苏科版七年级上册数学2-3数轴(1)

合集下载

苏科版七年级上册数学 第2章 数轴 授课课件

苏科版七年级上册数学 第2章 数轴 授课课件

感悟新知
知识点 1 有理数及相关概念
知1-讲
问题:在一条东西向的马路上,有一个汽车站牌,汽 车站牌往东3m和7.5m处分别有一棵柳树和一棵杨 树,汽车站牌往西3m和4.8m处分别有一棵槐树和 一根电线杆,试画图表示这一情境.
感悟新知
知1-讲
提问: (1)马路可以用什么几何图形代表? (2)你认为站牌起什么作用? (3)你是怎么确定问题中各物体的位置的?
知1-讲
感悟新知
-2 -1
0
1
2
知1-讲
画一条水平直线,在直线上取一点表示0(这个
点叫__原__点___),选取某一长度作为__单__位__长__度___,
规定直线上向右的方向为_________,这样的直线
叫做数轴.
正方向
感悟新知
(1)数轴是一条直线 数轴的特征 (2)数轴三要素
知1-讲
原点 正方向 单位长度
解:点A表示1 1,点B表示-1,点C表示-2 1,点D表示0.
2
2
2
感悟新知
总结
知2-讲
数轴上任何一个点都能找到一个数和它对应,即知 点读数,读数时要明确两点:点所在的区域的位置(原点 的左右两侧)决定正负,到原点的距离决定数字.
感悟新知
例画4出数轴,并在数轴上画出表示下列各数的点.
知2-练
-2,-2 1 ,-1 ,3, 1 . 导引:画出数轴后2 ,先2 要区2 分清楚各个点的区域位置;再看
C A.2013B.2014C.2015D.2016
课堂小结
有理数
1.数轴定义包含三层含义: (1)数轴是一条直线; (2)数轴有“三要素”:原点、正方向、单位长度; (3)“规定”是指原点位置、正方向选取、单位长度 大小都根据需要而定.

2 苏科版七年级第一学期数学 有理数 数轴 第3课时 教学课件

2 苏科版七年级第一学期数学 有理数 数轴 第3课时 教学课件
度后所得到的点为A,如图②,易知点A表示的数是-1.
非常点评:在解决确定数轴上动点表示的数的问题时,一般先根据题意画出已知数
表示的点在数轴上的运动情况,然后根据最终到达的点的位置来确定它所表示的数.
也可以将运动后的点进行反向运动,倒推出点的初始位置表示的数.
典例展示厅
题型五、确定数轴上动点表示的数

示1.4、3 的点;因为-2是负数,所以表示-2 的点在原点左侧,距离原点2个单位长度.类似

地,可得表示-3.5的点;表示0的点在原点.⑵由于本小题的数据比较大,所以用1个单位长
度表示 100 比较合适,然后类似⑴进行解答.
-1
0
-500 -400 -300 -200 -100
0
-4
-3
-2
1
2
2020年 12月1日18时30分.所以B选项正确;因为纽约时间比北京时间晚 13小时,所以
纽约时间为2020 年 12月1日12时 30分,所以C选项错误;因为首尔时间比北京时间早1
小时,所以首尔时间为 2020 年12 月2日2时30分,所以D选项错误。答案∶B
非常点评:
由此题的解答可以看出,利用数轴可以将抽象的“数” 转化为直观的“形” ,从
边的点表示的数最小.当由已知条件无法确定点具体表示何数时,我们可以借助
数轴,通过点的位置来寻找最大、最小的数.
典例展示厅
题型二、利用数轴解决实际问题
【典例2】5个城市的国际标准时间(单位∶时)在数轴上的表示(例如∶伦敦时间的
0时是首尔时间的9时)如图所示.北京时间 2020年12 月 2日1时30分应是( B )
点都表示一个有理数或无理数.
试一试
1.把0℃、5℃、-3℃、-2℃按从低到高的顺序排列.

苏科版七年级数学上册《2.3.2数轴》教学设计

苏科版七年级数学上册《2.3.2数轴》教学设计

苏科版七年级数学上册《2.3.2数轴》教学设计一. 教材分析苏科版七年级数学上册《2.3.2数轴》是学生在学习了有理数、相反数、绝对值等知识的基础上,进一步学习数轴的概念及其应用。

数轴是数学中一种重要的工具,可以直观地表示实数的大小关系,有助于学生更好地理解有理数的概念和性质。

本节课的教学内容主要包括数轴的定义、特点、表示方法以及数轴上的点与实数之间的关系。

二. 学情分析七年级的学生已经具备了一定的逻辑思维能力和空间想象力,他们对数学概念和公式的接受能力较强。

但是,部分学生可能对数轴的理解和运用存在困难,特别是在数轴上表示实数和解决实际问题时,容易出现混淆和错误。

因此,在教学过程中,需要关注这部分学生的学习情况,引导他们逐步掌握数轴的知识和应用。

三. 教学目标1.知识与技能目标:使学生理解数轴的定义、特点和表示方法,能够熟练地在数轴上表示实数,解决与数轴相关的实际问题。

2.过程与方法目标:通过观察、操作、思考、交流等活动,培养学生运用数轴解决问题的能力,提高空间想象力。

3.情感态度与价值观目标:激发学生学习数轴的兴趣,培养他们勇于探究、积极向上的学习态度,体验数学在生活中的重要作用。

四. 教学重难点1.重点:数轴的定义、特点和表示方法,数轴上点与实数之间的关系。

2.难点:数轴在实际问题中的应用,特别是解决与距离、大小比较相关的问题。

五. 教学方法1.情境教学法:通过生活中的实例,引导学生认识数轴,体会数轴在实际问题中的作用。

2.活动教学法:学生进行观察、操作、交流等活动,培养学生的动手能力和空间想象力。

3.问题驱动法:设置一系列问题,引导学生思考、探究,从而深入理解数轴的知识。

4.讲解法:针对数轴的概念、性质和应用进行讲解,帮助学生掌握知识要点。

六. 教学准备1.准备数轴的图片、实物模型等教学资源。

2.设计好导入、呈现、操练、巩固、拓展等环节的教学活动。

3.准备黑板、粉笔等教学工具。

七. 教学过程1.导入(5分钟)利用生活中的实例,如温度计、尺子等,引导学生认识数轴,激发学生学习数轴的兴趣。

苏科版七年级数学上册 数轴与数轴动点问题提高专题

苏科版七年级数学上册 数轴与数轴动点问题提高专题

数轴与数轴动点问题提高专题一.【数轴基础知识】:⒈【数轴的概念】:规定了原点,单位长度,正方向的直线叫做数轴。

2.【数轴的画法】:(1)画一条直线(一般画成水平的直线)。

(2)在直线上选取一个点为原点,并用这个点表示零(在原点下标0)。

(3)确定正方向(一般规定向右为正),并用箭头表示出来。

(4)选取适当的单位长度,以原点为界点,从原点向右,每隔一个单位长度取一点,依次标上1,2,3,…,从原点向左,依次标上-1,-2,-3,…。

3.【归纳数轴上的点的意义】:一般地,设a是一个正数,则数轴上表示a的点在原点的右边,与原点的距离是a个单位长度;表示-a的点在原点的左边,与原点的距离是a个单位长度。

【结论】:所有的有理数和无理数都可以用数轴上的点来表示,但数轴上的点表示的数不一定都是有理数。

我们规定:(1)数轴上的原点表示0;(2)数轴上原点右边的点表示正数;(3)原点左边的点表示负数4.【在数轴上比较有理数】:利用数轴比较有理数的大小:①数轴上右边的点表示的数大于左边的点表示的数;②正数都大于0,负数都小于0,正数都大于负数;③两个负数比较,距离原点远的数比距离原点近的数小。

【重要结论】:数轴上特殊的最大(小)数①最小的自然数是0,无最大的自然数;②最小的正整数是1,无最大的正整数;③最大的负整数是-1,无最小的负整数5.【数轴上点的移动规律】:根据点的移动,向左移动几个单位长度则减去几,向右移动几个单位长度则加上几,从而得到所需的点的位置。

6.【相反数,绝对值与数轴的关系】:①一对相反数在数轴上对应的点位于原点两侧,并且到原点的距离相等,这两点是关于原点对称的②绝对值的几何意义:一个数a的绝对值就是数轴上表示数a的点与原点的距离二.【知识应用】:Eg1.【数形结合思想】:有3个单位长度的点所表示的数是【例1】:在数轴上距2(注意:在数轴上到某个定点距离为定值的点有两个)【例2】:a,b为两个有理数,表示在数轴上的位置如图所示,把-a,-b在数轴上表示出来,再把a,b,-a,-b,0按从大到小的顺序排列出来。

苏科版初中数学七年级上册 同步测试题:2.3 数轴(含答案)

苏科版初中数学七年级上册 同步测试题:2.3 数轴(含答案)

2.3 数轴一、单选题1.在数轴上,原点表示的数是()A. 1B. 0C. ﹣1D. 不能确定2.下列各图中,是数轴的是()A. B.C. D.3.如图所示,a和b的大小关系是()A. a>bB. a<bC. 2a=bD. 2b=a4.在数轴上表示-12的点与表示3的点,这两点间的距离为()A. 9B. -9C. -15D. 155.在数轴上与原点的距离等于2 的点表示的数是()A. 2B. ﹣2C. ﹣1 或3D. ﹣2 或26.小明在纸上画了一条数轴后,折叠纸面,使数轴上表示1的点与表示﹣3的点重合,此时点A与点B也重合,若数轴上A,B两点之间的距离为2018(A在B的左侧),则A点表示的数为()A. ﹣1008B. ﹣1009C. ﹣1010D. ﹣10117.如图所示,将圆的周长分为4个单位长度,在圆的4等分点处标上数字0,1,2,3,先让圆周上数字0所对应的点与数轴上的数1所对应的点重合,再让圆沿着数轴按逆时针方向滚动,那么数轴上的数2020将与圆周上的数字()重合.A. 0B. 1C. 2D. 38.如图,将一刻度尺放在数轴上.①若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为 1 和5,则1cm 对应数轴上的点表示的数是2;②若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为1 和9,则1cm 对应数轴上的点表示的数是3;③若刻度尺上0cm 和4cm 对应数轴上的点表示的数分别为-2 和2,则1cm 对应数轴上的点表示的数是-1;④若刻度尺上0cm 和 4 cm 对应数轴上的点表示的数分别为-1 和1,则1cm 对应数轴上的点表示的数是-0.5. 上述结论中,所有符合题意结论的序号是()A. ①②B. ②④C. ①②③D. ①②③④二、填空题9.在数轴上,与表示数﹣1的点的距离是三个单位长度的点表示的数是________.10.一个点从数轴上的原点开始,先向左移动6个单位,再向右移动4个单位长度,这时该点所对应的数是__.11.如图:点M、N在数轴上,线段MN的长度为4,若点M表示的数为-1,则点N表示的数为________.12.小明写作业时,不慎将墨水滴在数轴上,根据图中数值,请你确定墨迹盖住部分的整数共有________个.13.探究思考:(本题直接填空,不必写出解题过程)问题:在数轴上,点A表示的数为,则到点A的距离等于3的点所表示的数是________;变式思考一:如图1,在数轴上有六个点A、B、C、D、E、F,且相邻两点间距离相等,若点A 表示的数是,点F表示的数为11,则与点C表示的数最近的整数是________;变式思考二:已知数轴上有A、B、C三点,分别代表,电子蚂蚁从A向点C方向以4个单位/秒的速度爬行.则爬行到________秒时,电子蚂蚁到A、B、C的距离和为40个单位.14.电影《哈利•波特》中,小哈利波特穿越墙进入“ 站台”的镜头(如示意图的Q站台),构思奇妙,能给观众留下深刻的印象.若A、B站台分别位于﹣,处,AP=2PB,则P站台用类似电影的方法可称为“________站台”.三、解答题15.把下列各数在数轴上表示出来,再按照从小到大的顺序用“<”连接起来﹣4,﹣2,﹣,0,3,3 .16.如图,小明在写作业时不慎将一滴墨水滴在数轴上,根据图中的数值,试确定墨迹盖住的整数共有哪几个?17.写出数轴上所有大于-4,且小于2的整数;四、综合题18.如图,在一条不完整的数轴上从左到右有点A,B,C,其中AB=2BC,设点A,B,C所对应数的和是m。

初中数学苏科版七年级上册第二章 有理数2.3 数轴-章节测试习题(13)

初中数学苏科版七年级上册第二章 有理数2.3 数轴-章节测试习题(13)

章节测试题1.【题文】小红在做作业时,不小心将两滴墨水洒在一个数轴上,如图所示,根据图中标出的数值,判断墨水盖住的整数有哪几个?【答案】墨水盖住的整数是-12,-11,-10,-9,-8,11,12,13,14,15,16,17.【分析】本题考查有理数在数轴上的表示.判断-12.6,-7.4,10.6,17.8在数轴上的位置,数整数的个数.【解答】∵-13<-12.6<-12,-8<-7.4<-7,∴此段整数有-12,-11,-10,-9,-8共5个;同理:10<10.6<11,17<17.8<18,∴此段整数有11,12,13,14,15,16,17共7个,∴被墨迹盖住的整数共有5+7=12个.2.【题文】一只电子蚂蚁在数轴上从-3出发向左运动2个单位长度到点A处,再向右运动4个单位长度到点C处.(1)画出数轴标出A、C所表示的数;(2)这只电子蚂蚁一共运动多少个单位长度?【答案】(1)见解答;(2)6.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想.(1)根据数轴上原点左边的数都小于0,右边的数都大于0解答即可;(2)把蚂蚁两次移动的单位长度相加即可.【解答】(1)∵从-3出发向左运动2个单位长度到点A处,∴A点表示的数为-3-2=-5;∴再向右运动4个单位长度到点C处,C点表示的数为:-5+4=-1;如下图:(2)∵蚂蚁第一次移动了两个单位长度,第二次移动了4个单位长度,∴这只电子蚂蚁一共运动了2+4=6个单位长度.3.【题文】已知在数轴上,点A到原点的距离为3,点B到原点的距离为5.(1)求点A表示的数;(2)求点B表示的数;(3)利用数轴求A、B两点间的距离为多少?画数轴说明.【答案】(1)3或-3;(2)5或-5;(3)A、B两点间的距离为8或2.【分析】本题考查了数轴的知识,在解题时通过画数轴来解题这样非常直观可以知道数与数轴的关系,进一步体现了数形结合的思想,熟练掌握数轴的特点是解题的关键.【解答】A表示3或-3,B表示5或-5,A、B两点间的距离为8或2,如下图:4.【题文】如图,A、B、C三点在数轴上,A表示的数为-10,B表示的数为14,点C在点A与点B之间,且AC=BC.(1)求A、B两点间的距离;(2)求C点对应的数;(3)甲、乙分别从A、B两点同时相向运动,甲的速度是1个单位长度/s,乙的速度是2个单位长度/s,求相遇点D对应的数.【答案】(1)24;(2)2;(3)-2.【分析】本题考查了数轴,主要利用了数轴上两点间的距离的求法和相遇问题的数量关系.(1)用点B表示的数减去点A表示的数计算即可得解;(2)设点C对应的数是x,然后列出方程求解即可;(3)设相遇的时间是t秒,根据相遇问题列出方程,求解得到x的值,然后根据点A 表示的数列式计算即可得解.【解答】(1)A、B两点之间的距离为:14-(-10)=14+10=24;(2)设点C对应的点是x,则x-(-10)=14-x,解得x=2;(3)设相遇时间为t秒,则t+2t=24,解得t=8.5.【答题】在数轴上有一点A,它所对应表示的数是3,若将点A在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,此时点B所对应表示的数是()A. 3B. ﹣1C. ﹣5D. 4【答案】B【分析】本题考查数轴上的动点问题.【解答】由数轴的特点可知,将数3在数轴上先向左移动8个单位长度,再向右移动4个单位长度得点B,点B=3−8+4=−1;选B.6.【答题】下列所画的数轴中正确的是()A. B.C. D.【答案】D【分析】本题考查的是数轴的三要素,解答本题的关键是熟练掌握数轴的三要素:原点、正方向、单位长度.根据数轴的三要素依次分析各项即可.【解答】A.缺少原点,B.缺少正方向,C.单位长度不对,故错误;D.符合数轴三要素,故本选项正确.7.【答题】大于﹣2.6而又不大于3的整数有()A. 7个B. 6个C. 5个D. 4个【答案】B【分析】本题考查了有理数的比较,借助数轴进行比较直观易懂,解题的关键是先把大于﹣2.6并且不大于3的数在数轴上表示出来,据此进行判断.【解答】如图所示,大于﹣2.6而又不大于3的整数是﹣2,﹣1,0,1,2,3.共有6个数,选B.8.【答题】数轴上的点A、B、C、D分别表示数a、b、c、d,已知点A在点B的左侧,点C在点B的左侧,点D在点B、C之间,则下列式子中,可能成立的是()A. a<b<c<dB. b<c<d<aC. c<d<a<bD. c<d<b<a【答案】C【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.【解答】∵A在点B的左侧,∴a<b,∵点C在点B的左侧,∴c<b,∵点D在点B、C之间,∴c<d<b,∴可能成立的是:c<d<a<b.选C.9.【答题】已知a,b两数在数轴上的位置如图所示,则下列结果错误的是()A. a>0B. a>1C. b<﹣1D. a>b【答案】B【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.【解答】A.∵a在原点的右边,∴a>0,故错误;B.∵a在1的左边,∴a<1,故正确;C.∵b在﹣1的左边,∴b<﹣1,故错误;D.∵b在a的左边,∴a>b,故错误,选B.10.【答题】如图,根据有理数a,b,c在数轴上的位置,下列关系正确的是()A. b>c>0>aB. a>b>c>0C. a>c>b>0D. b>0>a>c 【答案】D【分析】本题考查有理数在数轴上的表示以及有理数的大小比较.解题的关键是要熟记,数轴上右边的数总比左边的大.【解答】根据数轴上点的位置可知:b>0>a>c.选D.11.【答题】数轴上点A表示﹣1,则与A距离3个单位长度的点B表示______.【答案】﹣4或2【分析】本题考查数轴上两点间的距离.【解答】数轴上点A表示﹣1,则与A距离3个单位长度的点B表示的数有两个,一个在位于原点左侧为-4,一个位于原点的右侧为2.12.【答题】在数轴上将点A向右移动7个单位,再向左移动4个单位,终点恰好是原点,则点A表示的数是______.【答案】-3【分析】本题考查了数轴,主要利用了向右平移加,向左平移减,熟记并列出方程是解题的关键.设点A表示的数为x,根据向右平移加,向左平移减列出方程,然后解方程即可.【解答】设点A表示的数为x,由题意得,x+7﹣4=0,解得x=﹣3,∴,点A表示的数是﹣3.故答案为:﹣3.13.【答题】数轴上点A表示的数是﹣5,若将点A向右平移3个单位到点B,则点B表示的数是______.【答案】-2【分析】本题考查数轴上的动点问题.【解答】∵A为数轴上表示﹣5的点,将点A沿数轴向右平移3个单位到点B,∴﹣5+3=﹣2,即点B所表示的数是﹣2,故答案为:﹣2.14.【答题】在数轴上到表示﹣2的点的距离为4的点所表示的数是______.【答案】﹣6或2【分析】本题考查数轴上两点间的距离,解题的关键是分两种情况进行讨论.【解答】该点可能在﹣2的左侧,则为﹣2﹣4=﹣6;也可能在﹣2的右侧,即为﹣2+4=2,故答案为:﹣6或2.15.【答题】点A在数轴上距原点5个单位长度,且位于原点左侧,若将A向右移动4个单位长度,再向左移动1个单位长度,此时点A表示的数是______.【答案】-2【分析】本题考查数轴上的动点问题.【解答】∵点A在数轴上距原点5个单位长度,且位于原点左侧,∴点A表示的数为−5,移动后点A所表示的数是:−5+4−1=−2.故答案为:−2.16.【题文】画数轴,在数轴上表示下列各数,并用“<”号把它们连接起来.﹣3、+2、﹣1.5、0、1【答案】﹣3<﹣1.5<0<1<+2.【分析】本题考查有理数的大小比较.【解答】首先在数轴上表示各数,然后再根据在数轴上右边的点表示的数大于左边的点表示的数,用“<”号把它们连接起来即可.如图所示:﹣3<﹣1.5<0<1<+2.17.【题文】小明从家出发(记为原点O)向东走3m,他把数轴上+3的位置记为点A,他又向东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到达点C,点C表示什么数?请你画出数轴,并在数轴上标出点A,点B的位置,这时如果小明要回家,则小明应如何走?【答案】点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2m.【分析】根据题意可以求得点B和点C的坐标,从而可以知道小明要回家应如何走,从而可以解答本题.【解答】∵小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,∴他又东走了5m,记为点B,点B表示的数是3+5=8,∴接着他又向西走了10m到点C,点C表示表示的数是8+(﹣10)=﹣2,∴当小明到点C时,要回家,小明应向东走2m即可.即点B表示的数是8,点C表示的数是﹣2,小明到点C时,要回家,小明应向东走2m.数轴如下所示:18.【答题】下列关于数轴的说法正确的是()A. 数轴是一条规定了原点、正方向和单位长度的直线B. 数轴的正方向一定向右C. 数轴上的点只能表示整数D. 数轴上的原点表示有理数的起点【答案】A【分析】熟记“数轴的定义:规定了原点、正方向和单位长度的直线叫做数轴”是解答本题的关键.根据数轴的定义进行分析判断即可.【解答】A选项中,∵“数轴是一条规定了原点、正方向和单位长度的直线”符合数轴的定义,∴A中说法正确;B选项中,∵“数轴的正方向是根据需要规定的,其正方向不一定向右”,∴B中说法错误;C选项中,∵“数轴上的点既可以表示整数,也可以表示小数”,∴C中说法错误;D选项中,∵“数轴上的原点表示数0,但数0并不是有理数的起点”,∴D中说法错误.选A.19.【答题】下列数轴的画法中,正确的是()A. B. C. D.【答案】D【分析】熟知“数轴的定义和画法”是解答本题的关键.根据数轴的定义和画法进行分析判断即可.【解答】A选项中的数轴缺少“正方向”,∴A中画法错误;B选项中的数轴,表示“1”和“-1”的点的位置标反了,∴B中画法错误;C选项中的数轴,单位长度不统一,∴C中画法错误;D选项中的数轴,符合数轴的定义和画法的要求,∴D中画法正确.选D.20.【答题】如图所示,数轴上四点M,N,P,Q中,表示负整数的点是()A. 点MB. 点NC. 点PD. 点Q【答案】A【分析】知道“在数轴上原点表示的数是0,原点右边的点距离原点多少个单位长度,表示的数就是正多少,原点左边的点距离原点多少个单位长度表示的数就是负多少”是解答本题的关键.根据“用数轴上的点表示有理数的方法”进行分析判断即可.【解答】A选项中,∵点M表示的数是-2,∴可以选A;B选项中,∵点N表示的数是-0.5,∴不能选B;C选项中,∵点P表示的数是0,∴不能选C;D选项中,∵点Q表示的数是1,∴不能选Q.选A.。

江苏省南京师范大学附属苏州石湖中学苏科版数学七年级上册导学案设计:2.3数轴(1)(无答案)

江苏省南京师范大学附属苏州石湖中学苏科版数学七年级上册导学案设计:2.3数轴(1)(无答案)

课题:2.3数轴(1)班级姓名【学习目标】1、掌握数轴的三要素及其概念,理解数轴上的点和有理数的对应关系;2、会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;3、感受在特定的条件下数与形是可以相互转化的,体验生活中的数学。

重点:能将已知数在数轴上表示出来,能说出数轴上已知点所表示的数。

难点:数轴的概念和用数轴上的点表示有理数【学具准备】直尺、圆规、半径为5cm的圆形小纸片【学法指导】针对学案中的自学指导学习教材,并独立完成学案中自主学习部分的题目。

准备好直尺、圆规,并根据活动要求实际操做。

【学习内容】一、自主学习学习内容学法指导、对应训练阅读课本第18页想一想,完成下列各题:问题一读出下面温度计所表示的温度:()()()问题二在一条东西向的马路上,有一个汽车站,汽车站向东3 m和7.5m处分别有一棵柳树和一棵杨树,汽车站向西3 m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境。

由上述两问题我们得到什么启发?你能根据直线上的点写出合适的数吗?你能在直线上画出点来表示数吗?试试看。

尝试在已有的认知中寻找数轴。

二、课堂探究(一)预习汇报1.根据数轴的定义,试着画一条数轴,并指出数轴上的三要素。

2.判断下列数轴的画法是否正确,若不正确,请指出错误原因23-1-2-3013213210-1-2-3例1.如图,指出数轴上点A 、B 、C 、D 、E 表示的数3EDC BA例2.在数轴上画出表示下列各数的点2,-1.5,0,-3,1.5,-2,0,4,0.5,-4,-0.5注:表示正数的点都在原点的_________侧,表示负数的点都在原点的_________侧例3.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:⑴ 在数轴上,到原点的距离为5的点有_______个,它们表示的数是______________; ⑵ 在数轴上,从表示2的点出发,先向右移动3个单位长度,再向左移动6个单位长度,最后的终点表示的数是_____________________⑶ 在数轴上,点M 表示数2,那么与点M 相距4个单位的点表示的数是_____________(二)动手探究有理数都可以在数轴上表示出来,无理数也可以在数轴上表示出来吗? 问题一:面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点? (提示:以原点为一个端点,在数轴上向右画一条长为a 的线段。

苏科版数学七年级上册2.3.2《数轴》说课稿

苏科版数学七年级上册2.3.2《数轴》说课稿

苏科版数学七年级上册2.3.2《数轴》说课稿一. 教材分析《数轴》是苏科版数学七年级上册2.3.2的内容。

数轴是数学中的一个重要概念,它是一种用来表示数的大小和位置的工具。

通过数轴,学生可以更直观地理解实数的大小关系,以及进行实数的比较和计算。

本节课的内容为数轴的定义、特点和基本操作,包括数轴的绘制、数轴上的点的表示方法、数轴上的距离计算等。

这些内容为学生以后学习函数、方程等数学知识奠定了基础。

二. 学情分析七年级的学生已经初步掌握了实数的概念,具备了一定的逻辑思维能力。

但是,对于数轴这一概念,学生可能还比较陌生,需要通过实例和练习来逐步理解和掌握。

同时,学生对于数轴上的点的表示方法和距离计算可能还存在一定的困难,需要教师进行详细的讲解和引导。

三. 说教学目标1.知识与技能目标:学生能够理解数轴的定义和特点,掌握数轴上的点的表示方法,能够绘制数轴,并计算数轴上的距离。

2.过程与方法目标:通过观察、实践和思考,学生能够培养数形结合的思想,提高解决问题的能力。

3.情感态度与价值观目标:学生能够体验数学与实际生活的联系,增强对数学的兴趣和信心。

四. 说教学重难点1.教学重点:数轴的定义和特点,数轴上的点的表示方法,数轴上的距离计算。

2.教学难点:数轴上的点的表示方法,数轴上的距离计算。

五. 说教学方法与手段本节课采用讲授法、示范法、讨论法、练习法等教学方法,结合多媒体课件和数轴教具,引导学生观察、实践和思考,从而达到教学目标。

六. 说教学过程1.导入:通过复习实数的大小比较,引出数轴的概念,激发学生的学习兴趣。

2.新课导入:讲解数轴的定义和特点,通过示例让学生理解数轴上的点的表示方法。

3.实践操作:学生分组合作,绘制数轴,并练习数轴上的点的表示方法和距离计算。

4.疑难解答:教师针对学生在实践中遇到的问题进行解答和指导。

5.巩固提高:学生进行数轴相关的练习题,加深对数轴的理解和应用。

6.总结:教师引导学生总结数轴的概念和应用,强调数形结合的思想。

【初中数学++】数轴+数轴的概念课件+苏科版数学七年级上册

【初中数学++】数轴+数轴的概念课件+苏科版数学七年级上册
还可以这样写 解:点A、B、C表示的数分别是-3.5,0,2,5.
数轴的应用1:知点写数。
例2、在数轴上画出表示下列各数的点:
3.5,2, 2 ,3.5, 2 3 .
5
4
-3.5
2
3 4
2 5
2 3.5
数轴的应用2:知点写数。
三、独立训练:
1、下列命题正确的是
( B)
A、数轴上的点都表示整数;
-1750m
2000m
国家大剧院的北门
借助一条直线,我们建立了长安街上的地点与数的对应关 系。
二、探究新知:
在数学中,我们用下面的方法建立数与形的联系: (1)画一条水平直线,并在这条直线上取一点0,
我们把这个点称为原点。 (2)规定直线上从原点向右的方向为正方向(画箭头表示),
向左的方向为负方向。 (3)取适当的长度作单位长度,从原点向右每隔一个单位 长度取一点,依次在直线上并标出1,2,3…,从原点向左 每隔一个单位长度取一点,依次在直线上并标出-1,-2,-3…。
4、一个点从数轴上的原点开始,先向右移动 1个单位长度,再向左移动2个单位长度, 此时它表示的数是_-_1 。
5、指出数轴上各点分别表示什么数.
解:点A、B、C、D、E、F 分别是-4、-1、3、0、1.5、-2.5.
6、在数轴上画出表示下列各数的点:
1,-5,-2.5,4
1 2
,3
1 4
四、拓展提高:
苏科版七年级数学上册
---数轴的概念
教学目标
1、理解数轴的概念,会正确地画出数轴。 2、会用数轴上的点表示有理数,能说出数轴上
表示有理数的点所表示的数. 3、了解数轴上的点与有理数的对应关系,

2-3数轴提高练习题苏科版七年级数学上册

2-3数轴提高练习题苏科版七年级数学上册

2021-2022年七年级上册苏科版2.3 数轴提高练习题1.如图所示,已知数轴上两点A、B对应的数分别为-2、4,点P为数轴上一动点.(1)写出点A对应的数的相反数和绝对值;(2)若点P到点A,点B的距离相等,求点P在数轴上对应的数;(3)将点B向左移动7个单位长度,再向右移动2个单位长度,得到点C,在数轴上画出点C,并写出点C表示的是数.2.如图所示有一条数轴,一直A的点表示的数是-2,B点表示的数是4,那么A和B之间的距离是,A和B中点是(1)若A以每秒走0.5个单位长度的速度向右走,B以每秒走1个单位长度的速度向左走,那么两个点经过s相遇,相遇时的点是(2)若A以每秒走0.5个单位长度的速度向左走,B以每秒走0.5个单位长度的速度也向左走,那么两个点经过s相遇,相遇时的点是3.如图.在一条不完整的数轴上一动点A向左移动4个单位长度到达点B,再向右移动7个单位长度到达点C.(1)若点A表示的数为0,求点B、点C表示的数;(2)如果点A、C表示的数互为相反数,求点B表示的数.(3)在(1)的条件之下,若小虫P从点B出发,以每秒0.5个单位长度的速度沿数轴向右运动,同时另一只小虫Q恰好从C点出发,以每秒0.2个单位长度的速度沿数轴向左运动,设两只小虫在数轴上的D点相遇,求D点表示的数是多少?4.如图所示的一条数轴,一直A点对应的数字是-1,B对应的数字是5,那么A和B之间的距离是,A和B中点是(1)若A以每秒走0.3个单位长度的速度向右走,B以每秒走0.1个单位长度的速度向左走,那么两个点相距2个单位长度时间是多少,相遇时的点对应的数字是多少(2)若A以每秒走0.5个单位长度的速度向左走,B以每秒走0.5个单位长度的速度也向左走,那么两个点经过多节相距2个单位长度,相遇时的点对应的数字是多少5.如图,动点A从原点出发向数轴负方向运动,同时,动点B也从原点出发向数轴正方向运动,运动到3秒钟时,两点相距15个单位长度.已知动点A、B的运动速度比之是3∶2(速度单位:1个单位长度/秒).(1)求两个动点运动的速度;(2)A、B两点运动到3秒时停止运动,请在数轴上标出此时A、B两点的位置;(3)若A、B两点分别从(2)中标出的位置再次同时开始在数轴上运动,运动的速度不变,运动的方向不限,问:运动到几秒钟时,A、B两点之间相距4个单位长度?6.如图在数轴上A点表示数a,B点表示数b,a、b满足|a+2|+|b﹣4|=0;(1)点A表示的数为;点B表示的数为;(2)一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,若甲乙两个小球相距3个单位的时间是多少,此时甲乙两个球相距的距离是多少(3)若在原点O处放一挡板,一小球甲从点A处以1个单位/秒的速度向左运动;同时另一小球乙从点B处以2个单位/秒的速度也向左运动,在碰到挡板后(忽略球的大小,可看作一点)以原来的速度向相反的方向运动,设运动的时间为t(秒),①当t=1时,甲小球到原点的距离=;乙小球到原点的距离=;当t=3时,甲小球到原点的距离=;乙小球到原点的距离=;7.思考下列问题,并在横线上填上答案:(1)数轴上表示-3的点与表示4的点相距_______个单位.(2)数轴上表示2的点先向右移动2个单位,再向左移动5个单位,最后到达的点表示的数是 _____________.(3)数轴上若点A表示的数是2,点B与点A的距离为3,则点B表示的数是_______.(4)若|a-3|=2,|b+2|=1,且数a、b在数轴上表示的数分别是点A、点B,则A、B两点间的最大距离是_______,最小距离是_______.(5)数轴上点A表示8,点B表示-8,点C在点A与点B之间,A点以每秒0.5个单位的速度向左运动,点B以每秒1.5个单位的速度向右运动,点C以每秒3个单位的速度先向右运动碰到点A后立即返回向左运动,碰到点B后又立即返回向右运动,碰到点A后又立即返回向左运动…,三个点同时开始运动,经过_______秒三个点聚于一点,这一点表示的数是_________,点C在整个运动过程中,移动了_______个单位.8.在数轴上有三个点A、B、C,它们表示的有理数分别为a、b、c.已知a是最大的负整数,且|b+4|+(c﹣2)2=0.(1)求A、B、C三点表示的有理数分别是多少?(2)填空:①如果数轴上点D到A,C两点的距离相等,则点D表示的数为;②如果数轴上点E到点A的距离为2,则点E表示的数为;(3)在数轴上是否存在一点F,使点F到点A的距离是点F到点B的距离的2倍?若存在,请直接写出点F表示的数;若不存在,请说明理由.9.阅读材料:我们知道:点A、B在数轴上分别表示有理数a、b,A、B两点之间的距离表示为AB,在数轴上A、B两点之间的距离AB=|a-b|.所以式子|x-3|的几何意义是数轴数在数轴上所对应的两点之间的距离。

苏科版七年级数学上册教案《数轴》苏科版)

苏科版七年级数学上册教案《数轴》苏科版)

《数轴》本节课主要是在学生学习了有理数概念的基础上,从标有刻度的温度计表示温度高低的事例出发,引出数轴的画法和用数轴上的点表示数的方法以及利用数轴比较有理数的大小,初步向学生渗透数形结合的数学思想,以使学生借助直观的图形来理解有理数的相关问题.【知识与能力目标】掌握数轴的含义及其数轴的三个要素,并正确画出数轴;理解有理数和无理数都可以用数轴上的点表示,数轴上的任意一点都表示一个有理数或无理数;会利用数轴比较有理数的大小;【过程与方法目标】使学生从数形两个侧面理解与解决问题,认识用形来解决数的问题的优越性,培养学生用数形结合的数学思想方法学习数学的理念.【情感态度价值观目标】向学生渗透数形结合的数学思想,让学生知道数学来源于实践,培养学生对数学的学习兴趣.【教学重点】能将已知的数在数轴上表示出来,说出数轴上的点所表示的数;会利用数轴比较有理数的大小 【教学难点】建立数轴的概念;会利用数轴比较有理数的大小多媒体课件,相关图片.一、导入新课观察如图的温度计,回答下列问题: (1)点A 表示多少摄氏度?点B 呢?点C 呢? (2)A ,B ,C 三点所表示的温度哪个高?哪个低? 学生观察温度计回答:A 表示0°C ;B 表示20°C ;C 表示-5°C ; B 点所表示的温度最高, C 点最低.教师总结:温度计上的刻度,使我们能方便地读出温度的度数,直观地判断温度的高低. 提出问题:能不能用直线上的点表示正数,零和负数?从温度计上能否得到一点启发呢? 二、讲授新课 (一)数轴类似的,我们可以用直线上的点来表示数: 做一做:1.画一条水平直线,并在这条直线上取一点表示0,我们把这点称为原点. 2.规定直线上从原点向右为正方向(画箭头表示),向左为负方向.3.取适当长度(如1cm)为单位长度,在直线上,从原点向右每隔一个单位长度取一点,依次表示1,2,3……从原点向左每隔一个单位长度取一点,依次表示-1,-2,-3……◆ 教学重难点◆◆ 课前准备 ◆◆ 教学过程教师归纳:像这样,规定了原点、正方向和单位长度的直线叫作数轴; 数轴的三要素:原点、正方向、单位长度(三者缺一不可). 总结数轴的特征:1.数轴是一条直线,可以向两端无限延伸;2.数轴有三要素:原点、单位长度和正方向,三者缺一不可; 3.同一数轴中的单位长度要一致.教师说明:在数轴上,用原点右边且到原点的距离是1.5个单位长度的点表示1.5,用原点,左边且到原点的距离是2.4个单位长度的点表示-2.4…… (二)例题讲解例1、分别写出数轴上A 、B 、C 表示的数:学生讨论,解决问题:解:点A 表示的数是-2.5;点B 表示的数是0;点C 表示的数是3.5. 例2、在数轴上画出表示下列各数的点: 学生自主完成:师生共同归纳:有理数都可以用数轴上的点表示. 提出问题:无理数可以用数轴上的点表示吗?议一议:面积为2的正方形的边长a 是无理数,如何在数轴上画出表示a 的点? 1.将边长为a 的正方形放在数轴上(如图);2.以原点为圆心,a 为半径,用圆规画出数轴上的一个点A . 点A 就表示无理数a .311.53 1.53.52---,,,,做一做:怎样用数轴上的点表示圆周率π?1.画一个直径为1的圆片,将圆片上的点A放在原点处;2.把圆片沿数轴向右滚动一周,点A到达的位置点A′表示的数就是π.师生共同归纳:无理数也可以用数轴上的点表示.归纳总结:有理数和无理数都可以用数轴上的点表示;反过来,数轴上的任意一点都表示一个有理数或无理数.(三)利用数轴比较数的大小试一试:1.把0℃、5℃、-3℃、-2℃按从低到高的顺序排列.在数轴上画出表示0、5、-3、-2的点,你能比较这几个数的大小吗?学生自主解决问题:解:-3 <-2 <0 <52.任意给出几个数,并在数轴上画出表示这几个数的点,你能比较这几个数的大小吗?思考:数轴上点的位置与它们所表示的数的大小有什么关系?学生类比问题1的结论,归纳总结:在数轴上的两个点中,右边的点表示的数大于左边的点表示的数.正数都大于0,负数小于0,正数大于负数.例3、比较-3.5和-0.5的大小.师生共同完成:解:如图,在数轴上分别画出表示-3.5和-0.5的点A、B.因为点B在点A的右边,所以-3.5<-0.5.归纳:两个负数比较大小,离原点远的数较小.例4、在数轴上画出表示下列各数的点,并用“<”把这些数按从小到大的顺序连接起来: 学生自主完成:解:如图,在数轴上画出表示各数的点:根据各点在数轴上的位置,得 三、本课小结数轴: 规定了原点、正方向和单位长度的直线叫做数轴.原点、正方向、单位长度是数轴的三要素.数与数轴上的点:有理数和无理数都可以用数轴上的点表示;反过来,数轴上的任意一点都表示一个有理数或无理数.数的大小:在数轴上表示的两个数,右边的数总比左边的数大.正数都大于零,负数都小于零,正数大于一切负数. 四、巩固练习1.分别写出数轴上A 、B 、C 、D 、E 表示的数:2.在数轴上画出表示下列各数的点: -5.5、-3.5、-2、-3、0.53.在数轴上画出表示下列各数的点,并用“<”号将这些数按从小到大的顺序连接起来: -4.5、1.5、0、4.5、-0.5、-4、34.如图,点A 、B 、C 表示的3个数中,哪个最大?哪个最小?略。

苏科版七年级数学上册《2章 有理数 2.3 数轴》公开课教案_19

苏科版七年级数学上册《2章 有理数  2.3 数轴》公开课教案_19

2.3 数轴(2)教学目标:1.进一步体会数轴上的点与有理数的对应关系.2.会用数轴比较两个数的大小;3.初步感受数形结合是一种化抽象为直观的数学思想方法.教学重点、难点:利用数轴比较两个数的大小.教学工具:笔记本电脑 投影仪 电子白板教材分析:前阶段学习了有理数的正负数,数轴的三要素及画法,了解每一个有理数会在数轴上表示,这节课充分利用数轴会比较有理数的大小,通过学习使学生掌握数形相结合的方法。

教学过程:环节一:情境创设,导入新知(为了让学生更加直观的了解有理数的大小的引入,利用PPT 的动画效果进行展示,这样,提高学生的积极性和好奇心。

)问题1:把0℃、5℃、-3℃、-2℃按从低到高的顺序排列.学生从生活常识易知:-3℃<-2℃<0℃<5℃.问题2:在数轴上画出表示0、5、3-、2-的点,你能比较这几个数的大小吗? 学生画出数轴,并用数轴上的点表示0、5、-3、-2.比较大小:-3 < -2 < 0 < 5,体验与温度高低的一致性.问题3:任意给出几个数,并在数轴上画出表示这几个数的点,你能比较这几个数的大小吗?组织学生自己写出一组数并在数轴上画出相应的点,比较大小,使学生获得更多的感性认识.问题4:数轴上点的位置与它们所表示的数的大小有什么关系?让学生尝试归纳,鼓励学生发言.归纳:法则1:(1)在数轴上表示的两个数,右边的数总比左边的数大.法则2:(2)正数都大于0,负数都小于0,正数大于负数.这里包含两种比较大小的方法:数形结合;正负数的特征【设计意图】对于比较两个负数的大小,学生比较陌生,因此借助于学生的生活经验温度的感知,类比利用数轴比较数的大小关系,再让学生通过具体操作直观感受在数轴上这几个数的大小关系与它们的位置关系【教学建议】小学已经认知的两个正数的大小比较方法,学生的难点在于两个负数的大小比较,因此问题3中要留给学生体验的时间,通过观察数轴上表示各数的点的位置关系.问题4具有较高的数形结合的要求及较高的概括要求,应鼓励学生思考①表示正数的点在原点的哪边?②表示负数的点在原点的哪边?③表示0的点?体会在数轴上表示的两个数,右边的数总比左边的数大,数形结合体验两个负数的大小比较方法.环节二:例题讲解,理解新知例1 比较下列各组数的大小:(这组题目比较简单,直接利用幻灯片投影出来,利用数数轴来让学生回答。

苏科版七年级数学上册2.3 数轴(1)

苏科版七年级数学上册2.3 数轴(1)

怎样用数轴上的点表示圆周率π? 1.画一个直径为1的圆片,将圆片上的点A放在 原点处; 2.把圆片沿数轴向右滚动一周,点A到达的位置 点A′表示的数就是π.
有理数和无理数都可以用数轴上 的点表示;
反过来,数轴上的任意一点都表 示一个有理数或无理数.
1.分别写出数轴上A、B、C、D、E表 示的数:
七年级(上册)
2.3 数轴(1)
在小学里,我们会根据直线上的一个点 的位置写出合适的数,也会在直线上画出表示 一个数的点.
-4 -3
3
5
把图中直线上的点所表示的数写在相应 的方框里.
1.画一条水平直线,并在这条直线上取一 点表示0,我们把这点称为原点.
2.规定直线上从原点向右为正方向(画箭 头表示),向左为负方向.
2.在数轴上画出表示下列各数的点:
5.5,3.5, 2,3,0.5.
课堂小结
谈谈你这一节课有哪些收获.
3.取适当长度(如1cm)为单位长度,在直 线上,从原点向右每隔一个单位长度取一点, 依次表示1,2,3……从原点向左每隔一个单位 长度取一做数轴.
数轴的三要素:
原点 正方向
三要素缺一不 可噢!
单位长度
例1 分别写出数轴上A、B、C表示的数:
解: 点A表示的数是-2.5;点B表示的数是0; 点C表示的数是3.5.
例2 在数轴上画出表示下列各数的点:
1.5,3, 3 ,1.5, 3 1 .
5
2
有理数都可以用数轴上的点表示.
面积为2的正方形的边长a是无理数,如何在 数轴上画出表示a的点?
1.将边长为a的正方形放在数轴上(如图); 2.以原点为圆心,a为半径,用圆规画出数轴 上的一个点A. 点A就表示无理数a.

江苏省句容市石狮中学苏科版七年级数学上册教案《2.3数轴》(1)

江苏省句容市石狮中学苏科版七年级数学上册教案《2.3数轴》(1)

课题:2.3数轴(1)审核:初一数学组 课型:新授课班级 姓名 日期【学习目标】基本目标:1.会正确画出数轴,并用数轴上的点表示有理数.2.知道有理数无理数都可以用数轴上的点来表示,数轴上的任何一点都表示有理数和无理数.提升目标:借助数轴体验一些特定无理数的表示方法,感受数形结合思想。

【重点难点】重点:正确画出数轴,并用数轴上的点表示有理数难点:在数轴上表示特定无理数【预习导航】问题1.阅读课本“做一做”,画数轴.结论:(1)像__________________________________________________的直线叫做数轴.(2)数轴的三要素:_____________ 、 _____________ 、_________.问题2.自学课本的例1、例2,完成下列问题:(1)如图,指出数轴上点A 、B 、C 、D 、E 表示的数:(2)在数轴上画出表示出下列各数的点:-4,3,-1.5,14 ,0,23.【课堂导学】活动一:我们刚学习过负数,如何表示出这些数呢?生活中有没有能把负数表示出来的模型呢?试找一找温度计上表示-12℃、-36℃的刻度.类似的在数学上我们利用数轴来表示出所有正数、0、负数。

活动二:归纳数轴的有关概念例题:问题1.在数轴上画出表示下列各数的点:1,-1.5,0,-1,3.5,-3.问题2.数轴是一个非常重要的数学工具,它使数和数轴上的点建立起对应关系,揭示了数与点之间的内在联系,它是“数形结合”的基础.请利用数轴回答下列问题:(1)在数轴上,到原点的距离为5的点有_______个,它们表示的数是______________;(2)在数轴上,从表示2的点出发,先向右移动3个单位长度,再向左移动6个单位长度,最后的终点表示的数是_____________________;(3)在数轴上,点M表示数2,那么与点M相距4个单位的点表示的数是_____________.【课堂检测】1.如图,指出数轴上点A、B、C表示的数:2.在数轴上画出表示下列各数的点,并指出这些点相互间的位置关系:-6,6,-3,3,-1.5,1.5.3.判断下列说法是否正确.(1)数轴上的点表示一个数.()(2)数轴上表示3的点只有一个.()(3)数轴上到原点距离等于2个单位长度的点表示的数是2.()(4)-5可以用数轴上原点左边第5个单位长度的点表示.()4.在数轴上,到原点的距离小于3的点表示的整数是.5.在数轴上的点A表示-3,现在把点A先向右移动7个单位,再向左移动4个单位,则到达终点所表示的数是.课后反思:【课后巩固】一基础检测1.在数轴上表示+2的点在原点的_______侧,它距原点的距离为_______个单位长度;表示-3的点在原点的_________侧,它距原点的距离为________个单位长度;表示+2的点在表示-3的点的________侧,它们之间的距离为________个单位长度.2.在数轴上位于-2与5之间的点表示的整数有:___________.3.有理数a、b、c在数轴上的位置如图所示,则 ( )A.a、b、c均是正数 B.a、b、c均是负数C.a、b是正数,c是负数 D.a、b是负数,c是正数4.在数轴上距原点4个单位长度的点所表示的数是() A.4 B.-4 C.4或-4 D.2或-25.在数轴上表示数-3,0,2.5,0.4的点中,不在原点右边的有() A.0个 B.1个 C.2个 D.3个6.如图,分别写出数轴上点A、B、C、D所表示的数:7.画一条数轴,并在数轴上画出表示下列各数的点:-3, 0,1,-32,1.5, +5,162,-103.8.小明在写作业时不慎将两滴墨水滴在数轴上,根据图中数值,你能确定墨迹盖住的整数是哪几个吗?二、拓展延伸9. 下面的问题需要通过数轴来观察,仔细阅读题干后画出合适的数轴:(1)如果数轴上的点A表示的数是−2,那么在数轴上与点A距离2个单位长度有几个?分别指出这些所表示的数.(2)如果数轴上的点C和点D分别代表-2,1,数轴上的点P到点C或者点D的距离为3,那么所有满足条件的点P所表示的数是什么?(就是说到点C距离为3的点符合点P的要求,到点D的距离为3的点也符合点P的要求)10. 小明从家出发(记为原点0)向东走3m,他在数轴上+3位置记为点A,他又东走了5m,记为点B,点B表示什么数?接着他又向西走了10m到点C,点C表示什么数?请你在数轴上标出点A、点B的位置,这时如果小明要回家,则小明应如何走?11.数轴上的点A和点B所表示的数分别是-1、3,若要使点A表示的数是点B表示的数的2倍,保持B点不动,应将点A怎样移动?课后反思(错题摘选)。

苏科版七年级数学上册《2.3.1数轴》说课稿

苏科版七年级数学上册《2.3.1数轴》说课稿

苏科版七年级数学上册《2.3.1数轴》说课稿一. 教材分析苏科版七年级数学上册《2.3.1数轴》这一节的主要内容是数轴的定义、性质和应用。

数轴是数学中一种重要的工具,它可以帮助我们更好地理解和解决数学问题。

在本节课中,学生将通过学习数轴的基本概念和性质,掌握数轴的画法和应用,为今后的数学学习打下坚实的基础。

二. 学情分析七年级的学生已经具备了一定的数学基础,他们已经学习了有理数和实数的概念,对数学符号和运算有一定的了解。

但是,对于数轴这一概念,他们可能是初次接触,因此需要通过实例和活动来帮助他们理解和掌握。

此外,学生可能对于数轴的应用场景和实际意义有一定的好奇心和求知欲,教师可以抓住这一点,激发学生的学习兴趣。

三. 说教学目标1.知识与技能:学生能够理解数轴的定义和性质,学会画数轴,掌握数轴的应用。

2.过程与方法:通过观察、实践、探究和合作,学生能够培养数形结合的思想,提高解决问题的能力。

3.情感态度与价值观:学生能够体验数学与生活的联系,增强对数学的兴趣和信心。

四. 说教学重难点1.重点:数轴的定义、性质和应用。

2.难点:数轴的画法和数轴上的点的表示方法。

五. 说教学方法与手段本节课采用讲授法、演示法、实践法、讨论法等多种教学方法,结合多媒体课件和教具,引导学生主动探究,合作学习。

六. 说教学过程1.导入:通过一个实际问题,引发学生对数轴的思考,激发学习兴趣。

2.讲解:讲解数轴的定义、性质和画法,引导学生理解并掌握数轴的基本概念。

3.实践:学生动手画数轴,练习表示数轴上的点,巩固所学知识。

4.应用:通过实例,讲解数轴在实际问题中的应用,让学生体会数轴的意义。

5.讨论:学生分组讨论,分享学习心得和解决问题的方法。

6.总结:对本节课的内容进行总结,强调数轴的重要性和应用价值。

七. 说板书设计板书设计简洁明了,突出数轴的核心概念和性质,包括数轴的定义、性质、画法和应用。

通过板书,学生可以一目了然地了解数轴的基本知识。

七年级数学上册 2.3 数轴 学习数轴应注意的三个方面素材 (新版)苏科版

七年级数学上册 2.3 数轴 学习数轴应注意的三个方面素材 (新版)苏科版

学习数轴应注意的三个方面数轴在有理数的学习中起着重要的作用.它是学习、理解相反数、绝对值的重要工具.正确理解数轴,并能利用数轴解决问题是数形思想的重要表达.一.数轴的理解数轴是一条特殊的直线,在这条直线上规定了原点、正方向和单位长度.理解数轴应把握以下三点:〔1〕数轴是一条特殊的直线,但直线不是数轴;〔2〕数轴有三个重要特征:①有原点〔表示数0的点〕;②正方向〔向右的方向〕;③单位长度;〔3〕数轴上的原点的位置、单位长度都是根据实际问题需要规定的,在同一条数轴上的单位长度应一致.二.数轴的画法正确画一条数轴的步骤可概括为:一画、二取、三选、四标.一画,就是先画一条直线,一般画成水平的直线;二取,就是在直线上选取适当的点,用它来它来表示0,称为原点;三选,就是选择向右的方向为正方向,用箭头表示出来,并选取适当的长度作为长度单位;四标,就是从原点向右,每隔一个单位长度取一点,依次表示1,2,3,…;从原点向左,每隔一个单位长度取一点,依次表示-1,-2,-3,….如图1,就是一条数轴.但数轴的单位选取要根据实际情况,灵活处理.如要在数轴上表示-0.1,0.2等小数,那么单位长度可选长一些,可用1cm代表一个单位长度;要在数轴上表示-100,-300等数时,那么单位长度可取小一些,如用1cm长度表示100.图1例1指出图2 中哪些不是数轴吗?并指出你判断的理由.(1) (2)(3)(4)分析:在画数轴时,常出现以下几种错误:①没有方向;②没有原点;③单位长度不统一;④标数不按顺序.而(1)中恰好是第①种错误;(2)恰好是第②错误;(3)恰好是第③种错误;(4)恰好是第④种错误.所以(1),(2),(3),(4)都不是数轴.三、数轴的应用1.利用数轴上点可以表示任意一个有理数.但并不是所有数轴上的点都表示有理数.随着学习的深入,你会认识到这一点的.2.利用数轴可以比拟两个有理数的大小.在数轴上右边的表示的数总比左边的大,正数都大于0,负数都小0,正数大于一切负数.3.利用数轴可以理解相反数的意义.在数轴上符号相反,且到原点距离相等的点所表示的数,互为相反数,如-2和2.4.利用数轴可以理解绝对值的几何意义:数轴上表示点a的数与原点的距离叫点a 的绝对值.例2在数轴上表示 3,1,-0.5, 0的相反数,并将它们的相反数按从小到大的顺序用“<〞表示出来.解析:依据题意,建立如图3所示的数轴,在数轴上分别表示出-3,-1,0.5,0,从数轴观察得到:-3<-1<0<0.5.图3例3写出数轴上符合以下条件的点所表示的数.(1)与原点的距离为3个单位长度的点所表示的数;(2)假设点A所表示的数是1,与点A的距离是是3个单位长度的点所表示的数.解析:根据题意建立如图4数轴.(1)从数轴上很容易观察到与原点3个单位长度的点所表示的数有两个,分别为3,-3;(2)与点A距离为3个单位的点有两个,这两个点所表示的数分别是-2和4.图4。

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计

苏科版数学七年级上册2.3.1《数轴》教学设计一. 教材分析《数轴》是苏科版数学七年级上册第2章3节1课时的一节课程。

数轴是数学中的重要概念,是实数与几何相结合的桥梁。

通过数轴,学生可以直观地理解实数的大小关系,掌握绝对值的概念,以及解决不等式和方程等问题。

本节课的内容为数轴的定义、特点、表示方法以及数轴上的基本运算。

二. 学情分析七年级的学生已经具备了一定的几何知识和代数知识,但对数轴的理解还需要通过具体的实例和操作来逐步建立。

学生在学习本节课时,需要具备观察、思考、操作和表达的能力。

同时,学生应能够通过数轴解决实际问题,培养运用数学解决问题的能力。

三. 教学目标1.理解数轴的定义和特点,掌握数轴上的表示方法。

2.掌握数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.能够运用数轴解决实际问题,培养运用数学解决问题的能力。

4.培养学生的观察、思考、操作和表达的能力。

四. 教学重难点1.数轴的定义和特点。

2.数轴上的基本运算,包括绝对值、加减法、比较大小等。

3.运用数轴解决实际问题。

五. 教学方法1.情境教学法:通过具体的情境和实例,让学生直观地理解数轴的概念和应用。

2.操作教学法:让学生通过实际的操作,如画数轴、标数值等,加深对数轴的理解。

3.问题驱动法:通过提出问题,引导学生思考和探索,培养学生的解决问题能力。

六. 教学准备1.教学课件:制作数轴的图片和动画,帮助学生直观地理解数轴的概念。

2.练习题:准备一些数轴相关的练习题,用于巩固所学知识。

3.教学用具:如直尺、铅笔等,用于学生实际操作。

七. 教学过程1.导入(5分钟)利用数轴的图片和动画,引导学生思考数轴是什么,数轴有什么特点。

通过引导学生观察和描述,激发学生的学习兴趣。

2.呈现(10分钟)介绍数轴的定义和特点,如数轴是一条直线,有一个原点,有一个正方向和一个负方向等。

同时,介绍数轴上的表示方法,如数值的表示、符号的表示等。

3.操练(10分钟)让学生实际操作,如画数轴、标数值等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

§2.3 数轴(1)
一、选择
1.四位同学画数轴如下图所示,你认为正确的是( )
的点在( )
2.数轴上表示-71
2
A.-6与-7之间B.-7与-8之间
C.7与8之间D.6~7之间
3.点A为数轴上表示-1的点,将A点沿数轴向左移动2个单位长度到B点,则B点所表示的数为( )
A.-3 B.3 C.1 D.1或-3
4.在数轴上,—个点从原点开始,先向左移动5个单位,再向右移动7个单位,这个终点表示的数是( )
A.12 B.-12 C.2 D.-2
5.如图,在数轴上点M表示的数可能是( )
A.1.5 B.-1.5 C.-2.4 D.2.4
6.在数轴上,通过观察可以发现,表示与原点相距3个长度单位以内(包括3个长度单位)的整数点共有( )
A.4个B.5个C.6个D.7个
二、填空
7.在数轴上,与表示-3的点距离为2个单位长度的点所表示的数是.
8.数轴上点A,B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数
为.
9.数轴上表示的数是整数的点称为整点,某数轴的单位长度是1cm,若在这个数轴上任意画出一条长2015 cm的线段AB,则线段AB盖住的整点的个数是.
10.如图,圆的周长为4个单位长,数轴每个数字之间的距离为1个单位长,在圆的4等分点处分别标上0,1,2,3,先让圆周上表示数字0的点与数轴上表示-1的点重合,再将数轴按逆时针方向环绕在该圆上(如圆周上表示数字3的点与数轴上表示-2的点重合……),则数轴上表示-2012的点与圆周上表示数字的点重合.
11.如图,半径为1个单位长度的圆从原点沿数轴向右滚动一周,圆上的一点A (滚动时与原点重合) 由原点到达点B,则AB的长度就等于圆的周长,所以数轴上点B 代表的数是,它是一个数.
12.如图,点A,B,C为数轴上的3点,请回答下列问题:
(1) 将点A 向右平移3个单位长度后,点表示的数最小;
(2) 将点C向左平移6个单位长度后,点A表示的数比点C表示的数小;
(3) 将点B向左平移21
个单位长度后,点B与点C的距离是.
2
三、解答
13.画出数轴,并在数轴上表示下列各数:+5,-3.5,1
2,-11
2
,-4,0,2.5.
14.作图题:在数轴上画出面积为8的正方形的边长a (保留作图痕迹,不要求写作法)
15.在一条东西走向的马路上,有少年宫、学校、商场、医院四家公共场所,已知少年宫在学校东300 m,商场在学校西200 m,医院在学校东500 m.若将马路近似地看成一条直线,以学校为原点,向东方向为正方向,用1个单位长度表示100 m.
(1) 画出数轴,在数轴上表示出四家公共场所的位置;
(2) 列式计算少年宫与商场之间的距离.
16.小明、小兵、小颖三人的家和学校在同一条东西走向的大街上,星期天老师到这三家进行家访,从学校出发先向东走250 m到小明家,后又向东走350 m到小兵家,再向西行800 m到小颖家,最后又回到学校.
(1) 以学校为原点,画出数轴并在数轴上分别表示出小明、小兵、小颖家的位置.
(2) 小明家距离小颖家多远?
(3) 这次家访,老师共行了多少千米的路程?
17.操作与探究:
已知在纸面上有数轴(如图),折叠纸面.
例如:若数轴上数2表示的点与数-2表示的点重合,则数轴上数-4表示的点与数4表示的点重合,根据你对例题的理解,解答下列问题:
(1) 若数轴上数1表示的点与-1表示的点重合,则数轴上数3表示的点与数表
示的点重合.
(2) 若数轴上数-3表示的点与数1表示的点重合.
①则数轴上数3表示的点与数表示的点重合.
②若数轴上A,B两点之间的距离为7(A在B的左侧),并且A,B两点经折叠后重
合,则A,B两点表示的数分别是.
参考答案
1.C 2.B 3.A 4.C 5.C 6.D 7.-5或-1 8.-5 9.2015或2016 10.1 11.2π2π无理12.(1) B (2) 1 (3) 1
2
2
13.
14.
画一个边长为4的正方形,连接对角线,用圆规在数轴上截取即可.
15.(1)
(2) 500 m 16.(1) 以向东为正,100 m为单位长度,可建立数轴如
(2) 小明家距离小颖家450 m;(3) 250+350+800+200=1 600(米),∴这次家访,老师共行了1.6千米的路程.点拨:(1) 由于数轴必须具有原点、正方向和单位长度三要素,
而本题已知原点是学校,我们必须确定一个正方向,如可令向东为正方向,100 m为单位长度;(2) 可借助数轴读出小明家和小颖家距离的单位长度数,然后再转化成实际距离;(3) 路程没有方向,不管向东,还是向西都要记作路程,最后还要加上回到学校的那段路程.当讨论成一条直线的街面的几个地点的问题时,如果借助数轴来解决,会使得原本抽象的问题
变得直观.17.-3,-5,2.5,-4.5
初中数学试卷。

相关文档
最新文档