工程热力学第十章 动力循环

合集下载

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

沈维道《工程热力学》(第4版)名校考研真题-蒸汽动力装置循环(圣才出品)

第10章蒸汽动力装置循环一、选择题在蒸汽动力循环中,为达到提高循环热效率的目的,可采用回热技术来提高工质的()[宁波大学2008研]A.循环最高温度B.循环最低温度C.平均吸热温度D.平均放热温度【答案】C【解析】在蒸汽动力循环中,采用回热技术可以提高工质的平均吸热温度,从而达到提高循环热效率的目的。

二、判断题1.回热循环的热效率比郎肯循环高,但比功比朗肯循环低。

()[天津大学2004研] 【答案】对2.抽气回热循环由于提高了效率,所以单位质量的水蒸气做功能力增加。

()[同济大学2006研]【答案】错【解析】抽气回热循环中部分未完全膨胀的蒸汽从汽轮机中抽出,去加热低温冷却水,这样就使得相同的工质情况下,抽气回热循环做功小于普通朗肯循环,因而单位质量的水蒸气做功能力降低。

3.实际蒸汽动力装置与燃气轮装置,采用回热后平均吸热温度与热效率均提高。

()[湖南大学2007研]【答案】对【解析】对实际的蒸汽的动力装置于燃气轮机装置来说,采用回热后,平均吸热温度升高,于是热效率也得到提高。

三、简答题1.朗肯循环采用回热的基本原理是什么?[天津大学2004研]解:基本原理是提高卡诺循环的平均吸热温度来提高热效率。

2.画出朗肯循环和蒸汽压缩制冷循环的T-s图,用各点的状态参数写出:(1)朗肯循环的吸热量、放热量、汽轮机所做的功及循环热效率。

(2)制冷循环的制冷量、压缩机耗功及制冷系数。

[西安交通大学2004研]解:画出朗肯循环和蒸汽压缩制冷循环的T-s图如图10-1所示。

郎肯循环蒸汽压缩制冷循环图10-1(1)参考T-s图,可以得到:朗肯循环的吸热过程为4→1的定压加热过程,吸热量:;郎肯循环的放热过程为2→3的过程,在冷凝器中进行,放热量:;汽轮机中,做功过程为绝热膨胀过程1→2,做工量:;在水泵中被绝热压缩,接受功量为,相对于汽轮机做功来说很小,故有热效率:(2)参考上面的T-s图,可以得到:蒸汽压缩制冷循环的吸热量为:;压缩机耗功为:;制冷系数为:。

工程热力学—动力循环

工程热力学—动力循环

7 动力循环(Power Cycles)热能向机械能转换需要通过工质地循环,理想地循环是卡诺循环,但卡诺循环并不实用,其中地等温过程就难以实现.利用相变过程固然可以实现等温过程,但在吸热温度、压力方面却不遂人愿,所以实际循环与卡诺循环地差异比较大.但实际循环与卡诺循环并不是一点关系也没有,实际循环与卡诺循环一样,也有吸热、作功、放热、压缩四种过程组成,其中吸热常常伴随燃料燃烧放热.为了提高动力循环地能量转换地经济性,必须依照热力学基本定律对动力循环进行分析,以寻求提高经济性地方向及途径.实际动力循环都是不可逆地,为提高循环地热经济性而采取地各种措施又使循环变得非常复杂.为使分析简化,突出热功转换地主要过程,一般采用下述手段:首先将实际循环抽象概括成为简单可逆理论循环,分析该理论循环,找出影响其循环热效率地主要因素和提高热效率地可逆措施;然后分析实际循环与理论循环地偏离之处和偏离程度,找出实际损失地部位、大小、原因及改进办法.本课程主要关心循环中地能量转换关系,减少实际损失是具体设备课程地任务,因此我们主要论及前者.7.1 内燃动力循环内燃机地燃料燃烧(吸热)、工质膨胀、压缩等过程都是在同一设备——气缸–活塞装置中进行地,结构紧凑.由于燃烧是在作功设备内进行地,所以称为内燃机.汽车最常用地动力机是内燃机,但是随着技术地进步、环境保护标准地提高与石油天然气资源紧缺,使用蓄电池、燃料电池或太阳能电池地电动汽车已经呼之欲出.目前提到汽车发动机仍然主要是指内燃机.内燃机具有结构紧凑、体积小、移动灵活、热效率高和操作方便等特点,广泛用于交通运输、工程机械、农业机械和小型发电设备等领域.它是仿照蒸汽机地结构发明地,最初使用煤气作为燃料.随着石油工业地发展,内燃机获得了更合适地燃料——汽油和柴油.德国人奥托(Nicolaus A. Otto)首先于1877年制成了实用地点燃式四1—气缸盖和气缸体;2—活塞;3—连杆;4—水泵;5—飞轮;6—曲轴;7—润滑油管;8—油底壳;9—润滑油泵;10—化油器;11—进气管;12—进气门;13—排气门;14—火花塞图7-1 单缸四冲程内燃机结构冲程内燃机,狄塞尔(Rudoff Diesel)随后于1897年制成了压燃式内燃机.20世纪30年代出现地增压技术,使内燃机性能得到大幅度提高.目前内燃机在经济性能(主要指燃料和润滑油消耗)、动力性能(主要指功率、转矩、转速)、运转性能(主要指冷起动性能、噪声和排气质量)和耐久可靠性能等方面均有了长足地进步.7.1.1 四冲程内燃机地工作原理四冲程(行程)内燃机是指由进气、压缩、作功和排气等四个冲程组成一个工作循环地往复式内燃发动机,其工作原理如图7-2所示.1)进气冲程这是内燃机工作循环地第一个冲程.开始时进气门打开,曲轴旋转180︒,活塞由上止点运动到下止点,新鲜空气被吸入气缸.2)压缩冲程进、排气门全部关闭,气缸形成封闭系统,曲轴旋转180︒,活塞由下止点运动到上止点,将气缸内地充量压缩.3)作功(膨胀)冲程气缸内高温、高压气体膨胀作功,推动活塞由上止点运动到下止点,曲轴旋转180︒,对外作功.4)排气冲程膨胀冲程结束后,排气门打开,曲轴旋转180︒,推动活塞由下止点运动到上止点,将燃烧后地废气经排气门排出气缸.四冲程内燃机经历上述工作循环,曲轴共旋转720︒.四个冲程中仅有作功冲程是活塞对外作功,其他三个冲程都需要外界驱动活塞运动.四冲程柴油机和汽油机地工作过程都包括上述四个冲程,两者在工作原理上地区别是:柴油机压缩地是单一气体(空气),当活塞到达上止点附近时,缸内空气地压力温度很高,适时地喷入柴油,在缸内形成可燃混合气并自行着火燃烧,所以称为压燃式内燃机;汽油机图7-2 四冲程内燃机工作原理则是在气缸外形成可燃混合气,然后充入气缸,压缩终了时靠火花塞打火点燃(其压缩终了时压力温度比压燃式内燃机低得多),所以称为点燃式内燃机1.显然活塞地往复运动必然产生很大地振动,所以单缸内燃机需要一个又重又大地飞轮来减轻振动对曲轴及轴端输出功产生地冲击1由于汽油机里被压缩的是燃料和空气的混合物,受混合气体自燃温度的限制,不能采用大压缩比,不然混合气体就会“爆燃”,使发动机不能正常工作。

工程热力学-第10章动 力 循 环

工程热力学-第10章动 力 循 环

a kg (1- )kg 4
抽汽回热循环的抽汽量计算
T 1kg 6 kg 5 (1- )kg 4 3 2 a kg (1- )kg 4 s 1 a 以混合式回热器为例 热一律
ha 1 h4 1 h5
h5 h4 ha h4
忽略泵功
1kg 5
T 5 4 3
2
4
1 a
6 b
再 热
1
b a 3
2
s
蒸汽再热循环的热效率
T 5 4 3
2
1 a
6 b
再热循环本身不一 定提高循环热效率
与再热压力有关 x2降低,给提高初 压创造了条件,选 取再热压力合适, 一般采用一次再热 可使热效率提高2 s %~3.5%。
蒸汽再热循环的实践
再热压力 pb=pa0.2~0.3p1 p1<10MPa,一般不采用再热
a α kg 6 5 4
2 3 (1-α )kg
去凝汽器 表面式回热器 抽汽 给水 冷凝水 混合式回热器
抽汽式回热
蒸汽抽汽回热循环
T 1kg 6 kg 5 (1- )kg 4 3 2 s 1kg 5 1 a
a α kg 6 5 4 3 (1-α )kg 2 1 1kg
由于 T-s 图上各点质 量不同,面积不再 直接代表热和功
•缺点

小型火力发电厂回热级数一般为1~3级, 中大型火力发电厂一般为 4~8级。
提高循环热效率的途径
改变循环参数 改变循环形式 改变循环形式
提高初温度 提高初压力 降低乏汽压力 再热循环 回热循环
热电联产 燃气-蒸汽联合循环 IGCC 新型动力循环 PFBC-CC
…...

工程热力学第十章 动力循环ppt课件

工程热力学第十章 动力循环ppt课件

1
T2 T1
p2 p1
,
1
T3 T4
p3 p4
p3 p2, p1 p4
T4 T3 , T1 T2
p2 p1
t
1
1
( 1)
由上式可见,燃气轮安装循环的热效率仅与增
压比 有关。 越大,热效率越高。普通 燃气轮机安装增压比为3~10。
t
w0 q1
(h1 h6)(1a1)(h6
h8)(1a1 a2)(h8 h1 h7
h2)
二、再热循环
再热循环热效率计算
q1 (h1 h3) (h1 h6 )
q2 h2 h3
t
q1 q2 q1
(h1
h3) (h1 h6 ) (h2 (h1 h3) (h1 h6 )
h3)
(h1 h6 ) (h1 h2 ) (h1 h3) (h1 h6 )
第三节 热电循环
一、背压式热电循环 排汽压力高于大气压力的汽轮机称为背压式汽轮机
二、调理抽气式热电循环
第四章 内燃机循环
气体动力循环按热机的任务原理分类,可分为内燃 机循环和燃气轮机循环两类。内燃机的熄灭过程在热机 的汽缸中进展,燃气轮机的熄灭过程在热机外的熄灭室 中进展。
二、定压加热循环
工质吸热、放热和循环热效率:
q1 cp(T3 T2), q2 cv(T4 T1)
t
1q2 q1
1cp(T4 T1) cv(T3 T2)
11 T1(T4T11)
T2(T3T2 1)
1
T1 T2
v2 v1
1
1
,
T4 T1
v3 v2
t,p
1
1 ( 1) 1
第十章 动力循环

工程热力学 第十章 制冷循环

工程热力学 第十章 制冷循环
35
制冷剂其他性质
❖对环境友善 ❖安全无毒 ❖ 溶油性好,化学稳定性好
36
制冷剂种类
(1)无机化合物:氨R717、水R718、二氧 化碳R744、二氧化硫R764等。
(2)氟里昂:氟里昂是饱和碳氢化合物(饱 和烃类)的卤族衍生物的总称,最常用的 有R12、R22、R14和R134a等。
(3)混合溶液:由两种或两种以上不同的制 冷剂按一定比例相互溶解而成的混合物。 主要有R502(R22和R115)、R407C (R32/R125/R134a)。
2-3 为过 热 蒸 气 在 冷 凝 器 中定压放热被冷凝的过程;
3-4 为饱 和 液 体 在 节 流 阀 中节流、降压、降温的过 程;
4-1 为湿 饱 和 蒸 气 在 蒸 发
器中定压吸热、汽化的过
程。
22
制冷系数
c
qo wnet
qo h1-h3 qk-qo h2-h1
T1 T4 T2 T1
20
压缩蒸气制冷循环
用低沸点物质(大气压 下的沸点低于0℃)作为工 质(制冷剂),利用其在 定压下汽化和凝结时温度 不变的特性实现定温放热 和定温吸热,可以大大提 高制冷系数;制冷剂的汽 化潜热较大,因此制冷量 大。
21
压缩蒸气制冷循环
1-2 为从 蒸 发 器 中 出 来 的 蒸气在压缩机中被可逆绝 热压缩的过程;
(4)碳氢化合物:碳氢化合物制冷剂有甲烷、
乙烷、丙烷、乙烯、丙烯和异丁烷R600a
等。
37
课后思考题
❖压缩蒸气制冷循环采用节流阀来代替膨胀 机,压缩空气制冷循环是否也可以采用这 种方法?为什么?
❖对逆向卡诺循环而言,冷、热源温差越大, 制冷系数是越大还是越小?为什么?

工程热力学-第十章-蒸汽动力装置循环.讲课教案

工程热力学-第十章-蒸汽动力装置循环.讲课教案

■汽轮机的相对内部效率 T 实际作功与理论作功之比,
T
h1 h2act h1 h2
一般为0.85~0.92。
■耗汽率(steam rate)
输出单位功量的耗汽量称为耗汽率,单位为 k g / J
工程上常用 kg/(kWh) 。
●理想耗汽率:d 0 D /P 0 1 /w T 1 /( h 1 h 2 ) ●实际耗汽率:d i D /P i 1 /w T ,a c t 1 /( h 1 h 2 a c t)
(2)吸热量不变,热效率: iw net,act/q10.3972
实际耗汽率:d i 1 /( h 1 h 2 a c t) 7 .5 9 7 1 0 7 k g /J
(3)作功能力损失
查水和水蒸汽图表,得到:
新蒸汽状态点1:s16.442kJ/(kgK ),h13426kJ/kg
乏汽状态点
胀到状态2,然后进入冷凝器,定压放热变为饱和水2
再经水泵绝热压缩变为过冷水4,也进入回热器。
在回热器中, kg的水蒸汽 0 1 和(1 )kg的过
冷水4混合,变为1kg的饱和水 0 1 。然后经水泵绝热压
缩进入锅炉,定压吸热变为过热蒸汽,开始新的循
环。
2、回热循环分析
■抽汽量
能量方程(吸热量=放热量):
说明:质量不同,因此不能直接从T-s图上判断热量的 变化。
●热效率(提高):
t wnet / q1
锅炉给水的起始加热
温度由 2 提高到 0 1 ,平均
吸热温度提高,平均放热 温度不变,热效率提高。
吸热量:
q 1 h 1 h 4 h 1 ( h 3 w p ) h 1 ( h 2 w p ) 3 2 7 1 . 2 2 k J / k g

工程热力学-10气体动力循环

工程热力学-10气体动力循环

柴油机的实际示功图
实际循环:
0-1 进气过程 1-2 压缩过程 2-3-4 燃烧过程 4-5 膨源自(作功)过程 5-1 自由排气过程
+强制排气过程
2020年8月4日
第九章 气体动力循环
2
实际循环的理想化: 1. 把热力过程理想化→理论示功图 ①进气过程→0-1定压吸气 ②压缩过程→1-2定熵压缩 ③燃烧过程→2-3定容加热+3-4定压加热 ④膨胀过程→4-5定熵膨胀 ⑤排气过程→5-1定容排气+1-0定压排气
2020年8月4日
第九章 气体动力循环
6
w0 q23 34 q51
p1v1 { 1[( 1) ( 1)] ( 1)} 1
可见 , , w0
混合加热循环热效率 thermal efficiency
t
1
q2 q1
1
cp0 (T5 T1)
cV 0 (T3 T2 ) cp0 (T4 T3)
2020年8月4日
第九章 气体动力循环
3
2. 把工质看做理想气体 3. 把开口系统简化为闭口系统 (进排气功近似相等,相互抵消)
混合加热循环 (萨巴特循环)
混合加热循环的热效率:
t
1
q2 q1 q1
cV 0 (T3
cV 0 (T5 T1) T2 ) cp0 (T4
T3 )
2020年8月4日
ρ
T4 T3 T1k1
T5
T4
(
)k 1
T1
k1(
)k 1
T1 k
能量分析:
吸热量 q23 u23 cV 0(T3 T2) q34 h34 cp0(T4 T3)
q1 q23 q34
放热量 q2 q51 u51 cV 0(T1 T5)

工程热力学气体动力循环的概念与分类

工程热力学气体动力循环的概念与分类

工程热力学气体动力循环的概念与分类工程热力学是研究热能和功的转换与利用的学科。

在工程领域中,气体动力循环是广泛应用于发电、制冷、空调、石油化工等领域的一种热力学循环过程。

本文将介绍工程热力学气体动力循环的概念,并对其进行分类。

一、概念气体动力循环是通过工作物质在循环过程中吸热、膨胀、排热、压缩等热力学过程,将热能转化为功的循环过程。

这种循环过程通常由燃料燃烧产生热能,再通过与工作物质的热交换和机械工作转换来实现功的输出。

气体动力循环常用于热能转换设备,如内燃机、蒸汽轮机等。

二、分类根据气体动力循环的特点和工程应用需求,可以将其分为以下几类:1. 单级循环与多级循环单级循环是指在气体动力循环中,工作物质只经过一次膨胀和压缩过程,例如单级蒸汽轮机循环。

而多级循环则是指工作物质在循环过程中经过多次膨胀和压缩过程,例如多级蒸汽轮机循环。

多级循环相比于单级循环具有更高的效率和更好的经济性。

2. 热力循环与制冷循环热力循环主要用于能源利用,将热能转化为功。

典型的热力循环包括布雷顿循环和卡诺循环等。

而制冷循环则是将热能从低温区吸收,通过工作物质的循环过程将热能传递到高温区,从而实现制冷效果。

常见的制冷循环包括单级压缩制冷循环和多级压缩制冷循环等。

3. 气体组成循环气体动力循环中的工作物质可以是单一组分的气体,也可以是多组分混合气体。

气体组成对循环过程的热力学性质和性能有重要影响。

常见的气体组成循环包括理想气体循环、湿气循环和混合气体循环等。

4. 循环过程特点根据循环过程的特点,气体动力循环可分为恒定流量循环和恒定压力循环。

在恒定流量循环中,气体流量保持不变,例如湿蒸汽循环。

而在恒定压力循环中,工作物质的排热过程保持恒定压力,例如常压汽轮机循环。

总结:工程热力学气体动力循环是将热能转化为功的一种循环过程。

根据其特点和应用需求,可以将其分类为单级循环与多级循环、热力循环与制冷循环、气体组成循环以及循环过程特点等。

10工程热力学第十章 水蒸气及蒸汽动力循环

10工程热力学第十章 水蒸气及蒸汽动力循环

10-3 水蒸气的热力过程 目的—确定过程的能量转换关系 分析水蒸气热力过程的目的 确定过程的能量转换关系, 分析水蒸气热力过程的目的 确定过程的能量转换关系, 包括w 以及 以及u和 等 因此,需确定状态参数的变化. 包括 ,q以及 和Δh等.因此,需确定状态参数的变化. 确定过程的能量转换关系的依据为热力学第一,二定律: 确定过程的能量转换关系的依据为热力学第一,二定律:
图和T-s图 三,水蒸气的p-v图和 图 水蒸气的 图和
分析水蒸气的相变图线可见,上,下界线表明了水汽化的始末界线, 分析水蒸气的相变图线可见, 下界线表明了水汽化的始末界线, 二者统称饱和曲线, 图分为三个区域,即液态区( 二者统称饱和曲线,它把p-v和T-s图分为三个区域,即液态区(下 界线左侧) 湿蒸汽区(饱和曲线内) 汽态区(上界线右侧) 此外, 界线左侧),湿蒸汽区(饱和曲线内),汽态区(上界线右侧).此外, 习惯上常把压力高于临界点的临界温度线作为"永久" 习惯上常把压力高于临界点的临界温度线作为"永久"气体与液体 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点) 的分界线.所以,水蒸气的相变图线,可以总结为一点(临界点), 二线(上界线,下界线) 三区(液态区,湿蒸汽区,气态区) 二线(上界线,下界线),三区(液态区,湿蒸汽区,气态区)和五态 未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, (未饱和水状态,饱和水状态,湿饱和蒸汽状态,干饱和蒸汽状态, 过热蒸汽状态) 过热蒸汽状态)
q = h h ′′
显然, 的水加热变为过热水蒸气所需的热量, 显然,将0.01℃的水加热变为过热水蒸气所需的热量,等于液 的水加热变为过热水蒸气所需的热量 体热,汽化潜热与过热热量三者之和. 体热,汽化潜热与过热热量三者之和.而且整个水蒸气定压发生过 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算 用水和水蒸气的焓值变化来计算. 程及各个阶段中的加热量,均可用水和水蒸气的焓值变化来计算.

工程热力学-第十章动力循环之朗肯循环

工程热力学-第十章动力循环之朗肯循环

02
初参数对朗肯循环热效率的影响
1. 初温t1
T 1 T 2不变 t
或 循环1t2t3561t =循环123561+循环11t2t21
t11t2t21
t123561
t
02
2. 初压力 p1
T 1 ,T 2不变 t 但 x2下降且 p太高造成强度问题
3. 背压 p2
实际并不实行 卡诺循环
01
02. 朗肯循环的热效率
02
朗肯循环的热效率
t

wn wt,T wt,P
wt,T h1 h2 ? cp T1 T2
wt,P h4 h3
wnet h1 h2 h4 h3
02 T 1不变 ,T 2 t 但受制于环境温度,不能任意
降低 p2 6kPa,ts 36.17 C; p2 4kPa,ts 28.95 C
同时,x2下降 。
思考: 我国幅员辽阔,四季温差大,对蒸汽发电机组有什么影响?
THANK YOU
第十章 动力循环 之
朗肯循环
CONTENTS
01. 朗肯循环的流程 02. 朗肯循环的热效率
01. 朗肯循环的流程
01
朗肯循环 (Rankine cycle)
1)流程图
2)p-v,T-s图
01
3)水蒸气的卡诺循环
水蒸气卡诺循环有可能实现,但:
(1)温限小 (2)膨胀末端x太小 (3)压缩两相物质的困难
t

h1 h2 h1 h3

h1 h2 h1 h2'
5)耗汽率(steam rate)及耗汽量
理想耗汽率(ideal steam rate) d0 —装置每输出单位功量所消耗的蒸汽量

工程热力学与传热学 第十章 气体动力循环

工程热力学与传热学 第十章 气体动力循环

在斯特林循环中,在定容吸热过程2-3中工质从回热器中吸收的
热量正好等于定容放热过程4-1放给回热器的热量。经过一个循环
回热器恢复到初始状态。 可以证明:在相同的温度范围内,理想的定容回热循环(斯特 林循环)和卡诺循环,具有相同的热效率。
斯特林循环的突出优点是热效率高、污染少,对加热方式的适
应性强。随着科技的发展以及环境保护日益为人们所重视,斯特林
同样可以证明:在相同的温度范围内,理想的定压回热循环( 艾利克松循环)和卡诺循环,具有相同的热效率。 理想回热循环(斯特林循环和艾利克松循环)通常称为概括性 卡诺循环。实践证明,采用回热措施可以提高循环热效率,也是余 热回收的一种重要节能途径。
本章小结
1。气体动力循环的基本概念 1)内燃机的特性参数:
P 3 2 4
0-1:吸气过程。由于阀门的阻力,吸入气缸内
空气的压力略低于大气压力。
1-2:压缩过程 2-3-4-5:燃烧和膨胀过程
5 6
燃烧可分为定容过程和定压过 程
1
Pb
0
5-6-0:排气过程
V
P 3 2 4
简化原则为:(1)不计吸气和
排气过程,将内燃机的工作过程 看作是气缸内工质进行状态变化 的封闭循环。
3 - 4为定压加热过程:
T4 v4 T3 v3 T4 T3 T1 k 1;p4 p3 p1 k
v1 v2
p3 p2
v4 v3
4-5为定熵过程,5-1及2-3为定容过程,因此有:
T5 v 4 k 1 v 4 k 1 v 4 v 2 k 1 k 1 ( ) ( ) ( ) ( ) T4 v5 v1 v3 v1
2-3:定容吸热; 4-5:绝热膨胀;

工程热力学主要循环图示

工程热力学主要循环图示
热泵技术
通过循环图示分析热泵的工作原理,实现低品位热能的回收利用。
热管技术
利用循环图示研究热管技术,实现高效传热和节能。
环保技术
废热处理
利用循环图示分析废热处理过程中的能量转换和利用,降低环境污 染。
温室气体减排
通过循环图示研究温室气体减排技术,减少温室气体排放。
工业废水处理
利用循环图示分析工业废水处理过程中的能量转换和利用,实现废水 零排放。
影响因素
热效率受到工质的选择、循环过程的设计、实际运行条件等因素 的影响。
机械效率
01
机械效率
表示循环过程中机械能转换为输 出功的效率,是评价机械发动机 性能的重要指标。
计算公式
02
03
影响因素
$eta_{mech} = frac{W_{net}}{W_{net} + Q_{in}}$。
机械效率受到工质的选择、循环 过程的设计、实际运行条件等因 素的影响。
THANKS
感谢观看
循环效率受到多种因素的 影响,如循环过程的设计、 工质的选择、实际运行条 件等。
热效率
热效率
表示循环过程中热能转换为机械能的效率,是评价热力发动机性 能的重要指标。
计算公式
$eta_{th} = frac{W_{net}}{Q_{in} - Q_{out}}$,其中 $Q_{out}$为循环中输出热量。
对于封闭系统,热量自发地从低温流向高温,而不是相反方向。
03
循环图示的解析
循环效率
循环效率
表示循环过程能量转换的 完善程度,是评价循环过 程性能的重要参数。
计算公式
$eta
=
frac{W_{net}}{Q_{in}}$,

西建工程热力学课件10动力循环

西建工程热力学课件10动力循环

3、混合加热循环
§10.5 燃气轮机循环
1、简单燃气轮机定压加热循环
(布雷顿(Brayton)循环) (1)工作原理
2、分析计算
2、分析计算
2、分析计算
3、燃汽轮机装置的优缺点及应用
优点
应用
缺点
本章作业 P202:10-2、10-6、10-11
➢ 热电循环原理
➢ 内燃机、燃气轮机循环原理及其能量分 析、热效率计算
§10.1 蒸汽动力基本循环—朗肯循环
1、装置与流程 (1)四个主要设备:
(2)
(3)p-v图
(4)T-S图
(5)焓熵图
2、
(1) (2)
(3)取锅炉为控制体
(4)
(6)朗肯循环热效率
3、提高朗肯循环热效率的基本途径
目的:克服汽轮机尾部蒸 汽湿度过大造成的危害。
2、再热循环
高压汽轮 机
低压汽轮机
相当于在朗肯循环的基础上 增加了新的循环:
6 1' 2' 2 6。
一般而言,采用一次再热循环以后,循 环热效率可提高2%~ 4%左右。 实际应用的再热次数一般不超过两次。

q1 (h1 h3 ) (h1' h6 )
q2 h2' h3

目前超高压以上(如蒸汽 初压13MPa、24MPa或更高) 的大型发电厂几乎毫无例外 地采用再热循环。
我国制造的超临界压力 100万kW的汽轮发电机组即 为一次中间再热式的,进汽 初参数为27.46MPa、 605℃,再热参数为 5.94MPa、603℃。
现代蒸汽动力厂循环,即使采用超高蒸汽参数、回热、 再热等措施,其热效率仍不超过50%。
燃料喷射停止后,燃烧随即结束,这时活 塞靠高温高压燃烧产物的绝热膨胀而继续 被推向右方而形成工作过程3-4; ➢排气过程4-0;

工程热力学-第十章动力循环之其他循环

工程热力学-第十章动力循环之其他循环
03
循环热量利用系数
已利用的热量
工质从热源所吸收的热量
> 循环热效率
循环热量利用系数没有区分热能与电能的本质差别; 循环热效率没考虑低温热能的可利用性
热电厂热量利用系数



利用的热量 燃料的总释热量
THANK YOU
3)回热器中过程不可逆,为什么 循环ηt 上升?
03. 热电联产
03
热电联产(power-and-heating plant cycle)
一、背压式设备流程及T-s图
特点—发电量受热负荷制约。
03
二、抽汽凝汽式设备流程及T-s图
特点—热负荷变动对电能生产影响较小,热效率较背压机组高。
三、热量利用系数
第十章 动力循环 之
其他循环
CONTENTS
01. 再热循环 02. 回热循环 03. 热电联产
01. 再热循环
01
再热循环(reheat cycle)
一、设备流程及T-s图
二、再热对循环效率的影响
01
忽略泵功:
wnet h1 h5 h6 h7
q1 h1 h3 h6 h5
回热器两种方式
混合式
间壁式
02
二、回热循环计算
02
1. 抽汽量
能量方程:
1 h4 h01 h01' 0
忽略泵功 h4 h2' h01' h2'
h01 h2'
2. 回热器(regenerator)R 熵方程:
1 s2' s01 s01' Sf Sg
t

wnet q1

工程热力学第四版课后思考题答案

工程热力学第四版课后思考题答案

第一章基本概念与定义1.答:不一定。

稳定流动开口系统内质量也可以保持恒定2.答:这种说法是不对的。

工质在越过边界时,其热力学能也越过了边界。

但热力学能不是热量,只要系统和外界没有热量地交换就是绝热系。

3.答:只有在没有外界影响的条件下,工质的状态不随时间变化,这种状态称之为平衡状态。

稳定状态只要其工质的状态不随时间变化,就称之为稳定状态,不考虑是否在外界的影响下,这是他们的本质区别。

平衡状态并非稳定状态之必要条件。

物系内部各处的性质均匀一致的状态为均匀状态。

平衡状态不一定为均匀状态,均匀并非系统处于平衡状态之必要条件。

4.答:压力表的读数可能会改变,根据压力仪表所处的环境压力的改变而改变。

当地大气压不一定是环境大气压。

环境大气压是指压力仪表所处的环境的压力。

5.答:温度计随物体的冷热程度不同有显著的变化。

6.答:任何一种经验温标不能作为度量温度的标准。

由于经验温标依赖于测温物质的性质,当选用不同测温物质的温度计、采用不同的物理量作为温度的标志来测量温度时,除选定为基准点的温度,其他温度的测定值可能有微小的差异。

7.答:系统内部各部分之间的传热和位移或系统与外界之间的热量的交换与功的交换都是促使系统状态变化的原因。

8.答:(1)第一种情况如图1-1(a),不作功(2)第二种情况如图1-1(b),作功(3)第一种情况为不可逆过程不可以在p-v图上表示出来,第二种情况为可逆过程可以在p-v图上表示出来。

9.答:经历一个不可逆过程后系统可以恢复为原来状态。

系统和外界整个系统不能恢复原来状态。

10.答:系统经历一可逆正向循环及其逆向可逆循环后,系统恢复到原来状态,外界没有变化;若存在不可逆因素,系统恢复到原状态,外界产生变化。

11.答:不一定。

主要看输出功的主要作用是什么,排斥大气功是否有用。

第二章 热力学第一定理1.答:将隔板抽去,根据热力学第一定律w u q +∆=其中0,0==w q 所以容器中空 气的热力学能不变。

工程热力学六动力装置循环课件

工程热力学六动力装置循环课件

蒸汽机动力装置的应用
蒸汽机动力装置广泛应用于工业领域,如发电站、化工、造纸等,也可用于船舶 和铁路机车等交通运输工具。
随着技术的发展,蒸汽机逐渐被更高效的汽轮机和内燃机所取代,但在某些特定 领域仍有一定应用。
05
燃气-蒸汽联合循环
燃气-蒸汽联合循环工作原理
燃气-蒸汽联合循环是一种高效、清洁的能源利用方式,它结合了燃气轮机循环和蒸汽轮机循环的优点。在燃气-蒸汽联合循 环中,首先通过燃气轮机燃烧燃料产生高温高压气体,驱动涡轮机转动并输出机械功;然后,将部分或全部高温排气引入余 热锅炉中加热给水,产生高温高压蒸汽;最后,蒸汽轮机利用这些蒸汽转动涡轮机并输出机械功。
03
燃气轮机动力装置循环
布雷顿循环
总结词
基于等压加热的理想循环,适用于燃气轮机。
详细描述
布雷顿循环由吸气、压缩、燃烧、膨胀和排气五个过程组成。在等压加热过程中,工质吸收热量并对 外做功,实现热能向机械能的转化。
回流燃烧室循环
总结词
提高燃气轮机效率的循环方式。VS详细描述回流燃烧室循环通过在燃烧室内形成回流 ,增加燃料与空气的混合时间和燃烧程度 ,从而提高燃烧效率。同时,回流还使得 燃烧室内压力升高,提高了循环热效率。
回热循环通过将部分做功后的蒸汽抽 出,引入回热器加热锅炉中的给水, 提高给水温度,减少锅炉中燃料消耗 ,从而提高整个循环的热效率。
再热循环
总结词
再热循环是在朗肯循环基础上增加一个再热器,以提高再热率的改进型循环。
详细描述
再热循环中,汽轮机高压缸排出的蒸汽被引入再热器中再次加热,然后进入低 压缸继续做功。再热循环可以提高汽轮机的效率,并减小蒸汽在汽轮机内的温 差和压力降,从而提高整个循环的热效率。

工程热力学WORD版第10章气体动力循环

工程热力学WORD版第10章气体动力循环

第10章气体动力循环一、教案设计教学目标:使学生掌握分析动力循环的一般方法;了解活塞式内燃机实际循环的分析方法;了解燃气轮机循环的分析方法。

知识点:分析动力循环的一般方法;活塞式内燃机实际循环的简化;活塞式内燃机的理想循环;活塞式内燃机各种理想循环的热力学比较;燃气轮机装置循环;燃气轮机装置的定压加热实际循环。

重点:分析动力循环的一般方法;活塞式内燃机循环分析;燃气轮机装置循环的分析方法,提高燃气轮机装置循环效率的方法和途径。

难点:实际循环简化成理想循环的方法;提高内燃机和燃气轮机装置循环效率的方法和途径。

教学方式:讲授+多媒体演示+课堂讨论师生互动设计:提问+启发+讨论问:你知道汽车为什么会走?问:你以前知道内燃机吗?有哪些装置组成?又是怎么工作的?问:你知道柴油机与汽油机的区别吗?问:你知道燃汽轮机发电是怎么回事吗?学时分配:4学时二、基本知识第一节动力循环分析的目的与一般方法一、分析的目的在热力学基本定律的基础上分析循环过程中能量转换的经济性,寻求提高经济性的方向及途径。

二、分析方法与步骤1. 将实际循环抽象和简化为理想循环2. 将简化好的理想可逆循环表示在p-v、T-s图上3. 对理想循环进行分析计算:计算循环中有关状态点(如最高压力点、最高温度点)的参数,与外界交换的热量、功量以及循环热效率或工作系数。

动力循环的热效率:-W net _ 1q2q i q i4、定性分析各主要参数对理想循环的吸热量、放热量及净功量的影响,进而分析对循环热 效率(或工作系数)的影响,提出提高循环热效率(或工作系数)的主要措施。

平均温度分析法:—5、 对理想循环的计算结果引入必要的修正6、 对实际循环进行热力学第二定律分析:熵分析 火用分析第二节 内燃机动力循环的分类一、分类按工作方式不同可分为:活塞式内燃机,叶轮式燃气轮机,喷气发动机汽油机 点燃式内燃机煤气机I 压燃式内烘机一岂油机二,汽油机1模型简化实际彳盾环的简化、理想化① 空气与燃气理想化为定比热客的理想气体; ② 开式循环理想化为闭式循环:③ 燃烧、排气过殺理想化为工质的吸、放热过程; ④ 压缩与膨胀过程理想彳匕为可逆绝热过程G2、汽油机理论循环一定容加热循环(奥托循环)活塞式内燃机:^JX?Ju n rs.u.吸建鼻9产3爲一⑪放热量6 = 4'石-兀1S环净功珂二如一心AS环删率SWtvT4=1飞3二g则T3T4 -TT3 J "唔"川2tv定窖加驷环的计算v影响发动机的正常工作。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

1 (
1)
第五节 燃气轮机循环
燃气轮机主要有三部分组成:燃气轮机、压气机和燃烧 室
工质的吸热量 放热量
循环的热效率
q1 c p (T3 T2 )
q 2 c p (T4 T1 )
t
1
q2 q1
1 T4 T1 T3 T2
1
T1 (T4 T2 (T3
T 1 1) T 2 1)
1cv(T4T1) 1T1(T4T11)
cv(T3T2)
T2(T3T21)
v3=v2,v4=v1,故
T2 T1
vv121
T3 T4
vv431
T2 T3 , T1 T4
T4 T3 T1 T2
t
1 T1 T2
1 1
T2 T1
1
1
v1 v2
1
1
1 k1
v1 v2
称为压缩比,是个大于1的数,表示工质在燃烧前 被压缩的程度。压缩比越高,内燃机的热效率也越高。 一般的汽油机压缩比为7~9
1
T2 T1
p2 p1
,
1
T3 T4
p3 p4
p3 p2, p1 p4
T4 T3 , T1 T2
p2 p1
t
1
1
( 1)
由上式可见,燃气轮装置循环的热效率仅与增 压比 有关。 越大,热效率越高。一般 燃气轮机装置增压比为3~10。
二、定压加热循环
工质吸热、放热和循环热效率:
q1 cp(T3 T2), q2 cv(T4 T1)
t
1q2 q1
1cp(T4 T1) cv(T3 T2)
11 T1(T4T11)
T2(T3T2 1)
T1 T2
v2 v1
1
1 1
,
T4 T1
v3 v2
t,p
1
1 ( 1) 1
吸气冲程 压缩冲程 工作冲程 排气冲程
为了便于从热力学上对实际工作进行分析,需 加以合理的抽象和简化,使之成为闭口的、可 逆的理想循环。
实际工作与对应P-V图
吸热量 q 1 c v ( T 3 T 2 ) 放热量 q 2 c v ( T 4 T 1 )
循环热效率
t
1q2 q1
增长的程度,它取决于喷入气缸的燃料量。
三、混合加热循环
既有定压加热又有定容加热:
q1 cv (T 2 T 2 ) c p (T3 T 2)
q 2 cv (T 4 T1)
v 1 压缩比 v2
v 3 定压预胀比 v2
p 2 定容升压比 p2
t,c
1
1
1
(
1)
h3)
(h1 h6 ) (h1 h2 ) (h1 h3) (h1 h6 )
第三节 热电循环
一、背压式热电循环 排汽压力高于大气压力的汽轮机称为背压式汽轮机
二、调节抽气式热电循环
第四章 内燃机循环
气体动力循环按热机的工作原理分类,可分为内燃 机循环和燃气轮机循环两类。内燃机的燃烧过程在热机 的汽缸中进行,燃气轮机的燃烧过程在热机外的燃烧室 中进行。
燃 气 轮 机
内燃机
内燃机使用气体或者液体燃料,以燃料在气缸中燃 烧时生成的燃气作为工质。活塞式内燃机分为点燃式内 燃机(汽油机)和压燃式内燃机(柴油机)。相应的内 燃机理论循环分为定容加热循环、定压加热循环和混合 加热循环。
汽 油 机
柴 油 机
一、定容加热循环
定容加热理想循环是汽油机实际工作循环的理想化, 又称奥托循环。
二、朗肯循环的能量分析及热效率
1-2中所作理论轴功:
ws,t h1 h2
3-3‘消耗轴功:
wsp h3 h3 v3 ( p1 p2 )
蒸汽在3’-1中从锅炉吸收的热量: q1 h1 h3
2-3中向冷凝器放出的热量:
q2 h2 h3
取整个装置作热力系统,有:
q w
t
w0 q1
w s,t w s, p q1
工程热力学第十章 动力循环
第一节 蒸汽动力基本循环——朗肯循环
一、装置与流程 朗肯循环的蒸 汽动力装置包括 锅炉、汽轮机、 凝汽器和给水泵 四部分主要设备。
3‘-4-5-1水在蒸汽锅炉中定压加热变为过热 水蒸气
1-2过热水整齐在汽轮机内定熵膨胀 2-3湿蒸气在汽轮机内定熵膨胀 3-3’凝结水在水泵中的定熵压缩
q1 q2 q1
(h1 h3) (h2 h3 ) (h1 h3)
h1 h2 h1 h3
(h3 h3 )
三、提高朗肯循环热效率的基本途径
工质在锅炉中的吸热量和 等效卡诺循环的热效率
1
q1 3 Tds Tm1 (s6 s7 )
t
1 T2 Tm1
1、提高平均吸热温度的直接方法是提高蒸汽压 力和温度。
T3 v3 T2 v2
可以看出,压缩比 大,热效率高;定压预胀
比 大,则热效率低。柴油机吸入的是单纯空气,
压缩后不会发上爆燃,所以压缩比 可 以比汽油
机大,同时也只有提高压缩比,才有可能使压缩 终了的空气温度高于燃料的燃点。
柴油机的压缩比一般为14~18。
定压预胀比 表示工质在燃烧过程中比容
t
w0 q1
(h1 h6)(1a1)(h6 h8)(1a1 a2)(h8 h1 h7
h2)
二、再热循环
再热循环热效率计算
q1 (h1 h3) (h1 h6 )来自q2 h2 h3t
q1 q2 q1
(h1 h3) (h1 h6 ) (h2 (h1 h3) (h1 h6 )
2、降低排汽温度。
第二节 回热循环与再热循环
一、回热循环 1、极限回热循环
2、抽汽回热循环
效率计算
a1 (1 a1 ) 1
a1h6 (1 a1 ) h9 h7
a1
h7 h6
h9 h9
a2 (1a1 a2) 1a1
a2h8 (1a1 a2)h3 (1a1)h9
a2
(1a1)(h9 h3) h8 h3
相关文档
最新文档