概率论第三章第四章习题及答案
概率论~第三章习题参考答案与提示

第三章 习题参考答案与提示
第三章 随机变量的数字特征习题参考答案与提示
22.已知 X 、 Y 分别服从正态分布 N (0,32 ) 和 N (1,42 ) ,且 X 与Y 的相关系数 ρ XY = −1/ 2 ,设 Z = X / 3 + Y / 2 ,求:
(1)求数学期望 EZ ,方差 DZ ; (2)Y 与 Z 的相关系数 ρYZ ; 答案与提示:本题要求熟悉数学期望、方差、协方差的性质、计算及有关正态 分布的性质。
X
Y
0
1
0
0.1
0.2
1
0.3
0.4
求:(1) EX , EY , DX , DY ;
(2)( X , Y )的协方差,相关系数,协方差阵,相关阵。
答案与提示: (1) EX = 0.7 , DX = 0.21, EY = 0.6 , DY = 0.24 。
(2) EXY = 0.4 ; Cov ( X ,Y ) = −0.02 , ρXY = 0.089 ;
(1) X 的概率密度;
(2)Y = 1 − 2 X 的概率密度。
答案与提示:考查服从正态分布随机变量的概率密度的一般表达形式、参数的
几何意义及正态分布随机变量的性质。
(1) f (x) = 1 e−(x−1.7)2 /6 (−∞ < x < +∞) 6π
(2) f ( y) = 1 e−( y+2.4)2 / 24 2 6π
概率论整理答案

第1章 随机变量及其概率1,写出下列试验的样本空间:(1)连续投掷一颗骰子直至6个结果中有一个结果出现两次,记录投掷的次数。
(2)连续投掷一颗骰子直至6个结果中有一个结果接连出现两次,记录投掷的次数。
(3)连续投掷一枚硬币直至正面出现,观察正反面出现的情况。
(4)抛一枚硬币,若出现H 则再抛一次;若出现T ,则再抛一颗骰子,观察出现的各种结果。
解:(1)}7,6,5,4,3,2{=S ;(2)},4,3,2{ =S ;(3)},,,,{ TTTH TTH TH H S =;(4)}6,5,4,3,2,1,,{T T T T T T HT HH S =。
2,设B A ,是两个事件,已知,125.0)(,5.0)(,25.0)(===AB P B P A P ,求)])([(),(),(),(______AB B A P AB P B A P B A P ⋃⋃。
解:625.0)()()()(=-+=⋃AB P B P A P B A P ,375.0)()(])[()(=-=-=AB P B P B A S P B A P ,875.0)(1)(___--=AB P AB P ,5.0)(625.0)])([()()])([()])([(___=-=⋃-⋃=-⋃=⋃AB P AB B A P B A P AB S B A P AB B A P 5,袋中有5只白球,4只红球,3只黑球,在其中任取4只,求下列事件的概率。
(1)4只中恰有2只白球,1只红球,1只黑球。
(2)4只中至少有2只红球。
(3)4只中没有白球。
解: (1)所求概率为338412131425=C C C C ; (2) 所求概率为165674952014124418342824==++C C C C C C ; (3)所求概率为16574953541247==C C 。
6,一公司向M 个销售点分发)(M n n <张提货单,设每张提货单分发给每一销售点是等可能的,每一销售点得到的提货单不限,求其中某一特定的销售点得到)(n k k ≤张提货单的概率。
最新概率论与数理统计第三章习题及答案

概率论与数理统计习题 第三章 多维随机变量及其分布习题3-1 盒子里装有3只黑球、2只红球、2只白球,在其中任取4只球.以X 表示取到黑球的只数,以Y 表示取到红球的只数,求X 和Y 的联合分布律.(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=353472223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=0习题3-2 设随机变量),(Y X 的概率密度为⎩⎨⎧<<<<--=其它,0,42,20),6(),(y x y x k y x f(1) 确定常数k ; (2) 求{}3,1<<Y X P (3) 求{}5.1<X P ; (4) 求{}4≤+Y X P . 分析:利用P {(X , Y)∈G}=⎰⎰⎰⎰⋂=oD G Gdy dx y x f dy dx y x f ),(),(再化为累次积分,其中⎪⎭⎪⎬⎫⎪⎩⎪⎨⎧<<<<=42,20),(y x y x D o解:(1)∵⎰⎰⎰⎰+∞∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴81=k (2)83)6(81)3,1(321⎰⎰=--=<<dy y x dxY X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤⎰⎰dy y x dx Y X P X P (4)32)6(81)4(4020=--=≤+⎰⎰-dy y x dxY X P x习题3-3 将一枚硬币掷3次,以X 表示前2次出现H 的次数,以Y 表示3次中出现H 的次数,求Y X ,的联合分布律以及),(Y X 的边缘分布律。
概率论第三章习题及答案

02
题目8
一个盒子里有100个球,其中红球有30个,蓝球有40个,黄球有20个,
绿球有10个。随机抽取一个球并记录其颜色,然后放回盒子中。连续抽
取三次,求三次抽取中抽到红球的次数的期望值。
03
题目9
一个袋子中有5个红球和5个蓝球,从中随机抽取3个球,求抽取到红球
的个数X的分布律。
02 答案部分
基础题目答案
在处理复杂事件时,应先分解 为简单事件,再根据概率的加
法原则进行计算。
注意区分必然事件和不可能事 件,它们在概率论中具有特殊
地位。
知识点回顾与巩固
知识点回顾 概率的基本性质:概率具有非负性、规范性、有限可加性。
事件的独立性及其性质。
知识点回顾与巩固
条件概率的定义及其性质。 贝叶斯公式的应用场景和推导方法。
挑战题目解题思路与技巧
总结词
综合运用知识
详细描述
对于挑战题目,需要综合运用概率论中的知识,如随机变量的分布、随机过程的性质等。 要能够准确理解题目的背景和要求,构建合适的概率模型,并运用适当的数学方法进行求 解。
示例
题目问的是“一个袋子中有3个红球和2个白球,每次从中随机取出1个球并放回,连续取 5次。求取出的5个球中至少有3个红球的概率。”解题时,应先计算取出的5个球中都是 白球的概率,再用1减去这个概率,得出至少有3个红球的概率。
未来学习计划与展望
• 学习随机过程的基本概念和性质,了解常见的随 机过程如泊松过程、马尔可夫链等。
未来学习计划与展望
展望
学习概率论与其他数学分支的交叉知识,如统计学、线 性代数等。
将概率论的知识应用于实际问题和科学研究,加深对理 论知识的理解和掌握。
概率论第三章课后习题答案_课后习题答案

第三章 离散型随机变量率分布。
,试写出命中次数的概标的命中率为目;设已知射手每次射击射击中命中目标的次数指示射手在这三次独立以本空间上定义一个函数验的样本空间;试在样作为试验,试写出此试察这些次射击是否命中三次独立射击,现将观一射手对某目标进行了7.0.1.343.0441.0189.0027.03210027.0)7.01()()0()0(189.0)7.01()7.01(7.03)(3)1()1()1()1(441.0)7.01(7.07.03)(3)2()2()2()2(343.0)7.0()()3()3()(0)(1)()()(2)()()(3)(},,,{)},,(),,,(),,,(),,,(),,,(),,,(),,,(),,,{(3,2,1332183217653214323321187654321821321321321321321321321321⎪⎪⎭⎫ ⎝⎛=-======-⨯-⨯⨯===+=+====-⨯⨯⨯===+=+===================Ω==的分布列为所以,,则简记为将,,则代表击中目标的次数,令则次射中”,“第解:设ξξξξξξξξξξξξξξωξωξωξωξωξωξωξωξωξξωωωA A A P P P A A A P P P P P A A A P P P P P A A A P P P A A A A A A A A A A A A A A A A A A A A A A A A i i A i i i。
出的废品数的概率分布前已取个,求在取得合格品之不再放回而再取来使用,若取得废品就个这批零件中任取个废品,安装机器时从个合格品、一批零件中有1139.2118805499101112123)3(132054109112123)2(13227119123)1(129)0(32101919110111111211213110191111211213111191121311219=⨯⨯⨯=⋅⋅⋅===⨯⨯=⋅⋅===⨯=⋅=====C C C C C C C C P C C C C C C P C C C C P C C P ξξξξξξ,,,可能取值为:代表废品数,则解:令.1188054132054132271293210⎪⎪⎭⎫ ⎝⎛的分布列为所以,ξ废品数的概率分布。
概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解(1)100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯=(2)由数学期望的性质有(2)223.2E R ER πππ==(3)因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得 2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差(参看习题二第16题)。
概率论与数理统计习题及答案9537405

第一章 概率论的基本概念1. 设C B A ,,为三个随机事件,用C B A ,,的运算表示下列事件: (1)、C B A ,,都发生; (2)、B A ,发生, C 不发生;(3)、C B A ,,都不发生;(4)、B A ,中至少有一个发生而C 不发生; (5)、C B A ,,中至少有一个发生; (6)、C B A ,,中至多有一个发生; (7)、C B A ,,中至多有两个发生; (8)、C B A ,,中恰有两个发生。
2. 设C B A ,,为三个随机事件, 已知:3.0)(=A P ,8.0)(=B P ,6.0)(=C P ,2.0)(=AB P ,0)(=AC P ,6.0)(=BC P 。
试求)(B A P ⋃,)(B A P ,)(C B A P ⋃⋃。
3. 将一颗骰子投掷两次, 依次记录所得点数, 试求: (1)、两次点数相同的概率;(2)、两次点数之差的绝对值为1的概率; (3)、两次点数的乘积小于等于12的概率。
4. 设一袋中有编号为1, 2, 3, ⋅ ⋅ ⋅, 9的球共9只, 某人从中任取3只球, 试求:(1)、取到1号球的概率; (2)、最小号码为5的概率;(3)、所取3只球的号码从小到大排序,中间号码恰为5的概率; (4)、2号球或3号球中至少有一只没有取到的概率。
.5. 已知3.0)(=A P ,4.0)(=B P ,2.0)(=AB P ,试求:(1) )|(A B P ; (2))|(B A P ; (3))|(B A B P ⋃; (4))|(B A B A P ⋃⋃。
6. 设有甲、乙、丙三个小朋友, 甲得病的概率是0.05, 在甲得病的条件下乙得病的概率是0.40, 在甲、乙两人均得病的条件下丙得病的条件概率是0.80, 试求甲、乙、丙三人均得病的概率。
7. 设某人按如下原则决定某日的活动: 如该天下雨则以0.2的概率外出购物,以0.8的概率去探访朋友; 如该天不下雨,则以0.9的概率外出购物,以0.1的概率去探访朋友。
《概率论》数学3章课后习题详解

概率论第三章习题参考解答1. 如果ξ服从0-1分布, 又知ξ取1的概率为它取0的概率的两倍, 求ξ的期望值 解:由习题二第2题算出ξ的分布率为ξ0 1 P1/32/3因此有E ξ=0×P (ξ=0)+1×P (ξ=1)=2/3+2η, ξ与η的分布律如下表所示:: 求周长的期望值, 用两种方法计算, 一种是利用矩形长与宽的期望计算, 另一种是利用周长的分布计算.解: 由长和宽的分布率可以算得E ξ=29×P (ξ=29)+30×P (ξ=30)+31×P (ξ=31) =29×0.3+30×0.5+31×0.2=29.9E η=19×P (η=19)+20×P (η=20)+21×P (η=21) =19×0.3+20×0.4+21×0.3=20 由期望的性质可得E ζ=2(E ξ+E η)=2×(29.9+20)=99.8而如果按ζ的分布律计算它的期望值, 也可以得E ζ=96×0.09+98×0.27+100×0.35+102×0.23+104×0.06=99.8 验证了期望的性质.4. 连续型随机变量ξ的概率密度为⎩⎨⎧><<=其它)0,(10)(a k x kx x aϕ又知Eξ=0.75, 求k 和a 的值。
解: 由性质⎰+∞∞-=1)(dx x ϕ得111)(|10110=+=+==++∞∞-⎰⎰a kx a k dx kx dx x a aϕ即k =a +1(1)又知75.022)(|10211=+=+===+++∞∞-⎰⎰a kx a k dx kx dx x x E a a ϕξ得k =0.75a +1.5(2)由(1)与(2)解得0.25a =0.5, 即a =2, k =36. 下表是某公共汽车公司的188辆汽车行驶到发生一次引擎故障的里程数的分布数列.若表中各以组中值为代表. 从188辆汽车中, 任意抽选15辆, 得出下列数字: 90, 50, 150, 110, 90, 90, 110, 90, 50, 110, 90, 70, 50, 70, 150. (1)求这15个数字的平均数; (2) 计算表3-9中的期望并与(1)相比较.解: (1) 15个数的平均数为(90+50+150+110+90+90+110+90+50+110+90+70+50+70+150)/15 = 91.33 (2) 按上表计算期望值为(10×5+30×11+50×16+70×25+90×34+110×46+130×33+150×16+170×2)/188 =96.177. 两种种子各播种300公顷地, 调查其收获量, 如下表所示, 分别求出它们产量的平均值解: 假设种子甲的每公顷产量数为, 种子乙的每公顷产量数为, 则 E ξ=(4500×12+4800×38+5100×40+5400×10)/100=4944 E η=(4500×23+4800×24+5100×30+5400×23)/100=49598. 一个螺丝钉的重量是随机变量, 期望值为10g , 标准差为1g . 100个一盒的同型号螺丝钉重量的期望值和标准差各为多少?(假设各个螺丝钉的重量相互之间独立) 解: 假设这100个螺丝钉的重量分别为ξ1, ξ2,…, ξ100, 因此有E ξi =10, Dξi =102=12=1, (i =1,2,…,100), 设ξ为这100个螺丝钉的总重量,因此∑==1001i i ξξ,则ξ的数学期望和标准差为gD D D kgg E E E i ii i i i i i 1011001)(1000101001001100110011001=⨯==⎪⎭⎫⎝⎛====⨯==⎪⎭⎫ ⎝⎛=∑∑∑∑====ξξξσξξξξ9. 已知100个产品中有10个次品,求任意取出的5个产品中次品数的期望值.解: 假设ξ为取出5个产品中的次品数, 又假设ξi 为第i 次取出的次品数, 即, 如果第i 次取到的是次品, 则ξi =1否则ξi =0, i =1,2,3,4,5, ξi 服从0-1分布,而且有 P {ξi =0}=90/100, P {ξi =1}=10/100, i =1,2,3,4,5因此, E ξi =10/100=1/10, 因为∑==51i iξξ因此有5.010155151=⨯==⎪⎭⎫ ⎝⎛=∑∑==i i i i E E E ξξξ10. 一批零件中有9个合格品和3个废品, 在安装机器时, 从这批零件中任取一个, 如果取出的是废品就不再放回去. 求取得第一个合格品之前, 已经取出的废品数的数学期望和方差. 解: 假设在取到第一个合格品之前已取出的废品数为ξ, 则可算出0045.02201101112123}3{041.02209109112123}2{2045.0119123}1{75.0129}0{==⋅⋅====⋅⋅===⋅=====ξξξξP P P P因此有319.009.0409.0)(409.090045.04041.02045.03.030045.02041.02045.0222===-==⨯+⨯+==⨯+⨯+=ξξξξξE E D E E11. 假定每人生日在各个月份的机会是同样的, 求3个人中生日在第一个季度的平均人数. 解: 设三个随机变量ξi ,(i =1,2,3), 如果3个人中的第i 个人在第一季度出生, 则ξi =1, 否则ξi =0, 则ξi 服从0-1分布, 且有 P (ξi =1)=1/4, 因此E ξi =1/4, (i =1,2,3)设ξ为3个人在第一季度出生的人数, 则ξ=ξ1+ξ2+ξ3, 因此Eξ=E (ξ1+ξ2+ξ3)=3Eξi =3/4=0.7512. ξ有分布函数⎩⎨⎧>-=-其它1)(x e x F xλ, 求E ξ及D ξ. 解: 因ξ的概率密度为⎩⎨⎧>='=-其它)()(x e x F x xλλϕ, 因此 ()λλλϕξλλλλλ11)(0=-=+-=-===∞+-∞+-∞+-+∞-+∞-+∞∞-⎰⎰⎰⎰xx xxxe dx e xe e xd dx ex dx x x E()2220222222)(|λξλλϕξλλλλ==+-=-===⎰⎰⎰⎰∞+-∞+-+∞-+∞-+∞∞-E dx xe ex e d x dx ex dx x x E x x x x22222112)(λλλξξξ=-=-=E E D13. ⎪⎩⎪⎨⎧<-=其它1||11)(~2x x x πϕξ, 求E ξ和D ξ.解: 因φ(x )是偶函数, 因此Eξ=0,则D ξ=Eξ2-(Eξ)2=Eξ2 因此有⎰⎰-===+∞∞-1222212)(dx xx dx x x E D πϕξξ令θθθd dx x cos ,sin ==则上式=2112sin 21212cos 2sin 12||20202022=+=+=⎰⎰ππππθπθπθθπθθπd d 即D ξ=1/2=0.516. 如果ξ与η独立, 不求出ξη的分布直接从ξ的分布和η的分布能否计算出D (ξη), 怎样计算?解: 因ξ与η独立, 因此ξ2与η2也独立, 则有[]()()222222)()()(ηξηξξηξηξηE E E E E E D -=-=17. 随机变量η是另一个随机变量ξ的函数, 并且η=e λξ(λ>0), 若E η存在, 求证对于任何实数a 都有λξλξEe ea P a⋅≤≥-}{.证: 分别就离散型和连续型两种情况证. 在ξ为离散型的情况: 假设P (ξ=x i )=p i , 则λξλξλλλξEe e e E p e p ep a P a a i i a x ax i a x ax i i i i i --∞=-≥-≥==≤≤=≥∑∑∑][){)(1)()(在ξ为连续型的情况假设ξ的概率密度为φ(x ), 则λξλξλλλϕϕϕξEe e Ee dx x e dx x edx x a P a a a x aa x a--+∞∞--+∞-+∞==≤≤=≥⎰⎰⎰)()()()()()(}{证毕.18. 证明事件在一次试验中发生次数的方差不超过1/4.证: 设ξ为一次试验中事件A 发生的次数, 当然最多只能发生1次, 最少为0次, 即ξ服从0-1分布, P {ξ=1}=P (A )=p , P {ξ=0}=1-p =q ,则4121412124141)1(222≤⎪⎭⎫ ⎝⎛--=-⋅+-=-=-=p p p p p p p D ξ19. 证明对于任何常数c , 随机变量ξ有 D ξ=E (ξ-c )2-(Eξ-c )2证: 由方差的性质可知D (ξ-c )=Dξ, 而2222)()()]([)()(c E c E c E c E c D ---=---=-ξξξξξ证毕.20. (ξ,η)的联合概率密度φ(x ,y )=e -(x +y )(x ,y >0), 计算它们的协方差cov (ξ,η). 解: 由φ(x ,y )=e -(x +y )(x ,y >0)可知ξ与η相互独立, 因此必有cov (ξ,η)=0.21. 袋中装有标上号码1,2,2的3个球, 从中任取一个并且不再放回, 然后再从袋中任取一球, 以ξ, η分别记为第一,二次取到球上的号码数, 求ξ与η的协方差.,P {ξ=2}=P {η=2}=2/3, P {ξ=1}=P {η=1}=1/3, E ξ=E η=35322311=⨯+⨯38314312312},{)(2121=⨯+⨯+⨯====∑∑==i j j i ijP E ηξξη则913538)(),cov(22-=-=⋅-=ηξξηηξE E E22. (ξ , η)只取下列数组中的值:)0,2()31,1()1,1()0,0(--且相应的概率依次为1/6, 1/3, 1/12, 5/12. 求ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: ξ与的联合分布表及各边缘分布计算表如下表所示: 因此1212260121=⨯+⨯+⨯-=ξE 1225125412512=⨯+⨯=ξE 144275144251225)(22=-=-=ξξξE E D 3613311121311270=⨯+⨯+⨯=ηE 1083731121912=+⨯=ηE 129627512961691237129616910837)(22=-⨯=-=-=ηηηE E D 36133112131)(-=-⨯-=ξηE则4322211236171336131253613)(),cov(-=⨯⨯-=⋅--=⋅-=ηξξηηξE E E 相关系数804.027522127543236122211296275144275432221),cov(-=-=⨯⨯⨯-=⨯-==ηξηξρD D, 计算ξ与η的相关系数ρ, 并判断ξ与η是否独立? 解: 由上表的数据的对称性可知与η的边缘分布一样, 算出为 P (ξ=-1)=P (η=-1)=3/8 P (ξ=0)=P (η=-0)=2/8P (ξ=1)=P (η=1)=3/8 由对称性可知Eξ=Eη=0831831=⨯+⨯-. 081818181)(=+--=ξηE 因此cov (ξ,η)=E (ξη)-E (ξ)E (η)=0 则ρ=0而P (ξ=0,η=0)=0≠P {ξ=0}P {η=0}=1/16因此ξ与η不独立. 这是一个随机变量间不相关也不独立的例子.24. 两个随机变量ξ与η, 已知Dξ=25, Dη=36, ρξη=0.4, 计算D (ξ+η)与D (ξ-η). 解:374.065236252),cov(2)]()[()]([)(854.065236252),cov(2)]()[()]([)(2222=⨯⨯⨯-+=-+=-+=---==---=-=⨯⨯⨯++=++=++=-+-==+-+=+ξηξηρηξηξηξηξηηξξηξηξηξρηξηξηξηξηηξξηξηξηξD D D D D D E E E E E D D D D D D D E E E E E D《概率论与数理统计》复习资料一、填空题(15分)题型一:概率分布的考察 【相关公式】(P379)【相关例题】 1、设(,)XU a b ,()2E X =,1()3D Z =,则求a ,b 的值。
概率论第三章习题及答案

PX x , Y y
j i
j 1, 2,
返回主目录
第三章 习题课
已知联合分布律求边缘分布律
X 以及Y 的边缘分布律也可以由 下表表示
Y X
y1 p11
p21
y2 p12
p22
… … … … …
yj
p1 j
… … …
pi
p1
p2
x1
x2
p2 j
对于任意固定的 Y, 对于任意固定的 X,
F ( , y ) 0;
F ( x,) 0;
F (,) 0;
F (,) 1.
返回主目录
第三章 习题课
3) F (x , y)=F(x+0, y), F (x, y)=F(x, y+0), 即 F (x, y)关于 x 右连续,关于 y 也右连续.
2 则称随机变量 X, Y 服从参数为 1, 2, 12, 2 ,
X, Y ~ N 1, 2, , , 2, 1 1. i i 1 , 2, i 0 i 1
2 1 2 2
的正态分布,记作
Y 的取值为 y1, y2, , y j ,
则称
设 X, Y 二维离散型随机变量,X 的取值为
pij P X xi , Y y j
i,j 1, 2,
X, Y 的(联合)分布律. 为二维离散型随机变量
第三章 习题课
二维离散型随机变量的联合分布律
X, Y 的联合分布律也可以由 下表表示
Y X
x1 x2
《概率论与数理统计》习题及答案 第三章

《概率论与数理统计》习题及答案第 三 章1.掷一枚非均质的硬币,出现正面的概率为p (01)p <<,若以X 表示直至掷到正、反面都出现时为止所需投掷次数,求X 的分布列。
解 ()X k =表示事件:前1k -次出现正面,第k 次出现反面,或前1k -次出现反面,第k 次出现正面,所以11()(1)(1),2,3,.k k P X k p p p p k --==-+-=2.袋中有b 个黑球a 个白球,从袋中任意取出r 个球,求r 个球中黑球个数X 的分布列。
解 从a b +个球中任取r 个球共有ra b C +种取法,r 个球中有k 个黑球的取法有k r kb a C C -,所以X 的分布列为()k r kb ara bC C P X k C -+==,max(0,),max(0,)1,,min(,)k r a r a b r =--+, 此乃因为,如果r a <,则r 个球中可以全是白球,没有黑球,即0k =;如果r a >则r 个球中至少有r a -个黑球,此时k 应从r a -开始。
3.一实习生用一台机器接连生产了三个同种零件,第i 个零件是不合格品的概率1(1,2,3)1i p i i ==+,以X 表示三个零件中合格品的个数,求X 的分布列。
解 设i A =‘第i 个零件是合格品’1,2,3i =。
则1231111(0)()23424P X P A A A ===⋅⋅=, 123123123(1)()P X P A A A A A A A A A ==++123123123()()()P A A A P A A A P A A A =++111121113623423423424=⋅⋅+⋅⋅+⋅⋅=, 123123123(2)()P X P A A A A A A A AA ==++ 123123123()()()P A A A P A A A P A A A =++ 1211131231123423423424=⋅⋅+⋅⋅⋅+⋅⋅=,20 1231236(3)()23424P X P A A A ===⋅⋅=. 即X 的分布列为01231611624242424XP. 4.一汽车沿一街道行驶,需通过三个设有红绿信号灯的路口,每个信号灯为红或绿与其他信号灯为红或绿相互独立,且每一信号灯红绿两种信号显示的概率均为12,以X 表示该汽车首次遇到红灯前已通过的路口的个数,求X 的概率分布。
《概率论与数理统计》前三章习题解答

11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由
f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
第一章 概率论的基本概念
解:
令事件Ai分别表示输入AAAA,输入BBBB, 输入CCCC, i 1, , . 令事件A 表示输出ABCA. 23
由已知条件及独立性知
1 P( A | A2 ) P( A | A3 ) . 2
3
1 P( A | A1 ) , 2
2 2
返回主目录
第一章 概率论的基本概念
由贝叶斯公式知
P( A1 A) P( A1 | A) P( A)
P( A1 ) P( A | A1 ) P( A1 ) P( A | A1 ) P( A2 ) P( A | A2 ) P( A3 ) P( A | A3 )
2p1 . (3 1) p1 1
返回主目录
第二章 随机变量及其分布
2.将一颗骰子抛掷n次,将所得的n个点
数的最小值记为X,最大值记为Y.分别求 出X与Y的分布律. 解 : 以Yi 记第i次投掷时骰子出现的点 , 数
i 1,2,, n.则X minYi , Y maxYi .
1i n 1i n
X与Y的所有可能值均为 1,2,3,4,5, 6.
14
k
返回主目录
第三章 多维随机变量及其分布
பைடு நூலகம்
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}
(完整版)概率论第三章第四章习题及答案

第三章 多维随机变量及其分布
n
解:(1)P{X n} P{X n,Y m}
m0
n e14 (7.14)m (6.86)nm
m0
m!(n m)!
e14 n
n! (7.14)m (6.86)nm
n! m0 m!(n m)!
e14 (7.14 6.86)n 14n e14 , n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
(3)P{Y m | X 20} C2m0 0.51m0.4920m , m 0,1,2, ,20.
P{Y m | X n} Cnm 0.51m0.49nm , m 0,1,2, , n
返回主目录
第三章 多维随机变量及其分布
11.设随机变量(X,Y)的联合概率密度为
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
返回主目录
第四章 随机变量的数字特征
U 的密度函数为
nun1, x (0,1),
fU (u)
0,
其他.
0, FU (u) un ,
1,
u 0, 0 u 1,
u 1.
E(U )
ufU (u)du
e14 (7.14)m (6.86)nm m!(n m)!
e
1414n n!
Cnm
7.14 14
m
6.86 14
nm
Cnm 0.51m0.49nm , m 0,1,2, , n
P{X n,Y m} e14 (7.14)m (6.86)nm , m!(n m)!
m 0,1,2, , n; n 0,1,2, .
cxey ,0 x y ,
概率论第三四章练习题答案

概率论第三四章练习题答案练习八班级_____________ 姓名_____________1. 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到白球的只数,求X ,Y 的联合分布律.解:(X ,Y )的可能取值为(i , j ),i =0,1,2,3, j =0,12,i + j ≥2,联合分布律为 P {X=0, Y=2 }=351472222=C C C P {X=1, Y=1 }=35647221213=C C C C P {X=1, Y=2 }=35647122213=C C C C P {X=2, Y=0 }=353472223=C C C P {X=2, Y=1 }=351247121223=C C C C P {X=2, Y=2 }=35347223=C C C P {X=3, Y=0 }=352471233=C C C P {X=3, Y=1 }=352471233=C C C P {X=3, Y=2 }=02. 设随机变量(X ,Y )概率密度为<<<<--=其它,042,20),6(),(y x y x k y x f (1)确定常数k ;(2)求P {X <1, Y <3};(3)求P (X <1.5};(4)求P (X+Y ≤4}.解:(1)∵+∞-+∞∞---==2012)6(),(1dydx y x k dy dx y x f ,∴8 1=k (2)83)6(81)3,1(3210=--=<<="" p="" x="" y="">Y X P (3)3227)6(81),5.1()5.1(425.10=--=∞<≤=≤?dy y x dx Y X P X P(4)32)6(81)4(4020=--=≤+?-dy y x dxY X P x3. 盒子里装有3只黑球,2只红球,2只白球,在其中任取4只球,以X 表示取到黑球的只数,以Y 表示取到白球的只数,求的随机变量(X , Y )的边缘分布律.4. 设二维随机变量(X ,Y )的概率密度为≤≤=其它,01,),(22y x y cx y x f(1)试确定常数c ; (2)求边缘概率密度. 解: l=?∞+∞-+-∞+∞-====42121432),(1025210c c dy y cydx cx dydxdy y x f y y≤--==?,01),1(8 21421)(~42122x x ydy x x f X x X ??≤≤==?+-其它1027421)(~252y y ydx d y f Y y yY练习九班级_____________ 姓名_____________1. 设一加油站有两套用来加油的设备,设备A 是加油站的工作人员操作的,设备B 是有顾客自己操作的. A ,B 均有两个加油管. 随机取一时刻,A ,B 正在使用的软管根数分别记为X ,Y ,它们的联合分布律为(1)(2) 求在0=X 的条件下Y 的条件分布律;在1=Y 的条件下X 的条件分布律. (3) 问随机变量X 和Y 是否相互独立? 解:(1)至少有一根软管在使用的概率为9.01.01}0,0{1}1{=-===-=≥+Y X P Y X P(2)根据公式}0{}0,{}0|{======X P X i Y P X i Y P ,得到在0=X 的条件下Y 的条件分布律为类似地,在1=Y 的条件下X 的条件分布律为(3)P (X =0≠所以随机变量X 和Y 不是相互独立. 2. 设随机变量(X ,Y )在由曲线x y x y ==,2所围成的区域G 均匀分布.(1) 问随机变量X 和Y 是否相互独立? (2) 求条件概率密度)|(|x y f X Y .解:(1)根据题意,(X ,Y )的概率密度),(y x f 必定是一常数,故由),(31),(),(121y x f dy y x f dxdxdy y x f xxG===,得到∈=他其,0),(,3),(Gy x y x f 。
概率论与数理统计第三、四章答案

概率论与数理统计第三、四章答案第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果112{0}={1}=33pp p p ξξ====,得12201333E ξ=⨯+⨯=一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果(见下表),按定义计算周长的数学期望ξ96 98 100 102 104p0.090.270.350.230.06960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,(1)计算圆半径的期望值;(2)(2)E R π是否等于2ER π?(3)能否用2()ER π来计算远面积的期望值,如果不能22||201()2x x D E x e dx x e dx ξξ+∞+∞---∞===⎰⎰20|22x x x e xe dx +∞-+∞-=-+=⎰6题目略解 (1)15辆车的里程均值为1274(9050150)91.33153++⋅⋅⋅+=≈ (2) 记ξ为从188辆汽车中任取一辆记录的里程数,则ξ的分布表如下表所示(a=188)ξ10 30 50 70 90 110 130 150 170p 5/a11/a 16/a 25/a 34/a 46/a 33/a 16/a 2/a故51124520103017096.1718818818847E ξ=⨯+⨯+⋅⋅⋅+⨯=≈ 7题目略解 记ξ为种子甲的每公顷产量,η为种子乙的每公顷产量,则45000.1248000.3851000.454000.14944E ξ=⨯+⨯+⨯+⨯= 45000.2348000.2451000.354000.234959E η=⨯+⨯+⨯+⨯=8.一个螺丝钉的重量是随机变量,期望值10g,标准差为1g,100个一盒的同型号螺丝钉重量的期望值和标准差个为多少(假设每个螺丝钉的重量都部首其他螺丝钉重量的影响)?解 设i ξ为一盒中第i 个螺丝钉的重量(1,2,,100)i =⋅⋅⋅,则 题设条件为101,i i E g D g ξξ==且12100,,,ξξξ⋅⋅⋅相互独立。
概率论与数理统计第三、四章答案

第三章 习题参考答案1.计算习题二第2题中随机变量的期望值。
解:由习题二第2题计算结果0112{0}={1}=33p p p p ξξ====,得12201333E ξ=⨯+⨯= 一般对0-1分布的随机变量ξ有{1}E p p ξξ===2.用两种方法计算习题二第30题中周长的期望值,一种是利用矩形长与宽的期望计算,另一种是利用周长期望的分布计算。
解:方法一:先按定义计算长的数学期望290.3300.5310.229.9E ξ=⨯+⨯+⨯=和宽的数学期望190.3200.4210.320E η=⨯+⨯+⨯=再利用数学期望的性质计算周长的数学期望(22)229.922099.8E E ζξη=+=⨯+⨯=方法二:利用习题二地30题的计算结果<见下表>,按定义计算周长的数学期望960.09980.271000.351020.231040.0698.8E ξ=⨯+⨯+⨯+⨯+⨯=3.对习题二第31题,〔1〕计算圆半径的期望值;〔2〕(2)E R π是否等于2ER π?〔3〕能否用2()ER π来计算远面积的期望值,如果不能用,又该如何计算?其结果是什么?解〔1〕100.1110.4120.3130.211.6ER =⨯+⨯+⨯+⨯= 〔2〕由数学期望的性质有(2)223.2E R ER πππ==〔3〕因为22()()E R E R ππ≠,所以不能用2()E R π来计算圆面积的期望值。
利用随机变量函数的期望公式可求得222222()()(100.1110.4120.3130.2)135.4E R E R ππππ==⨯+⨯+⨯+⨯= 或者由习题二第31题计算结果,按求圆面积的数学期望1000.11210.41440.31690.2)135.4E ηπππ=⨯+⨯+⨯+⨯=4. 连续随机变量ξ的概率密度为,01(,0)()0,a kx x k a x ϕ⎧<<>=⎨⎩其它又知0.75E ξ= ,求k 和a 的值 解 由1010()11324a a kx dx kx dx a k E kx x dx a ϕξ+∞-∞===+=⋅==+⎰⎰⎰解得2,3a k ==5.计算服从拉普拉斯分布的随机变量的期望和方差〔参看习题二第16题〕。
概率论大题附答案

第一章 随机事件及其概率假设一批100件商品中有4件不合格品.抽样验收时从中随机抽取4件,假如都为合格品,则接收这批产品,否则拒收,求这批产品被拒收的概率p . 解 以ν表示随意抽取的4件中不合格品的件数,则4964100C {1}1{0}110.84720.1528C p P P =≥=-==-≈-=νν.从0,1,2,,10…等11个数中随机取出三个,求下列事件的概率:1A ={三个数最大的是5};2A ={三个数大于、等于和小于5的各一个};3A ={三个数两个大于5,一个小于7}.解 从11个数中随机取出三个,总共有311C 165=种不同取法,即总共有311C 个基本事件,其中有利于1A 的取法有25C 10=种(三个数最大的是5,在小于5的5个数中随意取两个有25C 10=种不同取法);有利于2A 的取法有5×5=20种(在小于5的5个数中随意取一个,在大于5的5个数中随意取一个,有5×5=25种不同取法);有利于3A 的取法有5×25C 70=种(在小于5的5个数中随意取一个,在大于5的5个数中随意取两个).于是,最后得111102550()0.06()0.15()0.30165165165P A P A P A ======&&&&&&,,. 考虑一元二次方程 02=++C Bx x , 其中B , C 分别是将一枚色子接连掷两次先后出现的点数. (1) 求方程无实根的概率α, (2) 求方程有两个不同实根的概率β.解 显然,系数B 和C 各有1,2,3,4,5,6等6个可能值;将一枚色子接连掷两次,总共有36个基本事件.考虑方程的判别式C B 42-=∆.事件{无实根}和{有两个不同实根},等价于事件{0}∆<和{0}∆>.下表给出了事件{∆由对称性知{0}∆<和{0}∆>等价,因此αβ=.易见,方程无实根的概率α和有两个不同实根的概率β为170.47αβ==≈.. ()1()1P AB P AB r =-=-, ()()1P A B P AB r +==-,()1()1[]P A B P A B p q r +=-+=-+-, ()()1[]P AB P A B p q r =+=-+-,([])()()P A A B P A AB P A p +=+==.假设箱中有一个球,只知道不是白球就是红球.现在将一个白球放进箱中,然后从箱中随机取出一个球,结果是白球.求箱中原来是白球的概率α.解 引进事件:=A {取出的是白球},1H ={箱中原来是白球},2H ={箱中原来是红球},则12,H H 构成完全事件组,并且12()()0.5P H P H ==.由条件知12(|)1(|)0.5P A H P A H ==,.由贝叶斯公式,有1111122()(|)2(|)()(|)()(|)3P H P A H P H A P H P A H P H P A H α===+.假设一厂家生产的每台仪器,以概率可以直接出厂;以概率需进一步进行调试, 经调试以概率可以出厂,以概率定为不合格品不能出厂.现在该厂在生产条件稳定的情况下,新生产了20台仪器.求最后20台仪器(1) 都能出厂的概率α; (2) 至少两台不能出厂的概率β.解 这里认为仪器的质量状况是相互独立的.设1H ={仪器需要调试},2H ={仪器不需要调试},A ={仪器可以出厂}.由条件知1212()0.30 ()0.70 (|)0.80(|)1P H P H P A H P A H ====, ,,.(1) 10台仪器都能出厂的概率0112210100()()(|)()(|)0.300.800.700.940.940.5386P A P H P A H P H P A H ααα==+=⨯+===≈ ;.(2) 记ν——10台中不能出厂的台数,即10次伯努利试验“成功(不能出厂)”的次数.由(1)知成功的概率为p =.易见,10台中至少两台不能出厂的概率109{2}1{0}{1}10.94100.940.060.1175P P P βννν=≥=-=-==--⨯⨯≈.设B A ,是任意二事件,证明:(1) 若事件A 和B 独立且B A ⊂,则()0P A =或()1P B =;(2) 若事件A 和B 独立且不相容,则A 和B 中必有一个是0概率事件.证明 (1) 由于B A ⊂,可见()()()()()()()()P AB P A P B P AB P A P A P A P B ===,,. 因此,若()0P A ≠,则()1P B =;若()0P B ≠,()0P A =.(2) 对于事件A 和B ,由于它们相互独立而且不相容,可见()()()0P A P B P AB ==,因此,概率()P A 和()P B 至少有一个等于0.补充:第二节 事件的关系和运算1. 设A ,B ,C 是三个随机事件,用事件A ,B ,C 的运算关系表示下列事件:⑴ A ,B ,C 三个都发生;⑵ A 发生而B ,C 都不发生;⑶ A ,B 都发生, C 不发生; ⑷ A ,B ,C 恰有一个发生;⑸ A ,B ,C 恰有两个发生;⑹ A ,B ,C 至少有一个发生; ⑺ A ,B ,C 都不发生.解:(1)ABC (2)ABC (3)ABC (4)ABC ABC ABC ++ (5)ABC ABC ABC ++ (6) A B C ++ (7) ABC第三节 事件的概率解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.40.30.6=+-= ()1()10.10.9P AB P AB =-=-=()()1()10.60.4P AB P A B P A B =+=-+=-= ()()()0.40.10.3P AB P A P AB =-=-=解:由()()()P A B P A P AB -=-,得()()()P A B P A P AB -=-()()()0.70.30.4P AB P A P A B =--=-=, ()1()10.40.6P AB P AB =-=-=3. 已知()09.P A =,()08.P B =,试证()07.P AB ≥. 解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+0.90.81≥+-0.7=解:由条件()()0P AB P BC ==,知()0P ABC =,()()()()()()()()P A B C P A P B P C P AB P BC P AC P ABC ++=++---+1111500044488=++---+= 5. 设A ,B 是两事件,且()06.P A =,()07.P B =,问⑴ 在什么条件下,()P AB 取到最大值,最大值是多少? ⑵ 在什么条件下,()P AB 取到最小值,最小值是多少?解:由()()()()P A B P A P B P AB +=+-知,()()()()P AB P A P B P A B =+-+ 又因为()()P A P A B ≤+,()()P B P A B ≤+,所以(){}max (),()P A P B P A B ≤+, 所以0.7()1P A B ≤+≤,所以0.3()0.6P AB ≤≤.第四节 条件概率及与其有关的三个基本公式1.设有对某种疾病的一种化验,患该病的人中有90%呈阳性反应,而未患该病的人中有5%呈阳性反应,设人群中有1%的人患这种疾病,若某病人做这种化验呈阳性反应,则他患有这种疾病的概率是多少? 解:设{}A =某疾病患者,{}A =非某疾病患者,{}B =检查结果为阳性.依条件得,B A A ⊂+=Ω,且()0.01,P A = ()0.99P A =,(|)0.9P B A =(|)0.05P B A =所以()()()()()()()()0010901500109099005B P A P P AB ..A A P .B P B ....B BP A P P A P A A⨯===≈⨯+⨯+第五节 事件的独立性和独立试验1.设有n 个元件分别依串联、并联两种情形组成系统I 和II ,已知每个元件正常工作的概率为p ,分别求系统I 、II 的可靠性(系统正常工作的概率)解:{}A I =系统正常工作,{}B II =系统正常工作,{}B II =系统不正常工作 {}1,2,,i C i n ==L 每个元件正常工作,,且()i P C p =, {}i C =每个元件都不正常工作,()1i P C p =- 由条件知,每个元件正常是相互独立的,故1212()()()()()n n n P A P C C C P C P C P C p ===L L ,()1i P C p =-,1212()()()()()(1)n n n P B P C C C P C P C P C p ===-L L()1()1(1)n P B P B p =-=--2. 设有六个相同的元件,如下图所示那样安置在线路中,设每个元件通达的概率为 p ,求这个装置通达的概率.假定各个元件通达、不通达是相互独立的. 解: 设{}i A i =第条线路通达, 1,2,3,i= {}A =代表这个装置通达,{}i A i =第条线路不通达,1,2,3,i = {}A =代表这个装置不通达, 由条件知,2()i P A p =,2()1i P A p =-,23123()1()1()1(1)P A P A P A A A p =-=-=--第二章 随机变量及其分布口袋中有7个白球,3个黑球,每次从中任取一球且不再放回. (1) 求4次抽球出现黑球次数X 的概率分布;(2) 抽球直到首次出现白球为止,求抽球次数Y 的概率分布.解 (1) 随机变量X 有4个可能值0,1,2,3,若以W 和B 分别表示白球和黑球,则试验“4次抽球”相当于“含7个W 和3个B ”的总体的4次不放回抽样,其基本事件总数为410C 210=,其中有利于{}X k = (0,1,2,3)k =的基本事件个数为:437C C k k-,因此 437410C C {}(0,1,2,3)C k k P X k k -===,或01230123~351056371131210210210210621030X ⎛⎫⎛⎫ ⎪ ⎪= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭. (2) 随机变量Y 显然有1,2,3,4等4个可能值;以W k 和B k 分别表示第(1,2,3,4)k k =次抽到白球和黑球,则“不放回抽球直到首次出现白球为止”相当于“自含7个白球3个黑球的总体的4次不放回抽样”,其基本事件总数410P 10987120=⨯⨯⨯=.易见 7843728{1}{2}10120109120P Y P Y ⨯======⨯,,327732171{3}{4}109812010987120P Y P Y ⨯⨯⨯⨯⨯======⨯⨯⨯⨯⨯, .1234~842871120120120120Y ⎛⎫ ⎪ ⎪ ⎪⎝⎭. 设X 服从泊松分布,且已知{1}{2}P X P X ===,求{4}P X =.解 以X 表示随意抽取的一页上印刷错误的个数,以)4,3,2,1(=k X k 表示随意抽取的第k 页上印刷错误的个数,由条件知X 和)4,3,2,1(=k X k 服从同一泊松分布,未知分布参数λ决定于条件:2{1}{2}ee 2!P X P X λλλλ--====,.于是λ=2.由于随机变量)4,3,2,1(=k X k 显然相互独立,因此42222{=4}=e =e 0.090243P X --≈ !设随机变量X 服从区间25[,]上的均匀分布,求对X 进行3次独立观测中,至少有2次的观测值大于3的概率α.解 设Y 3次独立试验事件{3}A X =>出现的次数,则Y 服从参数为(3,)p 的二项分布,其中23p =.因此234820(){2}{3}3(1)92727P B P Y P Y p p p ===+==-+=+=α.设随机变量X 服从正态分布(3,4)N ,且满足 {}{}P X C P X C <=≥和{}2{}P X C P X C <=≥ ,分别求常数C解 (1)由{}X C <与{}X C ≥为对立事件,又{}{}P X C P X C <=≥得 1{}2P X C <=所以C=3 (2) 由题意可知23{}=32C P X C Φ-<=()所以反查表可得 3.88C ≈设随机变量X 服从[1,2]-上的均匀分布,求随机变量Y 的分布律,其中10 00 10X Y X X -<==>⎧⎪⎨⎪⎩,若,,若,,若.解 由于X 服从[1,2]-上的均匀分布,知随机变量Y 的概率分布为1{1}{0}{10}{0}{0}032{1}{0}{02}31~1233P Y P X P X P Y P X P Y P X P X Y =-=<=-≤<=======>=<≤=⎛⎫ ⎪ ⎪ ⎪⎝⎭,,;-1.补充:第二节 离散随机变量解:由条件知,随机变量X 的分布列如下:设{}A =至多遇到一次红灯,则54()(0)(1)64P A P X P X ==+==2.设每分钟通过交叉路口的汽车流量X 服从泊松分布,且已知在一分钟内无车辆通过与恰好有一辆车通过的概率相同,求在一分钟内至少有两辆车通过的概率。
《概率论与数理统计》第三版_科学出版社_课后习题答案.所有章节

第二章 随机变量 2.12.2解:根据1)(0==∑∞=k k X P ,得10=∑∞=-k kae,即1111=---e ae 。
故 1-=e a2.3解:用X 表示甲在两次投篮中所投中的次数,X~B(2,0.7) 用Y 表示乙在两次投篮中所投中的次数, Y~B(2,0.4) (1) 两人投中的次数相同P{X=Y}= P{X=0,Y=0}+ P{X=1,Y=1} +P{X=2,Y=2}=11220202111120202222220.70.30.40.60.70.30.40.60.70.30.40.60.3124C C C C C C ⨯+⨯+⨯=(2)甲比乙投中的次数多P{X >Y}= P{X=1,Y=0}+ P{X=2,Y=0} +P{X=2,Y=1}=12211102200220112222220.70.30.40.60.70.30.40.60.70.30.40.60.5628C C C C C C ⨯+⨯+⨯=2.4解:(1)P{1≤X ≤3}= P{X=1}+ P{X=2}+ P{X=3}=12321515155++= (2) P{0.5<X<2.5}=P{X=1}+ P{X=2}=12115155+= 2.5解:(1)P{X=2,4,6,…}=246211112222k +++ =11[1()]1441314k k lim →∞-=-(2)P{X ≥3}=1―P{X <3}=1―P{X=1}- P{X=2}=1111244--= 2.6解:(1)设X 表示4次独立试验中A 发生的次数,则X~B(4,0.4)34314044(3)(3)(4)0.40.60.40.60.1792P X P X P X C C ≥==+==+=X 2 3 4 5 6 7 8 9 10 11 12P 1/36 1/18 1/12 1/9 5/36 1/6 5/36 1/9 1/12 1/18 1/36(2)设Y 表示5次独立试验中A 发生的次数,则Y~B(5,0.4)345324150555(3)(3)(4)(5)0.40.60.40.60.40.60.31744P X P X P X P X C C C ≥==+=+==++=2.7 (1)X ~P(λ)=P(0.5×3)= P(1.5)0 1.51.5{0}0!P X e -=== 1.5e - (2)X ~P(λ)=P(0.5×4)= P(2)0122222{2}1{0}{1}1130!1!P X P X P X e e e ---≥=-=-==--=-2.8解:设应配备m 名设备维修人员。
概率论及数理统计练习题(含答案)

第一章 随机事件及其概率练习: 1. 判定正误(1)必然事件在一次实验中必然发生,小概率事件在一次实验中必然不发生。
(B )(2)事件的发生与否取决于它所包括的全数样本点是不是同时显现。
(B )(3)事件的对立与互不相容是等价的。
(B ) (4)假设()0,P A = 那么A =∅。
(B )(5)()0.4,()0.5,()0.2P A P B P AB ===若则。
(B ) (6)A,B,C 三个事件至少发生两个可表示为AB BC AC ⋃⋃(A ) (7)考察有两个小孩的家庭小孩的性别,{()Ω=两个男孩(,两个女孩),(一个男孩,}一个女孩),那么P{}1=3两个女孩。
(B )(8)假设P(A)P(B)≤,那么⊂A B 。
(B ) (9)n 个事件假设知足,,()()()i j i j i j P A A P A P A ∀=,那么n 个事件彼此独立。
(B )(10)只有当A B ⊂时,有P(B-A)=P(B)-P(A)。
(A ) 2. 选择题(1)设A, B 两事件知足P(AB)=0,那么©A. A 与B 互斥B. AB 是不可能事件C. AB 未必是不可能事件D. P(A)=0 或 P(B)=0 (2)设A, B 为两事件,那么P(A-B)等于(C)A. P(A)-P(B)B. P(A)-P(B)+P(AB)C. P(A)-P(AB)D. P(A)+P(B)-P(AB) (3)以A 表示事件“甲种产品畅销,乙种产品滞销”,那么其对立事件A 为(D)A. “甲种产品滞销,乙种产品畅销”B. “甲乙两种产品均畅销”C. “甲种产品滞销”D. “甲种产品滞销或乙种产品畅销”(4)假设A, B 为两随机事件,且B A ⊂,那么以下式子正确的选项是(A)A. P(A ∪B)=P(A)B. P(AB)=P(A)C. P(B|A)=P(B)D. P(B-A)=P(B)-P(A) (5)设(),(),()P A B a P A b P B c ⋃===,那么()P AB 等于(B)A. ()a c c + B . 1a c +-C.a b c +- D. (1)b c -(6)假设事件A 和B 知足P(B|A)=1, 那么(B)A. A 是必然事件 B . (|)0P B A = C. A B ⊃ D. A B ⊂(7)设0<P(A)<1,0<P(B)<1, (|)(|)1P A B P A B += 那么(D)A. 事件A, B 互不相容B. 事件A 和B 相互对立C. 事件A, B 互不独立 D . 事件A, B 相互独立8.,,.,,.D ,,.,,.,,1419.(),(),(),(),()37514131433.,.,.,.,37351535105A B A AB A B B AB A B C AB A B D AB A B P B A P B A P AB P A P B A B C φφφφ≠=≠====对于任意两个事件必有(C )若则一定独立;若则一定独立;若则有可能独立;若则一定不独立;已知则的值分别为:(D)三解答题1.(),(),(),(),(),(),().P A p P B q P AB r P A B P AB P A B P AB ===设求下列事件的概率:解:由德摩根律有____()()1()1;P A B P AB P AB r ⋃==-=-()()()();P AB P B AB P B P AB q r =-=-=-()()()()(1)()1;P A B P A P B P AB p q q r r p ⋃=+-=-+--=+-________()()1[()()()]1().P AB P A B P A P B P AB p q r =⋃=-+-=-+-2.甲乙两人独立地对同一目标射击一次,命中率别离是0.6和0.5,现已知目标被命中,求它是甲射击命中的概率。
概率论课后习题第3章答案

第三章 多维随机向量及其概率分布(一)基本题答案1、设X 和Y 的可能取值分别为.2,1,0;3,2,1,0,==j i j i 则与因盒子里有3种球,在这3种球中任取4个,其中黑球和红球的个数之和必不超过4.另一方面,因白球只有2个,任取的4个球中,黑球和红球个数之和最小为2个,故有j i 与ٛ且,42≤+≤j i ./),(474223C C C C j Y i X p j i j i −−===因而 或0),(===j Y i X P 2).2,1,0;3,2,1,0,4(<+j i ==>+j i j i于是 ,0)0,0(1111======y Y x X P P ,0)0,0(2112======y Y x X P p.35/1/)0,0(472212033113=======C C C C y Y x X P p即 2、X 和. ⎥⎦⎤⎢⎣⎡04.032.064.0210~X ⎥⎦⎤⎢⎣⎡25.05.025.0210~Y 由独立性知,X 和Y 的联合分布为3、Y 的分布函数为显知有四个可能值:).0(0)(),0(1)(≤=>−=−y y F y e y F y ),(21X X }{{}{}11−=e ,2,10,0).1,1(),0,1(),1,0(),0,0(121−≤=≤≤===Y P Y Y P X X P 易知{}{}{}{}{},221−−−=e e 12<=P ,10,1,02,11,02121≤≤>====>≤===Y Y Y P X X P Y Y P X X P{}{}{},212,10,12121−=≤<=≤>===e e Y P Y Y P X X P {}−− {}{}.22,11,1221−=>=>>===e Y P Y Y P X X P于是,可将X 1和X 24、∑=====nm m n P n X P 0),()(ηζ∑=−−−−=nm mn m n e m n m p p 0)!(!)1(λλ()[]).,2,1,0(!1!)1()!(!!!==−+=−−=−−−=−∑n n e p p n e p p m n m n n e n n n mn m nm n λλλλλλ即X 是服从参数为λ的泊松分布.∑∑∞=−−∞=−−−−−=−−==mn mn m n mn m m mn m n m n p m e p em n m p p m Y P )!()1(!)!(!)1()(λλλλλ).,2,1,0(,!)(!)()1( ==⋅=−−−−m m ep e e m ep pmp mλλλλλλ即Y 是服从参数为λp 的泊松分布.5、由定义F (y x ,)=P {}∫∫∞−∞−=≤≤x y dxdy y x y Y x X .),(,ϕ因为ϕ(y x ,)是分段函数,要正确计算出F (y x ,;1>y ),必须对积分区域进行适当分块:等5个部分.10,10,1;1,1;10,100≤≤≤≤>>>≤≤<x y x y x y y x 或;0<≤≤x (1)对于 有 F (,00<<y x 或y x ,)=P{X ≤,x Y ≤y}=0; (2)对于 有 ;,10,10≤≤≤≤y x 2204),(y x vdudv u y x F x y ==∫∫(3)对于, 有 10,1≤≤>y x {};,1),(2y y Y X P y x F =≤≤= (4)对于, 有 10,1≤≤>x y {}21,),(x Y x X P y x F =≤≤=; (5)对于 有 ,1,1>>y x 1),(=y x F .故X 和Y 的联合分布函数⎪⎪⎪⎩⎪⎪⎪⎨⎧<<≤≤<<≤≤≤≤≤≤<<=.1,1,.1,10,1,,1,10,,10,10,,00,0),(2222y x y x y y x x y x y x y x y x F 或6、(1) ,0,0;0),(,00>>=≤≤y x y x F y x 或),(y x F =∫∫+−x y t s dsdt ze)2())(())((200202yt x s y t x se e dt e ds e−−−−−−==∫∫=)1)(1(2y x e e −−−−即⎩⎨⎧>>−−=−−.,0,0,0),1)(1(),(2其它y x e e y x F y x (2)P ()()220(),22x x y x yxy xY X f x y dxdy dx e dy e e d +∞+∞−−−−<≤===−∫∫∫∫∫x∫∫∞+−−−∞+−−=−−=03220)(2)1(2dx e e dx e e x x x x .312131(2)2131(2023=−−=−=∞+−−x x e e7、(1)时,0>x ,0)(,0;)(=≤==∫∞+−−x f x e dy e x f X Xx y X 时 即 ⎩⎨⎧≤>=−.0,0,0,)(x x e x f x X (2){}2/111210121),(1−−≤+−−−+===≤+∫∫∫∫e e dy e dxdxdy y x f Y X P y x x xy8、(1)(i )时,,;),()(计算根据公式∫∞+∞−=dy y x f x f X 0≤x 当10;0)(<<=x x f X 当时()();24.224.2)2(8.4)(202x x x y dy x y x f xx X −=−=−=∫0)(,1=≥x f x X 时当即⎩⎨⎧<<−=.,0;10),2(4.2)(2其它x x x x f X (ii ) 利用公式计算. 当∫∞+∞−=dx y x f y f Y ),()(;0)(,0=≤y f y Y 时,10时当<<y112)22(8.4)2(8.4)(y y Y x x y dx x y y f ∫−=−=⎥⎥⎦⎤⎢⎢⎣⎡⎟⎟⎠⎞⎜⎜⎝⎛−−⎟⎠⎞⎜⎝⎛−=222128.42y y y );43(4.2)2223(8.422y y y y y y +−=+−=当时,1≥y .0)(=y f Y 即⎩⎨⎧<<+−=.0;10),43(4.2)(2其它y y y y y f Y 121111222211111(2)((1(,1(,)1.22222P X Y P X Y f x y dxdy dx dxdy +∞+∞⎧⎫<<=−≥≥=−=−=⎨⎬⎩⎭∫∫∫∫∪58、47809、本题先求出关于x 的边缘概率密度,再求出其在2=x 之值. 由于平面区域D 的面积为)2(X f ,2121=dx =∫x S e D 故(X,Y )的联合概率密度为⎪⎩⎪⎨⎧∈=.,0;),(,21),其它D y x y x (f易知,X 的概率密度为∫∞+∞−⎪⎩⎪⎨⎧<<==,,0,1,21),()(2其它e x xdy y x f x f X 故.41221)2(=×=X f 10、(1)有放回抽取:当第一次抽取到第个数字时,第二次可抽取到该数字仍有十种可能机会,即为 k {}).9, ,1,0(101====i k Y i X P (2)不放回抽取:(i )当第一次抽取第)90(≤≤k k 个数时,则第二次抽到此(第个)数是不可能的,故 k {}.)9,,1,0,; =k i k (0====i k Y i X P(ii )当第一次抽取第个数时,而第二次抽到其他数字(非k )的机会为,知)90(≤≤k k 9/1{}.)9,,1,0,; =k i k (9/1≠===i k Y i X P 11、(1)因∫−=−=12,)1(12)1(24)(yy y ydx x y f η.,0)(;10其它=≤≤y f y n 故在0≤y ≤1时,⎩⎨⎧≤≤−−=;1)1/()1(2)(2其它x y y x y x f ηξ因()∫−=−=x y x ydy x x f 022,)1(12124)(ξ.,0)(;10其它=≤≤x f x ξ故在0≤x ≤1时,⎩⎨⎧≤≤=.0,0/2)(2其它x y x y x y f ξη(2)因;1,121)(2/12∞≤≤==∫x x nxdy y x X f x x ξ;,0)(其它=x f ξ故在1≤x<时,∞⎪⎩⎪⎨⎧<<=.,1121)(其它x y xnxy x y f ξη因 ⎪⎪⎪⎩⎪⎪⎪⎨⎧∞<<=≤<==∫∫∞∞,002121102121)(22/12其它y y dx y x y dx y x y f y y η 故在10≤<y 时,⎪⎩⎪⎨⎧∞<<=;011)(2其它x y y x x y f ξη 而在,1时∞<<y ⎪⎩⎪⎨⎧∞<<=.0)(2其它x y x yx y f ξη(3)在x >0,.0,0)(;0,)(≤=>==∫∞−−x x f x e dy e x f x xy ξξ⎪⎩⎪⎨⎧>=−.0,)(其它x y e x y f y x ξη ;0,)(0>==∫−−y ye dx e y f y yy η .故在y>0时,0,0)(≤=y y f η⎪⎩⎪⎨⎧<<=.0,01)(其它y x y y x f ηξ12、1(1)(2)2(),0(1)(1)X n n n n n f x dy x x y x ∞−−−−==+++∫>,故12(1)(2)0,(/1)0.n nY X n y y f y −⎧−+>=⎨⎩其它 13、X 和Y 是否独立,可用分布函数或概率密度函数验证.方法一:X 的分布函数的分布函数分别为 Y x F X 和)()(y F Y ⎩⎨⎧<≥−=+∞=−,0001),()(5.0x x e x F x F x X ⎩⎨⎧<≥−=+∞=−.0001),()(5.0y y e y F y F yY 由于独立.Y X y F x F y x F Y X 和知),()(),(={}{}{}[][]1.005.005.0)1.0(1)1.0(11.01.01.0,1.0−−−=⋅=−⋅−=>⋅>=>>=e e e F F Y P X P Y X P Y X αY X Y X x f x f y x f Y X 和分别表示和),,()()(),,(方法二:以的概率密度,可知 ⎩⎨⎧≥≥=∂∂∂=+−.00,025.0),(),()(5.02其它y x e y x y x F y x f y x ∫∞+∞−−⎩⎨⎧<≥==,0005.0),()(5.0x x e dy y x f x f x X ∫∞+∞−−⎩⎨⎧<≥==.00,05.0),()(5.0y y e dx y x f y f yY ∫∫∞+∞+−+−==>>==1.01.01.0)(5.0.25.0}1.0,1.0{.),()(),(e dxdy e Y X P a Y X y f x f y x f y x Y X 独立和知由于)()(),(j i j i y Y P x x P y Y x X P =⋅====14、因知X 与Y 相互独立,即有 . )3,2,1,2,1(==j i 首先,根据边缘分布的定义知 .2418161),(11=−===y Y x X P 又根据独立性有),(61)()(},{2411111i x X p y Y p x X p y Y x X p ===⋅===== 解得41)(==i x X P ,从而有 1218124141),(31=−−===y Y x X P 又由 )()(),(2121y Y P x X P y Y x X P =⋅====, 可得 ),(41812y Y P == 即有21)(2==y Y P , 从而 838121),(22=−===y Y x X P .类似地,由),()(),(3131y Y P x X P y Y x X P ===== 有),(411213y Y P ==得31)(3==y Y P ,从而,.111),(31=−===y Y x X P 最后=)(2x X P =1+3+1=3. 将上述数值填入表中有1x1/24 1/8 1/12 1/4 2x1/8 3/8 1/4 3/4 {}j P y X P j ⋅==1/6 1/2 1/3115、本题的关键是由题设P{X 1X 2=0}=1,可推出P{X 1X 2≠0}=0;再利用边缘分布的定义即可列出概率分布表.(1)由P{X 1X 2=0}=1,可见易见,0}1,1{}1,1{2121=====−=X X P X X P 25.0}1{}0,1{121=−===−=X P X X P 5.0}1{}1,0{221=====X P X X P 25.0}1{}0,1{121=====X P X X P 0}0,0{21===X X P121212.16、(1) ⎩⎨⎧<<=,,0,10,1)(其他x x f X ⎪⎩⎪⎨⎧≤>=−.0,0,021)(2y y ey f yY 因为X ,Y 独立,对任何y x ,都有 ).,()()y x f y f x Y =⋅(f X ⎪⎩⎪⎨⎧><<=−.,0,0,10,21),(2其他所以有y x e y x f y(2)二次方程 有实根,△ t Y Xt t 中022=++,04)2(2≥−=Y X ,02≥−Y X 即,2X Y ≤ 故=)(有实根t P dydx e dydx y x f X Y P yx y x 2122221),(}{−≤∫∫∫∫==≤∫−−=1022)(dx ex y=dx edx edx x x x 2101010222221211)21(−−∫∫−=−=−πππ21−=[∫∫∞−∞−−−−1022222121dx edx exx ππ].1445.08555.01]5.08413.0[21)]0()1([21=−≈−−≈Φ−Φ−=ππ17、(1)因为X ,Y 独立,所以 .⎩⎨⎧>>==+−.,0,0,0,)()(),()(其他y x e y f x f y x f uy x Y X λλμ(2)根据Z 的定义,有 P{z=1}=P{Y ≥X}∫∫∫∫∞+∞−+−≥==)(),(xy x xy dydx e dydx y x f μλλμ∫∫∞+∞+−−=)(dx dy e e xy x μλμλ ),0u dx ee x x +=⋅=∫∞+−−λλλμλ{}{110=−==Z P Z P Z 的分布函数为⎪⎪⎩⎪⎪⎨⎧≥<≤+<=.1,1,10,,0,0)(z z z z F Z μλμ18、∵X 、Y 分别仅取0,1两个数值,∴Z 亦只取0,1两个数值. 又∵X 与Y 相互独立,∴{}{}{}{}==========00)0,0(0),max(0Y P X P Y X P Y X P Z P 1/2×1/2=1/4, 故{}{}.4/34/110111=−==−===Z P Z P 19、 X 由2×2阶行列式表示,仍是一随机变量,且X=X 1X 4--X 2X 3,根据X 1,X 2,X 3,X 4的地位是等价且相互独立的,X 1X 4与X 2X 3也是独立同分布的,因此可先求出X 1X 4和X 2X 3的分布律,再求X 的分布律. ,则X=Y 1--Y 2.随机变量Y 1和Y 2独立同分布:322411,X X Y X X Y ==记}{}{}{{}.84.016.01}0{0112121=−========Y P Y Y P Y P 16.01,132===P X X P 显见, 随机变量X=Y 1--Y 2有三个可能值--1,0,1.易见 P{X=--1}=P{Y 1=0,Y 2=1}=0.84×0.16= 0.1344, P{X=1}=P{Y 1=1,Y 2=0}=0.16×0.84=0.1344, P{X=0}=1--2×0.1344=0.7312. 于是,行列式的概率分布为 4321X X X X X =~ ⎥⎦⎤⎢⎣⎡−1344.07312.01344.010120、因为{Z=i }={X+Y=i }={X=0,Y=i }}.0,{}1,1{==−==Y i X i Y X ∪ ∪∪ 由于上述各事件互不相容,且注意到X 与Y 相与独立,则有 ∑∑==−===−====i k ik k i Y P k X P k i Y k X P i Z P 00}{}{},{}{∑=+−−−−−=−−=iik ki n ki k i nkn kk n P p pC P p c 022111()1()1∑=−−+ik k i n k n in n C Cp 02121)(,,1,0,)1(212121n n i p p C i n n i i n n+=−=−++).,(~21p n n B Y X Z ++=故注:在上述计算过程中,已约定:当r>n 时,用到了公式 并,0=rnC .12121∑=+−=ik i n n k i n k n C C C21、X 和Y 的概率分布密度为},2)(exp{21)(22σσπy x x f X −−=);(+∞<<−∞x ⎩⎨⎧≤≤−=.,0,),2/(1)(其它πππy y f Y 因X 和Y 独立,考虑到 )仅在[)(y f Y ππ,−]上才有非零值,故由卷积公式知Z 的概率密度为.221)()()(222)(dy edy y f y z f z f a y z Y X Z ∫∫−−−−∞+∞−=−=ππμσππ令σμ−−=y z t ,则上式右端等于.(2122122⎥⎦⎤⎢⎣⎡⎟⎠⎞⎜⎝⎛−−Φ−−+Φ=∫−+−−−σμπσμππππσμπσμπz z dt e z z t 22、(1)由题设知 {}y X X P y M P y F n M ≤=≤=),,max()()(1),,(1y X y X P n ≤≤= )()()()()(121y F y F y X P y X P y X P Xn X n =≤≤≤=.∵),1(],0[~:,,1n i U X X X i n ≤≤θ独立且同分布 ∴⎪⎩⎪⎨⎧><<≤=,0,1,0,,0,0)(x x x x x F i X θθ∴⎪⎪⎩⎪⎪⎨⎧≥<<≤=.,1,0,,0,0)(θθθy y y y y F n n M 故⎪⎩⎪⎨⎧<<=−.,0,0,)(1其它θθy ny y f n n M(2){}y X X P y N P y N P y F n N >−=>−=≤=),,min(1)(1)()(1()y X P y X P y X P y X y X y X P n n >>>−=>>>−= )()(1,,,12121()[])(11)(11y F y X P i X i ni −−=>Π−==故 ⎪⎩⎪⎨⎧<<−=⎪⎩⎪⎨⎧<<−−−=−−其它其它,0,00,)(,001(1()(11y y n y y n y f n n n N θθθθθ 23、由题设容易得出随机变量(X ,Y )的概率密度,本题相当于求随机变量X 、Y 的函数S=XY 的概率密度,可用分布函数微分法求之.依题设,知二维随机变量(X ,Y )的概率密度为()()()⎩⎨⎧∉∈=G y x Gy x y x f ,,0,2/1,若若 设为S 的分布函数,则 当{s S P s F ≤=)(}0≤s 时,()0=s F ; 当时, .2≥s ()1=s F 现设0<s<2. 曲线s xy =与矩形G 的上边交于点(s,1);位于曲线s xy =上方的点满足s xy >,位于下方的点满足s xy <. 故(){}{}{}).ln 2ln 1(2211211121s sdy dx dxdy S XY P s XY P s S P s F s x s sxy −+=−=−=>−=≤=≤=∫∫∫∫>于是,⎩⎨⎧≥≤<<−=.20,0,20,2/)ln 2(ln )(s s s s s f 或若若(二)、补充题答案1.由于即{},0)(),,min(,,max =<==Y X P Y X 故知ηξηξ{}{}{}03,23,12,1=========Y X P Y X P Y X P ;又易知{}{}{}{},9/1111,11,1==⋅=======ηξηξP P P Y X P{}{},9/12,22,2======ηξP Y X P {}{},9/13,33,3======ηξP Y X P {}{}{},9/29/19/11,22,11,2=+===+=====ηξηξP P Y X P{}{}{},9/22,33,22,3===+=====ηξηξP P Y X P {}.9/29/711,3=−===Y X P 所以2.(1)x{}.,2,1,0,0,)1( =≤≤−===n n m P P C n X m Y P m n {}(2){}{}n X P n X m Y P m Y n X P ======,.,2,1,0,0,!)1( =≤≤⋅⋅−=−−n n m e P P C n m n mm n λλ3.22)1()1()1()0()0()1(p p Y P X P Y P X P z P +−===+====)1(2)0()1()1()0()0(p p Y P X P Y P X P z P −===+====而,由2)1,1()1,1(p Y X P Z X P ======),1()1()1,1(=====Z P X P Z X P 得. 2/1=p 5.:设随机变量ξ和η相互独立,都服从分 )1,0(N 布.则⎭⎬⎫⎩⎨⎧+−⋅=)(21exp 21),(22y x y x p π.显然, ,),(),(∫∫∫∫<SGdxdy y x p dxdy y x p,其中 G 和S 分别是如图所示的矩形ABCD 和圆.22/)21(),(2∫∫∫−−=a ax Gdx e dxdy y x p π,令,sin ,cos ϕγϕγ==y x 则 ∫∫∫∫=ππ20221),(a aSdxdy y x p 所以221212/a aaxe dx e −−−−<∫π.6.设这类电子管的寿命为ξ,则(1)三个管子均不要替换的概率为;(2)三个管子均要替换的概率为 .∫∞+==>1502.3/2)/(100)150(dx x P ξ21(−27/8)3/2(3=27/1)3/3=7.假设总体X 的密度函数为,分布函数为,第次的观察值为,独立同分布,其联合密度函数)(x f ,(1x f )(x F )()2x f i (n x )1(n i X i ≤≤i X )(),1n f x f x =.依题意,所求的概率为{}∫∫∫∫∫∫∞+∞−∞−∞−∞−−−−=−==>>><n n n nx i x x x x n n nn nn n i n n n n dx x f dx x f dx x f dx x f dx dx xx f X X X X X X P 112211111,...,2,1121)(...)()()(),,(.,...,,∫∫∞+∞−∞+∞−−−==)()()()(11n n n n n n n x dF x F dx x f x F.1)(1n x F nn n=∞−∞+=8.)(),()(21211211n P n k P n k P =+=+===+=ξξξξξξξξ)()()(2121n P k n P k P =+−===ξξξξ.由普哇松分布的可加性,知服从参数为的普哇松分布,所以 21ξξ+21λλ+)(21212112121!)()!(!)(λλλλλλλλξξξ+−−−−+−⋅==+=e n e k n ek n k P n k n k.1211211kn kk n −⎟⎟⎠⎞⎜⎜⎝⎛+−⎟⎟⎠⎞⎜⎜⎝⎛+⎟⎟⎠⎞⎜⎜⎝⎛=λλλλλλ9.当,0≤z (),0)(=≤=z Z P z F z ,0>z 当()z Z P z F z ≤=)(∫∫−+−=20)2(02xz y x z dy e dx∫∫−−−−−−−==202012x z z z y z x ze e dy e dxe ,所以 Y X z 2+=的分布函数为 ⎩⎨⎧>+−≤=−.0,)1(1,0,0),(z e z z y x F z10.由条件知X 和Y 的联合密度为⎪⎩⎪⎨⎧≤≤≤≤=其他若,0,31,31,41),(y x y x p以表示随机{})()(∞<<−∞≤=u u U P u F 变量U 的分布函数.显然,当0≤u 时, 0)(=u F ;当时,; 2≥u 1)(=u F 当,则20<<u []∫∫∫∫≤−uy x y x p ||,(≤−−−=−−===uy x u u dxdy dxdy u F ||2)2(411)2(44141))(2u−于是,随机变量的密度为⎪⎩⎪⎨⎧<<−=其他,0;20),2(21)(u u u p .11.记为这3个元件无故障工作的时间,则的分布函数321,,X X X ),,min(321X X X T ={}[][].)(1),,min(1(31321t X P t X X X P t F T −=>−(11)13X P t ≤−−=>)()t T P =≤=⎩⎨⎧≤>−=∴⎩⎨⎧=≤>−=−−,0,0,0,1)()3,2,1(,0,0,0,1)(~3t t e t F i t t e t F X t T t i λλ∵ 故 ⎪⎩⎪⎨⎧≤>==−.0,0,0,3)(')(3t t e t F t f t T T λλ。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9.以X记某医院一天出生的婴儿的个数,以Y记其
中男婴的个数,设X和Y的联合分布律为
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
(1)求边缘分布律 (2)求条件分布律
11.设随机变量(X,Y)的联合概率密度为
cxe y ,0 x y , f ( x, y) 其他. 0,
(1)求常数c (5)求(X,Y)的联合分布函数.
(1)由
f ( x, y)dxdy 1可解得c 1.
返回主目录
第三章 多维随机变量及其分布
28.设随机变量(X,Y)服从区域
D ( x, y) : y 0, x y 1
2 2
上的均匀分布,定义随机变量U,V如下:
0, X 0, 0, X 3Y , U 1,0 X Y ,V 1, X 3Y . 2, X Y ,
求 (U ,V )的联合概率密度 , 并计算P UV 0 .
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
返回主目录
第三章 多维随机变量及其分布
当n 0,1,2,时 P{ X n, Y m} P{Y m | X n} P{Y n}
令事件A Y 0, Y 1 X 2 , X 3Y , 则 A的面积 1 P U 2,V 0 , (扇形角度为 ) 2 6 6
返回主目录
第三章 多维随机变量及其分布
1 1 1 1 P U 2,V 1 1 . 4 6 2 12
返回主目录
第三章 多维随机变量及其分布
25.设随机变量(X,Y)服从区域
D ( x, y) : 0 x a,0 y a
上的均匀分布,试求:
(2)M max{X , Y }的概率密度 .
(2)解 : 设M的分布函数和概率密度 分别 为F ( z )和f ( z ).
返回主目录
1 2 y x F ( y, y ) lim F ( x, y ) lim1 ( x 1)e x e x y x y 2 1 2 y 1 y y 1 e . 2
iii)当x y 0时, 1 2 y F ( x, y) F ( y, y) 1 y y 1e . 2
u
y
1 2 y du 1 ( x 1)e x e . 2
x
xe y ,0 x y , f ( x, y) 其他. 0,
返回主目录
第三章 多维随机变量及其分布
则
xe y ,0 x y , f ( x, y) 其他. 0,
返回主目录
第三章 多维随机变量及其分布
P U 2,V 0 P X Y , X 3Y P X 3Y 2 2 方法1 1 1 x 2 , y 0, x 2 y 2 1, 3x dxdy f ( x, y ) 0 3 0, 其他. 2 1 3x 2 dx(令x sin t ) 1 x 0 3 方法二
第四章 随机变量的数字特征
因此 E ( X ) p k 1 p
k 1
k 1
1 1 p . 2 1 1 p p
(1)式两边对x求导得
2 n 2 1 2 2 3 x (n 1) nx , x 1, 2 3 1 x
即
0, z 1, F ( z ) ( z 1) 3 , 1 z 2, 1, z 2.
返回主目录
第三章 多维随机变量及其分布
因此 1 3 , 1 z 2, f ( z ) F ( z ) 其它. 0,
返回主目录
第三章 多维随机变量及其分布
第三章 多维随机变量及其分布
v)当 1 z 2时,
F ( z) P Y z X
F ( z ) PX 1PY z 1 PX 0PY z PX 1PY z 1
1 1 1 z 1 z 1 dy , 3 3 3 0 3
返回主目录
第三章 多维随机变量及其分布
(2)当m 0,1,2,时 P{ X n, Y m} P{ X n | Y m} P{Y m}
e 14 (7.14) m (6.86) nm e 7.14 (7.14) m m!(n m)! m! (6.86) nm e 6.86 , n m, m 1, (n m)!
因此 2 z a 2 , 0 z a , f ( z ) F ( z ) 其它. 0,
返回主目录
第三章 多维随机变量及其分布
26.设随机变量X与Y相互独立,X的分布律为
1 PX i i 1,0,1, 3
Y的概率密度为
1, 0 y 1, fY ( y ) 其他. 0,
P{Y m} P{ X n, Y m}
e
14
nm 14
(7.14) (6.86) m!(n m)!
nm m
nm
e (6.86) e (6.86) m m (7.14) (7.14) m! m! k! n m ( n m)! k 0
1 z 1 z 1 F ( z) PX 1P Y z 1 dy , 3 0 3 iv)当0 z 1时,
iii)当 1 z 0时,
F ( z) PX 1P Y z 1 PX 0P Y z 1 1 z z 1 dy , 返回主目录 3 3 0 3
n 14
n
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
e 14 e n (7.14 6.86) n! n!
14
, n 0,1,2,
返回主目录
第三章 多维随机变量及其分布
返回主目录
第三章 多维随机变量及其分布
(3) P{Y m | X 20}
m C20 0.51m 0.4920m , m 0,1,2,,20.
P{Y m | X n}
m Cn 0.51m 0.49n m , m 0,1,2,, n
返回主目录
第三章 多维随机变量及其分布
z
f ( x, y)dxdy
i)当z 0时, F ( z) 0; ii)当z a时, F ( z) 1; 2 z z 1 z iii)当0 z a时, F ( z ) 0 0 a 2 dxdy a 2 .
返回主目录
第三章 多维随机变量及其分布
即 z 0, 0, 2 2 F ( z ) z a , 0 z a, 1, z a.
返回主目录
第三章 多维随机变量及其分布
解:随机变量(X,Y)的联合概率密度为
2 2 2 , y 0, x y 1, f ( x, y ) 其他. 0,
P U 0,V 0 P X 0, X 3Y 0, 1 P U 0,V 1 P X 0, X 3Y , 2 P U 1,V 0 P 0 X Y , X 3Y 0, 1 P U 1,V 1 P 0 X Y , X 3Y , 4
(3)写出X=20时,Y的条件分布律
返回主目录
第三章 多维随机变量及其分布
解: (1) P{ X n} P{ X n, Y m}
e 14 (7.14) (6.86) n m m!(n m)! m 0
n
m 0 m
n
e n!
14
n! m nm (7.14) (6.86) m 0 m!( n m)!
m 7.14 e 14 ( 7 . 14 ) e m 6.86 (7.14) e , m 0,1,2, m! m!
nm
14
k
e 14 (7.14) m (6.86) nm P{ X n, Y m} , m!(n m)! m 0,1,2,, n; n 0,1,2,.
记Z=X+Y,试求: (2)Z的概率密度. (2)解 : 设Z的分布函数和概率密度 分别为F ( z )和f ( z ). 返回主目录
第三章 多维随机变量及其分布
F ( z) PZ z PX Y z P Y z X
i)当z 1时, F ( z) 0; ii)当z 2时, F ( z) 1;
返回主目录
第三章 多维随机变量及其分布
则 0, x 0或y 0, 1 2 y F ( x, y ) 1 y y 1e , 0 y x, 2 1 ( x 1)e x 1 x 2 e y , 0 x y . 2
第三章 多维随机变量及其分布
由题意知( X , Y )的联合密度函数为 1 a 2 ,0 x a,0 y a, f ( x, y ) 其它. 0,
F ( z) PZ z Pmax{X , Y } z PX z, Y z
z
(5) F ( x, y)