细胞信号转导异常与疾病PPT

合集下载

细胞信号转导异常与疾病

细胞信号转导异常与疾病

2.自身免疫性受体病: 因体内产生抗受体的自身抗体而引 起的疾病。分为阻断性抗体(干扰配体 与受体结合,导致细胞对配体反应性降 低);刺激性抗体(引起细胞对配体反 应性增强)。
⑴ 重症肌无力:
重症肌无力是一种神经肌肉间传递功能障碍的自 身免疫病,主要特征为受累横纹肌稍行活动后即迅速 疲乏无力,经休息后肌力有不同程度的恢复。正常时, 当N冲动抵达N末梢时,N末梢释放乙酰胆碱(Ach), Ach 与骨骼肌的运动终板膜表面的烟碱型乙酰胆碱 ( n-Ach )受体结合,使受体构型改变,离子通道开 放,Na+内流,形成动作电位,肌纤维收缩。
(二 )
受体异常:
因受体的数量、结构或调节功能的变
化,使之不能介导配体在靶细胞中应有的效
应, 所引起的疾病称为受体病或受体异常。
受体的异常可表现为靶细胞对配体刺激
的反应减弱;靶细胞对配体刺激的反应过度。
二者均可导致细胞信号转导障碍,进而影响
疾病发生发展。
1.遗传性受体病: 由于编码受体的基因突变,使受 体缺失、减少或结构异常而引起的 疾病。
⑵ β3肾上腺素受体与肥胖: β3肾上腺素受体(β3 -AR) 存在于脂肪细胞上,是 参与能量代谢及脂肪分解作用的重要受体。 β3 –AR 基因定位第八号染色体上,由480个氨基酸组成。 β3 –AR主要作用:氧化分解脂肪,去除体内过多的能量,调 节机体产热(当激动剂与β3 -AR 结合→Gs →AC ↑ → cAMP↑→PKA ↑,使甘油三脂分解为脂肪酸→进一步 氧化释放能量及热量)。 发现50%以上肥胖患者有编码β3 -AR第64位密码 子发生错义变异,使TGG(色氨酸)变为CGG(精氨酸), β3 肾上腺素受体功能↓,可使体内脂肪堆积,导致肥胖。 也与糖尿病、高血压有关。

第十二章细胞的信号转导ppt课件

第十二章细胞的信号转导ppt课件

医学细胞生物学
细胞的信号转导
Ligand
Receptor
Ion channel
Receptor
Kinase
Second messenger
Transcription factor
Gene Transcription
医学细胞生物学
第一节 细胞外信号
医学细胞生物学
化 学 信 号 分 子 的 类 型
Gs:刺激性G蛋白; Rs Gi:抑制性G蛋白;Ri Gt:与激活磷酯酶C的受体偶联; Go:与控制Ca2+通道的受体偶联; Gp:与激活磷酸二酯酶的受体偶联;
医学细胞生物学
第二节 受体
• G蛋白:
Ligand GTP
ab
PLC
g
GDP
AC
医学细胞生物学
第二节 受体
医学细胞生物学
第二节 受体
• 3.酪氨酸蛋白激酶受体: • 一条单次跨膜的多肽链 • 配体结合区域为胞外区 • 胞内区具有酪氨酸激酶
后作用于 Ras蛋白、AC和多种磷脂酶等。 • 2. 非受体型PTK: • 1)具有SH2/SH3结构域,游离于胞质中 • 2)与非催化型的受体耦联 • 3)与受体结合后被激活,进一步激活下游蛋白,
如STAT转录因子家族。
医学细胞生物学
第四节 信号转导与蛋白激酶
• 三、丝氨酸/苏氨酸激酶(STK) • 通过变构激活丝氨酸/苏氨酸残基磷酸化 • 磷酸化调节有放大级联效应,可逆性 • 作用底物:PKA(protein kinase A)、PKC、
神经传导、激素作用过程和感觉细胞中广 泛发挥作用
医学细胞生物学
G-protein
(Gliman和Rodbell,1994对G蛋白研究获诺贝尔奖)。

第十一章细胞信号转导与疾病

第十一章细胞信号转导与疾病
汪思 应
Outline
1. Background 2. Concepts of Cell communication and cell
signaling transduction¤ 3. Components of cell signaling system 4. Extracellular signal trans-membrane
2. Receptor proteins –are specific( membrane) proteins, which are able to recognize and bind to corresponding ligand molecules, become activated, and transduce signal to next signaling molecules,or communications with transducer on the inside of the cell.
细胞信号转导障碍与肿瘤绝大多数的癌基因表达产物都是细胞信号转导系统的组成部分可从多个环节干扰细胞信号转导过程导致肿瘤细胞增殖和分化异常
细胞信号转导障碍与疾病
Cellular Signal Transduction and Diseases
Basic Medical College Anhui Medical University
Cell-to-cell communicationis absolutely essential for multicellular organisms
Cell Communication Styles
分泌化学信号进行通讯 (chemical signaling) 内分泌(endocrine)旁分泌(paracrine) 自分泌(autocrine)化学突触(chemical synapse)

十八章细胞信号转导异常与疾病

十八章细胞信号转导异常与疾病

病毒性感染性疾病与G蛋白偶联受体的关系 HIV感染中: 趋化因子受体CXCR4(属G蛋白偶联受体) 是HIV进入CD4+细胞的辅受体; CCR5是HIV进入巨噬细胞的辅受体 当其缺失突变对HIV感染具有抵抗。
五、G蛋白偶联受体与药物成瘾性疾病
吗啡类药物的镇痛作用和成瘾性是 通过G蛋白偶联受体而完成其信号传导过程的。
α1AB/ET/AT
α2 Gi
M2 Gi
Gq/G 11
组织分布
心脏
心脏 血管 肺肾
同前
心脏 脂肪
AC
同前
心脏 血管平滑肌
PLCβ
升高DAG/IP3 及PKC/MAPK 同前 血管紧张素 内皮素
冠状动脉 中枢神经 胰 血小板
AC
降低 cAMP/PKA 同前
心脏
ห้องสมุดไป่ตู้
心脏中的效 应分子
主要信号
AC, L型钙通道
活性升高 活性升高
R:Arg;W:Trp;Q:Gln
四、G蛋白偶联受体与感染性疾病
信号传导过程受到细菌外毒素的干扰,使受累细胞功 能异常。(霍乱毒素、破伤风毒素、百日咳毒素) 霍乱(cholera): 实质是细胞内cAMP含量急剧升高所致。 霍乱毒素cholera toxin CT:A、B亚基组成 A亚基为CT的毒性部分,A、B结合无毒性作用,A 亚基释放才能发挥作用; 小肠粘膜上皮细胞膜表面的GM1是CT的受体,CT的 B亚基与膜上的GM1结合,释放A亚基,进入细胞产生 毒性作用。
第二节 G蛋白偶联型受体异常与疾病
一、G蛋白偶联受体与心血管疾病的关系 研究广泛深入 G蛋白偶联型受体: 肾上腺素能受体Adrs 毒蕈碱性胆碱能受体Ms 对心脏功能重要。 药物治疗(阻断剂)应用某些机制与此有关。

信号转导教学课件ppt

信号转导教学课件ppt

G蛋白偶联受体信号转导的通路
01
GPCR与配体结合后,引起G蛋白的活化,释放出GDP并替换为GTP,进而引起 下游效应分子的激活。
02
G蛋白可激活多种效应分子,如AC、PLC等,进而产生第二信使分子,如cAMP 和DAG,进一步调节细胞的生物学效应。
03
GPCR信号转导通路还包括抑制性通路和非抑制性通路,抑制性通路通过降低细 胞内cAMP水平来抑制细胞活动,而非抑制性通路则通过激活PLC并产生DAG和 IP3来促进细胞活动。
分类
根据结构和功能,细胞因子可分为白细胞介素(IL)、干扰素 (IFN)、肿瘤坏死因子(TNF)、集落刺激因子(CSF)等。
细胞因子受体的结构与功能
结构
细胞因子受体是一类跨膜蛋白,由胞内区和胞外区组成,胞内区具有酪氨酸 激酶活性。
功能
细胞因子受体通过与相应配体结合,传递信号至细胞内,触发一系列生物学 反应,如增殖、分化、凋亡等。
磷酸化
激活的受体通过磷酸化修饰,进一 步激活下游信号分子。
酶联型受体信号转导的通路
MAPK通路
酶联型受体激活后,通过MAPK通路传递信号,引发细胞反应。
JAK-STAT通路
酶联型受体激活后,通过JAK-STAT通路传递信号,调节细胞增殖和分化。
04
细胞因子信号转导
细胞因子的定义与分类
定义
细胞因子是由免疫细胞和非免疫细胞产生的一类小分子可溶 性蛋白,具有调节免疫应答和炎症反应等多种生物学功能。
信号转导与药物研发
了解信号转导的机制有助于开发新的药物,针对异常的信号转导过程进行干预和 治疗。
06
信号转导研究方法
基因敲除与敲入技术
基因敲除技术
利用同源重组或转座子等技术,将特定基因从染色质中剔除 ,以研究基因功能。

细胞信号转导异常与疾病(ppt)

细胞信号转导异常与疾病(ppt)

细胞信号:
• 生物细胞所接受是的信号既可以物理信号(光、 热、电流),也可以是化学信号,但是在有机 体间和细胞间的通讯中最广泛的信号是化学信 号。
• 化学信号一般通过受体起作用,故又称为配体 (ligand),从产生和作用方式来看可分为内 分泌激素、神经递质、局部化学介导因子和气 体分子等。
• 一种配体常可以有两种以上的受体。
细胞信号转导异常 与疾病(ppt)
(优选)细胞信号转导异常与 疾病
Cell signal transduction
signal
cell
Biological change
Proliferation Differentiation
Metabolism Function Stress Apoptosis
GDP
G
GTP
G
◆ G蛋白激活:GTP与Gα相结合 ◆ G蛋白失活:GTP酶水解GTP
激活态和失活态可以相互转化。
G蛋白活性的调节
受体
GDP
GDP G
G
GTP
效应蛋白 G
效应蛋白
GTP G
• G蛋白与激活态G蛋白的相互转换,在信号转 导的级联反应中起着分子开关的作用。当 GPCR被配体激活后, G 上的GDP被GTP所 取代,这是G蛋白激活的关键步骤。
oror lossdisease
第一节 细胞信号转导的概述
细胞信号转导的概念:(concept)
细胞通过位于胞膜或胞内的受体感受胞外信号分子的刺激, 经细胞内信号转导系统转换而影响其生物学功能的过程。
signal
cell
Biological change
Proliferation Differentiation

第八章细胞信号转导(0001)ppt课件

第八章细胞信号转导(0001)ppt课件
1A型: Gsα等位基因的单个基因突变; 有 AC相连的激素抵抗症(TSH、LH、FSH等) 1B型:Gs正常、仅对PTH抵抗
3、 肢端肥大症和巨人症
GH释放激素 Gs + AC cAMP
Adult?
GH分泌
child
三、细胞内信号转导分子、转 录因子异常与疾病
(一)NO与缺血-再灌注损伤 心肌缺血 NO合酶 NO cGMP PKG
家族性高胆固醇血症*
家族性肾性尿崩症
遗传性受体病
甲状腺素抵抗综合征*
重症肌无力
自身免疫受体病
自身免疫性甲状腺病
继发性受体异常
损伤性:膜磷脂分解 代偿性:ligand
家族性高胆固醇血症(familial hypercholesterolemia, FH)
LDL-R
1、合成障碍 2、转运障碍 数目
3、与配体结合障碍 4、内吞缺陷
21000~28000
位于细胞内
只有G α功能
(Ras ,微管蛋白 β亚基)
在将信号从细胞膜外传递至细胞核的过程中, Ras蛋白起着非常重要的作用。整个过程开 始于生长因子(如EGF或PDFG)等与各自
受体的细胞外功能域结合
G 蛋白介导的细胞信号转导途径
G蛋白
腺苷酸环化酶 (AC)
PLC β
DG-蛋白激酶C
cell
Vascular smooth muscle
cell
Vascular GC signal transduction system
cytokines CO
Ca2+
GTP
Ach-R arg
NO
synthase NO
sG
GRC
C cGM

第十二章细胞信号转导ppt课件

第十二章细胞信号转导ppt课件
➢ 激素(hormone):内分泌细胞分泌 特点:低浓度、长距离、长时效、全身性
➢ 神经递质:神经突触释放 特点:短距离、短时间
➢ 局部介质:各种细胞 旁分泌(paracrine)或自分泌(autocrine) 的生长因子、细胞因子、NO 特点:短距离、长时效
细胞内信号分子:传导方式
a. 2 b. 5 c. 4 d. 3
9、生长因子是细胞内的(
)。
a. 营养物质
b. 能源物质
c. 结构物质
d. 信息分子
比较题
1、酪氨酸蛋白激酶和丝氨酸/苏氨酸蛋白激 酶
2、磷脂酶C和蛋白激酶C
cAMP作用的靶分子
cAMP-PKA通路调节基因转录
cAMP信号传递模型
钙信号的消除
两种鸟 苷酸环 化酶: mGC、
(3)丝\苏氨酸激酶
通过变构而激活蛋白,催化底物蛋白丝\苏氨酸残 基磷酸化。 包括:蛋白激酶A(protein kinase A, PKA)、PKB、PKC、 PKG、CaMK和丝裂原激的蛋白激酶(mitogenactivated protein kianse, MAPK)、Raf-1等均属此类。
信号转导与信号传导(cell signalling)
➢ 信号转导强调信号的转换, 胞外信号转换为胞内信 号,包括即信号的识别与转换。
➢ 信号传导强调信号的传递,包括信号的产生、分泌 与传递
细胞通讯(cell communication):
细胞与细胞之间的信息交流
细胞通讯的几种方式
1.信号分子 2.细胞接触 或连接 3.细胞外基质
A 与配体有高度亲和力和特异性 B 受体与配体的结合有可逆性 C 受体与配体的结合有一定的数量限度 (饱 和性) D 立体构型决定受体的特异性 E 磷酸化与去磷酸化调节受体的活性

第12章 细胞信号转导(共63张PPT)

第12章 细胞信号转导(共63张PPT)
coupled receptor,GPCR)。
一条肽链糖蛋白 信息传递步骤: 激素与受体结合
受体蛋白的构象改变调节G 蛋白的活性
促进蛋白激酶活性,产生生 物学效应(细胞代谢、基因 转录的调控)
胞质内第二 信使浓度增 加
细胞膜上的酶活
化(AC 等)
❖ G蛋白偶联受体(G-protein coupled receptors, GPCR )作为人类 基因组编码的最大类别膜蛋白超家族,有800多个家族成员,与 人体生理代谢几乎各个方面都密切关联。它们的构象高度灵活, 调控非常复杂,天然丰度很低。
成纤维细胞生长因子(FGF)
血管内皮生长因子(VEGF)
功能:
配体受体结合
受体蛋白质 构象改变
使底物磷酸化,与细胞的增殖、 分化、癌变有关。
(存在自身磷酸化位点,调节酪 氨酸激酶活性)
(二)细胞内受体结构特征
❖ 胞内受体通常为由400~1000个氨基酸组成的单体蛋白,包括四个区域:
❖ ①高度可变区:位于N末端的氨基酸序列高度可变,长度不一,具有转录激活功能。 ❖ ②DNA结合区:其DNA结合区域由66~68个氨基酸残基组成,富含半胱氨酸残基
❖ ③PKA对基因表达的调节作用
表12-2PKA对底物蛋白的磷酸化作用
底物蛋白 核中酸性蛋白质 核糖体蛋白 细胞膜蛋白
微管蛋白 心肌肌原蛋白 心肌肌质网膜蛋白 肾上腺素受体蛋白β
磷酸化的后果
生理意义
加速转录
促进蛋白质合成
加速翻译
促进蛋白质合成
膜蛋白构象及功能改变 构象及功能改变
改变膜对水及离子的通 透性
,具两个锌指结构,由此可与DNA结合。 ❖ ③铰链区:为一短序列,可能有与转录因子相互作用和触发受体向核内移动的

细胞信号转导异常与疾病【最新版】

细胞信号转导异常与疾病【最新版】

细胞信号转导异常与疾病一、概述细胞信号转导系统由受体或能接受信号的其他成分以及细胞内的信号转导通路组成。

(一)细胞信号转导的基本过程和机制1、信号的接受和转导典型的信号转导过程是由受体接受信号,并启动细胞内信号转导通路的过程。

细胞受体分为膜受体和核受体。

大多数为膜受体-包括G蛋白耦联受体(GPCR)家族、酪氨酸蛋白激酶型受体或受体酪氨酸激酶(RTK)家族、细胞因子受体超家族、丝/苏氨酸蛋白激酶(PSTK)型受体、死亡受体家族(TNFR、Fas等)、离子通道型受体以及粘附分子(整合素等)。

细胞信号转导过程是由细胞内一系列信号转导蛋白的构象、活性或功能变化来实现的,通常具有活性和非活性两种形式。

控制信号转导蛋白活性的方式:①通过配体调节:例如,第二信使IP3能激活平滑肌和心肌内质网/肌浆网上作为Ca2+通道的IP3受体,使Ca2+通道开放。

cAMP和DAG 能分别激活PKA和PKC。

②通过G蛋白调节:G蛋白指的是能结合GTP或GDP,并具有内在GTPase活性的蛋白。

GTP结合是它们的活性形式,与GDP结合则关闭通路。

③通过可逆磷酸化调节:MAPK家族的激活机制都通过磷酸化的三级酶促级联反应。

2、信号对靶蛋白的调节:信号转导通路对靶蛋白调节的最重要的方式是可逆性的磷酸化调节。

3、膜受体介导的信号转导通路举例:G蛋白耦联受体家族:G蛋白可激活多条信号转导通路(1)刺激型G蛋白(Gs),激活腺苷酸环化酶(AC),引发cAMP-PKA 通路,PKA使多种蛋白质磷酸化。

(2)抑制型G蛋白(Gi),抑制AC活性,导致cAMP水平降低,导致与Gs相反的效应。

(3)通过Gq蛋白,激活磷脂酶C(PLCβ),产生双信使DAG和IP3。

DAG激活PKC;IP3可激活Ca2+通道。

④G蛋白-其他磷脂酶途径:GPCR还能激活磷脂酶A2,促进花生四烯酸、前列腺素、白三烯等的生成,以及磷脂酶D,产生磷脂酸和胆碱。

⑤激活MAPK家族成员的信号通路:激活MAPK,转入核内,调节转录因子活性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

㈡ 理化因素
体内某些信号转导成分是致癌物的作用靶点 机械刺激 电离辐射
㈢ 遗传因素
染色体异常 信号转导蛋白基因突变
信号转导蛋白数量改变 信号转导蛋白功能改变
失活性突变 如TSHR的失活性突变 TSH抵抗征 功能获得性突变 如TSHR的失活性突变 甲亢
显性负性作用(dominant negative effect):某些 信号转导蛋白突变后不仅自身无功能, 还能抑制或阻断野生型信号转导蛋白的 作用。这种作用被称为显性负性作用。 具有显性负性作用的突变体被称为显性 负性突变体(dominant negative mutant)。
GGs s
PKA
再循环
受体去磷酸化
低pH
溶酶体 降解
P
Gs GRK
PP
Β抑制蛋白
内吞
PP
Β抑制蛋白
当体内某种激素/配体剧烈变化时,受体的改变可缓 冲激素/配体的变动,以减少有可能导致的代谢紊乱和对 细胞的损害。但过度或长时间刺激,使靶细胞对配体反 应性改变,可导致疾病的发生或促进疾病的发展;亦可 造成长期应用某一药物时出现药效减退。
如霍乱弧菌引起的烈性肠道传染病
TLR (Toll-like Receptor)
果蝇中与胚胎发育有关的编码蛋白 TLR4(1998),哺乳动物与宿主免疫有关的同源蛋白
跨膜受体 胞外部分:富含亮氨酸重复序列 胞内部分:与IL-1受体相似
C pG-DNA
TLR-7,9 MyD88
真菌、酵母、细菌、螺 旋体、支原体脂蛋白
细胞 凋亡
NFB
炎症和 细胞激活
IKKMAPKຫໍສະໝຸດ STAT1,3STAT 1,2,4
NFB
MAPK
AP-1 JUN
APRF
ISGE STAT AAF
?
Ⅰ型急性期蛋白 Ⅱ型急性期蛋白 INF
图4
TLR及其下游通路假设
霍乱弧菌产生分泌的外毒素(霍乱毒素),有选择性 的催化Gsα亚基上的精氨酸201核糖化,使GTP酶活性丧 失,不能将GTP水解成GDP,从而使Gsα处于不可逆激活 状态,不断刺激AC生成cAMP,胞浆中的cAMP含量可增加至 正常的100倍以上,导致小肠上皮细胞膜蛋白构型改变, 大量氯离子和水分子持续转运入肠腔 ,引起严重腹泻 和脱水。
组成型激活突变(constitutively activated mutation) 某些信号转导蛋白在突变后获得了自 发激活和持续性激活的能力。
㈣免疫学因素
受体抗体产生的原因和机制 自身免疫性疾病:因体内产生抗受体的自身抗体而引
起的疾病。 @ 重症肌无力 @ 自身免疫性甲状腺病
抗受体抗体的产生机制尚不清楚
MyD88非依赖性诱导干扰素基因转录 IFN
TNF
IL-1
IL-6
IFN /
Cell 2
TNFR1 (P55)
TRADD
TNFR2 (P75)
TRAF2 TRAF1
IL-1R
IRAK TRAF6
IL-6R
JAK1,2 TyK2
IFNR
JAK1 TyK2
FADD RIP TRAF2
TAK1 Caspase TAB1
细胞信号转导异常与疾病
第一节 细胞信号转导系统概述
细胞通讯(cell communication):指一个细胞发
出的信息通过介质传递到另一个细胞产生相应反应 的过程。
细胞通讯主要有三种方式:
№1 细胞间隙连接 №2 膜表面分子接触通讯 №3 化学通讯
信号转导(signal transduction): 指外界信号
以GPCR介导的信号转导通路为例


Gs 激活AC Gi 抑制AC Gq 激活PLCβ G12 激活小G
蛋白RhoGEF 而激活小G 蛋白
1.通过Gs,激活AC,并引发cAMP-PKA途径
β肾上腺素能受体 胰高血糖素受体
激活Gs增加AC活性
cAMP
使许多Pr特定Ser/Thr残 基磷酸化从而调节物质 代谢和基因表达
从产生和作用方式来看可分为内分泌激素、 神经递质、局部化学介导因子和气体分子等四类。
受体:核受体 膜受体
G
控制信号转导蛋白活性的方式: 1.通过配体调节 2.通过G蛋白调节
蛋 白 分 子 开 关
3.通过可逆磷酸化调节
㈡信号对靶蛋白的调节
最重要的方式是可逆性的磷酸化调节
㈢膜受体介导的信号转导通路举例
PKA
促进心肌钙转运 心肌收缩性增强
增加肝脏 进入核内PKA 糖原分解 激活靶基因转录
2.通过Gi,抑制AC活性,导致cAMP水平降低,导致 与Gs相反的效应
3.通过Gq蛋白,激活PLCβ,产生双信使DAG和IP3
4.G蛋白-其他磷脂酶途径 5.激活MAPK家族成员的信号通路 6.PI-3K-PKB通路
7.离子通道途径
二、细胞信号转导系统的调节
主要介绍受体调节
1.受体数量的调节 向下调节:受体数量减少 向上调节:受体数量增多 机制: 受体合成速度和/或分解速度变化 膜受体介导的内吞与受体的再循环 受体的位移或活性部位的暴露
配体与受体之间还存在异源性调节
2.受体亲和力调节
受体磷酸化与脱磷酸化
脱敏:受体接触激素/配体一定时间后其功能减退, 对特定配体的反应性减弱。
高敏:受体接触激素/配体一定时间后其功能增强, 对特定配体的反应性增强。
第二节 信号转导异常的原因和机制
一、信号转导异常的原因
㈠ 生物学因素
通过Toll样受体介导
在病原体感染和炎症反应中起重要作用
干扰细胞内信号转导通路
(如光、电、化学分子)与细胞细胞表面受体作用, 通过影响细胞内信使的水平变化,进而引起细胞应 答反应的一系列过程。
不同信号转导通路之间存在交差对话(cross talk)
一、细胞信号转导的基本过程和机制
㈠信号的接受和转导
细胞信号分子: 生物细胞所接受的信号既可以使物理信号(光、
热、电流),也可以是化学信号,但是在有机体间 和细胞间的通讯中最广泛的信号是化学信号。
TLR-1,6,10? TLR-2 MyD88 TIRAP
Cell
1
MAPKK
IRAK TRAF6
MAPK (ERK, P38, JNK)
LPS
TLR-4 (TRIF?) MyD88 TIRAP
病毒 dsRNA
TLR-3 TRIF
IKK IB/NFB
IRF-3
MyD88依赖性炎症基因转录 IFN TNF IL-1 IL-6
相关文档
最新文档