向量与三角,不等式等知识综合应用
高中数学新教材解三角形教案
高中数学新教材解三角形教案高中数学新教材解三角形教案1一、教学内容分析向量作为工具在数学、物理以及实际生活中都有着广泛的应用.本小节的重点是结合向量知识证明数学中直线的平行、垂直问题,以及不等式、三角公式的证明、物理学中的应用.二、教学目标设计1、通过利用向量知识解决不等式、三角及物理问题,感悟向量作为一种工具有着广泛的应用,体会从不同角度去看待一些数学问题,使一些数学知识有机联系,拓宽解决问题的思路.2、了解构造法在解题中的运用.三、教学重点及难点重点:平面对量知识在各个领域中应用.难点:向量的构造.四、教学流程设计五、教学过程设计一、复习与回顾1、提问:下列哪些量是向量?(1)力(2)功(3)位移(4)力矩2、上述四个量中,(1)(3)(4)是向量,而(2)不是,那它是什么?[说明]复习数量积的有关知识.二、学习新课例1(书中例5)向量作为一种工具,不仅在物理学科中有广泛的应用,同时它在数学学科中也有许多妙用!请看例2(书中例3)证法(一)原不等式等价于,由基本不等式知(1)式成立,故原不等式成立.证法(二)向量法[说明]本例关键引导学生观察不等式结构特点,构造向量,并发现(等号成立的充要条件是)例3(书中例4)[说明]本例的关键在于构造单位圆,利用向量数量积的两个公式得到证明.二、巩固练习1、如图,某人在静水中游泳,速度为km/h.(1)如果他径直游向河对岸,水的流速为4 km/h,他实际沿什么方向前进?速度大小为多少?答案:沿北偏东方向前进,实际速度大小是8 km/h.(2) 他必须朝哪个方向游才能沿与水流垂直的方向前进?实际前进的速度大小为多少?答案:朝北偏西方向前进,实际速度大小为km/h.三、课堂小结1、向量在物理、数学中有着广泛的应用.2、要学会从不同的角度去看一个数学问题,是数学知识有机联系.四、作业布置1、书面作业:课本P73, 练习8.4 4高中数学新教材解三角形教案2教学目标:1.了解反函数的概念,弄清原函数与反函数的定义域和值域的关系.2.会求一些简单函数的反函数.3.在尝试、探索求反函数的过程中,深化对概念的认识,总结出求反函数的一般步骤,加深对函数与方程、数形结合以及由特殊到一般等数学思想方法的认识.4.进一步完善学生思维的深刻性,培育学生的逆向思维能力,用辩证的观点分析问题,培育抽象、概括的能力.教学重点:求反函数的方法.教学难点:反函数的概念.教学过程:教学活动设计意图一、创设情境,引入新课1.复习提问①函数的概念②y=f(x)中各变量的意义2.同学们在物理课学过匀速直线运动的位移和时间的函数关系,即S=vt和t=(其中速度v是常量),在S=vt中位移S是时间t的函数;在t=中,时间t是位移S的函数.在这种情况下,我们说t=是函数S=vt 的反函数.什么是反函数,如何求反函数,就是本节课学习的内容.3.板书课题由实际问题引入新课,激发了学生学习爱好,展示了教学目标.这样既可以拨去反函数这一概念的神秘面纱,也可使学生知道学习这一概念的必要性.二、实例分析,组织探究1.问题组一:(用投影给出函数与;与()的图象)(1)这两组函数的图像有什么关系?这两组函数有什么关系?(生答:与的图像关于直线y=x对称;与()的图象也关于直线y=x对称.是求一个数立方的运算,而是求一个数立方根的运算,它们互为逆运算.同样,与()也互为逆运算.)(2)由,已知y能否求x?(3)是否是一个函数?它与有何关系?(4)与有何联系?2.问题组二:(1)函数y=2x 1(x是自变量)与函数x=2y 1(y是自变量)是否是同一(2)函数(x是自变量)与函数x=2y 1(y是自变量)是否是同一函数?(3)函数()的定义域与函数()的值域有什么关系?3.渗透反函数的概念.(老师点明这样的函数即互为反函数,然后师生共同探究其特点) 从学生熟知的函数出发,抽象出反函数的概念,符合学生的认知特点,有利于培育学生抽象、概括的能力.通过这两组问题,为反函数概念的引出做了铺垫,利用旧知,引出新识,在最近进展区设计问题,使学生对反函数有一个直观的粗略印象,为进一步抽象反函数的概念奠定基础.三、师生互动,归纳定义1.(根据上述实例,老师与学生共同归纳出反函数的定义)函数y=f(x)(x∈A) 中,设它的值域为C.我们根据这个函数中x,y 的关系,用y 把x 表示出来,得到x = j (y) .如果对于y在C中的任何一个值,通过x = j (y),x在A中都有的值和它对应,那么, x = j (y)就表示y是自变量,x是自变量y 的函数.这样的函数x = j (y)(y ∈C)叫做函数y=f(x)(x∈A)的反函数.记作: .考虑到用x表示自变量, y表示函数的习惯,将中的x与y对调写成.2.引导分析:1)反函数也是函数;2)对应法则为互逆运算;3)定义中的如果意味着对于一个任意的函数y=f(x)来说不一定有4)函数y=f(x)的定义域、值域分别是函数x=f(y)的值域、定义域;5)函数y=f(x)与x=f(y)互为反函数;6)要理解好符号f;7)交换变量x、y的原因.3.两次转换x、y的对应关系(原函数中的自变量x与反函数中的函数值y 是等价的,原函数中的函数值y与反函数中的自变量x是等价的.)4.函数与其反函数的关系函数y=f(x)函数定义域AC值域CA四、应用解题,总结步骤1.(投影例题)【例1】求下列函数的反函数(1)y=3x-1 (2)y=x 1【例2】求函数的反函数.(老师板书例题过程后,由学生总结求反函数步骤.)2.总结求函数反函数的步骤:1° 由y=f(x)反解出x=f(y).2° 把x=f(y)中x与y互换得.3° 写出反函数的定义域.(简记为:反解、互换、写出反函数的定义域)【例3】(1)有没有反函数?(2)的反函数是________.(3)(x0)的反函数是__________.在上述探究的基础上,揭示反函数的定义,学生有针对性地体会定义的特点,进而对定义有更深刻的认识,与自己的预设产生矛盾冲突,体会反函数.在剖析定义的过程中,让学生体会函数与方程、一般到特殊的数学思想,并对数学的符号语言有更好的把握.通过动画演示,表格对比,使学生对反函数定义从感性认识上升到理性认识,从而消化理解.通过对具体例题的讲解分析,在解题的步骤上和方法上为学生起示范作用,并及时归纳总结,培育学生分析、思考的习惯,以及归纳总结的能力.题目的设计遵循了从了解到理解,从掌握到应用的不同层次要求,由浅入深,循序渐进.并体现了对定义的反思理解.学生思考练习,师生共同分析纠正.五、巩固强化,评价反馈1.已知函数y=f(x)存在反函数,求它的反函数y =f( x)(1)y=-2x 3(xR) (2)y=-(xR,且x)( 3 ) y=(xR,且x)2.已知函数f(x)=(xR,且x)存在反函数,求f(7)的值.五、反思小结,再度设疑本节课主要讨论了反函数的定义,以及反函数的求解步骤.互为反函数的两个函数的图象到底有什么特点呢?为什么具有这样的特点呢?我们将在下节讨论.(让学生谈一下本节课的学习体会,老师适时点拨)进一步强化反函数的概念,并能正确求出反函数.反馈学生对知识的掌握情况,评价学生对学习目标的落实程度.具体实践中可实行同学板演、分组竞赛等多种形式调动学生的乐观性.问题是数学的心脏学生带着问题走进课堂又带着新的问题走出课堂.六、作业习题2.4第1题,第2题进一步巩固所学的知识.教学设计说明问题是数学的心脏.一个概念的形成是螺旋式上升的,一般要经过具体到抽象,感性到理性的过程.本节教案通过一个物理学中的具体实例引入反函数,进而又通过若干函数的图象进一步加以诱导剖析,最终形成概念.反函数的概念是教学中的难点,原因是其本身较为抽象,经过两次代换,又采纳了抽象的符号.由于没有一一映射,逆映射等概念的支撑,使学生难以从本质上去把握反函数的概念.为此,我们大胆地使用教材,把互为反函数的两个函数的图象关系预先揭示,进而探究原因,寻找规律,程序是从问题出发,讨论性质,进而得出概念,这正是数学讨论的顺序,符合学生认知规律,有助于概念的建立与形成.另外,对概念的剖析以及习题的配备也很精当,通过不同层次的问题,满足学生多层次需要,起到评价反馈的作用.通过对函数与方程的分析,互逆探索,动画演示,表格对比、学生讨论等多种形式的教学环节,充分调动了学生的探求欲,在探究与剖析的过程中,完善学生思维的深刻性,培育学生的逆向思维.使学生自然成为学习的主人。
三角不等式向量形式
三角不等式向量形式
摘要:
1.三角不等式的定义
2.向量形式的三角不等式
3.三角不等式的应用
正文:
1.三角不等式的定义
三角不等式是一种在三角形中比较边长与角度之间关系的数学公式。
在任意一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边,这就是三角不等式的基本定义。
用数学符号表示,就是:
c < a + b
a + c > b
b + a > c
其中,a、b、c 分别表示三角形的三边,满足这三条不等式,才能构成一个合法的三角形。
2.向量形式的三角不等式
在平面向量中,可以将三角不等式用向量的形式表示。
假设向量a 和向量b 分别表示三角形的两边,向量c 表示三角形的第三边,那么三角不等式可以表示为:
|c| < |a| + |b|
|a| + |c| > |b|
|b| + |c| > |a|
其中,|c|、|a| 和|b| 分别表示向量c、向量a 和向量b 的模长。
满足这三条不等式,才能构成一个合法的三角形。
3.三角不等式的应用
三角不等式在实际生活中的应用非常广泛,例如在计算机图形学中,用于判断三条线段能否构成一个三角形;在物理学中,用于研究三角形结构的稳定性等。
此外,三角不等式还是许多其他数学公式的基础,如余弦定理、正弦定理等。
综上所述,三角不等式是一种基本的几何关系,它在向量形式下可以得到更直观的表达。
专题三 向量与三角
专题三、向量与三角知识点: 1、定义:xy r x r y ===αααtan ;cos ;sin (只要题意中给出角α终边上一点),(y x P 则用定义解题)2、平方关系1cos sin 22=+αα(知ααα2sin -1cos sin ±=则取正或负需看角象限)商数关系αααcos sin tan =(可切化弦) 3、诱导公式(1)角(απ+k 2)在一象限 (2)角(απ-)在二象限 (3)角(απ+)在三象限 (4)角(α-)在四象限(以上四个公式函数名不变,符号看象限)(5)角απ-2在一象限 (6)角απ+2在二象限((5)(6)两个公式函数名要变,符号看象限)4、二倍角公式αααααα2sin 21cos sin cos sin 22sin =⇒=ααα22sin cos 2cos -=⇒-=1cos 22α )2cos 1(21cos 2αα+=⇒-=α2sin 21 )2cos 1(21sin 2αα-=ααα2tan 1tan 22tan -=5、和差角公式βαβαβαsin cos cos sin )sin(±=± βαβαβαtan tan 1tan tan )tan( ±=±βαβαβαsin sin cos cos )cos( =±6、熟记函数x y x y x y tan ,cos ,sin ===的图象和性质7、考查函数)sin(ϕω+=x A y (0,0>>ωA ) (1)周期ωπ2=T(2)单调区间增区间:把ϕω+x 带入αsin =y 的增区间,即ππϕωππk x k 2222+≤+≤+-,解出x 即可 减区间:(同理)(3)最值:当1)sin(=+ϕωx 时,得最大值A;当1)sin(-=+ϕωx 时,的最小值-A (4)在选择题中考查对称轴时,则把对称轴带入函数式可得最大或最小值; 考查对称中心时,对称中心满足函数式(带入即可) (5)利用图象求解析式A ——由最值求;ω——由周期T 求(先由x 轴上两点横坐标的差和周期的关系); ϕ——由图上的点带入求8、正、余弦定理 9、面积公式:A bc B ac C ab S ABC sin 21sin 21sin 21===∆ 三角函数(1)热点例析热点一 三角函数的概念例1、已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线y =2x 上,则cos 2θ=( ).A .-45B .-35C .35D .45变式训练1 已知角α的顶点在坐标原点,始边与x 轴的正半轴重合,终边与单位圆交点的横坐标是-35,若α∈(0,π),则tan α=__________.热点二 三角函数图象及解析式例2、如图,根据函数的图象,求函数y =A sin(ωx +φ)(A >0,ω>0,|φ|<π)的解析式.变式训练2 右图所示的是函数y =A sin(ωx +φ)(A >0,ω>0)图象的一部分,则其函数解析式是( ).A .y =sin ⎝⎛⎭⎫x +π3B .y =sin ⎝⎛⎭⎫x -π3 C .y =sin ⎝⎛⎭⎫2x +π6 D .y =sin ⎝⎛⎭⎫2x -π6热点三 三角函数图象变换例3、已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2,x ∈R 在一个周期内的图象如图所示,则y =f (x )的图象可由函数y =cos x 的图象(纵坐标不变)( ).A .先把各点的横坐标缩短到原来的12,再向左平移π6个单位B .先把各点的横坐标缩短到原来的12,再向右平移π12个单位C .先把各点的横坐标伸长到原来的2倍,再向左平移π6个单位D .先把各点的横坐标伸长到原来的2倍,再向右平移π12个单位变式训练3 要得到y =cos ⎝⎛⎭⎫2x +π3的图象,只需将y =sin 2x 的图象( ).A .向左平移5π12B .向右平移5π12C .向左平移5π6D .向右平移5π6热点四 三角函数图象与性质综合应用 例4、已知函数f (x )=2sin x cos x +2cos 2x .(1)求函数f (x )的单调递增区间;(2)将函数y =f (x )的图象向右平移π4个单位后,得到函数y =g (x )的图象,求方程g (x )=1的解.变式训练4 已知函数f (x )=4sin ωx sin 2⎝⎛⎭⎫ωx 2+π4+cos 2ωx ,其中ω>0.(1)当ω=1时,求函数f (x )的最小正周期;(2)若函数f (x )在区间⎣⎡⎦⎤-π2,2π3上是增函数, 求ω的取值范围.变式训练5已知函数f (x )=A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2的图象的一部分如图所示. (1)求函数f (x )的解析式;(2)当x ∈⎣⎡⎦⎤-6,-23时,求函数y =f (x )+f (x +2)的最大值与最小值及相应的x 的值专题训练:1.函数f (x )=sin x -cos ⎝⎛⎭⎫x +π6的值域为( ).A .[-2,2]B .[-3,3]C .[-1,1]D .⎣⎡⎦⎤-32,322.将函数y =cos ⎝⎛⎭⎫x -π3的图象上各点的横坐标伸长到原来的2倍(纵坐标不变),再向左平移π6个单位,所得函数图象的一条对称轴是( ). A .x =π9 B .x =π8 C .x =π D .x =π23.若函数y =A sin(ωx +φ)⎝⎛⎭⎫A >0,ω>0,|φ|<π2在一个周期内的图象如图所示,M ,N 分别是这段图象的最高点和最低点,且·0OM ON =,则A ·ω=( ).A .76πB .712πC .π6D .73π4.设函数f (x )=sin(ωx +φ)+cos(ωx + φ)⎝⎛⎭⎫x ∈R ,ω>0,|φ|<π2的最小正周期为π,且f (x )-f (-x )=0,则( ).A .f (x )在⎝⎛⎭⎫0,π2上是增函数B .f (x )在⎝⎛⎭⎫0,π2上是减函数C .f (x )在⎝⎛⎭⎫-π4,π4上是增函数D .f (x )在⎝⎛⎭⎫-π4,π4上是减函数 5.已知函数f (x )=A sin(2x +φ)的部分图象如图所示,则f (0)=( ).A .-12B .-1C .-32D .- 36、当函数y =sin x -3cos x (0≤x <2π)取得最大值时,x =__________.7.已知角α的顶点在原点,始边与x 轴正半轴重合,点P (-4m,3m )(m <0)是角α终边上一点,则2sin α+cos α=________.8.已知向量m =(sin x,1),n =⎝⎛⎭⎫3A cos x ,A2cos 2x (A >0),函数f (x )=m ·n 的最大值为6. (1)求A ;(2)将函数y =f (x )的图象向左平移π12个单位,再将所得图象上各点的横坐标缩短原来的12,纵坐标不变,得到函数y =g (x )的图象,求g (x )在⎣⎡⎦⎤0,5π24上的值域.9.设f (x )=4cos ⎝⎛⎭⎫ωx -π6sin ωx -cos(2ωx +π),其中ω>0. (1)求函数y =f (x )的值域; (2)若f (x )在区间⎣⎢⎡⎦⎥⎤-3π2,π2上为增函数,求ω的最大值.三角函数(2)热点一 三角恒等变换及求值例1、已知函数f (x )=2cos 2x2-3sin x .(1)求函数f (x )的最小正周期和值域;(2)若α为第二象限角,且f ⎝⎛⎭⎫α-π3=13,求cos 2α1+cos 2α-sin 2α的值.变式训练1已知函数f (x )=3sin ωx -cos ωx (x ∈R ,ω>0)的最小正周期为6π.(1)求3π2f ⎛⎫⎪⎝⎭的值; (2)设α,β∈⎣⎡⎦⎤-π2,0,f ⎝⎛⎭⎫3α+π2=-1013,f (3β+2π)=65,求cos(α+β)的值.热点二 三角函数、三角形与向量等知识的交汇例2、在锐角三角形ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,m =(2b -c ,cos C ),n =(a ,cos A ),且m ∥n .(1)求角A 的大小;(2)求函数y =2sin 2B +cos ⎝⎛⎭⎫π3-2B 的值域.变式训练2 在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =60°,cos(B +C )=-1114. (1)求cos C 的值;(2)若a =5,求△ABC 的面积.热点三 正弦定理、余弦定理的实际应用例3、某城市有一条公路,自西向东经过A 点到市中心O 点后转向东北方向OB .现要修建一条铁路L ,L 在OA 上设一站A ,在OB 上设一站B ,铁路在AB 部分为直线段.现要求市中心O 与AB 的距离为10 km ,问把A ,B 分别设在公路上离市中心O 多远处才能使A ,B 之间的距离最短?并求最短距离.(不要求作近似计算)变式训练3 如图,一船在海上自西向东航行,在A 处测得某岛M 的方位角为北偏东α,前进m km 后在B 处测得该岛的方位角为北偏东β,已知该岛周围n km 范围内(包括边界)有暗礁,现该船继续东行.当α与β满足条件__________时,该船没有触礁危险.专题训练:1.设tan α,tan β是方程x 2-3x +2=0的两根,则tan(α+β)的值为( ). A .-3 B .-1 C .1 D .32.若θ∈⎣⎡⎦⎤π4,π2,sin 2θ=378,则sin θ=( ). A .35 B .45 C .74 D .343.在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c .已知8b =5c ,C =2B ,则cos C =( ).A .725B .-725C .±725D .24254.已知3cos x -sin x =-65,则sin ⎝⎛⎭⎫π3-x =( ). A .35 B .-35 C .65 D .-655.已知倾斜角为α的直线l 与直线x -2y +2=0平行,则tan 2α的值为( ).A .45B .43C .34D .236.已知cos ⎝⎛⎭⎫x -π6=-33,则cos x +cos ⎝⎛⎭⎫x -π3的值是( ). A .-233 B .±233C .-1D .±17.在△ABC 中,已知b cos C +c cos B =3a cos B ,其中a ,b ,c 分别为角A ,B ,C 的对边,则cos B 的值为( ).A .13B .-13C .223D .-2238、设△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c .若(a +b -c )(a +b +c )=ab ,则角C =________.9.已知sin x =5-12,则sin ⎣⎡⎦⎤2⎝⎛⎭⎫x -π4=______. 10、已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.(1)求A ;(2)若a =2,△ABC 的面积为3,求b ,c .11.已知函数f (x )=3sin 2x +23sin x cos x +5cos 2x .(1)若f (α)=5,求tan α的值;(2)设△ABC 三内角A ,B ,C 所对边分别为a ,b ,c ,且cos B cos C =b2a -c,求f (x )在(0,B ]上的值域.12.已知函数f (x )=A sin ⎝ ⎛⎭⎪⎫ωx -π3(A >0,ω>0)在某一个周期内的图象的最高点和最低点的坐标分别为⎝ ⎛⎭⎪⎫5π12,2,⎝ ⎛⎭⎪⎫11π12,-2.(1)求A 和ω的值;(2)已知α∈⎝ ⎛⎭⎪⎫0,π2,且sin α=45,求f (α)的值.。
高三数学函数、三角函数、不等式综合复习
函数、三角函数、不等式综合复习教学目标:掌握函数定义域、值域、极值和最值的求解方法。
会证明函数的奇偶性,周期性和单调性。
会利用三角变形公式将三角式化为一个三角函数的形式研究其性质,会利用正、余弦定理解三角形问题,掌握和函数相关的不等式解法及证明。
教学重点:综合应用函数知识和分析问题及解决问题的能力。
教学例题:1.已知函数(1)若的定义域为R,求实数a的取值范围;(2)若的值域为R,求实数a的取值范围。
解析:(1)的定义域为R∴(a2-1)x2+(a+1)x+1>0对x∈R恒成立或a=-1或a<-1或a≤-1或∴实数a的取值范围是(2)的值域是R,即(a2-1)x2+(a+1)x+1的值域是(0,+∞)或a=1或∴实数a的取值范围是。
2.已知函数的反函数为,。
(1)若,求x的取值集合D;(2)设函数,当x∈D时,求的值域。
解析:(1)∵值域为(-1,+∞)∴由∴D=[0,1](2)由∴的值域为。
3.已知函数是奇函数,当时有最小值2,且。
(1)求的解析式;(2)函数的图象上是否存在关于点(1,0)对称的两点。
若存在,求出这两点的坐标,若不存在说明理由。
解析:(1)由是奇函数,∴∴,即∴c=0,∵a>0,b∈N*,当x>0时(当且仅当时等号成立)由x>0时最小值是2∴,∴a=b2由,则,将a=b2代入∴∴,解出。
∵b∈N*,∴b=1,∴a=b2=1∴(2)设存在一点(x0,y0)在的图象上,并且关于(1,0)的对称点(2-x0,-y0)也在图象上∴∴当时,∴图象上存在两点,关于点(1,0)对称。
4.设函数的定义域为R,对任意实数x1,x2恒有,且,。
(1)求的值;(2)求证是偶函数,且;(3)若时,,求证在[0,π]上是减函数。
解析:(1)令x1=x2=π,由则有∴∴(2)由∴,即是偶函数。
由,∴,即(3)设,则∵且在上∴,,即时恒有。
设0≤x1<x2≤π,则,∴,∴∴故在上是单减函数。
5.已知函数,x∈R。
三角不等式向量形式
三角不等式向量形式摘要:一、三角不等式的基本概念1.三角不等式的定义2.三角不等式的几何意义二、向量形式的三角不等式1.向量形式的定义2.向量形式的几何意义三、三角不等式在向量中的应用1.向量加法2.向量数乘3.向量模长的比较四、结论1.三角不等式向量形式的重要性2.三角不等式向量形式在实际问题中的应用正文:一、三角不等式的基本概念三角不等式,又称为三角形不等式,是指对于任意实数a、b,都有a + b > |a - b|。
这个不等式在数学中有着广泛的应用,特别是在几何和向量分析中。
从几何角度理解,三角不等式表示的是在平面上任取两点,连接这两点的线段长度总是大于或等于这两点间的距离。
这个不等式揭示了距离与角度之间的关系,是理解向量概念的重要工具。
二、向量形式的三角不等式向量形式的三角不等式是指对于任意两个向量a 和b,都有|a + b| <= |a| + |b|。
这里,|a|和|b|分别表示向量a 和向量b 的模长。
从几何角度理解,向量形式的三角不等式表示的是在平面上任取两个向量,这两个向量首尾相接所构成的三角形的周长总是小于或等于这两个向量的模长之和。
三、三角不等式在向量中的应用三角不等式在向量分析中有广泛的应用,以下是一些具体的例子:1.向量加法:在向量加法中,三角不等式可以用来证明向量的三角形法则,即对于任意两个向量a 和b,都有|a + b| <= |a| + |b|。
2.向量数乘:在向量数乘中,三角不等式可以用来证明向量的数乘公式,即对于任意向量a 和标量c,都有|c * a| = |c| * |a|。
3.向量模长的比较:在比较两个向量的模长时,三角不等式可以用来证明对于任意两个向量a 和b,都有|a| <= |a + b| <= |a| + |b|。
四、结论总的来说,三角不等式向量形式是理解向量和几何关系的重要工具。
它在向量加法、向量数乘、向量模长的比较等问题中都有重要的应用。
人教版高二数学上向量的三角形不等式归纳
人教版高二数学上向量的三角形不等式归纳高二数学向量的三角形不等式1、∣∣a∣-∣b∣∣∣a+b∣∣a∣+∣b∣;① 当且仅当a、b反向时,左边取等号;② 当且仅当a、b同向时,右边取等号。
2、∣∣a∣-∣b∣∣∣a-b∣∣a∣+∣b∣。
① 当且仅当a、b同向时,左边取等号;② 当且仅当a、b反向时,右边取等号。
高中数学学习方法(1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。
记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。
(2)建立数学纠错本。
把平时容易出现错误的知识或推理记载下来,以防再犯。
争取做到:找错、析错、改错、防错。
达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。
(3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。
(4)经常对知识结构进行梳理,形成板块结构,实行整体集装,如表格化,使知识结构一目了然;经常对习题进行类化,由一例到一类,由一类到多类,由多类到统一;使几类问题归纳于同一知识方法。
(5)阅读数学课外书籍与报刊,参加数学学科课外活动与讲座,多做数学课外题,加大自学力度,拓展自己的知识面。
(6)及时复习,强化对基本概念知识体系的理解与记忆,进行适当的反复巩固,消灭前学后忘。
(7)学会从多角度、多层次地进行总结归类。
如:①从数学思想分类②从解题方法归类③从知识应用上分类等,使所学的知识系统化、条理化、专题化、网络化。
(8)经常在做题后进行一定的反思,思考一下本题所用的基础知识,数学思想方法是什么,为什么要这样想,是否还有别的想法和解法,本题的分析方法与解法,在解其它问题时,是否也用到过。
(9)无论是作业还是测验,都应把准确性放在第一位,通法放在第一位,而不是一味地去追求速度或技巧,这是学好数学的重要问题。
不等式 向量 解三角形复习
一、不等式的解法:1.一元一次不等式:Ⅰ、(0)ax b a >≠:⑴若0a >,则 ;⑵若0a <,则 ;Ⅱ、(0)ax b a <≠:⑴若0a >,则 ;⑵若0a <,则 ;2.一元二次不等式:0a >时的解集与∆有关 (数形结合:二次函数、方程、不等式联系)3. 高次不等式:数轴标根 步骤:正化,求根,标轴,穿线(奇穿偶不穿),定解.4.分式不等式的解法:通解变形为整式不等式; ⑴()0()f x g x >⇔;⑵()0()f x g x <⇔; ⑶()0()f xg x ≥⇔ ;⑷()0()f xg x ≤⇔;5.解含有参数的不等式:解含参数的不等式时,首先应注意考察是否需要进行分类讨论.如果遇到下述情况则一般需要讨论: ①不等式两端乘除一个含参数的式子时,则需讨论这个式子的正、负、零性.②在求解过程中,需要使用指数函数、对数函数的单调性时,则需对它们的底数进行讨论.③在解含有字母的一元二次不等式时,需要考虑相应的二次函数的开口方向,对应的一元二次方程根的状况(有时要分析△),比较两个根的大小,设根为12,x x (或更多)但含参数,要分12x x >、12x x =、12x x <讨论。
例:解关于x 的不等式: 2(1)10ax a x -++< ()R a ∈)例:实系数方程2()20f x x ax b =++=的一个根在(0,1)内,另一个根在(1,2)内,则21b a --∈;22(1)(2)a b -+- ∈ ;3a b +- ∈二、不等式的性质 (几个重要不等式) (1)0,0||,2≥≥∈a a R a 则若 (2))2||2(2,2222ab ab baab ba Rb a ≥≥+≥+∈+或则、若(当仅当a=b 时取等号)(3)如果a ,b 都是正数,那么.2a b +(当仅当a=b 时取等号)极值定理:若,,,,x y R x y S xy P +∈+==则:○1如果P 是定值, 那么当x=y 时,S 的值最小; ②如果S 是定值, 那么当x =y 时,P 的值最大.利用极值定理求最值的必要条件: 一正、二定、三相等.常用的方法为:拆、凑、平方;例1:设12,,,x a a y 成等差数列,12,,,x b b y 成等比数列,则21212()a a b b +的取值范围是___ 。
高考数学平面向量及其综合运用 人教版
高考数学平面向量及其综合运用 人教版复习要点:Ⅰ、平面向量知识结构表Ⅱ、内容概述1、向量的概念向量有三种表示法:①有向线段,②a 或AB ,③坐标a =(x , y )。
注意:共线向量与相等向量的联系与区别。
2、向量的运算加法、减法、数乘向量和向量的数量积。
如:11221212(,)(,)a b x y x y x x y y =⋅=+注意:几何运算与坐标运算 3、平面向量的定理及相关性质(1)两个非零向量平行的充要条件: a ∥b ⇔ a =λb (λ∈R)设a =(x1,y1),b = (x2,y2) 则a ∥b ⇔ x1y2-x2y1=0(2)两个非零向量垂直的充要条件: a ⊥b ⇔ a·b =0 设a =(x1,y1),b =(x2,y2)则a ⊥b ⇔ x1·x2+y1·y2=0(3)平面向量基本定理:如果有e1,e2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量a ,有且只有一对实数λ1,λ2使 a =λ1e1+λ2e2.(4)三点共线定理:平面上三点A 、B 、C 共线的充要条件是:存在实数α、β,使OC OB OA βα+=,其中α+β=1,O 为平面内的任一点。
4、 常用公式及结论a 、向量模的公式:设a =(x,y ),则︱a ︱=22y x +b 、两点间的距离公式:21P P =212212)()(y y x x -+- [P1(x1,y1),P2(x2,y2)]c 、线段的定比分点坐标公式:向量向量的概念向量的运算向量的运用向量的加、减法实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件定比分点公式平移公式 在物理学中的应用 在几何中的应用d 、中点坐标公式: 或)(21OB OA OM +=其中M (x0 ,y0)是线段AB 中点。
e 、两向量的夹角公式:cos θ=222221212121y x y x y y x x ba ba +⋅++=⋅⋅其中0°≤θ≤180°,a=(x1,y1),b =(x2,y2)f 、图形平移公式:若点P(x,y)按向量a =(h,k)平移至P '(x ',y '), 则g 、有关向量模的常用结论: ① aa a ⋅=2② 22222bb a a )b a (b a +⋅±=±=± ③ba b a ≤⋅,a b a b a b-≤±≤+④222||||2||2||a b a b a b ++-=+ 范例及其点评(一)平面向量学科内综合运用深刻理解平面向量的相关概念与性质,熟练掌握向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。
向量的数量积与三角恒等变换三角恒等变换的应用
要点二
求三角形面积
通过三角恒等变换,可以求出三角形 的面积,例如利用海伦公式等。
要点三
解三角形方程
通过三角恒等变换,可以解三角形方 程,例如利用正弦定理和余弦定理等 。
三角函数的图像与性质
01
正弦函数图像与性质
02
余弦函数图像与性质
通过三角恒等变换,可以得到正弦函 数的图像与性质,例如周期性、最值 、对称性等。
恒等式的证明方法
证明三角恒等式的方法有多种,包括利用 三角函数的定义、三角函数的和差公式、 二倍角公式等。
VS
恒等式的应用
三角恒等式在解三角形、研究三角函数的 性质和化简求值等问题中有广泛应用。
03
三角恒等变换的应用
解三角形
要点一
判断三角形形状
通过三角恒等变换,可以判断三角形 的形状,例如利用正弦定理和余弦定 理等。
位移与距离
在物理中,位移和距离可以用向量的模进行计算。通过使用三角恒等变换,可以方便地计 算出物体移动的距离和方向。
解析几何中的向量与三角恒等变换应用
点的坐标
在解析几何中,向量可以表示点的坐 标。例如,在二维空间中,一个点可 以表示为一个向量(x, y)。
向量的长度与夹角
通过使用三角恒等变换,可以计算出 向量的长度和夹角。这些信息可以用 于解决几何问题,如计算两点之间的 距离或确定一个点相对于另一个点的 方向。
三角函数的定义
三角函数是角度的正弦、余弦和正切等函数的 统称,它们在解决三角形和平面解析几何等问 题中有广泛应用。
角度的三角函数关系
角度的正弦、余弦和正切之间存在一些恒等式 关系,如sin^2(θ) + cos^2(θ) = 1等。
三角函数的性质与公式
高中数学考试有哪些常见题型?
高中数学考试有哪些常见题型?高中数学考试是高考的重要组成部分,实际考察学生对高中数学知识的掌握程度,包括运用数学知识解决问题的能力。
为了帮助同学们更好地备考复习,本文将从教育专家的角度,对高中数学考试比较常见的题型进行解析,并提供一些复习建议。
一、基础知识题这类题型主要考察学生对高中数学基本概念、公式、定理的理解和掌握程度,通常以选择题、填空题的形式出现。
例如:概念表述题:判断函数的奇偶性、求函数的定义域、判断数列的单调性等。
公式应用题:利用三角函数公式、导数公式、积分公式等进行计算。
定理证明题:证明三角形全等、证明不等式、证明数列的收敛性等。
备考复习建议:扎实掌握课本基础知识,特别注重概念的理解和公式的推导。
多做练习,熟练掌握公式和定理的应用。
总结易错点,避免相同的错误。
二、综合应用题这类题型主要考察学生对数学知识的综合运用能力,通常以解答题的形式出现,题型相对灵活,要求学生灵活运用所学知识进行分析、推理和计算。
例如:函数与方程的综合题:利用函数图像、函数性质、方程的根等知识解决问题。
三角函数与向量的综合题:利用三角函数、向量、坐标系等知识解决几何问题。
数列与不等式的综合题:利用数列的性质、不等式的性质等知识解决问题。
导数与函数的综合题:利用导数的性质、函数的极值、单调性等知识解决问题。
备考复习建议:掌握各章节知识之间的联系,注重知识的整合。
多做综合型练习,提高分析问题和解决问题的能力。
重视培养良好的解题思路,学会将问题分解成若干个小问题,逐个解决。
三、创新应用题这类题型主要考察学生的创新能力和解决实际问题的能力,常见以开放性问题、探究性问题等形式出现,要求学生发挥所学知识进行分析、推理、计算和创造。
例如:应用问题:利用数学知识解决生活中的问题,例如最大利润、成本最小化等。
探究性问题:观察现象,探索数学问题的规律、性质或应用。
开放性问题:提供一些条件,要求学生通过分析、推理,并提出自己的结论。
高中数学平面向量,三角函数,一元二次不等式知识点
高中数学知识点一、平面向量1.1 平面向量的定义和表示平面向量是在平面上具有大小和方向的量,可以用有向线段来表示。
平面向量的表示方法有两种:坐标表示和数量与方向表示。
•坐标表示:设平面向量$\\vec{AB}$的起点为A(A1,A1),终点为A(A2,A2),则向量$\\vec{AB}$的坐标表示为$\\vec{AB}=(x_2-x_1,y_2-y_1)$。
•数量与方向表示:设平面向量$\\vec{AB}$的起点为A,终点为A,则向量$\\vec{AB}$的数量表示为$|\\vec{AB}|=\\sqrt{(x_2-x_1)^2+(y_2-y_1)^2}$,方向表示是线段AA的方向。
1.2 平面向量的运算平面向量的运算有加法、减法和数量乘法。
•加法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的和为$\\vec{A}+\\vec{B}=(x_1+x_2, y_1+y_2)$。
•减法:设有平面向量$\\vec{A}$和$\\vec{B}$,则它们的差为$\\vec{A}-\\vec{B}=(x_1-x_2, y_1-y_2)$。
•数量乘法:设有平面向量$\\vec{A}$和实数A,则$k\\vec{A}=(kx, ky)$。
1.3 平面向量的性质平面向量的性质主要包括以下几点:•相等性:两个向量相等的充分必要条件是它们的坐标或起点和终点相同。
•共线性:若两个向量的方向相同或相反,它们为共线向量。
•共面性:若三个向量共面,则它们必定落在同一个平面上。
•数量乘法:向量的数量乘法可以改变向量的大小和方向。
二、三角函数2.1 弧度制和角度制在三角函数中,角度可以用弧度制或角度制来表示。
•弧度制:弧度制是以圆的半径为单位来度量角的大小。
一个圆的周长为$2\\pi$,一周所对应的角为$2\\pi$弧度。
常见的角度制与弧度制的换算关系是$180^\\circ=\\pi$弧度。
•角度制:角度制是以度为单位来度量角的大小。
函数不等式三角向量数列算法等大综合问题二轮复习专题练习(一)附答案人教版高中数学高考真题汇编
(1)求角 的大小;
(2)若 , ,求△ 的面积。
9.设平面向量 = , , , ,
⑴若 ,求 的值;⑵若 ,证明: 和 不可能平行;
⑶若 ,求函数 的最大值,并求出相应的 值.(汇编年3月苏、锡、常、镇四市高三数学教学情况调查一)(14分)
10.已知O为坐标原点,向量
∥ ,即
是锐角
,即cos2α= .
解析:当 时,集合A是以(2,0)为圆心,以 为半径的圆,集合B是在两条平行线之间, ,因为 此时无解;当 时,集合A是以(2,0)为圆心,以 和 为半径的圆环,集合B是在两条平行线之间,必有 .又因为
6.;
评卷人
得分
三、解答题
7.(1) , ,且 ,
,即 ,
(2)
, .
8.解:
(1)
(2)由余弦定理知:
12.已知
(1)当 时,求函数 的最小正周期;
(2)当 ∥ 时,求 的值.
【参考答案】***试卷处理标记,请不要删除
评卷人
得分
一、选择题
1.A
2.D
第II卷(非选择题)
请点击修改第II卷的文字说明
评卷人
得分
二、填空题
3.①④.
4.
5.当时,集合A是以(2,0)为圆心,以为半径的圆,集合B是在两条平行线之间,,因为此时无解;当时,集合A是以(2,0)为圆心,以和为半径的圆环,集合B是在两条平行线之间,必有.又因为
高中数学专题复习
《函数不等式三角向量数列算法等大综合问题》单元过关检测
经典荟萃,匠心巨制!独家原创,欢迎下载!
注意事项:
1.答题前填写好自己的姓名、班级、考号等信息
专题83平面向量的数量积(精讲精析篇)-新高考高中数学核心知识点全透视
专题8.3 平面向量的数量积(精讲精析篇)一、核心素养1.与向量线性运算相结合,考查平面向量基本定理、数量积、向量的夹角、模的计算,凸显数学运算、直观想象的核心素养.2.与向量的坐标表示相结合,考查向量的数量积、向量的夹角、模的计算,凸显数学运算的核心素养.6.以平面图形为载体,考查向量数量积的应用,凸显数学运算、数学建模、直观想象的核心素养.二、考试要求1.平面向量的数量积(1)理解平面向量数量积的含义及其物理意义.(2)了解平面向量的数量积与向量投影的关系.(3)掌握数量积的坐标表达式,会进行平面向量数量积的运算.(4)能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系.2.向量的应用(1)会用向量方法解决某些简单的平面几何问题.(2)会用向量方法解决简单的力学问题与其他一些实际问题.三、主干知识梳理(一)两个向量的夹角1.定义已知两个非零向量a和b,作OA=a,OB=b,则∠AOB=θ叫做向量a与b的夹角.2.范围向量夹角θ的范围是0°≤θ≤180°a与b同向时,夹角θ=0°;a与b反向时,夹角θ=180°.3.向量垂直如果向量a与b的夹角是90°,则a与b垂直,记作a⊥b.(二)平面向量的数量积1.已知两个非零向量a与b,则数量|a||b|·cos θ叫做a与b的数量积,记作a·b,即a·b=|a||b|cos θ,其中θ是a 与b 的夹角.规定0·a =0.当a ⊥b 时,θ=90°,这时a ·b =0.2.a ·b 的几何意义:数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.(三)数量积的运算律1.交换律:a ·b =b ·a .2.分配律:(a +b )·c =a ·c +b ·c .3.对λ∈R ,λ(a ·b )=(λa )·b =a ·(λb ).(四)平面向量的数量积与向量垂直的坐标表示设非零向量a =(x 1,y 1),b =(x 2,y 2).设向量a =(x 1,y 1),b =(x 2,y 2),a 与b 的夹角为θ,则有下表: 设A (x 1,y 1),B (x 2,y 2),则|AB →|=x 2-x 12+y 2-y 12 1.如果e 是单位向量,则a ·e =e ·a .2.a ⊥b ⇔a ·b =0.3.a ·a =|a |2,|a 4.cos θ=||||⋅a b a b .(θ为a 与b 的夹角) 5.|a ·b |≤|a ||b |.(七)数量积的坐标运算设a =(a 1,a 2),b =(b 1,b 2),则:1.a ·b =a 1b 1+a 2b 2.2.a ⊥b ⇔a 1b 1+a 2b 2=0.3.|a |=a 21+a 22.4.cos θ=||||⋅a b a b =112222221212a b a b a a b b +++.(θ为a 与b 的夹角) (八)平面向量的应用1.向量与平面几何综合问题的解法(1)坐标法把几何图形放在适当的坐标系中,则有关点与向量就可以用坐标表示,这样就能进行相应的代数运算和向量运算,从而使问题得到解决.(2)基向量法适当选取一组基底,沟通向量之间的联系,利用向量间的关系构造关于未知量的方程进行求解.2.向量在解析几何中的作用(解析几何专题中详讲)(1)载体作用:向量在解析几何问题中出现,多用于“包装”,解决此类问题时关键是利用向量的意义、运算脱去“向量外衣”,导出曲线上点的坐标之间的关系,从而解决有关距离、斜率、夹角、轨迹、最值等问题.(2)工具作用:利用a ⊥b ⇔a ·b =0;a ∥b ⇔a =λb (b ≠0),可解决垂直、平行问题,特别是向量垂直、平行的坐标表示在解决解析几何中的垂直、平行问题时经常用到. 3.向量与三角的综合应用解决这类问题的关键是应用向量知识将问题准确转化为三角问题,再利用三角知识进行求解.4.平面向量在物理中的应用一、命题规律(1)数量积、夹角及模的计算问题;(2)以平面图形为载体,借助于平面向量研究平面几何平行、垂直等问题;也易同三角函数、解析几何等知识相结合,以工具的形式出现.二、真题展示1.(2021·全国·高考真题)已知O 为坐标原点,点()1cos ,sin P αα,()2cos ,sin P ββ-,()()()3cos ,sin P αβαβ++,1,0A ,则( ) A .12OP OP =B .12AP AP =C .312OA OP OP OP ⋅=⋅D .123OA OP OP OP ⋅=⋅【答案】AC【分析】A 、B 写出1OP ,2OP 、1AP ,2AP 的坐标,利用坐标公式求模,即可判断正误;C 、D 根据向量的坐标,应用向量数量积的坐标表示及两角和差公式化简,即可判断正误.【详解】A :1(cos ,sin )OP αα=,2(cos ,sin )OP ββ=-,所以1||cos 1OP =,2||(cos 1OP=,故12||||OP OP =,正确;B :1(cos 1,sin )AP αα=-,2(cos 1,sin )AP ββ=--,所以1||(cos 2|sin |2AP α===,同理2||(cos 2|sin |2AP β=,故12||,||AP AP 不一定相等,错误;C :由题意得:31cos()0sin()cos()OA OP αβαβαβ⋅=⨯++⨯+=+,12cos cos sin (sin )cos()OP OP αβαβαβ⋅=⋅+⋅-=+,正确;D :由题意得:11cos 0sin cos OA OP ααα⋅=⨯+⨯=,23cos cos()(sin )sin()OP OP βαββαβ⋅=⨯++-⨯+ ()()()cos βαβcos α2β=++=+,故一般来说123OA OP OP OP ⋅≠⋅故错误;故选:AC2.(2021·天津·高考真题)在边长为1的等边三角形ABC 中,D 为线段BC 上的动点,DE AB ⊥且交AB 于点E .//DF AB 且交AC 于点F ,则|2|BE DF +的值为____________;()DE DF DA +⋅的最小值为____________.【答案】11120 【分析】设BE x =,由222(2)44BE DF BE BE DF DF +=+⋅+可求出;将()DE DF DA +⋅化为关于x 的关系式即可求出最值.【详解】设BE x =,10,2x ⎛⎫∈ ⎪⎝⎭,ABC 为边长为1的等边三角形,DE AB ⊥,30,2,,12BDE BD x DE DC x ∠∴====-,//DF AB ,DFC ∴为边长为12x -的等边三角形,DE DF ⊥,22222(2)4444(12)cos0(12)1BE DF BE BE DF DF x x x x ∴+=+⋅+=+-⨯+-=,|2|1BE DF +∴=, 2()()()DE DF DA DE DF DE EA DE DF EA +⋅=+⋅+=+⋅222311(3)(12)(1)53151020x x x x x x ⎛⎫=+-⨯-=-+=-+ ⎪⎝⎭, 所以当310x =时,()DE DF DA +⋅的最小值为1120. 故答案为:1;1120.考点01 平面向量数量积的运算【典例1】(2021·浙江·高考真题)已知非零向量,,a b c ,则“a c b c ⋅=⋅”是“a b =”的( )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分又不必要条件 【答案】B【分析】考虑两者之间的推出关系后可得两者之间的条件关系.【详解】如图所示,,,,OA a OB b OC c BA a b ====-,当AB OC ⊥时,a b -与c 垂直,,所以成立,此时a b ≠,∴不是a b =的充分条件,当a b =时,0a b -=,∴()00a b c c -⋅=⋅=,∴成立,∴是a b =的必要条件, 综上,“”是“”的必要不充分条件故选:B.【典例2】(2019·全国高考真题(理))已知AB =(2,3),AC =(3,t ),||BC =1,则AB BC ⋅=( )A .3B .2C .2D .3【答案】C【解析】由(1,3)BC AC AB t =-=-,221(3)1BC t =+-=,得3t =,则(1,0)BC =,(2,3)(1,0)21302AB BC ==⨯+⨯=.故选C .【典例3】(2021·北京·高考真题)已知向量,,a b c 在正方形网格中的位置如图所示.若网格纸上小正方形的边长为1,则()a b c +⋅= ________;=a b ⋅________.【答案】0 3【分析】根据坐标求出a b +,再根据数量积的坐标运算直接计算即可.【详解】以,a b 交点为坐标原点,建立直角坐标系如图所示:则(2,1),(2,1),(0,1)a b c ==-=,()4,0a b ∴+=,()40010a b c +⋅=⨯+∴⨯=,()22113a b ∴⋅=⨯+⨯-=.故答案为:0;3.【典例4】(2020·全国高考真题(文))设向量(1,1),(1,24)a b m m =-=+-,若a b ⊥,则m =______________.【答案】5【解析】由a b ⊥可得0a b ⋅=,又因为(1,1),(1,24)a b m m =-=+-,所以1(1)(1)(24)0a b m m ⋅=⋅++-⋅-=,即5m =,故答案为:5.【典例5】(2020·天津高考真题)如图,在四边形ABCD 中,60,3B AB ︒∠==,6BC =,且3,2AD BC AD AB λ=⋅=-,则实数λ的值为_________,若,M N 是线段BC 上的动点,且||1MN =,则DM DN ⋅的最小值为_________.【答案】16 132 【解析】AD BC λ=,//AD BC ∴,180120BAD B ∴∠=-∠=,cos120AB AD BC AB BC AB λλ⋅=⋅=⋅1363922λλ⎛⎫=⨯⨯⨯-=-=- ⎪⎝⎭, 解得16λ=, 以点B 为坐标原点,BC 所在直线为x 轴建立如下图所示的平面直角坐标系xBy ,()66,0BC C =∴,,∵3,60AB ABC =∠=︒,∴A 的坐标为3332A ⎛ ⎝⎭, ∵又∵16AD BC =,则5332D ⎛ ⎝⎭,设(),0M x ,则()1,0N x +(其中05x ≤≤), 533,22DM x ⎛=-- ⎝⎭,333,22DN x ⎛=-- ⎝⎭,()222532113422222DM DN x x x x x ⎛⎫⎛⎫⋅=--+=-+=-+ ⎪⎪⎝⎭⎝⎭⎝⎭, 所以,当2x =时,DM DN ⋅取得最小值132. 故答案为:16;132. 【总结提升】1.计算向量数量积的三种常用方法(1)定义法:已知向量的模与夹角时,可直接使用数量积的定义求解,即a ·b =|a ||b |cos θ(θ是a 与b 的夹角).(2)基向量法:计算由基底表示的向量的数量积时,应用相应运算律,最终转化为基向量的数量积,进而求解.(3)坐标法:若向量选择坐标形式,则向量的数量积可应用坐标的运算形式进行求解.2.总结提升:(1).公式a·b =|a||b|cos<a ,b >与a·b =x 1x 2+y 1y 2都是用来求两向量的数量积的,没有本质区别,只是书写形式上的差异,两者可以相互推导.若题目中给出的是两向量的模与夹角,则可直接利用公式a·b =|a||b|cos<a ,b >求解;若已知两向量的坐标,则可选用公式a·b =x 1x 2+y 1y 2求解.(2)已知非零向量a =(x 1,y 1),b =(x 2,y 2),则a ∥b 与a ⊥b 的坐标表示如下:a ∥b ⇔x 1y 2=x 2y 1,即x 1y 2-x 2y 1=0;a ⊥b ⇔x 1x 2=-y 1y 2,即x 1x 2+y 1y 2=0.两个结论不能混淆,可以对比学习,分别简记为:纵横交错积相等,横横纵纵积相反.考点02 平面向量的模、夹角【典例6】(2021·天津·南开大学附属中学高三月考)已知平面向量a ,b ,满足2a =,5b =,53a b ⋅=,则a ,b 的夹角是( )A .6πB .3πC .4πD .23π 【答案】A【分析】 直接利用向量的数量积转化求解向量的夹角即可.【详解】解:平面向量a ,b ,满足2a =,5b =,53a b ⋅=,设a ,b 的夹角是θ,可得53cos 25a b a b θ⋅===⨯[]0,θπ∈,所以a ,b 的夹角是:6π. 故选:A . 【典例7】(2020·全国高考真题(理))已知向量ab a ,b 满足||5a =,||6b =,6a b ⋅=-,则cos ,=a a b +( )A .3135-B .1935-C .1735D .1935【答案】D【解析】5a =,6b =,6a b ⋅=-,()225619a a b a a b ∴⋅+=+⋅=-=. ()2222257a b a b a a b b +=+=+⋅+=-=, 因此,()1919cos ,5735a ab a a b a a b ⋅+<+>===⨯⋅+. 故选:D. 【典例8】(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>= 22133a c a c ⋅==⨯⋅. 【典例9】(2020·全国高考真题(理))设,ab 为单位向量,且||1a b +=,则||a b -=______________.【解析】因为,a b 为单位向量,所以1a b == 所以()2222221a b a b a a b b a b +=+=+⋅+=+⋅=解得:21a b ⋅=- 所以()22223a b a b a a b b -=-=-⋅+=【总结提升】1.求向量夹角问题的方法(1)当a ,b 是非坐标形式时,求a 与b 的夹角θ,需求出a ·b 及|a |,|b |或得出它们之间的关系; (2)若已知a =(x 1,y 1)与b =(x 2,y 2),则cos 〈a ,b 〉=x 1x 2+y 1y 2x 21+y 21·x 22+y 22. 提醒:〈a ,b 〉∈[0,π].2.平面向量模问题的类型及求解方法 (1)求向量模的常用方法①若向量a 是以坐标形式出现的,求向量a 的模可直接利用公式|a |=x 2+y 2.②若向量a ,b 是以非坐标形式出现的,求向量a 的模可应用公式|a |2=a 2=a ·a ,或|a ±b |2=(a ±b )2=a 2±2a ·b +b 2,先求向量模的平方,再通过向量数量积的运算求解.(2)求向量模的最值(范围)的方法①代数法:把所求的模表示成某个变量的函数,再用求最值的方法求解.②几何法(数形结合法):弄清所求的模表示的几何意义,结合动点表示的图形求解. 3.平面向量垂直问题的类型及求解方法 (1)判断两向量垂直第一,计算出这两个向量的坐标;第二,根据数量积的坐标运算公式,计算出这两个向量的数量积为0即可. (2)已知两向量垂直求参数根据两个向量垂直的充要条件,列出相应的关系式,进而求解参数.考点03 平面向量的综合应用【典例10】(2020·山东海南省高考真题)已知P 是边长为2的正六边形ABCDEF 内的一点,则AP AB ⋅ 的取值范用是( ) A .()2,6-B .(6,2)-C .(2,4)-D .(4,6)-【答案】A 【解析】AB 的模为2,根据正六边形的特征,可以得到AP 在AB 方向上的投影的取值范围是(1,3)-, 结合向量数量积的定义式,可知AP AB ⋅等于AB 的模与AP 在AB 方向上的投影的乘积, 所以AP AB ⋅的取值范围是()2,6-, 故选:A.【典例11】(2018·浙江高考真题)已知a ,b ,e 是平面向量,e 是单位向量.若非零向量a 与e 的夹角为,向量b 满足b 2−4e·b+3=0,则|a −b|的最小值是( ) A .B .C .2D .【答案】A 【解析】 设,则由得, 由得因此的最小值为圆心到直线的距离减去半径1,为选A.【思路点拨】 先确定向量所表示的点的轨迹,一个为直线,一个为圆,再根据直线与圆的位置关系求最小值.【典例12】(2021·浙江·高考真题)已知平面向量,,,(0)a b c c ≠满足()1,2,0,0a b a b a b c ==⋅=-⋅=.记向量d在,a b 方向上的投影分别为x ,y ,d a -在c 方向上的投影为z ,则222x y z ++的最小值为___________. 【答案】25【分析】设(1,0),(02),(,)a b c m n ===,,由平面向量的知识可得252x y z +-=,再结合柯西不等式即可得解. 【详解】由题意,设(1,0),(02),(,)a b c m n ===,, 则()20a b c m n -⋅=-=,即2m n =,又向量d 在,a b 方向上的投影分别为x ,y ,所以(),d x y =, 所以d a -在c 方向上的投影()221()22||5m x ny d a c x yz c m n-+-⋅-+===±+, 即252x y z +=,所以()()()22222222221122152510105x y z x y z x yz⎡⎤++=++±++≥+=⎢⎥⎣⎦, 当且仅当215252x y z x y z ⎧==⎪⎨⎪+=⎩即251555x y z ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩时,等号成立,所以222x y z ++的最小值为25.故答案为:25.【典例13】(2020·重庆高一期末)如图,正方形ABCD 的边长为6,点E ,F 分别在边AD ,BC 上,且2DE AE =,2CF BF =.若有(7,16)λ∈,则在正方形的四条边上,使得PE PF λ=成立的点P 有( )个.A .2B .4C .6D .0【答案】B 【解析】以DC 为x 轴,以DA 为y 轴建立平面直角坐标系,如图,则()()0,4,6,4E F ,(1)若P 在CD 上,设(,0),06P x x ≤≤,(,4),(6,4)PE x PF x ∴=-=-,2616PE PF x x ∴⋅=-+, [0,6],716x PE PF ∈∴≤⋅≤,∴当=7λ时有一解,当716λ<≤时有两解;(2)若P 在AD 上,设(0,),06P y y <≤,(0,4),(6,4)PE y PF y ∴=-=-, 22(4)816PE PF y y y ∴⋅=-=-+, 06,016y PE PF <≤∴⋅<,∴当=0λ或4<<16λ时有一解,当716λ<≤时有两解; (3)若P 在AB 上,设(,6),06P x x <≤,(,2),(6,2)PE x PF x =--=--,264PE PF x x ∴⋅=-+,06,54x PE PF <≤∴-≤⋅≤,∴当5λ=-或4λ=时有一解,当54λ-<<时有两解;(4)若P 在BC 上,设(6,),06P y y <<,(6,4),(0,4)PE y PF y ∴=--=-, 22(4)816PE PF y y y ∴⋅=-=-+,06y <<,016PE PF ∴⋅<,∴当0λ=或416λ≤<时有一解,当04λ<<时有两解,综上可知当(7,16)λ∈时,有且只有4个不同的点P 使得PE PF λ⋅=成立. 故选:B.【典例14】(2020·吉林长春·一模(理))长江流域内某地南北两岸平行,如图所示已知游船在静水中的航行速度1v 的大小1||10km/h v =,水流的速度2v 的大小2||4km/h v =,设1v 和2v 所成角为 (0)θθπ<<,若游船要从A 航行到正北方向上位于北岸的码头B 处,则cos θ等于( )A .215-B .25-C .35D .45-【答案】B 【解析】由题意知()2120,v v v +⋅=有2212||c ||os 0,v v v θ+=即2104cos 40,θ⨯+=所以2cos 5θ=-, 故选:B .【典例15】(2020·上海高三专题练习)用向量的方法证明:三角形ABC 中 (1)正弦定理:sin sin sin a b cA B C==; (2)余弦定理:2222cos a b c bc A =+-. 【答案】(1)证明见解析;(2)证明见解析【解析】(1)如图(a )所示,过顶点A 作对边BC 的高AH ,则0()AH BC AH AC AB =⋅=⋅-,即0AH AC AH AB ⋅-⋅=. ∴()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-. 如图(b )所示,如果B 为钝角,有()()||||cos 90||||cos 90AH AC C AH AB B ︒︒-=-∴sin sin b C c B =.上述关系对直角三角形显然成立[图(c )] ∴sin sin sin a b cA B C==. (2)在ABC 中,BC AC AB =-.∴2222()()2BC AC AB AC AB AC AB =-=+-⋅. 即2222cos a b c bc A =+-.巩固提升1.(2020·全国高考真题(文))已知单位向量a ,b 的夹角为60°,则在下列向量中,与b 垂直的是( ) A .2a b + B .2a b +C .2a b -D .2a b -【答案】D 【解析】由已知可得:11cos 601122a b a b ︒⋅=⋅⋅=⨯⨯=. A :因为215(2)221022a b b a b b +⋅=⋅+=+⨯=≠,所以本选项不符合题意;B :因为21(2)221202a b b a b b +⋅=⋅+=⨯+=≠,所以本选项不符合题意;C :因为213(2)221022a b b a b b -⋅=⋅-=-⨯=-≠,所以本选项不符合题意; D :因为21(2)22102a b b a b b -⋅=⋅-=⨯-=,所以本选项符合题意.故选:D.2.(2020·福建省福州格致中学期末)已知两个不相等的非零向量a b ,,满足2b =,且b 与b a -的夹角为45°,则a 的取值范围是( ) A .(02⎤⎦,B .)22⎡⎣,C .(0,2]D .)2∞⎡+⎣,【答案】D 【解析】如图所示,设AB b =,AC a =,∠CAB =45°,由图可知,当BC ⊥AC 时,a 的取值最小,此时,则2a =, 而a 没有最大值,故a 的取值范围为)2,⎡+∞⎣. 故选:D.3.(2019·全国高考真题(文))已知非零向量a ,b 满足a =2b ,且(a –b )⊥b ,则a 与b 的夹角为( ) A .π6B .π3C .2π3D .5π6【答案】B 【解析】因为()a b b -⊥,所以2()a b b a b b -⋅=⋅-=0,所以2a b b ⋅=,所以cos θ=22||12||2a b b a b b ⋅==⋅,所以a 与b 的夹角为3π,故选B .4.(2021·全国·高考真题(文))若向量,a b 满足3,5,1a a b a b =-=⋅=,则b =_________.【答案】【分析】根据题目条件,利用a b -模的平方可以得出答案 【详解】 ∵5a b -=∴222229225a b a b a b b -=+-⋅=+-= ∴32b =.故答案为:5.(2020·全国高考真题(理))已知单位向量a →,b →的夹角为45°,k a b →→-与a →垂直,则k =__________.【答案】2【解析】由题意可得:211cos 452a b →→⋅=⨯⨯=, 由向量垂直的充分必要条件可得:0k a b a →→→⎛⎫-⋅= ⎪⎝⎭,即:20k a a b k →→→⨯-⋅==,解得:k =.故答案为:2. 6.(2020·浙江省高考真题)设1e ,2e 为单位向量,满足21|22|-≤e e ,12a e e =+,123b e e =+,设a ,b 的夹角为θ,则2cos θ的最小值为_______.【答案】2829【解析】12|2|2e e -≤, 124412e e ∴-⋅+≤,1234e e ∴⋅≥, 222121222121212(44)4(1)()cos (22)(106)53e e e e a b e e e e e e a bθ+⋅+⋅⋅∴===+⋅+⋅+⋅⋅12424228(1)(1)3332953534e e =-≥-=+⋅+⨯. 故答案为:2829. 7.(2019·江苏高考真题)如图,在ABC 中,D 是BC 的中点,E 在边AB 上,BE =2EA ,AD 与CE 交于点O .若6AB AC AO EC ⋅=⋅,则ABAC的值是_____.【答案】3. 【解析】如图,过点D 作DF //CE ,交AB 于点F ,由BE =2EA ,D 为BC 中点,知BF =FE =EA ,AO =OD .()()()3632AO EC AD AC AE AB AC AC AE =-=+- ()223131123233AB AC AC AB AB AC AB AC AB AC ⎛⎫⎛⎫=+-=-+- ⎪ ⎪⎝⎭⎝⎭22223211323322AB AC AB AC AB AC AB AC AB AC ⎛⎫=-+=-+= ⎪⎝⎭,得2213,22AB AC =即3,AB AC =故AB AC=8.(2019·全国高考真题(理))已知,a b 为单位向量,且a b ⋅=0,若25c a b =- ,则cos ,a c <>=___________.【答案】23. 【解析】因为25c a b =-,0a b ⋅=, 所以225a c a a b ⋅=-⋅2=,222||4||455||9c a a b b =-⋅+=,所以||3c =,所以cos ,a c <>=22133a c a c ⋅==⨯⋅. 9. (2018·上海高考真题)在平面直角坐标系中,已知点()10A -,、()20B ,,E 、F 是y 轴上的两个动点,且2EF =,则的AE BF ⋅最小值为____. 【答案】3 【解析】根据题意,设E (0,a ),F (0,b ); ∴2EF a b =-=; ∴a=b+2,或b=a+2;且()()12AE a BF b ==-,,,; ∴2AE BF ab ⋅=-+;当a=b+2时,()22222AE BF b b b b ⋅=-++⋅=+-;∵b 2+2b ﹣2的最小值为8434--=-; ∴AE BF ⋅的最小值为﹣3,同理求出b=a+2时,AE BF ⋅的最小值为﹣3. 故答案为:﹣3.10.(2019·天津高考真题(理)) 在四边形ABCD 中,AD BC ∥,AB =,5AD = ,30A ∠=︒ ,点E 在线段CB 的延长线上,且AE BE =,则BD AE ⋅=__________.【答案】1-.【解析】建立如图所示的直角坐标系,则B,5)2D . 因为AD ∥BC ,30BAD ∠=︒,所以150CBA ∠=︒,因为AE BE =,所以30BAE ABE ∠=∠=︒,所以直线BE(3y x =-, 直线AE的斜率为-y x =.由3y x y x ⎧=-⎪⎪⎨⎪=⎪⎩得x 1y =-,所以1)E -. 所以35(,)(3,1)122BD AE =-=-.。
第19讲:向量与三角、不等式等知识综合应用
第19讲:向量与三角、不等式等知识综合应用常熟市中学 蔡祖才一、高考要求平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透.二、考点解读考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练1.把曲线y cos x +2y -1=0先沿x 轴向右平移2π个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=02.函数y =sin x 的图象按向量a =(32π-,2)平移后与函数g (x )的图象重合,则g(x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +23.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为 .4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤2π)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN与的夹角余弦值为 .四、典型例题例1 已知a =ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )(A) ω=1 (B) ω=2 (C) 21=ω ( D) 32=ω例2 在△OAB 中,O 为坐标原点,]2,0(),1,(sin ),cos ,1(πθθθ∈B A ,则△OAB 的面积达到最大值时,=θ ( )(A)6π(B) 4π(C)3π(D)2π例3 设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数f(x)=a ·(a +b).使不等式f (x )≥23成立的x 的取值集合为 .例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()O A O B O C ⋅+的最小值是 .例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (4π,1),且当x ∈[0,4π]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |=,5求cos()28θπ+的值.。
高考数学知识点归纳
高考数学知识点归纳高考数学知识点归纳整理高考数学多个常考知识点,包括函数、数列、不等式、三角函数、立体几何等重点内容,以下是小编整理的高考数学知识点归纳,希望可以提供给大家进行参考和借鉴。
高考数学知识点归纳第一,函数与导数主要考查集合运算、函数的有关概念定义域、值域、解析式、函数的极限、连续、导数。
第二,平面向量与三角函数、三角变换及其应用这一部分是高考的重点但不是难点,主要出一些基础题或中档题。
第三,数列及其应用这部分是高考的重点而且是难点,主要出一些综合题。
第四,不等式主要考查不等式的求解和证明,而且很少单独考查,主要是在解答题中比较大小。
是高考的重点和难点。
第五,概率和统计这部分和我们的生活联系比较大,属应用题。
第六,空间位置关系的定性与定量分析主要是证明平行或垂直,求角和距离。
主要考察对定理的熟悉程度、运用程度。
第七,解析几何高考的难点,运算量大,一般含参数。
高考数学冲刺注意事项重视新增内容考查,新课标高考对新增内容的考查比例远远超出它们在教材中占有的比例。
例如:三视图、茎叶图、定积分、正态分布、统计案例等。
立足基础,强调通性通法,增大覆盖面。
从历年高考试题看,高考数学命题都把重点放在高中数学课程中最基础、最核心的内容上,即关注学生在学习数学和应用数学解决问题的过程中最为重要的、必须掌握的核心观念、思想方法、基本概念和常用技能,紧紧地围绕“双基”对数学的核心内容与基本能力进行重点考查。
突出新课程理念,关注应用,倡导“学以致用”。
新课程倡导积极主动、勇于探索的学习方式,注重提高学生的数学思维能力,发展学生的数学应用意识。
加强应用意识的培养与考查是教育改革的需要,也是作为工具学科的数学学科特点的体现。
有意训练每年高考试题中都出现的高频考点。
高考数学必背公式一、正余弦定理正弦定理:a/sinA=b/sinB=c/sinC=2R R为三角形外接圆的半径余弦定理:a2=b2+c2-2bc__cosA二、两角和公式sin(A+B)=sinAcosB+cosAsinB sin(A-B)=sinAcosB-sinBcosAcos(A+B)=cosAcosB-sinAsinB cos(A-B)=cosAcosB+sinAsinBtan(A+B)=(tanA+tanB)/(1-tanAtanB) tan(A-B)=(tanA-tanB)/(1+tanAtanB)ctg(A+B)=(ctgActgB-1)/(ctgB+ctgA) ctg(A-B)=(ctgActgB+1)/(ctgB-ctgA) 三、倍角公式tan2A=2tanA/(1-tan2A) ctg2A=(ctg2A-1)/2ctgacos2a=cos2a-sin2a=2cos2a-1=1-2sin2a四、半角公式sin(A/2)=√((1-cosA)/2) sin(A/2)=-√((1-cosA)/2)cos(A/2)=√((1+cosA)/2) cos(A/2)=-√((1+cosA)/2)tan(A/2)=√((1-cosA)/((1+cosA)) tan(A/2)=-√((1-cosA)/((1+cosA))ctg(A/2)=√((1+cosA)/((1-cosA)) ctg(A/2)=-√((1+cos A)/((1-cosA))五、和差化积2sinAcosB=sin(A+B)+sin(A-B) 2cosAsinB=sin(A+B)-sin(A-B)2cosAcosB=cos(A+B)-sin(A-B) -2sinAsinB=cos(A+B)-cos(A-B)sinA+sinB=2sin((A+B)/2)cos((A-B)/2 cosA+cosB=2cos((A+B)/2)sin((A-B)/2)tanA+tanB=sin(A+B)/cosAcosB tanA-tanB=sin(A-B)/cosAcosBctgA+ctgBsin(A+B)/sinAsinB -ctgA+ctgBsin(A+B)/sinAsinB数学解题方法1、剔除法利用题目给出的已知条件和选项提供的信息,从四个选项中挑选出三个错误答案,从而达到正确答案的目的。
三角不等式、向量、数学归纳法复习
三角不等式、向量与数学归纳法复习【知识要点】1.定理(绝对值三角形不等式)如果,a b 是实数,则a b a b a b -±+≤≤注:当a b 、为复数或向量时结论也成立.推论11212n n a a a a a a ++++++≤推论2:如果a b c 、、是实数,那么a c a b b c --+-≤,当且仅当()()0a b b c --≥时,等号成立.2.向量的概念及公式 (1)向量:既有大小又有方向的量。
记作:AB 或a 。
(2)向量的模:向量的大小(或长度),记作:||AB 或||a 。
(3)单位向量:长度为1的向量。
若e 是单位向量,则||1e =。
(4)零向量:长度为0的向量。
记作:0。
【0方向是任意的,且与任意向量平行】(5)平行向量(共线向量):方向相同或相反的向量。
(6)相等向量:长度和方向都相同的向量。
(7)相反向量:长度相等,方向相反的向量。
AB BA =-。
(8)三角形法则:首尾相连AB BC AC +=;AB BC CD DE AE +++=;AB AC CB -=(指向被减数)(9)平行四边形法则:起点相同,对角线为和向量以,a b 为临边的平行四边形的两条对角线分别为a b +,a b -。
(10)共线定理://a b a b λ=⇔。
当0λ>时,a b 与同向;当0λ<时,a b 与反向。
(11)基底:任意不共线的两个向量称为一组基底。
(12)向量的模:若(,)a x y =,则2||a x y =+,22||a a =,2||()a b a b +=+(13)数量积与夹角公式:||||cos a b a b θ⋅=⋅=2121y y x x +; cos ||||a b a b θ⋅=⋅ (14)平行与垂直: 1221//a b a b x y x y λ⇔=⇔=; 121200a b a b x x y y ⊥⇔⋅=⇔+=3.数学归纳法证明:(1)证明:当n 取第一个值n 0结论正确;(2)假设当n =k (k ∈N *,且k ≥n 0)时结论正确,证明当n =k +1时结论也正确.由(1),(2)可知,命题对于从n 0开始的所有正整数n 都正确【典型例题】例1 已知 2,2c b y c a x <-<-,求证 .)()(c b a y x <+-+练习 已知.6,4a y a x << 求证:a y x <-32例21.设(1,2),(3,4),(3,2)a b c =-=-=,则(2)a b c +⋅=________.2.已知两点(2,0),(2,0)M N -,点P 为坐标平面内的动点, 满足0MN MP MN NP ⋅+⋅=,则动点(,)P x y 的轨迹方程为_____.3.已知i 与j 为互相垂直的单位向量,2,a i j b i j λ=-=+,且a 与b 的夹角为锐角,则实数λ的取值范围是________.4.若三点(2,2),(,0),(0,)(0)A B a C b ab ≠共线,则11a b+= . 5.设向量(1,0),(cos ,sin ),a b θθ==其中0θπ≤≤,则a b +的最大值是 .6.设,i j 是平面直角坐标系内x 轴、y 轴正方向上的单位向量,且42,34AB i j AC i j =+=+,则ABC ∆面积的值等于 .7.已知)1,2(=a 与)2,1(=b ,要使b t a +最小,则实数t 的值为___________. 8.向量(cos ,sin )a θθ=,向量(3,1)b =-,则2a b -的最大值是 .9.(1)已知向量a 与b 的夹角为60,||4,(2).(3)72b a b a b =+-=-,求向量a 的模。
向量填空题综合练习--较难--培优--讲义设计--含答案.doc
向量填空题综合练习一.填空题(共23小题)1.平面向量引b, c满足|已上2,乞与b所成的角为込_, €• ( c - 4 a) = - 15,6则I b-c|的最小值为________2.如图,定圆C半径为2, A为圆C上的一个定点,B为圆C上的动点,若点A,B, C不共线,AB-tAC| >|BC |对任意疋(0, +-)恒成立,则AB - AC3.如图,在平行四边形ABCD中,DE』EC,F为BC的中点,G为EF上的一点,乙且AG^mAB+yAD^贝实数m的值为 ________4.如图,在等腰梯形ABCD中,下底BC长为3,底角C为45。
,高为a, E为上底AD的中点,P为折线段C-D・A上的动点,设祝•丽的最小值为g (a), 若关于a的方程g(a)=ka - 1有两个不等实根,则实数k的取值范围_____________________ ・5.在AABC中,AC-AB=| BC|=2,则Z^ABC面积的最大值为__________ .—# —♦—# —# —#6.已知向量护(1, 2), b= (cosa, sina),设ir= a+tb (tWR)・(1)若a=—,求丨IT I最小值;4(2)若向量勺丄b,且已- b与IT夹角的余弦值为2,求t的值.37.已知向量牢(cosa, sina), b= (cosp, sinp),且s, b满足关系 | k a+ b| = V31^-kb| (k为正数).(1)求;与Y的数量积用k表示的解析式f (k).(2):能否与7垂直?:能否与7平行?若不能,说明理由;若能,求出相应的k值.& 已知Z\ABC, AB=7, AC=8, BC=9, P 为平面ABC 内一点,满足PA-PC= - 7, 贝lJ|PB|的最小值是______ ・9.设向量勺丄b, c= a+3 b.若向量c与3+b的夹角为0,则cos0的最小值等于_______ ・一. —•10.已知向量已二(cosa, sina), b= (cosp, sinp), c= ( - 1, 0)(1)求向量b+c的长度的最大值;(2)设a=—,且乞丄(b+c),求cosp的值.411.如图,四边形ABCD是边长为1的正方形,延长CD至E,使得DE=2CD.动点P从点A出发,沿正方形的边按逆时针方向运动一周回到A点,AP=XAB+n12.在棱长为1的正方体ABCD - A1BGD1中,若爲二入瓦,则|丽|+|瓦的最小值为 ______ .13・如图,在四边形ABCD 中,|忑| + |祝| + |瓦|二4,忑•祝二瓦•疋二0, |忑BD| + |'BD|>| DC|=4,贝ij ( AB+DC) •疋的值为 ________ ・14.在AABC 中,点D 为边BC 上靠近B 点的三等分点,动直线MN 过AD 的中15.已知正四面体A - BCD 的棱长为1,0为底面BCD 的屮心,则雨*A0= 16.在长江南岸渡口处,江水以12.5 km/h 的速度向东流,渡船的速度为25km/h.渡船要垂直地渡过长江,则航向为 _________ ・17.己知向量玩二(2, 2), CA= (J2cosa, Vasina),则向量玉的模的最大值是 _______ .1-平面向量;’匸;满足阳=2,荀所成的角为晋,-(")=-15,则I b-c|的最小值为1点 6 AB= a, AC=b, AN=m a, AM 二nb,则m+2n 的最小值为D C【分析】将向量已、b、c的始点都放在原点,前勺终点放在x轴正半轴上,则设向量1的终点在射线y 二逅x 上,设二(x ,y),贝M 弋入已知求得自勺终点的 3轨迹方程是一个圆,再由向量的几何意义可求得.【解答】解:将向量:、b. C 的始点都放在原点,:的终点放在X 轴正半轴上, 则设向量1的终点在射线y 二昼X 上,设二(x ,y),则;二(2, 0),则由二-15得(x-4) Jy2二1,则向量:的终点在以(4, 0)为圆心, 1为半径的圆上. 所以I b-^|表示圆:(x-4) 24-y 2=l ±的点与直线上的点之间的距离. 3其最小值为圆心(4, 0)到直线y 二逅*的距离减去半径1・ 3故I b-"c|的最小值为:2 - 1=1.故答案为:1.【点评】木题考查了向量的几何意义、数量积.属难题.2.如图,定圆C 半径为2, A 为圆C 上的一个定点,B 为圆C 上的动点,若点A, B, C 不共线,a|AB-tAC| >|BC|^ 任意疋(0, +->)恒成立,则 AB - AC=【分析】对| AB - 于t 的一元二次不等式,再由不等式恒成立思想,运用判别式小于等于0,求 得m 的值.t 瓦|列反|二|忑-疋|两边平方,并设AB<AC=m,整理可得关两边平方可得,雨2- 2tABeAC+t 2AC 2^AB 2 - 2AB>AC+A C^ 设 AB ・ AC 二m,则 22t 2 - 2tm - (2?・ 2m) 20,X| AB-tAC| >|BC|对任意 tw (0, +8)恒成立,则判别式厶=4m 2+4X4 (4 - 2m) WO,化简可得(m-4) 2^0,由于(m ・4) 2^0,则m=4,即 AB<AC=4 ・故答案为:4.【点评】木题考查了平面向量的数量积运算,以及不等式恒成立问题,是综合题.3.如图,在平行四边形ABCD 中,D E A E C ,F 为BC 的中点,G 为EF 上的一点, 2且AG=mAB+yAD^则实数m 的值为【分析】用15、忑表示出向量亦、AF,根据E, F, G 三点共线,AG=XAE+ (1【解答】解:由题意,辰屁辰血护6為冷品AF= AB+ BF= AB+丄 BC= AB+丄 AD, 2 2乂 E ,F ,G 二点共线, •\ AG 二入AE+ (1 - A) AF,根据向量相等列方程组求出m 的值.AG=X ( AD+1AB) + (1-X)(忑+丄忑)二(1--2.X) AB+ H X AD;乂AG=m AB+— AD,1+入 22 一解得:入专,・・・实数m的值为丄・故答案为:上【点评】木题考查了平面向量的线性运算与共线定理的应用问题,是中档题. 4.如图,在等腰梯形ABCD中,下底BC长为3,底角C为45。
向量三角不等式的应用
向量三角不等式的应用嘿,朋友们,今天咱们聊聊一个数学话题,听起来可能有点严肃,不过放心,我会让这趟旅程轻松愉快。
你知道什么是向量三角不等式吗?别害怕,听我慢慢道来。
这玩意儿说白了就是在告诉我们,三角形的两条边加起来的长度,总是大于等于第三条边的长度。
好吧,听上去有点儿抽象,咱们把它形象化一下。
想象一下,你和小伙伴们在公园里玩,哎,突然你们决定要去冰淇淋摊。
你们从一边出发,沿着小路走,另一边的小伙伴也想插队,结果两条路线都是弯弯曲曲的,最后在冰淇淋摊前会合。
向量三角不等式在这里就像你们的导航,告诉你们,从各自出发的路线加起来,总会比直接走的更长。
这个道理其实很简单,就像咱们说的“好事成双”一样,路越走越远,最后结果肯定是多多益善。
再来一则故事,想象你在海滩上,跟朋友一起追逐海浪。
你们各自跳起来,冲向水里,结果碰到一起。
此时,三角形的每一条边就像你们奔跑的轨迹。
你看,虽然你们的路径各不相同,但如果用向量来表示,两个边加起来,肯定能比那条直接的线长。
就像“天下没有白吃的午餐”一样,直线虽然省力,但往往不如绕一下来的滋味好。
现在聊聊生活中的小例子,想象你正忙着给朋友们订晚餐。
你在不同的地方打电话、发信息,最终每个人都选了不同的菜。
你把所有的订单加起来,最后发现自己要跑的地方比想象中多得多。
此时,向量三角不等式又在暗中助你一臂之力,让你明白,从一个地方到另一个地方,绕路其实没那么糟糕。
就像咱们常说的“远亲不如近邻”,有时候费点力,最后的结果却是美味的晚餐。
我们再聊聊运动。
篮球赛上,你看到球员们传球、投篮,每个动作都像是一个个向量。
两个球员之间的传球距离,加上他们各自的位置,合起来一定会比你想象中的更复杂。
这就好比“牛头不对马嘴”,要想打出漂亮的配合,必须得明白这些向量之间的关系。
反正就是,三角不等式在这里也能帮助你,教你如何更好地配合,最终达成目标。
向量三角不等式其实不只是数学里的一个公式,它还在生活中潜移默化地影响着我们。
数学用向量方法解决问题专题研究3000字报告
数学用向量方法解决问题专题研究3000字报告一、课题研究的背景及意义向量具有几何形式与代数形式的“双重身份”,它是中学数学知识的一个交汇点,是数学问题解决的重要工具。
《普通高中数学课程标准》对其教学要求为重基础,突出向量作为工具的作用。
本课题对高中数学教科书中的向量内容进行分析,把向量作为数学工具来解决数学问题,列举在教学中积累的应用向量解决问题的实例,并进行分类讨论。
主要是向量在平面几何、函数、等式与不等式、数列、复数、三角函数、平面解析几何等数学问题解决教学方面的应用。
学生在中学阶段必须掌握利用向量来解决常见的数学问题。
在此背景下,“运用向量法解题”是一值得关注和研究的问题。
二、课题研究的目标和内容研究目标本课题研究的目标是明确向量在中学数学解题中的地位,提高对向量解题的认识,有效地促进中学数学中利用向量解题,从解题的内涵、思维过程等方面试图从向量解题的思想方法、解题策略、解题心理、解题案例等方面尽可能全面的阐述向量解题,给学习向量的人提供相应的参考。
1、优化学生认识的结构根据数学学习的同化理论,学生在数学学习的过程中,总是在原有的知识基础上,学习、接受新的知识,使旧知识获得新的意义,使原来的认知结构得到重建和优化。
如学习向量平行与垂直时,可以使原有的直线平行、垂直含义及证明的方法得到扩充,得到同化,充实了学生的知识结构。
在向量的观念下,学生可以从多角度多方面思考数学知识,达到对知识的融合,优化学生认识结构。
2、培养学生的思维品质中学数学教学的目的之一是培养学生的思维能力,而培养数学思维品质是形成数学思维能力的基本条件。
向量的引入给培养学生的思维品质提供了新的方法和途径。
利用向量知识点的多样性,一题多解,培养思维的广阔性;在平面向量这一章中许多概念及有关向量的运算、运算性质、运算律、既类似于实数的相关知识,又有本质区别,这是本章难点,在训练过程中,完善学生认识结论,克服知识负迁移,培养思维的批判性;以课文习题为蓝本实现一题多变,培养思维的灵活性;利用向量形成解题模型,做到一法多题,培养学生思维的聚合性。
三角函数综合应用
解 (1)m·n= 3sin x4·cos x4+cos2x4
=
3 2 sin
x2+1+c2os
x 2=sinx2+π6+12,
∵m·n=1,∴sinx2+π6=12. cosx+π3=1-2sin2x2+π6=12, cos23π-x=-cosx+π3=-12. (2)∵(2a-c)cos B=bcos C,
[4 分]
(2)解 |b+c|2=(b+c)2=b2+c2+2b·c=sin2β+16cos2β+cos2β+
16sin2β+2(sin βcos β-16sin βcos β)
=17-30sin βcos β=17-15sin 2β,
最大值为 32,所以|b+c|的最大值为 4 2.
[9 分]
(3)证明 由 tan αtan β=16,得 sin αsin β=16cos αcos β,
答题模板
平面向量与三角函数的结合问题
(14 分)设向量 a=(4cos α,sin α),b=(sin β,4cos β),c=(cos β, -4sin β). (1)若 a 与 b-2c 垂直,求 tan(α+β)的值; (2)求|b+c|的最大值; (3)若 tan αtan β=16,求证:a∥b.
因为 α 是第一象限角,故 sin α=1123.
所以,cossin4απ++π42α=sicnoαs +2απ4
=2cos
2 α-sin
α=-1134
2.
三角形中的三角恒等变换
例 2 设锐角三角形 ABC 的内角 A,B,C 的对边分别为 a,b, c,a=2bsin A. (1)求 B 的大小; (2)求 cos A+sin C 的取值范围.
变式训练 1
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第19讲 向量与三角、不等式等知识综合应用
常熟市中学 蔡祖才
一、高考要求
平面向量与三角函数、不等式等知识的综合应用是高考的主要考查内容之一.掌握向量的几何表示、向量的加法与减法和实数与向量的积,掌握平面向量的坐标运算、平面向量的数量积极其几何意义,掌握向量垂直的条件,并且能熟练运用,掌握平移公式.注重等价转化、分类讨论等数学思想的渗透. 二、考点解读
考查平面向量数量积的计算方法、三角公式、三角函数的性质及图像的基本知识,考查推理和运算能力.
考查平面向量的概念和计算,三角函数的恒等变换及其图象变换的基本技能,着重考查数学运算能力.平面向量与三角函数结合是高考命题的一个新的亮点之一. 三、课前训练
1.把曲线y cos x +2y -1=0先沿x 轴向右平移
2
π
个单位,再沿y 轴向下平移1个单位,得到的曲线方程是 ( )
(A)(1-y )sin x +2y -3=0 (B)(y -1)sin x +2y -3=0 (C)(y +1)sin x +2y +1=0 (D) -(y +1)sin x +2y +1=0
2.函数y =sin x 的图象按向量a =(32
π
-
,2)平移后与函数g (x )的图象重合,则g (x )的函数表达式是 ( ) (A )cos x -2 (B )-cos x -2 (C )cos x +2 (D )-cos x +2
3.已知向量a = (1,sin θ),b = (1,cos θ),则 | a - b | 的最大值为
.
4.如图,函数y =2sin(πx+φ),x ∈R,(其中0≤φ≤
2
π
)的图象与y 轴交于点(0,1). 设P 是图象上的最高点,M 、N 是图象与x 轴的交点,则PM PN 与的夹角余弦值为 . 四、典型例题
例1 已知a =ωx ,cos ωx ),b =(cos ωx ,cos ωx )(ω>0),记函数f (x )= a · b ,且f (x )的最小正周期是π,则ω= ( )
(A)
ω=1 (B) ω=2 (C) 21=
ω ( D) 3
2
=ω 例2 在△OAB 中,O 为坐标原点,]2
,0(),1,(sin ),cos ,1(π
θθθ∈B A ,则△OAB 的面
积达到最大值时,=θ ( )
(A)
6π (B) 4π (C) 3
π
(D)
2
π
例3 设向量a =(sin x ,cos x ),b =(cos x ,cos x ),x ∈R ,函数f(x)=a ·(a +b ). 使不等式f (x )≥
2
3
成立的x 的取值集合为 .
例4 在△ABC 中,O 为中线AM 上的一个动点,若AM =2,则()OA OB OC ⋅+的最小值是 .
例5 已知函数f (x )=a +b sin2x +c cos2x 的图象经过点A (0,1),B (
4
π
,1),且当x ∈[0, 4
π
]时,f (x )取得最大值22-1.(Ⅰ)求f (x )的解析式;(Ⅱ)是否存在向量m ,使得将f (x )的图象按向量m 平移后可以得到一个奇函数的图象?若存在,求出满足条件的一个m ;若不存在,说明理由.
例6 已知向量m =(cos ,sin )θθ和n =sin ,cos ),(,2)θθθππ∈,且| m + n |
=
5
求cos()28θπ+的值.
第19讲 向量与三角、不等式等知识综合应用 过关练习
1.已知i ,j 为互相垂直的单位向量,2a i j =-,b i j λ=+,且||||a b 与的夹角为锐角,则实数λ的取值范围是
( )
(A )),21(+∞ (B ))2
1,2()2,(-⋃--∞ (C )),32()32,2(+∞⋃- (D ))2
1,(-∞
2.在直角坐标系中,O 是原点,=(-2+cos θ,-2+sin θ) (θ∈R),动点P 在直线x =3上运动,若从动点P 向Q 点的轨迹引切线,则所引切线长的最小值为 ( )
(A ) 4 (B ) 5 (C ) 26 (D )26 3.已知||2||0a b =≠,且关于x 的方程2||0x a x a b ++⋅=有实根,则a 与b 的夹角的取值范围是 ( )
(A )[0,
6π] (B )[,]3ππ (C )2[,
]33ππ (D )[,]6
π
π 4.设(0,0)O ,(1,0)A ,(0,1)B ,点P 是线段AB 上的一个动点,AP AB λ=,若
OP AB PA PB ⋅≥⋅,则实数λ的取值范围是 ( )
(A )
112λ≤≤ (B )11λ≤≤
(C )
1122
λ≤≤+
(D )1122λ-≤≤+5. 已知向量a =(cos α,sin α),b =(cos β,sin β),且a b ≠±,那么a b +与a b -的夹角的大小是 .
6. 已知向量].2
,0[),2sin ,2(cos ),23sin ,23(cos
π
∈-==x x x x x 且若||2)(x f +-⋅=λ的最小值为3
2
-,则λ的值为 .
7.已知A 、B 、C 是ABC ∆三内角,向量(1m =- (cos ,sin ),n A A = 且 1.m n ⋅= (Ⅰ)求角A ;
(Ⅱ)若221sin 23cos sin B B B
+=--,求tanC .
8.设函数f (x )=a b ⋅,其中向量a =(2cos x ,1),b =(cos x ,3sin2x ),x ∈R .
(Ⅰ)若f(x)=1-3且x ∈[-
3π,3
π
],求x ; (Ⅱ)若函数y =2sin2x 的图象按向量c =(m ,n )(|m |<2
π
)平移后得到函数y =f (x )的图象,求实数m 、n 的值.
第19讲 向量与三角、不等式等知识综合应用 参考答案
课前训练部分
1.C
2.D
3.
4.
1517
典型例题部分
例1 A
例2 111
1sin cos (1cos )(1sin )222
ABC S θθθθ∆=-
---- 当2θπ=即2
π
θ=
时,面积最大.
例3 3,8
8x k x k k Z π
πππ⎧⎫
-
≤≤+
∈⎨⎬⎩
⎭
例4 如图,OM OA OC OB OA -≥-=⋅⋅=+⋅2)(
=.222-=⋅- 即)(OC OB OA +⋅的最小值为:-2.
例5 (Ⅰ)由题意知⎩⎨⎧=+=+,
1,1b a c a ∴b =c =1-a , ∴f (x )=a +2(1-a )sin(2x +4π
).∵x
∈[0,
4π], ∴2x +4π∈[4π,4
π
3].当1-a >0时,由a +2(1-a )=22-1, 解得a =-1; 当1-a <0时, a +2(1-a )·
2
2
=22-1,无解; 当1-a =0时,a =22-1,相矛盾. 综上可知a =-1. ∴f (x )=-1+22sin(2x +
4
π). (Ⅱ)∵g (x )=22sin2x 是奇函数,将g (x )的图象向左平移8
π
个单位,再向下平移一个单位就可以得到f (x )的图象. 因此,将f (x )的图象向右平移8
π
个单位,再向上平移一个单位就可以得到奇函数g(x )=22sin2x 的图象.故m =(
8
π
,1)是满足条件的一个向量.
例6 (cos sin sin )m n θθθθ+=-+
(cos m n +=
由已知82,5
m n +=,得7cos()425πθ+=又2cos()2cos ()1428πθπθ+=+-
过关练习部分
1.B
2.C
3.B
4.B 5、
2
π
6. 21
7(Ⅰ)∵1m n ⋅= ∴(()cos ,sin 1A A -⋅= cos 1A A -=
12sin cos 12A A ⎛⎫⋅= ⎪ ⎪⎝⎭
, 1sin 62A π⎛
⎫-= ⎪⎝⎭ ∵50,666A A π
π
ππ<<-
<-
<
∴66A ππ-= ∴3
A π
= (Ⅱ)由题知22
12sin cos 3cos sin B B B B
+=--,整理得22
sin sin cos 2cos 0B B B B --= ∴cos 0B ≠ ∴2
tan tan 20B B --= ∴tan 2B =或tan 1B =-
而tan 1B =-使2
2
cos sin 0B B -=,舍去 ∴tan 2
B =
8.(Ⅰ)依题设可知,函数的解析式为f (x )=a b ⋅=2cos 2x +3sin2x =1+2sin(2x +
6
π
). 由1+2sin(2x +
6π)=1-3,可得三角方程sin(2 x +6π)=-2
3. ∵-
3π≤x ≤3π,∴-2π≤2x +6π≤6
5π,∴2x +6π=-3π,即x =-4π
. (Ⅱ)函数y =2sin2x 的图象按向量c =(m ,n )平移后得到函数y =2sin2(x -m )+n 的图象,即函数y =f(x)的图象.
由(1)得 f(x)=2sin2(x +12
π
)+1. ∵|m |<
2π,∴12
m π
=-, 1.n =。