate driver打开的时间相对于整个frame是很短的,而在这短短的打开时间之内,source driver再将相对应的显示电极充电到所需的电压.而所谓的二阶驱动就是指gate driver的输出电压仅有两种数值,一为打开电压,一为关闭电压.而对于common电压不变的驱动方式,不管何时何地,电压都是固定不动的.但是对于common电压变动的驱动方式,在每一个frame开始的第一条gate 1打开之前,就必须把电压改变一次.为什么要将这些输出电压的timing介绍过一次呢?因为我们接下来要讨论的feed thr ough电压,它的成因主要是因为面板上其它电压的变化,经由寄生电容或是储存电容,影响到显示电极电压的正确性.在LCD 面板上主要的电压变化来源有3个,分别是gate driver电压变化,source driver电压变化,以及common电压变化.而这其中影响最大的就是gate driver电压变化(经由Cgd或是Cs),以及common电压变化(经由Clc或是Cs+Clc).Cs on common架构且common电压固定不动的feed through电压我们刚才提到,造成有feed through电压的主因有两个.而在common电压固定不动的架构下,造成feed through电压的主因就只有gate driver的电压变化了.在图2中,就是显示电极电压因为feed through电压影响,而造成电压变化的波形图.在图中,请注意到gate driver打开的时间,相对于每个frame的时间比例是不正确的.在此我们是为了能仔细解释每个f rame的动作,所以将gate driver打开的时间画的比较大.请记住,正确的gate driver打开时间是如同图1所示,需要在一个frame的时间内,依序将768个gate driver走线打开的.所以每个gate走线打开的时间,相对于一个frame的时间,是很短的.当gate走线打开或关闭的那一瞬间,电压的变化是最激烈的,大约会有30~40伏特,再经由Cgd的寄生电容,影响到显示电极的电压.在图3中,我们可以看到Cgd寄生电容的存在位置.其实Cgd的发生,跟一般的CMOS电路一样,是位于MOS的gate 与drain端的寄生电容.但是由于在TFT LCD面板上gate端是接到gate driver输出的走线,因此一但在gate driver输出走在线的电压有了激烈变化,便会影响到显示电极上的电压.在图2之中,当Frame N的gate走线打开时,会产生一个向上的feed through电压到显示电极之上.不过此时由于gate走线打开的缘故,source driver会对显示电极开始充电,因此即便一开始的电压不对(因为feed through电压的影响),source driver仍会将显示电极充电到正确的电压,影响便不会太大.但是如果当gate走线关闭的时候,由于source driver已经不再对显示电极充电,所以gate driver关闭时的电压压降(30~40伏特),便会经由Cgd寄生电容feed through到显示电极之上,造成显示电极电压有一个feed through的电压压降,而影响到灰阶显示的正确性.而且这个feed through电压不像gate走线打开时的feed through电压一样,只影响一下子,由于此时source driver已经不再对显示电极充放电,feed through电压压降会一值影响显示电极的电压,直到下一次gate driver走在线的电压再打开的时后.所以这个feed through电压对于显示画面的灰阶的影响,人眼是可以明确的感觉到它的存在的.而在Frame N+1的时候,刚开始当gate driver走线打开的那一瞬间,也会对显示电极产生一个向上的feed through电压,不过这时候由于gate已经打开的缘故,source driver会开始对显示电极充电,因此这个向上的feed through电压影响的时间便不会太长.但是当gate走线再度关闭的时候,向下的feed through电压便会让处在负极性的显示电极电压再往下降,而且受到影响的负极性显示电压会一直维持到下一次gate走线再打开的时候.所以整体来说,显示电极上的有效电压,会比source driver的输出电压要低.而减少的电压大小刚好为gate走线电压变化经由Cgd的feed through电压.这个电压有多大呢?在图4中,我们以电荷不灭定律,可以推导出feed through电压为 (Vg2 – Vg1) * Cgd / (Cgd + Clc + Cs) .假设Cg d=0.05pF,而Clc=0.1pF, Cs=0.5pF且gate走线从打开到关闭的电压为 –35伏特的话. 则feed through电压为 –35*0.0 5 / (0.05+0.1+0.5) = 2.69伏特. 一般一个灰阶与另一个灰阶的电压差约仅有30到50 mV而已(这是以6 bit的分辨率而言,若是8 bit分辨率则仅有3到5 mV而已).因此feed through电压影响灰阶是很严重的.以normal white的偏光板配置来说,会造成正极性的灰阶会比原先预期的来得更亮,而负极型的灰阶会比原先预期的来得更暗.不过恰好feed through电压的方向有一致性,所以我们只要将common电压向下调整即可.从图2中我们可以看到,修正后的common电压与原先的comm on电压的压差恰好等于feed through电压.Cs on common架构且common电压变动的feed through电压图5为Cs on common且common电压变动的电压波形,由于其common电压是随着每一个frame而变动的,因此跟common 电压固定的波形比较起来.其产生的feed through电压来源会再多增加一个,那就是common电压的变化.这个common电压的变化,经由Clc+Cs的电容,便会影响到显示电极的电压.且由于整个LCD面板上所有显示点的Clc与Cs都是接到common电压,所以一但common电压有了变化,受影响的就是整个面板的所有点.跟前面gate电压变化不一样的是,gate电压变化影响到的只是一整行的显示点而已.不过Common电压变化虽然对显示电极的电压有影响,但是对于灰阶的影响却没有像gate电压变化来的大.怎么说呢?如果我们使用跟前面一样的电容参数值,再套用图6所推导出来的公式,再假设Common电压由0伏特变到5伏特,则common电压变化所产生的feed through电压为(5 -0)*(0.1pF+ 0.5pF) / (0.05pF + 0.1pF +0.5pF) = 5 * 0.6 /0.65=4.62伏特.虽然显示电极增加这么多电压,但是common电极也增加了5伏特.因此在Clc两端,也就是液晶的两端,所看到的压差变化,就只有4.62-5=0.38伏特而已.跟之前gate走线电压变化所产生的feed through电压2.69伏特比较起来要小的多了,所以对灰阶的影响也小多了.且由于它所产生的feed through电压有对称性,不像Gate走线所产生的feedthrough电压是一律往下,所以就同一个显示点来说,在视觉对灰阶的表现影响会比较小.当然啦,虽然比较小,但是由于对整个LCD面板的横向的768行来说, common电压变化所发生的时间点,跟gate走线打开的时间间隔并不一致,所以对整个画面的灰阶影响是不一样的.这样一来,就很难做调整以便改进画面品质,这也是为什么common电压变动的驱动方式,越来越少人使用的缘故.Cs on gate架构且common电压固定不动的feed through电压图7是Cs on gate且common电压固定不动的电压波形图.它并没有common电压变化所造成的feed through电压,它只有由于gate电压变化所造成的feed through电压.不过它跟Cs on common不一样的是,由gate电压变化所造成的feed th rough电压来源有两个地方,一个是自己这一条gate走线打开经由Cgd产生的feed through电压,另一个则是上一条gate 走线打开时,经由Cs所产生的feed through电压.经由Cgd的feed through电压跟前面所讨论过的状况是一样的,在这边就不再提了.但是经由Cs的feed through电压,是因为Cs on gate的关系,如图3所示.Cs on gate的架构,它的储存电容另一端并不是接到common电压,而是接到前一条gate走线,因此在我们这一条gate走线打开之前,也就是前一条gate走线打开时,在前一条gate走线的电压变化,便会经由Cs对我们的显示电极造成feed through电压.依照图8的公式,同时套用前面的电容参数与gate电压变化值,我们可得到此一feed through电压约为 35*0.5pF/(0.5pF+0.1pF+0.05pF)=26.92伏特.这样的feed through电压是很大的,不过当前一条gate走线关闭时,这个feed through电压也会随之消失.而且前一条gat e走线从打开到关闭,以SVGA分辨率的屏幕来说,约只有21.7us的时间而已.相对于一个frame的时间16.67ms是很短的.再者当前一条gate走线的feed through电压影响显示电极后,我们这一条的gate走线也随之打开,source driver立刻将显示电极的电压充放电到所要的目标值.从这种种的结果看来,前一条gate走线的电压变化,对于我们的显示电极所表现的灰阶,几乎是没有影响的.因此对于Cs on gate且common电压固定不动的驱动方式来说,影响最大的仍然是gate走在线电压变化经由Cgd产生的feed through电压,而其解决方式跟前面几个一样,只需将common电压往下调整即可.Cs on gate架构且common电压变动的feed through电压图9是Cs on gate架构且common电压变动的feed through电压波形图.这样子的架构,刚好有了前面3种架构的所有缺点,那就是 gate走线经由Cgd的feed through电压,和前一条gate走线经由Cs的feed through电压,以及Common电压变化经由Clc的feed through电压.可想而知,在实际的面板设计上几乎是没有人使用这种架构的.而这4种架构中最常用的就是 Cs on gate架构且common电压固定不动的架构.因为它只需要考虑经由Cgd的feed through电压,而Cs on gate的架构可得到较大的开口率的缘故.。

tftlcd驱动原理

tftlcd驱动原理

tftlcd驱动原理TFTLCD驱动原理解析TFT(Thin-Film Transistor)液晶显示屏是目前最常用的显示技术之一,其驱动原理是通过驱动电子电路控制液晶做电场变化,以实现像素点显示颜色和亮度的变化。

本文将对TFTLCD驱动原理进行详细解析。

TFTLCD驱动原理由两部分组成:图像生成和电压驱动1.图像生成TFTLCD液晶显示屏由许多像素点组成,每个像素点由三个基本颜色通道红(R),绿(G)和蓝(B)构成。

图像生成的第一步是将输入的图像数据转换为红、绿、蓝三个通道对应的灰度值,再由灰度值映射到具体的RGB值,以确定每个像素点的颜色。

该过程中需要使用一种称为查找表的技术,以有效地映射输入图像的像素值到三个通道的比例。

这个查找表中的值是由显示屏的属性和色彩设定决定的。

通过这种方式,可以根据人眼的感知方式,生成最接近输入图像的颜色。

2.电压驱动TFTLCD驱动原理的第二部分是电压驱动,通过控制每个像素点的电压来改变其颜色和亮度。

每个像素点都由一个薄膜晶体管(Thin Film Transistor,简称TFT)控制。

在电平刷新模式下,每个像素点的晶体管都要刷新很多次,在每个刷新周期内,通过在TFT上施加电压来改变晶体管的导通状态。

当TFT导通时,液晶膜上的电荷将通过该晶体管流入公共电平。

TFT导通的时间是通过控制驱动电路的频率和占空比来实现的。

频率越高,像素点的颜色刷新速度越快,可以提高图像的清晰度和稳定性。

占空比则是指TFT导通的时间和总的刷新周期的比值,通过调整占空比,可以改变像素点的亮度。

TFTLCD驱动原理的关键技术是源驱动和栅极驱动。

源驱动器是负责控制TFT的导通时间和电流的驱动电路,栅极驱动器则是负责控制每行像素点的导通时间和颜色的驱动电路。

对于源驱动器,它需要根据每行像素点的亮度和颜色,将对应的电流作为输入信号,通过增幅电路来控制TFT的导通时间。

而对于栅极驱动器,它需要根据每行像素点的导通时间和颜色,将对应的电压作为输入信号,通过驱动电路来生成合适的驱动信号。

BL55080通用LCD驱动与控制电路说明书

BL55080通用LCD驱动与控制电路说明书

通用LCD驱动与控制电路BL55080BL55080是一款通用型液晶控制和驱动单芯片,具有8背极和35段极共280位元的输出能力,适用于常用低占空比的字符/图形式液晶屏幕,BL55080具有兼容多数微机系统的双向二线式串行总线通讯接口(I2C)。

特点●液晶驱动输出:Common输出8线,Segment输出35线●内置显示寄存器35*8=280bit●2线串行接口(SCL,SDA)●内置震荡电路●内置液晶驱动电源电路1/4 Bias 1/8 Duty内置Buffer AMP●不需要外部元件●低功耗设计●内置EVR(Electrical volume register)功能●VDD电压范围2.5V~5.5V●VLCD电压范围2.5V~5.5V●高抗EMC性能●TSSOP48,LQFP48,LQFP52封装应用领域∙电表、水表、汽表、电话、传真机∙玩具∙手持仪表∙闹钟管脚排列TSSOP48 LQFP52LQFP48图1功能框图图1BL55080框图COM0~7SEG0~34VSSSDA SCL图2功能描述1.功能电路BL55080内部集成了LCD驱动器所必需的所有功能电路。

这些电路包括:LCD偏置电压发生器、LCD电压选择器、内部时钟(OSC =25.6KHz)、显示寄存器、段/背极输出电路、I2C串行接口、上电复位电路和显示控制电路。

2.显示驱动原理:BL55080有35个段输出SEG0--SEG34和8个背极输出COM0—COM7,它们和LCD 直接相连,当少于35个段输出应用时,不用的段可空出。

BL55080采用1/8背极输出1/4偏置电压显示方式。

显示内容和寄存器地址之间的关系可见下表:表2当要显示的数据传送给BL55080后, BL55080将接收到的字节数据填充在显示寄存器中。

图2示出了1/4偏置电压驱动方式下7段显示器的显示填充顺序。

图33.二线-串行通信总线协议二线-串行通信总线如图4。

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析 3

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析 3

大屏幕液晶显示屏背光灯及高压驱动电路原理及电路分析(三)【郝铭原创作品请勿转载请勿链接】TLM3277液晶电视背光灯驱动稳定保护电路工作原理背光灯驱动电路向背光灯管供电并点亮背光灯管,要求液晶屏整个屏幕亮度均匀、稳定。

在实际应用中,由于电源、灯管特性、温度等原因等的影响会造成发光亮度不稳定,此时要求背光灯高压驱动电路要有自动稳压、稳流功能。

又由于液晶屏是多灯管点亮,当某只背光灯管异常损坏或者性能不良,该灯管不亮或亮度极低,液晶屏即出现亮度不均匀甚至出现暗区,这是不能允许的,此时要求背光灯高压驱动电路能进行保护性关机。

为了解决上述问题,在背光灯高压驱动电路上设置了;自动检测输出电压、自动检测灯管电流,并稳定电压、电流的自动检测控制电路。

当某只背光灯管异常损坏或者性能不良出现暗区时,有故障的灯管会无电流或电流极小,此时背光灯高压驱动电路设置检测控制电路,检测灯管异常电流,并控制整个背光灯高压驱动电路停止工作(黑屏),等待检修的。

图1 所示是该背光灯驱动电路的电压、电流稳定控制及自动检测保护电路的示意图。

【郝铭原创作品请勿转载请勿链接】图中,高压变压器的L3是输出电压的取样绕组、电阻R是灯管电流取样电阻。

L3的取样电压经过电压反馈电路加到BD9884FV的电压反馈输入引脚10,R上的取样电压Ui(经D502、C1整流滤波,反映灯管工作电流大小)经过电流反馈电路加到BD9884FV的电流反馈输入引脚9,这两路反馈电压进入BD9884FV后,和引脚1来的亮度工作PWM信号一起加到PWM亮度调制电路,完成亮度控制及亮度稳定的作用。

同时R上的取样电压进入比较控制电路IC502和基准电压进行比较,当灯管衰老、损坏时取样电压大幅变化,比较控制电路动作输出控制电压进入BD9884FV 的引脚17,使振荡器停止工作整个电路停止工作。

图1图2具体电原理图如图2所示,一.电压、电流反馈电路;(第一通道)工作原理;电压反馈电路;TI的L2、R553、R554、D510、BD9884FV的10脚组成电压反馈电路。

LCD 驱动电路分析

LCD 驱动电路分析
STV Pull-up Control Circuit
1 stage GOP
Pull-up Output Circuit Pull-down Output Circuit Pull-up Output Circuit Pull-down Output Circuit Pull-up Output Circuit Pull-down Output Circuit GL1
GOP #1
RESET
GL1
Pull-down Control Circuit
CARRY GL2

GOP #2
RESET CARRY
Pull-up Control Circuit Pull-down Control Circuit Pull-up Control Circuit Pull-down Control Circuit
面板的各种极性变换方式
比较高的SOURCE 驱 动电压
比较低的SOURCE 驱 动电压
面板的各种极性变换方式 Vcom
Cs
Clc
Cgd
Gate 由此可见△V与Vp-p 是成正比关系的,如果 要想△V最少,那么我 们可以减少Vp-p
Gate 驱动与削角驱动
单个TFT的等效电路图
GPM (Gate Pulse Modulation)(削角功能)为了解决由于VCOM而引起的 闪烁的问题
Gate IC 驱动
電壓
Gate1 Gate2
電壓波形圖
畫面更新頻率約為60Hz (16.67 ms)
Gate599 Gate600
第N-1個畫面
第N個畫面
第N+1個畫面
Blanking
Gate IC 相關訊號與訊號

LCD_驱动原理解析

LCD_驱动原理解析
VESA总线(Vedio Electronic Standard Association)是一个32位标准的计 算机局部总线,是针对多媒体PC要求高速传送活动图象的大量数据应运而
生 的。它的数据传输率最高可达132Mbytes/s。它的许多引线引自CPU,因
而负 载能力相对较差。随着Pentium级计算机的不断普及,PCI总线产品所占的
LVDS信号传输采用多通道串口方式。串口是每条通道顺序传输8位灰 度数据。但是并口并不比串口传输速度快,由于8位通道之间的互相 干扰,传输时速度就受到了限制。而且当传输出错时,要同时重新传 8个位的数据。串口没有干扰,传输出错后重发一位就可以了。所以 要比并口快。再加上LVDS信号有四条通道传输8位数据,这样比CMOS/ TTL传输通道要快许多。
SXGA@60Hz 1280 pixels 408 pixels 0 pixel 48 pixels 112 pixels 248 pixels 0 pixel 1024 lines 42 lines 0 line 1 line 3 lines 38 lines 0 line 108 MHz (9.3nS)
A bit of progress every dBaOyE!Copyright ⓒ 2009
液晶显示器的图象表示规格
图象表示规格 Color Graphics Adapter Enhanced Graphics Adapter
Video Graphics Array Super VGA
eXtended Graphics Array Engineering Work Station
XGA @ 75Hz 1024 pixels 288 pixels 0 pixels 16 pixels 96 pixels 166 pixels 0 pixels 768 lines 32 lines 0 line 1 lines 3 lines 28 lines 0 line 78.5 MHz(12.7nS)

基于STM8S的LCD驱动电路和LCD显示原理分析

基于STM8S的LCD驱动电路和LCD显示原理分析

基于STM8S的LCD驱动电路和LCD显示原理分析一、LCD的显示原理。

LCD的工作原理和驱动电路液晶是一种有机化合物,这种有机物质在一定的温度范围内,既具有液体的流动性和连续性,又具有某些晶体的光学性质。

LCD就是利用这种物质在电场的作用下能产生特殊的电光效应而制成的。

按照使用的电光效应的不同,LCD可分为动态散射效应和扭曲一向列效应两种类型;按采光方式的不同又可分为透射式和反射式。

LCD的基本结构由内表面刻有透明电极(典型图形为7段字形)的两块平板玻璃中间注入薄薄(约10pm厚)的液晶层构成。

它的上、下表面各放了一块偏振片(起偏振片、检偏振片)。

下偏振片下面常常再放一块高效的反射器件,以获得良好的清晰度。

LCD采用表面排列技术,对刻有透明电极的玻璃进行表面处理,使液晶分子在液晶盒内的排列方向呈90°扭曲。

线性偏振光进入扭曲的液晶盒后,偏振面旋转90°。

加上电场后,由于正介电各向异性液晶分子的取向具有和电场方向排列一致的性质,故扭曲结构消失,线性偏振光可以直接通过液晶盒。

去掉电场后,液晶分子的排列又恢复扭曲,使线性偏振光的偏振面旋转90°。

因此,当扭曲液晶盒置于起、检偏振片之间时,改变两块偏振片的相对位置(正交或平行),就可得到白底黑字(正常开启)或黑底白字(正常关闭)的显示形式。

扭曲效应LCD工作原理如图4所示,两块偏振片正交排列,故可获得白底黑字的显示形式。

由上面介绍可以看出,让液晶显示需要在液晶的两端加上电压,改变液晶的光特性,让其显示出预设的图案。

二、段式LCD的显示方式一般LCD在制作的时候为了节省引脚,会跟数码管一样多个液晶公用一个公共端COM,另一端一般称之为SEG,在SEG和COM上加上电压就可以“点亮”该段液晶。

下图为一个标准的段式液晶屏的设计图与COM和SEG对应表例如上图,若在COM3和SEG5之间加上电压,则会点亮AM这两个字母的显示。

但是在驱动液晶的时候有个重要问题需要注意,COM口与SEG之间必须加上对称的交流电压,以保证加到LCD两端的交流电压平均值为零。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Gate IC 驱动
電壓
Gate1 Gate2
電壓波形圖
畫面更新頻率約為60Hz (16.67 ms)
Gate599 Gate600
第N-1個畫面
第N個畫面
第N+1個畫面
Blanking
Gate IC 相關訊號與訊號
CPV: Gate内部移位寄存器所需之clock. STV:使Gate输出的触发讯号 OE:为High时,所有Gate output为Low.(避免同时开启两条Gate line) XON:为Low时,所有Gate output为High.(关机时清除所有
现在我们量产的架构---Samsung 46寸
1.T-CON与主IC集成在一块, 省一颗T-CON的钱(主IC的价 格略有上升) 2.主板与Source板的连接线用 FFC线(比LVDS便宜)
80 PIN FFC X 2 转接板 PGAMMA
VCOM OP
PMU
BL Driver
64 PIN FFC
接着关闭第一行,电压已经固定,所以显示颜色也已固定。开启第二行, 其余仍保持关闭。依此类推,可完成整个画面之显示。
颜色深度(Color depth):LCD可显示的颜色数目
Gray Scale 0 Red Green Blue White
8
16
24
32
40
48
56
63
对6 bit显示器而言, 共可以显示26x 26x 26= 262,144 对8bit显示器而言, 共可以显示28x 28x 28 = 16,777,216
----
---++++ Vpixel (TFT侧电极) 正极性驱动 Vpixel > Vcom
++++ ---Vpixel 负极性驱动 Vpixel < Vcom
面板的各种极性变换方式
1.为什么需要极性变换 由于液晶分子还有一种特性,就是不能够一直固定在某一个电压不变, 不然 时间久了, 你即使将电压取消掉, 液晶分子会因为特性的破坏, 而无法再因应电 场的变化来转动, 以形成不同的灰阶. 所以每隔一段时间, 就必须将电压恢复原 状, 以避免液晶分子的特性遭到破坏. 2.怎么进行极性变换 显示电压就分成了两种极性, 一个是正极性, 而另一个是负极性. 当显示 电极的电压高于common电极电压时, 就称之为正极性. 而当显示电极的电 压低于common电极的电压时, 就称之为负极性
STV Pull-up Control Circuit
1 stage GOP
Pull-up Output Circuit Pull-down Output Circuit Pull-up Output Circuit Pull-down Output Circuit Pull-up Output Circuit Pull-down Output Circuit GL1
: 一帧画面的起始信号,频率为60Hz; : 数据从源驱动器到显示屏的输出信号,周期为 1行频,周期为14.8us方波; POL : 数据即行反转信号,为了防止液晶老化,而在液 晶上的电压要求反转,频率为60Hz方波; CPV1,2,3: 栅的移动信号,周期是3倍行频44.4us方波。 STV TP
Timing Controller(集成在MS801T 主机芯片上)
T/CON的定义: T/CON : Timing Controller的缩写 从Video Card出来的要在TFT-LCD显示屏上显示的数据 在 TCON 中经过变换生成显示的数据信号和驱动器的控制信号
T/CON输入输出信号: 1.LVDS (Low Voltage Differential Signaling) TCON 输出信号: 1. 2Ports/6 Pairs/ 8 bits Mini-LVDS; 2. 控制信号STV,TP, POL,CPV1,CPV2,CPV3; 3. I2C 总线设备控制读写信号:SDA ,SCL,WP
OD (Over drive)
OD (Over drive)
OD (Over drive)
面板驱动
面板驱动
Source IC 驱动
Source driver --- Half AVDD
半压电路,其实就是在AVDD to GND之间再建立一个电压准位置,同时降低压差, 减少电流,从而降低Source driver温度。 这个电压准位的选择一般是介于组成白电压的两个电压之间。这个电压可以用电阻 分压的方式取得,但是必须经过OP将电流放大,才能满足driver需求;或是通过 Buck电路来得到此值。

1080
偏光板Polarizer
液晶分子可改变光的极化状态,穿过扭曲液晶时,光线被液晶分子扭转 90度。通过TFT电压控制开关来控制液晶分子两端的电压,不同压差下有不同 穿透率,极化程度也相应改变,从而达到控制光线的强弱的目的。
彩色滤光片
彩色滤光片为液晶显示器彩色化的关键组件,透过彩色滤光 片才能使高灰阶的液晶显示器达到全彩色化,所以彩色滤光片之作用在 于利用滤光的方式产生RGB三原光,再将三原光以不同的强弱比例混合 而呈现各种色彩,使LCD显示出全彩.
.
29.7us
17.3us
2.7us
14.8us
41.7us
3.3V
2.7us
17.3us 29.6us 41.7us 2.7us 20us 41.7us 41.7us
GOP #1
RESET
GL1
Pull-down Control Circuit
CARRY GL2
GOP #2
RESET CARRY
Pull-up Control Circuit Pull-down Control Circuit Pull-up Control Circuit Pull-down Control Circuit
面板的各种极性变换方式 Common电极的电压是一直固定不变驱动方式
Common电极的电压是一直固定不动的, 而显示电极的电压却是依照其灰阶的不 同, 不停的上下变动
面板的各种极性变换方式
为了达到极性不停变换这个目的, 我们也可以让common电压不停的变动, 同样也 可以达到让Clc两端的压差绝对值固定不变, 而灰阶也不会变化的效果, 而这种方 法, 就是图6所显示的波形变化. 这个方法只是将common电压 一次很大, 一次很 小的变化. 当然啦, 它一定要比灰阶中最大的电压还大, 而电压小的时候则要比灰 阶中最小的电压还要小才行. 而各灰阶的电压与图5中的一样, 仍然要一次大一次 小的变化.
做个转向的动作
加电压后转向改变
液晶亮度的控制原理
光源
垂直偏光板
玻璃电极
液晶
玻璃电极
水平偏光板
Scan G Data S D
三. TFT-LCD 显示原理
TFT结构
S1
S2
S3
Sn-1 Sn
G1
G2 G3 TFT Source 线 Gate线 液晶电容 储存电容
Gm-1
Gm
dot
Pixel
每个像素均由三种 颜色红(R)绿(G)蓝 (B)的小光点(dot) 构成
True color
256 color
整块面板的等效电路
16.67ms/Vtt(1125)=14.8 us
Cs(storage capacitor)储存电容的架构
液晶极性反转驱动
•液晶必须以交流信号驱动 •长时间维持某一极性,液晶分子可能受到破坏
VCOM (CF側電極) ---++++
VCOM ++++
圖像顯示原理
電腦顯示之圖像均是由一個個的像素(pixel)構成
混色效果 分别控制RGB dot亮度,自由组成各种图案
三角形越大所能显示的颜色越丰富
TFT LCD的显示方式
Scan Line
ON OFF
TFT
玻璃电极 OFF
OFF
Data Line
先开启第一行,其余关闭。
OFF
ON
OFF
OFF
TFT LCD显示器面板
Polarizer 偏光板 LC cell CF TFT Polarizer 偏光板 PCBA Light Guide(导光板) Led Light Bar
TFT LCD相关名词
• LC:Liquid Crystal液态晶体。 • CF:Color Filter彩色滤光片。分R、G、B三种颜 色 的滤光片。 • B/L:Back light背光。 • L/G:Light Guide导光板。 • data line:数据线,进行数据的传输。 • scan line :扫描线,控制TFT的开关。 控制TFT上的电晶 体是on/off。On时,资料可以传 输;off时,资料不能传 1920 输。
信号输出到Open-Cell 上的 X-Board,驱动Panel
二 TFT-LCD 基础知识
TFT LCD 的相关知识
• TFT LCD:Thin Film Transistor Liquid Crystal Display 超薄膜晶体管液晶显示器 和传统的CRT比较,优点如下: 1.体积小,重量轻,耗电量小; 缺点: 1.响应速度慢,运动图像拖尾; 2.操作温度范围有限制; 3.需要背光源。
source data) VGH:TFT-LCD turn on voltage VGL:TFT-LCD turn off voltage VDD: Digital power
Gate driver輸出波形圖
Gate Drive 硬體架構
Gate IC驱动
一、 GOA Circuit (1)
相关文档
最新文档